Tutorial 8

Exercise 1

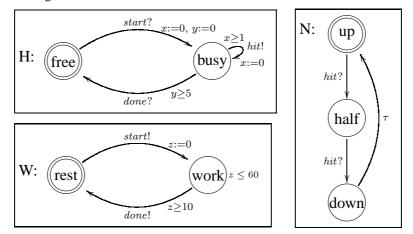
Let $C = \{x, y\}$ be a set of clocks such that $c_x = 2$ and $c_y = 2$.

- Draw a picture with all regions for the clocks x and y.
- How many different regions there are on the picture?
- Select four different regions (corner point, line, two areas) and describe them via extended clock constraints (i.e., also diagonal constraints like $x y \le 1$ etc. can be used).
- Try to find a general formula which describes the number of regions for two clocks and arbitrary maximal constants c_x and c_y .

Exercise 2*

Draw a region graph of the following timed automaton.

$$x{:=}0{,}y{:=}0 \underbrace{ \begin{pmatrix} 0 < x \leq 1 \\ \ell_0 \end{pmatrix}}_{b \ x=1 \land y=1}^{a} \overset{a}{y{:=}0}$$


Using the region graph decide whether the following configurations

- (ℓ_0, v) where v(x) = 0.7 and v(y) = 0.61
- (ℓ_0, v) where v(x) = 0.2 and v(y) = 0.41

are reachable from the initial configuration.

Exercise 3

Consider the following network of timed automata from the lecture.

- Give an example of a timed trace in the network above.
- Which of the following properties are true?
 - A[] (W.rest $\lor z \le 100$)
 - $E\langle\rangle$ (W.rest \wedge H.busy)
 - $A\langle\rangle$ W.rest
 - E[] H.busy
 - W.work -- > W.rest