Lecture 2

- informal introduction to CCS
- syntax of CCS
- semantics of CCS

Vending machines

$$
\begin{array}{r}
\mathrm{V}_{1} \stackrel{\text { def }}{=} 5 \mathrm{k} \cdot 5 \mathrm{k} .\left(\begin{array}{c}
\text { coffee. collect. } \mathrm{V}_{1} \\
\\
+
\end{array} \text { tea. collect. } \mathrm{V}_{1}\right)
\end{array}
$$

$\mathrm{V}_{3} \stackrel{\text { def }}{=} 5 \mathrm{k} .5 \mathrm{k}$. coffee.collect. V_{3} +5 k .5 k. tea.collect. V_{3}

Vending machines - cont.

$\mathrm{V}_{1} \stackrel{\text { def }}{=} 5 \mathrm{k} .5 \mathrm{k} .\left(\right.$ coffee.collect. $\mathrm{V}_{1}+$ tea.collect. $\left.\mathrm{V}_{1}\right)$

$\mathrm{V}_{2} \xlongequal{\text { def }} 5 \mathrm{k} .5 \mathrm{k}$. coffee.collect. $\mathrm{V}_{2}+5 \mathrm{k} .5 \mathrm{k}$. tea.collect. V_{2}

CCS Basics (Sequential Fragment)

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)
- names and recursive definitions $(\stackrel{\text { def }}{=})$
- nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be described by using the operations above.

CCS Basics (Parallelism and Renaming)

- parallel composition (|)
(synchronous communication between two components $=$ handshake synchronization)
- restriction $(P \backslash L)$
- relabelling ($P[f]$)

Definition of CCS (channels, actions, process names)

Let

- \mathcal{A} be a set of channel names (e.g. tea, coffee are channel names)
- $\mathcal{L}=\mathcal{A} \cup \overline{\mathcal{A}}$ be a set of labels where
- $\overline{\mathcal{A}}=\{\bar{a} \mid a \in \mathcal{A}\}$
(elements of \mathcal{A} are called names, elements of $\overline{\mathcal{A}}$ are called co-names)
- by convention $\overline{\bar{a}}=a$
- Act $=\mathcal{L} \cup\{\tau\}$ is the set of actions where
- τ is the internal or silent action
(e.g. τ, tea, $\overline{\text { coffee }}$ are actions)
- \mathcal{K} is a set of process names (constants) (e.g. CM).

Definition of CCS (expressions)

$$
\begin{aligned}
P:= & K \\
& \alpha . P \\
& \sum_{i \in 1} P_{i} \\
& P_{1} \mid P_{2} \\
& P \backslash L \\
& P[f]
\end{aligned}
$$

process constants $(K \in \mathcal{K})$
prefixing ($\alpha \in A c t$)
summation (I is an arbitrary index set)
parallel composition
restriction $(L \subseteq \mathcal{A})$
relabelling $(f: A c t \rightarrow A c t)$ such that

- $f(\tau)=\tau$
- $f(\bar{a})=\overline{f(a)}$

The set of all terms generated by the abstract syntax is called CCS process expressions (and denoted by \mathcal{P}).

Notation

$$
P_{1}+P_{2}=\sum_{i \in\{1,2\}} P_{i} \quad \text { Nil }=0=\sum_{i \in \emptyset} P_{i}
$$

Precedence

Precedence

(3) restriction and relabelling (tightest binding)
(3) action prefixing

- parallel composition
(summation

$$
\text { Example: } R+a . P \mid b . Q \backslash L \text { means } R+((a . P) \mid(b .(Q \backslash L))) \text {. }
$$

Definition of CCS (defining equations)

CCS program

A collection of defining equations of the form

$$
K \stackrel{\text { def }}{=} P
$$

where $K \in \mathcal{K}$ is a process constant and $P \in \mathcal{P}$ is a CCS process expression.

- Only one defining equation per process constant.
- Recursion is allowed: e.g. $A \stackrel{\text { def }}{=}$ a. $A \mid A$.

Semantics of CCS

Syntax
 CCS
 (collection of defining equations)

Semantics
 LTS
 (labelled transition systems)

HOW?

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS) - G. Plotkin 1981

Small-step operational semantics where the behaviour of a system is inferred using syntax driven rules.

Given a collection of CCS defining equations, we define the following LTS (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$):

- Proc $=\mathcal{P} \quad$ (the set of all CCS process expressions)
- Act $=\mathcal{L} \cup\{\tau\} \quad$ (the set of all CCS actions including τ)
- transition relation is given by SOS rules of the form:

$$
\text { RULE } \frac{\text { premises }}{\text { conclusion }} \text { conditions }
$$

SOS rules for CCS $(\alpha \in$ Act, $a \in \mathcal{L})$

$$
\begin{aligned}
& \text { ACT } \overline{\alpha . P \xrightarrow{\alpha} P} \\
& \operatorname{SUM}_{j} \frac{P_{j} \xrightarrow{\alpha} P_{j}^{\prime}}{\sum_{i \in I} P_{i} \xrightarrow{\alpha} P_{j}^{\prime}} j \in I \\
& \text { COM1 } \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \quad \text { COM2 } \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}} \\
& \text { COM3 } \xrightarrow[{P \mid Q \xrightarrow{P \xrightarrow{\tau} P^{\prime} \mid Q^{\prime}} Q^{\prime} Q \stackrel{\bar{a}}{ }}]{\left({ }^{\prime}\right.} \\
& \text { RES } \frac{P \xrightarrow{\alpha} P^{\prime}}{P \backslash L \xrightarrow{\alpha} P^{\prime} \backslash L} \quad \alpha, \bar{\alpha} \notin L \quad \text { REL } \frac{P \xrightarrow{\alpha} P^{\prime}}{P[f] \xrightarrow{f(\alpha)} P^{\prime}[f]} \\
& \operatorname{CON} \underset{K \xrightarrow{\alpha} P^{\prime}}{P \stackrel{\alpha}{\longrightarrow} P^{\prime}} \quad K \stackrel{\text { def }}{=} P
\end{aligned}
$$

Deriving Transitions in CCS

Let $A \stackrel{\text { def }}{=}$ a. A. Then

$$
((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] \xrightarrow{c}((A \mid \bar{a} . N i l) \mid b . N i l)[c / a] .
$$

LTS of the Process a.Nil| $\overline{\text { a }}$.Nil

