## Lecture 6

- Hennessy-Milner logic and temporal properties
- Tarski's fixed point theorem
- computing fixed points on finite sets
- bisimulation as a fixed point
- Hennessy-Milner logic with recursively defined variables
- game semantics and temporal properties of reactive systems


## Verifying Correctness of Reactive Systems

## Equivalence Checking Approach

$$
I m p I \equiv S p e c
$$

where $\equiv$ is e.g. strong or weak bisimilarity.

## Model Checking Approach

$$
|m p| \models F
$$

where $F$ is a formula from e.g. Hennessy-Milner logic.

$$
F, G::=t t|f f| F \wedge G|F \vee G|\langle a\rangle F \mid[a] F
$$

## Theorem (for Image-Finite LTS)

It holds that $p \sim q$ if and only if $p$ and $q$ satisfy exactly the same Hennessy-Milner formulae.

## Is Hennessy-Milner Logic Powerful Enough?

Modal depth (nesting degree) for Hennessy-Milner formulae:

- $m d(t t)=m d(f f)=0$
- $m d(F \wedge G)=m d(F \vee G)=\max \{m d(F), m d(G)\}$
- $m d([a] F)=m d(\langle a\rangle F)=m d(F)+1$

Idea: a formula $F$ can "see" only upto depth $m d(F)$.

## Theorem (let $F$ be a HM formula and $k=m d(F)$ )

If the defender has a defending strategy in the strong bisimulation game from $s$ and $t$ upto $k$ rounds then $s \models F$ if and only if $t \models F$.

## Corollary

E.g., there is no Hennessy-Milner formula $F$ that expresses reachability of deadlock.

## Temporal Properties not Expressible in HM Logic

$s \models \operatorname{lnv}(F)$ iff all states reachable from $s$ satisfy $F$
$s \models \operatorname{Pos}(F)$ iff there is a reachable state which satisfies $F$

## Fact

Properties $\operatorname{Inv}(F)$ and $\operatorname{Pos}(F)$ are not expressible in HM logic.

Let $A c t=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite set of actions. We define

- $\langle A c t\rangle F \stackrel{\text { def }}{=}\left\langle a_{1}\right\rangle F \vee\left\langle a_{2}\right\rangle F \vee \ldots \vee\left\langle a_{n}\right\rangle F$
- $[A c t] F \stackrel{\text { def }}{=}\left[a_{1}\right] F \wedge\left[a_{2}\right] F \wedge \ldots \wedge\left[a_{n}\right] F$
$\operatorname{lnv}(F) \ldots F \wedge[A c t] F \wedge[A c t][A c t] F \wedge[A c t][A c t][A c t] F \wedge \ldots$
$\operatorname{Pos}(F) \ldots F \vee\langle A c t\rangle F \vee\langle A c t\rangle\langle A c t\rangle F \vee\langle A c t\rangle\langle A c t\rangle\langle A c t\rangle F \vee \ldots$


## Infinite Conjunctions and Disjunctions vs. Recursion

## Problems

- infinite formulae are not allowed in HM logic
- infinite formulae are difficult to handle

What about to use recursion?

- $\operatorname{Inv}(F)$ expressed by $X \stackrel{\text { def }}{=} F \wedge[A c t] X$
- $\operatorname{Pos}(F)$ expressed by $X \stackrel{\text { def }}{=} F \vee\langle A c t\rangle X$

Question: How to define the semantics of such equations?

## Solving Equations is Tricky

## Equations over Natural Numbers $(n \in \mathbb{N})$

$n=2 * n \quad$ one solution $n=0$
$n=n+1 \quad$ no solution
$n=1 * n \quad$ many solutions (every $n \in \mathbb{N}$ is a solution)

## Equations over Sets of Integers $\left(M \in 2^{\mathbb{N}}\right)$

$$
\begin{array}{ll}
M=(\{7\} \cap M) \cup\{7\} & \text { one solution } M=\{7\} \\
M=\mathbb{N} \backslash M & \text { no solution } \\
M=\{3\} \cup M & \text { many solutions (every } M \supseteq\{3\})
\end{array}
$$

## What about Equations over Processes?

$X \stackrel{\text { def }}{=}[a] f f \vee\langle a\rangle X \quad \Rightarrow \quad$ find $Z \subseteq 2^{\text {Proc }}$ s.t. $Z=[\cdot a \cdot] \emptyset \cup\langle\cdot a \cdot\rangle Z$

## Tarski's Fixed Point Theorem (for powersets)

Given a set $S$, we consider its powerset $2^{S}=\{X \mid X \subseteq S\}$, partially ordered by the set inclusion $\subseteq$ (reflexive, transitive and antisymmetric). A set $Z \subseteq S$ is called a fixed point (or a fixpoint) of a function $f: 2^{S} \rightarrow 2^{S}$ if $f(Z)=Z$. A fixed point $Z$ of $f$ is the greatest fixed point of $f$ if for every fixed point $Y$ of $f$ we have $Y \subseteq Z ; Z$ is the least fixed point of $f$ if for every fixed point $Y$ of $f$ we have $Z \subseteq Y$.
A function $f: 2^{S} \rightarrow 2^{S}$ (mapping subsets of $S$ to subsets of $S$ ) is monotonic iff $X \subseteq Y$ implies $f(X) \subseteq f(Y)$.

## Theorem (Knaster, Tarski)

Let $f: 2^{S} \rightarrow 2^{S}$ be a monotonic function.
Then $f$ has the (unique) greatest fixed point $Z_{\text {max }}$ and the (unique) least fixed point $Z_{\text {min }}$, given by:

$$
\begin{aligned}
& Z_{\max } \stackrel{\text { def }}{=} \cup\{X \subseteq S \mid X \subseteq f(X)\} \\
& Z_{\min } \stackrel{\text { def }}{=} \cap\{X \subseteq S \mid f(X) \subseteq X\}
\end{aligned}
$$

## A relation of the greatest and least fixed points

Suppose $f: 2^{S} \rightarrow 2^{S}$ is monotonic.

$$
Z_{\max }=\cup\{X \subseteq S \mid X \subseteq f(X)\}
$$

What is the complement of $Z_{\max }$, i.e. $\overline{Z_{\max }}=S-Z_{\max }$ ?
$\overline{Z_{\max }}=\overline{\cup\{X \mid X \subseteq f(X)\}}=\cap\{\bar{X} \mid X \subseteq f(X)\}=\cap\{Y \mid \bar{Y} \subseteq f(\bar{Y})\}=$
$\cap\{Y \mid \overline{f(\bar{Y})} \subseteq Y\}=\cap\left\{Y \mid f_{d}(Y) \subseteq Y\right\}$
where $f_{d}(Y)=\overline{f(\bar{Y})} \quad\left(f_{d}\right.$ is the dual function to $\left.f\right)$
We note that $f_{d}$ is monotonic
$\left.X \subseteq Y \Rightarrow \bar{Y} \subseteq \bar{X} \Rightarrow f(\bar{Y}) \subseteq f(\bar{X}) \Rightarrow \overline{f(\bar{X})} \subseteq \overline{f(\bar{Y})} \Rightarrow f_{d}(X) \subseteq f_{d}(Y)\right)$
and thus

## Observation

The complement of the greatest fixed point of $f$ is the least fixed point of the dual function $f_{d}$.

## Computing fixed points Min and Max for finite sets

Let $f^{1}(X) \stackrel{\text { def }}{=} f(X)$ and $f^{n}(X) \stackrel{\text { def }}{=} f\left(f^{n-1}(X)\right)$ for $n>1$, i.e.,

$$
f^{n}(X)=\underbrace{f(f(\ldots f}_{n \text { times }}(X) \ldots)) .
$$

## Theorem

If $S$ is finite and $f: 2^{S} \rightarrow 2^{S}$ is monotonic then there exist integers $M, m>0$ such that

- $Z_{\max }=f^{M}(S)$
- $Z_{\text {min }}=f^{m}(\emptyset)$

Idea (for $Z_{\text {min }}$ ): The following sequence stabilizes

$$
\emptyset \subseteq f(\emptyset) \subseteq f(f(\emptyset)) \subseteq f(f(f(\emptyset))) \subseteq \cdots
$$

## (Recalling of) Definition of Strong Bisimulation

Let (Proc, Act, $\{\xrightarrow{a} \mid a \in A c t\}$ ) be an LTS.

## Strong Bisimulation

A binary relation $R \subseteq$ Proc $\times$ Proc is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in A c t:$

- if $s \xrightarrow{a} s^{\prime}$ then $t \xrightarrow{a} t^{\prime}$ for some $t^{\prime}$ such that $\left(s^{\prime}, t^{\prime}\right) \in R$
- if $t \xrightarrow{a} t^{\prime}$ then $s \xrightarrow{a} s^{\prime}$ for some $s^{\prime}$ such that $\left(s^{\prime}, t^{\prime}\right) \in R$.

Two processes $p, q \in \operatorname{Proc}$ are strongly bisimilar $(p \sim q)$ iff there exists a strong bisimulation $R$ such that $(p, q) \in R$.

$$
\sim=\bigcup\{R \mid R \text { is a strong bisimulation }\}
$$

## Strong Bisimulation as a Greatest Fixed Point

Function $\mathcal{F}: 2^{(\text {Proc } \times \text { Proc })} \rightarrow 2^{\text {(Proc } \times \text { Proc })}$
Let $X \subseteq$ Proc $\times$ Proc. Then we define $\mathcal{F}(X)$ as follows:
$(s, t) \in \mathcal{F}(X)$ if and only if for each $a \in A c t:$

- if $s \xrightarrow{a} s^{\prime}$ then $t \xrightarrow{a} t^{\prime}$ for some $t^{\prime}$ such that $\left(s^{\prime}, t^{\prime}\right) \in X$
- if $t \xrightarrow{a} t^{\prime}$ then $s \xrightarrow{a} s^{\prime}$ for some $s^{\prime}$ such that $\left(s^{\prime}, t^{\prime}\right) \in X$.


## Observations

- $\mathcal{F}$ is monotonic
- $S$ is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$

Strong Bisimilarity is the Greatest Fixed Point of $\mathcal{F}$

$$
\sim=\bigcup\left\{S \in 2^{(\text {Proc } \times \text { Proc })} \mid S \subseteq \mathcal{F}(S)\right\}
$$

## HML with One Recursively Defined Variable

## Syntax of Formulae

Formulae are given by the following abstract syntax

$$
F::=X|t t| f f\left|F_{1} \wedge F_{2}\right| F_{1} \vee F_{2}|\langle a\rangle F|[a] F
$$

where $a \in A c t$ and $X$ is a distinguished variable with a definition

- $X \stackrel{\min }{=} F_{X}$, or $X \stackrel{\max }{=} F_{X}$ (syntax in CWB: $\min \left(X . F_{X}\right), \max \left(X . F_{X}\right)$ ) such that $F_{X}$ is a formula of the logic (which can contain $X$ ).


## How to Define Semantics?

For every formula $F$ we define a function $O_{F}: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ s.t.

- if $S$ is the set of processes that satisfy $X$ then
- $O_{F}(S)$ is the set of processes that satisfy $F$.


## Definition of $O_{F}: 2^{\text {Proc }} \rightarrow 2^{\text {Proc }}$ (let $S \subseteq$ Proc)

$$
\begin{aligned}
O_{X}(S) & =S \\
O_{t t}(S) & =\text { Proc } \\
O_{f f}(S) & =\emptyset \\
O_{F_{1} \wedge F_{2}}(S) & =O_{F_{1}}(S) \cap O_{F_{2}}(S) \\
O_{F_{1} \vee F_{2}}(S) & =O_{F_{1}}(S) \cup O_{F_{2}}(S) \\
O_{\langle a\rangle F}(S) & =\langle\cdot a \cdot\rangle O_{F}(S) \\
O_{[a] F}(S) & =[\cdot a \cdot] O_{F}(S)
\end{aligned}
$$

$O_{F}$ is monotonic for every formula $F$

$$
S_{1} \subseteq S_{2} \Rightarrow O_{F}\left(S_{1}\right) \subseteq O_{F}\left(S_{2}\right)
$$

Proof: easy (structural induction on the structure of $F$ ).

## Semantics

## Observation

$O_{F}$ is monotonic on ( $2^{\text {Proc }} \subseteq \subseteq$ ), so $O_{F}$ has the (unique) greatest fixed point and the (unique) least fixed point.

## Semantics of the Variable $X$

- If $X \stackrel{\max }{=} F_{X}$ then

$$
\llbracket X \rrbracket=\bigcup\left\{S \subseteq \operatorname{Proc} \mid S \subseteq O_{F_{X}}(S)\right\}
$$

- If $X \stackrel{\min }{=} F_{X}$ then

$$
\llbracket X \rrbracket=\bigcap\left\{S \subseteq \operatorname{Proc} \mid O_{F_{X}}(S) \subseteq S\right\}
$$

## Game Characterization

Intuition: the attacker claims $s \not \models F$, the defender claims $s \models F$.

## Configurations of the game are of the form $(s, F)$

- $(s, t t)$ and $(s, f f)$ have no successors
- $(s, X)$ has one successor $\left(s, F_{X}\right)$
- $\left(s, F_{1} \wedge F_{2}\right)$ has two successors $\left(s, F_{1}\right)$ and $\left(s, F_{2}\right)$
(selected by the attacker)
- $\left(s, F_{1} \vee F_{2}\right)$ has two successors $\left(s, F_{1}\right)$ and $\left(s, F_{2}\right)$ (selected by the defender)
- $(s,[a] F)$ has successors $\left(s^{\prime}, F\right)$ for every $s^{\prime}$ s.t. $s \xrightarrow{a} s^{\prime}$ (selected by the attacker)
- $(s,\langle a\rangle F)$ has successors $\left(s^{\prime}, F\right)$ for every $s^{\prime}$ s.t. $s \xrightarrow{a} s^{\prime}$ (selected by the defender)


## Who is the Winner?

Play is a maximal sequence of configurations formed according to the rules given on the previous slide.

## Finite Play

- The attacker is the winner of a finite play if the defender gets stuck or the players reach a configuration ( $s, f f$ ).
- The defender is the winner of a finite play if the attacker gets stuck or the players reach a configuration $(s, t t)$.


## Infinite Play

- The attacker is the winner of an infinite play if $X$ is defined as $X \stackrel{\min }{=} F_{X}$.
- The defender is the winner of an infinite play if $X$ is defined as $X \stackrel{\max }{=} F_{X}$.


## Game Characterization

## Theorem

- $s \models F$ if and only if the defender has a universal winning strategy from $(s, F)$
- $s \not \models F$ if and only if the attacker has a universal winning strategy from ( $s, F$ )


## Selection of Temporal Properties

- $\operatorname{Inv}(F): \quad X \stackrel{\max }{=} F \wedge[A c t] X$
- $\operatorname{Pos}(F): \quad X \stackrel{\min }{=} F \vee\langle A c t\rangle X$
- $\operatorname{Safe}(F): \quad X \stackrel{\max }{=} F \wedge([A c t] f f \vee\langle A c t\rangle X)$
- Even $(F): \quad X \stackrel{\min }{=} F \vee(\langle A c t\rangle t t \wedge[A c t] X)$
- $F \mathcal{U}^{w} G: \quad X \stackrel{\max }{=} G \vee(F \wedge[A c t] X)$
- $F \mathcal{U}^{s} G: \quad X \stackrel{\min }{=} G \vee(F \wedge\langle A c t\rangle t t \wedge[A c t] X)$

Using until we can express e.g. $\operatorname{Inv}(F)$ and $\operatorname{Even}(F)$ :

$$
\operatorname{lnv}(F) \equiv F \mathcal{U}^{w} f f \quad \operatorname{Even}(F) \equiv t \mathcal{U}^{s} F
$$

## Examples of More Advanced Recursive Formulae

## Nested Definitions of Recursive Variables

$$
X \stackrel{\min }{=} Y \vee\langle A c t\rangle X \quad Y \stackrel{\max }{=}\langle a\rangle t t \wedge\langle A c t\rangle Y
$$

Solution: compute first $\llbracket Y \rrbracket$ and then $\llbracket X \rrbracket$.

## Mutually Recursive Definitions

$$
X \stackrel{\max }{=}[a] Y \quad Y \stackrel{\max }{=}\langle a\rangle X
$$

Solution: consider a complete lattice $\left(2^{\text {Proc }} \times 2^{\text {Proc }}\right.$, $\left.\sqsubseteq\right)$ where $\left(S_{1}, S_{2}\right) \sqsubseteq\left(S_{1}^{\prime}, S_{2}^{\prime}\right)$ iff $S_{1} \subseteq S_{1}^{\prime}$ and $S_{2} \subseteq S_{2}^{\prime}$.

Note: In the previous case we refer to a generalization of Tarski's Theorem which holds for all complete lattices.

