
SEMANTICS & V ERIFICATION 2005

Tutorial 2

Exercise 1*

Which of the following expressions are correctly built CCS expressions? Why?
(Assume thatA, B are process constants anda, b are channel names.)

• a.b.A + B

• (a.Nil + a.A) r {a, b}

• (a.Nil | a.A) r {a, τ}

• a.B + [a/b]

• τ.τ.B + Nil

• (a.B + b.B)[a/b, b/a]

• (a.B + τ.B)[a/τ, b/a]

• (a.b.A + a.Nil) |B

• (a.b.A + a.Nil).B

• (a.b.A + a.Nil) + B

• (Nil |Nil) + Nil

Exercise 2*

By using SOS rules for CCS prove the existence of the following transitions (assume thatA
def= b.a.B):

• (A | b.Nil) r {b} τ−→ (a.B |Nil) r {b}

• (A | b.a.B) + (b.A)[a/b] b−→ (A | a.B)

• (A | b.a.B) + (b.A)[a/b] a−→ A[a/b]

Exercise 3*

Consider the following CCS defining equations:

CM def= coin.coffee.CM

CS def= pub.coin.coffee.CS

Uni def= (CM |CS) r {coin, coffee}

Use the rules of the SOS semantics for CCS to derive the labelled transition system for the processUni
defined above. The proofs can be omitted and a drawing of the resulting LTS is enough.

Exercise 4

Draw (part of) the labelled transition system for the process constantA defined by

A
def= (a.A) r {b}.

The resulting LTS should have infinitely many reachable states. Can you think of a CCS term that
generates a finite LTS and intuitively has the same behaviour asA?

1

SEMANTICS & V ERIFICATION 2005

Exercise 5 (optional)

1. Draw the transition graph for the process name Mutex1 whose behaviour is given by the following
defining equations.

Mutex1
def= (User| Sem) \ {p, v}

User
def= p̄.enter.exit.v̄.User

Sem
def= p.v.Sem

2. Draw the transition graph for the process name Mutex2 whose behaviour is given by the defining
equation

Mutex2
def= ((User|Sem)|User) \ {p, v}

where User and Sem are defined as before. Would the behaviour of the process change if User was
defined as

User
def= p̄.enter.v̄.exit.User ?

3. Draw the transition graph for the process name FMutex whose behaviour is given by the defining
equation

FMutex
def= ((User| Sem) | FUser) \ {p, v}

where User and Sem are defined as before, and the behaviour of FUser is given by the defining
equation

FUser
def= p̄.enter.(exit.v̄.FUser+ exit.v̄.Nil)

Do you think that Mutex2 and FMutex are offering the same behaviour? Can you argue informally
for your answer?

2

