Tutorial 7

Exercise 1

Consider an autonomous elevator which operates between two floors. The requested behaviour of the elevator is as follows:

- The elevator can stop either at the ground floor or the first floor.
- When the elevator arrives at a certain floor, its door automatically opens. It takes at least 2 seconds from its arrival before the door opens but the door must definitely open within 5 seconds.
- Whenever the elevator's door is open, passengers can enter. They enter one by one and we (optimistically) assume that the elevator has a sufficient capacity to accommodate any number of passengers waiting outside.
- The door can close only 4 seconds after the last passenger entered.
- After the door closes, the elevator waits at least 2 seconds and then travels up or down to the other floor.
Your tasks are:
- Suggest a timed automaton model of the elevator. Use the actions $u p$ and down to model the movement of the elevator, open and close to describe the door operation and the action enter which means that a passenger is entering the elevator.
- Provide two different timed traces of the system starting at the ground floor with the door open.

Exercise 2

Consider the following timed automata and for each pair decide whether their initial states are (i) timed bisimilar (ii) untimed bisimilar.

Exercise 3

Let T be a timed transition system. Let us consider a labelled transition system T^{\prime} where every time-delay action $d \in \mathbb{R}^{\geq 0}$ is replaced with the silent action τ. We now define that two states p and q from the timed transition system T are time abstracted bisimilar if and only if p and q are weakly bisimilar in T^{\prime}.

- Is the notion of time abstracted bisimilarity equivalent to untimed bisimilarity?
- If yes, prove your claim. If no, give a counter example.

