
Lecture 6

Hennessy-Milner logic and temporal properties

Tarski’s fixed point theorem

computing fixed points on finite sets

bisimulation as a fixed point

Hennessy-Milner logic with recursively defined variables

game semantics and temporal properties of reactive systems
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Verifying Correctness of Reactive Systems

Equivalence Checking Approach

Impl ≡ Spec

where ≡ is e.g. strong or weak bisimilarity.

Model Checking Approach

Impl |= F

where F is a formula from e.g. Hennessy-Milner logic.

F , G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

Theorem (for Image-Finite LTS)

It holds that p ∼ q if and only if p and q satisfy exactly the same
Hennessy-Milner formulae.
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Is Hennessy-Milner Logic Powerful Enough?

Modal depth (nesting degree) for Hennessy-Milner formulae:

md(tt) = md(ff ) = 0

md(F ∧ G ) = md(F ∨ G ) = max{md(F ), md(G )}

md([a]F ) = md(〈a〉F ) = md(F ) + 1

Idea: a formula F can “see” only upto depth md(F ).

Theorem (let F be a HM formula and k = md(F ))

If the defender has a defending strategy in the strong bisimulation game
from s and t upto k rounds then s |= F if and only if t |= F .

Corollary

E.g., there is no Hennessy-Milner formula F that expresses reachability of
deadlock.

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 3 / 19



Temporal Properties not Expressible in HM Logic

s |= Inv(F ) iff all states reachable from s satisfy F

s |= Pos(F ) iff there is a reachable state which satisfies F

Fact

Properties Inv(F ) and Pos(F ) are not expressible in HM logic.

Let Act = {a1, a2, . . . , an} be a finite set of actions. We define

〈Act〉F
def
= 〈a1〉F ∨ 〈a2〉F ∨ . . . ∨ 〈an〉F

[Act]F
def
= [a1]F ∧ [a2]F ∧ . . . ∧ [an]F

Inv(F ) . . . F ∧ [Act]F ∧ [Act][Act]F ∧ [Act][Act][Act]F ∧ . . .

Pos(F ) . . . F ∨ 〈Act〉F ∨ 〈Act〉〈Act〉F ∨ 〈Act〉〈Act〉〈Act〉F ∨ . . .
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Infinite Conjunctions and Disjunctions vs. Recursion

Problems

infinite formulae are not allowed in HM logic

infinite formulae are difficult to handle

What about to use recursion?

Inv(F ) expressed by X
def
= F ∧ [Act]X

Pos(F ) expressed by X
def
= F ∨ 〈Act〉X

Question: How to define the semantics of such equations?
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Solving Equations is Tricky

Equations over Natural Numbers (n ∈ N)

n = 2 ∗ n one solution n = 0
n = n + 1 no solution
n = 1 ∗ n many solutions (every n ∈ N is a solution)

Equations over Sets of Integers (M ∈ 2N)

M = ({7} ∩ M) ∪ {7} one solution M = {7}
M = N r M no solution
M = {3} ∪ M many solutions (every M ⊇ {3})

What about Equations over Processes?

X
def
= [a]ff ∨ 〈a〉X ⇒ find Z ⊆ 2Proc s.t. Z = [·a·]∅ ∪ 〈·a·〉Z
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Tarski’s Fixed Point Theorem (for powersets)

Given a set S , we consider its powerset 2S = {X | X ⊆ S}, partially
ordered by the set inclusion ⊆ (reflexive, transitive and antisymmetric).
A set Z ⊆ S is called a fixed point (or a fixpoint) of a function
f : 2S → 2S if f (Z ) = Z . A fixed point Z of f is the greatest fixed point
of f if for every fixed point Y of f we have Y ⊆ Z ; Z is the least fixed
point of f if for every fixed point Y of f we have Z ⊆ Y .
A function f : 2S → 2S (mapping subsets of S to subsets of S) is
monotonic iff X ⊆ Y implies f (X ) ⊆ f (Y ).

Theorem (Knaster, Tarski)

Let f : 2S → 2S be a monotonic function.
Then f has the (unique) greatest fixed point Zmax

and the (unique) least fixed point Zmin, given by:

Zmax

def
= ∪{X ⊆ S | X ⊆ f (X )}

Zmin

def
= ∩{X ⊆ S | f (X ) ⊆ X}
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A relation of the greatest and least fixed points

Suppose f : 2S → 2S is monotonic.

Zmax = ∪{X ⊆ S | X ⊆ f (X )}

What is the complement of Zmax , i.e. Zmax = S − Zmax ?

Zmax = ∪{X | X ⊆ f (X )} = ∩ {X | X ⊆ f (X )} = ∩ {Y | Y ⊆ f (Y )} =

∩{Y | f (Y ) ⊆ Y } = ∩ {Y | fd(Y ) ⊆ Y }

where fd(Y ) = f (Y ) (fd is the dual function to f )
We note that fd is monotonic

X ⊆ Y ⇒ Y ⊆ X ⇒ f (Y ) ⊆ f (X ) ⇒ f (X ) ⊆ f (Y ) ⇒ fd(X ) ⊆ fd(Y ))
and thus

Observation

The complement of the greatest fixed point of f is the least fixed point of
the dual function fd .
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Computing fixed points Min and Max for finite sets

Let f 1(X )
def
= f (X ) and f n(X )

def
= f (f n−1(X )) for n > 1, i.e.,

f n(X ) = f (f (. . . f
︸ ︷︷ ︸

n times

(X ) . . .)).

Theorem

If S is finite and f : 2S → 2S is monotonic then there exist integers

M, m > 0 such that

Zmax = f M(S)

Zmin = f m(∅)

Idea (for Zmin): The following sequence stabilizes

∅ ⊆ f (∅) ⊆ f (f (∅)) ⊆ f (f (f (∅))) ⊆ · · ·
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(Recalling of) Definition of Strong Bisimulation

Let (Proc , Act, {
a

−→| a ∈ Act}) be an LTS.

Strong Bisimulation

A binary relation R ⊆ Proc × Proc is a strong bisimulation iff whenever
(s, t) ∈ R then for each a ∈ Act:

if s
a

−→ s ′ then t
a

−→ t ′ for some t ′ such that (s ′, t ′) ∈ R

if t
a

−→ t ′ then s
a

−→ s ′ for some s ′ such that (s ′, t ′) ∈ R.

Two processes p, q ∈ Proc are strongly bisimilar (p ∼ q) iff there exists a
strong bisimulation R such that (p, q) ∈ R.

∼ =
⋃

{R | R is a strong bisimulation}
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Strong Bisimulation as a Greatest Fixed Point

Function F : 2(Proc×Proc) → 2(Proc×Proc)

Let X ⊆ Proc × Proc . Then we define F(X ) as follows:

(s, t) ∈ F(X ) if and only if for each a ∈ Act:

if s
a

−→ s ′ then t
a

−→ t ′ for some t ′ such that (s ′, t ′) ∈ X

if t
a

−→ t ′ then s
a

−→ s ′ for some s ′ such that (s ′, t ′) ∈ X .

Observations

F is monotonic

S is a strong bisimulation if and only if S ⊆ F(S)

Strong Bisimilarity is the Greatest Fixed Point of F

∼=
⋃

{S ∈ 2(Proc×Proc) | S ⊆ F(S)}
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HML with One Recursively Defined Variable

Syntax of Formulae

Formulae are given by the following abstract syntax

F ::= X | tt | ff | F1 ∧ F2 | F1 ∨ F2 | 〈a〉F | [a]F

where a ∈ Act and X is a distinguished variable with a definition

X
min
= FX , or X

max
= FX (syntax in CWB: min(X .FX ), max(X .FX ))

such that FX is a formula of the logic (which can contain X ).

How to Define Semantics?

For every formula F we define a function OF : 2Proc → 2Proc s.t.

if S is the set of processes that satisfy X then

OF (S) is the set of processes that satisfy F .
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Definition of OF : 2Proc → 2Proc (let S ⊆ Proc)

OX (S) = S

Ott(S) = Proc

Off (S) = ∅

OF1∧F2(S) = OF1(S) ∩ OF2(S)

OF1∨F2(S) = OF1(S) ∪ OF2(S)

O〈a〉F (S) = 〈·a·〉OF (S)

O[a]F (S) = [·a·]OF (S)

OF is monotonic for every formula F

S1 ⊆ S2 ⇒ OF (S1) ⊆ OF (S2)

Proof: easy (structural induction on the structure of F ).
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Semantics

Observation

OF is monotonic on (2Proc ,⊆), so OF has the (unique) greatest fixed
point and the (unique) least fixed point.

Semantics of the Variable X

If X
max
= FX then

[[X ]] =
⋃

{S ⊆ Proc | S ⊆ OFX
(S)}.

If X
min
= FX then

[[X ]] =
⋂

{S ⊆ Proc | OFX
(S) ⊆ S}.
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Game Characterization

Intuition: the attacker claims s 6|= F , the defender claims s |= F .

Configurations of the game are of the form (s, F )

(s, tt) and (s, ff ) have no successors

(s, X ) has one successor (s, FX )

(s, F1 ∧ F2) has two successors (s, F1) and (s, F2)
(selected by the attacker)

(s, F1 ∨ F2) has two successors (s, F1) and (s, F2)
(selected by the defender)

(s, [a]F ) has successors (s ′, F ) for every s ′ s.t. s
a

−→ s ′

(selected by the attacker)

(s, 〈a〉F ) has successors (s ′, F ) for every s ′ s.t. s
a

−→ s ′

(selected by the defender)

Lecturer: Petr Jančar (FEI VŠB-TU) Modelling and Verification (MaV) Winter 2007/2008 15 / 19



Who is the Winner?

Play is a maximal sequence of configurations formed according to the rules
given on the previous slide.

Finite Play

The attacker is the winner of a finite play if the defender gets stuck or
the players reach a configuration (s, ff ).

The defender is the winner of a finite play if the attacker gets stuck or
the players reach a configuration (s, tt).

Infinite Play

The attacker is the winner of an infinite play if X is defined as

X
min
= FX .

The defender is the winner of an infinite play if X is defined as
X

max
= FX .
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Game Characterization

Theorem

s |= F if and only if the defender has a universal winning strategy
from (s, F )

s 6|= F if and only if the attacker has a universal winning strategy
from (s, F )
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Selection of Temporal Properties

Inv(F ): X
max
= F ∧ [Act]X

Pos(F ): X
min
= F ∨ 〈Act〉X

Safe(F ): X
max
= F ∧ ([Act]ff ∨ 〈Act〉X )

Even(F ): X
min
= F ∨ (〈Act〉tt ∧ [Act]X )

F Uw G : X
max
= G ∨ (F ∧ [Act]X )

F U s G : X
min
= G ∨ (F ∧ 〈Act〉tt ∧ [Act]X )

Using until we can express e.g. Inv(F ) and Even(F ):

Inv(F ) ≡ F Uw ff Even(F ) ≡ tt U s F
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Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

X
min
= Y ∨ 〈Act〉X Y

max
= 〈a〉tt ∧ 〈Act〉Y

Solution: compute first [[Y ]] and then [[X ]].

Mutually Recursive Definitions

X
max
= [a]Y Y

max
= 〈a〉X

Solution: consider a complete lattice (2Proc × 2Proc ,⊑) where
(S1, S2) ⊑ (S ′

1, S
′
2) iff S1 ⊆ S ′

1 and S2 ⊆ S ′
2.

Note: In the previous case we refer to a generalization of Tarski’s Theorem
which holds for all complete lattices.
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