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Executive Summary 

After 38 years of rapid progress, conventional microprocessor technology is 

beginning to see diminishing returns. The pace of improvement in clock speeds and 

architectural sophistication is slowing, and while single-threaded performance 

continues to improve, the focus has shifted to multicore designs. 

These too are reaching practical limits for personal computing; a quad-core CPU 

isn’t worth twice the price of a dual-core, and chips with even higher core counts 

aren’t likely to be a major driver of value in future PCs. 

CPUs will never go away, but GPUs are assuming a more prominent role in PC 

system architecture. GPUs deliver more cost-effective and energy-efficient 

performance for applications that need it. 

The rapidly growing popularity of GPUs also makes them a natural choice for 

high-performance computing (HPC). Gaming and other consumer applications 

create a demand for millions of high-end GPUs each year, and these high sales 

volumes make it possible for companies like NVIDIA to provide the HPC market with 

fast, affordable GPU computing products. 

NVIDIA’s next-generation CUDA architecture (code named Fermi), is the latest 

and greatest expression of this trend. With many times the performance of any 

conventional CPU on parallel software, and new features to make it easier for 

software developers to realize the full potential of the hardware, Fermi-based GPUs 

will bring supercomputer performance to more users than ever before. 

Fermi is the first architecture of any kind to deliver all of the features required 

for the most demanding HPC applications: unmatched double-precision floating-

point performance, IEEE 754-2008 compliance including fused multiply-add 

operations, ECC protection from the registers to DRAM, a straightforward linear 

addressing model with caching at all levels, and support for languages including C, 

C++, FORTRAN, Java, Matlab, and Python. 

With these features, plus many other performance and usability enhancements, 

Fermi is the first complete architecture for GPU computing. 
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CPU Computing—the Great Tradition 

The history of the microprocessor over the last 38 years describes the greatest 

period of sustained technical progress the world has ever seen. Moore’s Law, which 

describes the rate of this progress, has no equivalent in transportation, agriculture, 

or mechanical engineering. Think how different the Industrial Revolution would 

have been 300 years ago if, for example, the strength of structural materials had 

doubled every 18 months from 1771 to 1809. Never mind steam; the 19th century 

could have been powered by pea-sized internal-combustion engines compressing 

hydrogen to produce nuclear fusion. 

CPU performance is the product of many related advances: 

• Increased transistor density 

• Increased transistor performance 

• Wider data paths 

• Pipelining 

• Superscalar execution 

• Speculative execution 

• Caching 

• Chip- and system-level integration 

The first thirty years of the microprocessor focused almost exclusively on serial 

workloads: compilers, managing serial communication links, user-interface code, 

and so on. More recently, CPUs have evolved to meet the needs of parallel workloads 

in markets from financial transaction processing to computational fluid dynamics. 

CPUs are great things. They’re easy to program, because compilers evolved right 

along with the hardware they run on. Software developers can ignore most of the 

complexity in modern CPUs; microarchitecture is almost invisible, and compiler 

magic hides the rest. Multicore chips have the same software architecture as older 

multiprocessor systems: a simple coherent memory model and a sea of identical 

computing engines. 

But CPU cores continue to be optimized for single-threaded performance at the 

expense of parallel execution. This fact is most apparent when one considers that 

integer and floating-point execution units occupy only a tiny fraction of the die area 

in a modern CPU. 

Figure 1 shows the portion of the die area used by ALUs in the Core i7 processor 

(the chip code-named Bloomfield) based on Intel’s Nehalem microarchitecture. 
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Figure 1. Intel’s Core i7 processor (the chip code-named Bloomfield, based on the 

Nehalem microarchitecture) includes four CPU cores with simultaneous multithreading, 8MB 

of L3 cache, and on-chip DRAM controllers. Made with 45nm process technology, each chip has 

731 million transistors and consumes up to 130W of thermal design power. Red outlines 

highlight the portion of each core occupied by execution units. (Source: Intel Corporation 

except red highlighting) 

With such a small part of the chip devoted to performing direct calculations, it’s 

no surprise that CPUs are relatively inefficient for high-performance computing 

applications. Most of the circuitry on a CPU, and therefore most of the heat it 

generates, is devoted to invisible complexity: those caches, instruction decoders, 

branch predictors, and other features that are not architecturally visible but which 

enhance single-threaded performance. 

Speculation 

At the heart of this focus on single-threaded performance is a concept known as 

speculation. At a high level, speculation encompasses not only speculative execution 

(in which instructions begin executing even before it is possible to know their 

results will be needed), but many other elements of CPU design. 
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Caches, for example, are fundamentally speculative: storing data in a cache 

represents a bet that the data will be needed again soon. Caches consume die area 

and power that could otherwise be used to implement and operate more execution 

units. Whether the bet pays off depends on the nature of each workload. 

Similarly, multiple execution units, out of order processing, and branch 

prediction also represent speculative optimizations. All of these choices tend to pay 

off for code with high data locality (where the same data items, or those nearby in 

memory, are frequently accessed), a mix of different operations, and a high 

percentage of conditional branches. 

But when executing code consisting of many sequential operations of the same 

type—like scientific workloads—these speculative elements can sit unused, 

consuming die area and power. 

The effect of process technology 

The need for CPU designers to maximize single-threaded performance is also 

behind the use of aggressive process technology to achieve the highest possible 

clock rates. But this decision also comes with significant costs. Faster transistors run 

hotter, leak more power even when they aren’t switching, and cost more to 

manufacture. 

Companies that make high-end CPUs spend staggering amounts of money on 

process technology just to improve single-threaded performance. Between them, 

IBM and Intel have invested tens of billions of dollars on R&D for process technology 

and transistor design. The results are impressive when measured in gigahertz, but 

less so from the perspective of GFLOPS per dollar or per watt. 

Processor microarchitecture also contributes to performance. Within the PC 

and server markets, the extremes of microarchitectural optimization are 

represented by two classes of CPU design: relatively simple dual-issue cores and 

more complex multi-issue cores. 

Dual-issue CPUs 

The simplest CPU microarchitecture used in the PC market today is the dual-

issue superscalar core. Such designs can execute up to two operations in each clock 

cycle, sometimes with special “pairing rules” that define which instructions can be 

executed together. For example, some early dual-issue CPUs could issue two simple 
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integer operations at the same time, or one integer and one floating-point operation, 

but not two floating-point operations. 

Dual-issue cores generally process instructions in program order. They deliver 

improved performance by exploiting the natural instruction-level parallelism (ILP) 

in most programs. The amount of available ILP varies from one program to another, 

but there’s almost always enough to take advantage of a second pipeline. 

Intel’s Atom processor is a good example of a fully evolved dual-issue processor. 

Like other advanced x86 chips, Atom translates x86 instructions into internal 

“micro-ops” that are more like the instructions in old RISC (reduced instruction set 

computing) processors. In Atom, each micro-op can typically perform one ALU 

operation plus one or more supporting operation such as a memory load or store. 

Dual-issue processors like Atom usually occupy the low end of the market 

where cost-efficiency is paramount. For this reason, Atom has fewer performance-

oriented optimizations than more expensive Intel chips. Atom executes in order, 

with no speculative execution. Much of the new engineering work in Atom went into 

improving its power efficiency when not operating at full speed. 

Atom has six execution pipelines (two for floating point operations, two for 

integer operations, and two for address calculations; the latter are common in the 

x86 architecture because instruction operands can specify memory locations). Only 

two instructions, however, can be issued to these pipelines in a single clock period. 

This low utilization means that some execution units will always go unused in each 

cycle. 

Like any x86 processor, a large part of Atom is dedicated to instruction caching, 

decoding (in this case, translating to micro-ops), and a microcode store to 

implement the more complex x86 instructions. It also supports Atom’s two-way 

simultaneous multithreading (SMT) feature. This circuitry, which Intel calls the 

“front end cluster,” occupies more die area than the chip’s floating-point unit. 

SMT is basically a way to work around cases that further limit utilization of the 

execution units. Sometimes a single thread is stalled waiting for data from the cache, 

or has multiple instructions pending for a single pipeline. In these cases, the second 

thread may be able to issue an instruction or two.  The net performance benefit is 

usually low, only 10%–20% on some applications, but SMT adds only a few percent 

to the size of the chip. 
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As a result, the Atom core is suitable for low-end consumer systems, but 

provides very low net performance, well below what is available from other Intel 

processors. 

Intel’s Larrabee 

Larrabee is Intel’s code name for a future graphics processing architecture 

based on the x86 architecture. The first Larrabee chip is said to use dual-issue cores 

derived from the original Pentium design, but modified to include support for 64-bit 

x86 operations and a new 512-bit vector-processing unit. 

Apart from the vector unit, the Larrabee core is simpler than Atom’s. It doesn’t 

support Intel’s MMX or SSE extensions, instead relying solely on the new vector unit, 

which has its own new instructions. The vector unit is wide enough to perform 16 

single-precision FP operations per clock, and also provides double-precision FP 

support at a lower rate. 

Several features in Larrabee’s vector unit are new to the x86 architecture, 

including scatter-gather loads and stores (forming a vector from 16 different 

locations in memory—a convenient feature, though one that must be used 

judiciously), fused multiply-add, predicated execution, and three-operand floating-

point instructions. 

Larrabee also supports four-way multithreading, but not in the same way as 

Atom. Where Atom can simultaneously execute instructions from two threads 

(hence the SMT name), Larrabee simply maintains the state of multiple threads to 

speed the process of switching to a new thread when the current thread stalls. 

Larrabee’s x86 compatibility reduces its performance and efficiency without 

delivering much benefit for graphics. As with Atom, a significant (if not huge) part of 

the Larrabee die area and power budget will be consumed by instruction decoders. 

As a graphics chip, Larrabee will be impaired by its lack of optimized fixed-function 

logic for rasterization, interpolating, and alpha blending. Lacking cost-effective 

performance for 3D games, it will be difficult for Larrabee to achieve the kind of 

sales volumes and profit margins Intel expects of its major product lines. 

Larrabee will be Intel’s second attempt to enter the PC graphics-chip market, 

after the i740 program of 1998, which was commercially unsuccessful but laid the 

foundation for Intel’s later integrated-graphics chipsets. (Intel made an even earlier 

run at the video controller business with the i750, and before that, the company’s 

i860 RISC processor was used as a graphics accelerator in some workstations.) 
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Intel’s Nehalem microarchitecture 

Nehalem is the most sophisticated microarchitecture in any x86 processor. Its 

features are like a laundry list of high-performance CPU design: four-wide 

superscalar, out of order, speculative execution, simultaneous multithreading, 

multiple branch predictors, on-die power gating, on-die memory controllers, large 

caches, and multiple interprocessor interconnects. Figure 2 shows the Nehalem 

microarchitecture. 

 

Figure 2. The Nehalem core includes multiple x86 instruction decoders, queues, 

reordering buffers, and six execution pipelines to support speculative out-of-order 

multithreaded execution. (Source: "File:Intel Nehalem arch.svg." Wikimedia Commons) 
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Four instruction decoders are provided in each Nehalem core; these run in 

parallel wherever possible, though only one can decode complex x86 instructions, 

which are relatively infrequent. The micro-ops generated by the decoders are 

queued and dispatched out of order through six ports to 12 computational execution 

units. There is also one load unit and two store units for data and address values. 

Nehalem’s 128-bit SIMD floating-point units are similar to those found on 

previous generation Intel processors: one for FMUL and FDIV (floating-point 

multiply and divide), one for FADD, and one for FP shuffle operations. The “shuffle” 

unit is used to rearrange data values within the SIMD registers, and does not 

contribute to the performance of multiply-add intensive algorithms. 

The peak single-precision floating-point performance of a four-core Nehalem 

processor (not counting the shuffle unit) can be calculated as: 

4 cores * 2 SIMD ops/clock * 4 values/op * clock rate 

Also, while Nehalem processors provide 32 GB/s of peak DRAM bandwidth—a 

commendable figure for a PC processor—this figure represents a little less than one 

byte of DRAM I/O for each three floating-point operations. As a result, many high-

performance computing applications will be bottlenecked by DRAM performance 

before they saturate the chip’s floating-point ALUs. 

The Xeon W5590 is Intel’s high-end quad-core workstation processor based on 

the Nehalem-EP “Gainestown” chip. The W5590 is priced at $1,600 each when 

purchased in 1,000-unit quantities (as of August 2009).  

At its 3.33 GHz clock, the W5590 delivers a peak single-precision floating-point 

rate of 106.56 GFLOPS. The W5590 has a 130W thermal design power (TDP) rating, 

or 1.22 watts/GFLOPS—not including the necessary core-logic chipset. 

Nehalem has been optimized for single-threaded performance and clock speed 

at the expense of sustained throughput. This is a desirable tradeoff for a chip 

intended to be a market-leading PC desktop and server processor, but it makes 

Nehalem an expensive, power-hungry choice for high-performance computing. 
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“The Wall” 

The market demands general-purpose processors that deliver high single-

threaded performance as well as multi-core throughput for a wide variety of 

workloads on client, server, and high-performance computing (HPC) systems. This 

pressure has given us almost three decades of progress toward higher complexity 

and higher clock rates. 

This progress hasn’t always been steady. Intel cancelled its “Tejas” processor, 

which was rumored to have a 40-stage pipeline, and later killed off the entire 

Pentium 4 “NetBurst” product family because of its relative inefficiency. The 

Pentium 4 ultimately reached a clock rate of 3.8 GHz in the 2004 “Prescott” model, a 

speed that Intel has been unable to match since. 

In the more recent Core 2 (Conroe/Penryn) and Core i7 (Nehalem) processors, 

Intel uses increased complexity to deliver substantial performance improvements 

over the Pentium 4 line, but the pace of these improvements is slowing. Each new 

generation of process technology requires ever more heroic measures to improve 

transistor characteristics; each new core microarchitecture must work 

disproportionately harder to find and exploit instruction-level parallelism (ILP). 

As these challenges became more apparent in the 1990s, CPU architects began 

referring to the “power wall,” the “memory wall,” and the “ILP wall” as obstacles to 

the kind of rapid progress seen up until that time. It may be better to think of these 

issues as mountains rather than walls—mountains that begin as mild slopes and 

become steeper with each step, making further progress increasingly difficult. 

Nevertheless, the inexorable advance of process technology provided CPU 

designers with more transistors in each generation. By 2005, the competitive 

pressure to use these additional transistors to deliver improved performance (at the 

chip level, if not at the core level) drove AMD and Intel to introduce dual-core 

processors. Since then, the primary focus of PC processor design has been 

continuing to increase the core count on these chips. 

That approach, however, has reached a point of diminishing returns. Dual-core 

CPUs provide noticeable benefits for most PC users, but are rarely fully utilized 

except when working with multimedia content or multiple performance-hungry 

applications. Quad-core CPUs are only a slight improvement, most of the time. By 

2010, there will be eight-core CPUs in desktops, but it will likely be difficult to sell 

most customers on the value of the additional cores. Selling further increases will be 

even more problematic. 
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Once the increase in core count stalls, the focus will return to single-threaded 

performance, but with all the low-hanging fruit long gone, further improvements 

will be hard to find. In the near term, AMD and Intel are expected to emphasize 

vector floating-point improvements with the forthcoming Advanced Vector 

Extensions (AVX). Like SSE, AVX’s primary value will be for applications where 

vectorizable floating-point computations need to be closely coupled with the kind of 

control-flow code for which modern x86 processors have been optimized. 

CPU core design will continue to progress. There will continue to be further 

improvements in process technology, faster memory interfaces, and wider 

superscalar cores. But about ten years ago, NVIDIA’s processor architects realized 

that CPUs were no longer the preferred solution for certain problems, and started 

from a clean sheet of paper to create a better answer. 
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The History of the GPU 

It’s one thing to recognize the future potential of a new processing architecture. 

It’s another to build a market before that potential can be achieved. There were 

attempts to build chip-scale parallel processors in the 1990s, but the limited 

transistor budgets in those days favored more sophisticated single-core designs. 

The real path toward GPU computing began, not with GPUs, but with non-

programmable 3G-graphics accelerators. Multi-chip 3D rendering engines were 

developed by multiple companies starting in the 1980s, but by the mid-1990s it 

became possible to integrate all the essential elements onto a single chip. From 

1994 to 2001, these chips progressed from the simplest pixel-drawing functions to 

implementing the full 3D pipeline: transforms, lighting, rasterization, texturing, 

depth testing, and display. 

NVIDIA’s GeForce 3 in 2001 introduced programmable pixel shading to the 

consumer market. The programmability of this chip was very limited, but later 

GeForce products became more flexible and faster, adding separate programmable 

engines for vertex and geometry shading. This evolution culminated in the GeForce 

7800, shown in Figure 3. 

 

Figure 3. The GeForce 7800 had three kinds of programmable engines for different stages 

of the 3D pipeline plus several additional stages of configurable and fixed-function logic. 

(Source: NVIDIA) 
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So-called general-purpose GPU (GPGPU) programming evolved as a way to 

perform non-graphics processing on these graphics-optimized architectures, 

typically by running carefully crafted shader code against data presented as vertex 

or texture information and retrieving the results from a later stage in the pipeline. 

Though sometimes awkward, GPGPU programming showed great promise. 

Managing three different programmable engines in a single 3D pipeline led to 

unpredictable bottlenecks; too much effort went into balancing the throughput of 

each stage. In 2006, NVIDIA introduced the GeForce 8800, as Figure 4 shows. This 

design featured a “unified shader architecture” with 128 processing elements 

distributed among eight shader cores. Each shader core could be assigned to any 

shader task, eliminating the need for stage-by-stage balancing and greatly 

improving overall performance. 

 

Figure 4. The GeForce 8800 introduced a unified shader architecture with just one kind 

of programmable processing element that could be used for multiple purposes. Some simple 

graphics operations still used special-purpose logic. (Source: NVIDIA) 

The 8800 also introduced CUDA, the industry’s first C-based development 

environment for GPUs. (CUDA originally stood for “Compute Unified Device 

Architecture,” but the longer name is no longer spelled out.) CUDA delivered an 

easier and more effective programming model than earlier GPGPU approaches. 
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To bring the advantages of the 8800 architecture and CUDA to new markets 

such as HPC, NVIDIA introduced the Tesla product line. Current Tesla products use 

the more recent GT200 architecture. 

The Tesla line begins with PCI Express add-in boards—essentially graphics 

cards without display outputs—and with drivers optimized for GPU computing 

instead of 3D rendering. With Tesla, programmers don’t have to worry about 

making tasks look like graphics operations; the GPU can be treated like a many-core 

processor. 

Unlike the early attempts at chip-scale multiprocessing back in the ’90s, Tesla 

was a high-volume hardware platform right from the beginning. This is due in part 

to NVIDIA’s strategy of supporting the CUDA software development platform on the 

company’s GeForce and Quadro products, making it available to a much wider 

audience of developers. NVIDIA says it has shipped over 100 million CUDA-capable 

chips.  

At the time of this writing, the price for the entry-level Tesla C1060 add-in 

board is under $1,500 from some Internet mail-order vendors. That’s lower than the 

price of a single Intel Xeon W5590 processor—and the Tesla card has a peak 

GFLOPS rating more than eight times higher than the Xeon processor. 

The Tesla line also includes the S1070, a 1U-height rackmount server that 

includes four GT200-series GPUs running at a higher speed than that in the C1060 

(up to 1.5 GHz core clock vs. 1.3 GHz), so the S1070’s peak performance is over 4.6 

times higher than a single C1060 card. The S1070 connects to a separate host 

computer via a PCI Express add-in card. 

This widespread availability of high-performance hardware provides a natural 

draw for software developers. Just as the high-volume x86 architecture attracts 

more developers than the IA-64 architecture of Intel’s Itanium processors, the high 

sales volumes of GPUs—although driven primarily by the gaming market—makes 

GPUs more attractive for developers of high-performance computing applications 

than dedicated supercomputers from companies like Cray, Fujitsu, IBM, NEC, and 

SGI. 

Although GPU computing is only a few years old now, it’s likely there are 

already more programmers with direct GPU computing experience than have ever 

used a Cray. Academic support for GPU computing is also growing quickly. NVIDIA 

says over 200 colleges and universities are teaching classes in CUDA programming; 

the availability of OpenCL (such as in the new “Snow Leopard” version of Apple’s 

Mac OS X) will drive that number even higher. 
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Introducing Fermi 

GPU computing isn’t meant to replace CPU computing. Each approach has 

advantages for certain kinds of software. As explained earlier, CPUs are optimized 

for applications where most of the work is being done by a limited number of 

threads, especially where the threads exhibit high data locality, a mix of different 

operations, and a high percentage of conditional branches. 

GPU design aims at the other end of the spectrum: applications with multiple 

threads that are dominated by longer sequences of computational instructions. Over 

the last few years, GPUs have become much better at thread handling, data caching, 

virtual memory management, flow control, and other CPU-like features, but the 

distinction between computationally intensive software and control-flow intensive 

software is fundamental. 

The state of the art in GPU design is represented by NVIDIA’s next-generation 

CUDA architecture, code named Fermi. Figure 5 shows a high-level block diagram of 

the first Fermi chip. 

 

Figure 5. NVIDIA’s Fermi GPU architecture consists of multiple streaming 

multiprocessors (SMs), each consisting of 32 cores, each of which can execute one floating-

point or integer instruction per clock. The SMs are supported by a second-level cache, host 

interface, GigaThread scheduler, and multiple DRAM interfaces. (Source: NVIDIA) 
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 At this level of abstraction, the GPU looks like sea of computational units with 

only a few support elements—an illustration of the key GPU design goal, which is to 

maximize floating-point throughput. 

Since most of the circuitry within each core is dedicated to computation, rather 

than speculative features meant to enhance single-threaded performance, most of 

the die area and power consumed by Fermi goes into the application’s actual 

algorithmic work. 

The Programming Model 

The complexity of the Fermi architecture is managed by a multi-level 

programming model that allows software developers to focus on algorithm design 

rather than the details of how to map the algorithm to the hardware, thus improving 

productivity. This is a concern that conventional CPUs have yet to address because 

their structures are simple and regular: a small number of cores presented as logical 

peers on a virtual bus. 

In NVIDIA’s CUDA software platform, as well as in the industry-standard 

OpenCL framework, the computational elements of algorithms are known as kernels 

(a term here adapted from its use in signal processing rather than from operating 

systems). An application or library function may consist of one or more kernels. 

Kernels can be written in the C language (specifically, the ANSI-standard C99 

dialect) extended with additional keywords to express parallelism directly rather 

than through the usual looping constructs. 

Once compiled, kernels consist of many threads that execute the same program 

in parallel: one thread is like one iteration of a loop. In an image-processing 

algorithm, for example, one thread may operate on one pixel, while all the threads 

together—the kernel—may operate on a whole image. 

Multiple threads are grouped into thread blocks containing up to 1,536 threads. 

All of the threads in a thread block will run on a single SM, so within the thread 

block, threads can cooperate and share memory. Thread blocks can coordinate the 

use of global shared memory among themselves but may execute in any order, 

concurrently or sequentially. 

Thread blocks are divided into warps of 32 threads. The warp is the 

fundamental unit of dispatch within a single SM. In Fermi, two warps  from different 

thread blocks (even different kernels) can be issued and executed concurrently, 

increasing hardware utilization and energy efficiency. 
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Thread blocks are grouped into grids, each of which executes a unique kernel. 

Thread blocks and threads each have identifiers (IDs) that specify their 

relationship to the kernel. These IDs are used within each thread as indexes to their 

respective input and output data, shared memory locations, and so on. 

At any one time, the entire Fermi device is dedicated to a single application. As 

mentioned above, an application may include multiple kernels. Fermi supports 

simultaneous execution of multiple kernels from the same application, each kernel 

being distributed to one or more SMs on the device. This capability avoids the 

situation where a kernel is only able to use part of the device and the rest goes 

unused. 

Switching from one application to another is about 20 times faster on Fermi 

(just 25 microseconds) than on previous-generation GPUs. This time is short enough 

that a Fermi GPU can still maintain high utilization even when running multiple 

applications, like a mix of compute code and graphics code. Efficient multitasking is 

important for consumers (e.g., for video games using physics-based effects) and 

professional users (who often need to run computationally intensive simulations 

and simultaneously visualize the results). 

This switching is managed by the chip-level GigaThread hardware thread 

scheduler, which manages 1,536 simultaneously active threads for each streaming 

multiprocessor across 16 kernels. 

This centralized scheduler is another point of departure from conventional CPU 

design. In a multicore or multiprocessor server, no one CPU is “in charge”. All tasks, 

including the operating system’s kernel itself, may be run on any available CPU. This 

approach allows each operating system to follow a different philosophy in kernel 

design, from large monolithic kernels like Linux’s to the microkernel design of QNX 

and hybrid designs like Windows 7. But the generality of this approach is also its 

weakness, because it requires complex CPUs to spend time and energy performing 

functions that could also be handled by much simpler hardware. 

With Fermi, the intended applications, principles of stream processing, and the 

kernel and thread model, were all known in advance so that a more efficient 

scheduling method could be implemented in the GigaThread engine. 

In addition to C-language support, Fermi can also accelerate all the same 

languages as the GT200, including FORTRAN (with independent solutions from The 

Portland Group and NOAA, the National Oceanic and Atmospheric Administration), 

Java, Matlab, and Python. Supported software platforms include NVIDIA’s own CUDA 
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development environment, the OpenCL standard managed by the Khronos Group, 

and Microsoft’s Direct Compute API. 

The Portland Group (PGI) supports two ways to use GPUs to accelerate 

FORTRAN programs: the PGI Accelerator programming model in which regions of 

code within a FORTRAN program can be offloaded to a GPU, and CUDA FORTRAN, 

which allows the programmer direct control over the operation of attached GPUs 

including managing local and shared memory, thread synchronization, and so on. 

NOAA provides a language translator that converts FORTRAN code into CUDA C. 

Fermi brings an important new capability to the market with new instruction-

level support for C++, including instructions for C++ virtual functions, function 

pointers, dynamic object allocation, and the C++ exception handling operations “try” 

and “catch”. The popularity of the C++ language, previously unsupported on GPUs, 

will make GPU computing more widely available than ever. 

The Streaming Multiprocessor 

Fermi’s streaming multiprocessors, shown in Figure 6, comprise 32 cores, each 

of which can perform floating-point and integer operations, along with 16 load-store 

units for memory operations, four special-function units, and 64K of local SRAM 

split between cache and local memory. 
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Figure 6. Each Fermi SM includes 32 cores, 16 load/store units, four special-function 

units, a 32K-word register file, 64K of configurable RAM, and thread control logic. Each core 

has both floating-point and integer execution units. (Source: NVIDIA) 

Floating-point operations follow the IEEE 754-2008 floating-point standard. 

Each core can perform one single-precision fused multiply-add operation in each 

clock period and one double-precision FMA in two clock periods. At the chip level, 

Fermi performs more than 8× as many double-precision operations per clock than 

the previous GT200 generation, where double-precision processing was handled by 

a dedicated unit per SM with much lower throughput. 

IEEE floating-point compliance includes all four rounding modes, and 

subnormal numbers (numbers closer to zero than a normalized format can 
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represent) are handled correctly by the Fermi hardware rather than being flushed 

to zero or requiring additional processing in a software exception handler. 

Fermi’s support for fused multiply-add (FMA) also follows the IEEE 754-2008 

standard, improving the accuracy of the commonly used multiply-add sequence by 

not rounding off the intermediate result, as otherwise happens between the 

multiply and add operations. In Fermi, this intermediate result carries a full 106-bit 

mantissa; in fact, 161 bits of precision are maintained during the add operation to 

handle worst-case denormalized numbers before the final double-precision result is 

computed. The GT200 supported FMA for double-precision operations only; Fermi 

brings the benefits of FMA to single-precision as well. 

FMA support also increases the accuracy and performance of other 

mathematical operations such as division and square root, and more complex 

functions such as extended-precision arithmetic, interval arithmetic, and linear 

algebra. 

The integer ALU supports the usual mathematical and logical operations, 

including multiplication, on both 32-bit and 64-bit values. 

Memory operations are handled by a set of 16 load-store units in each SM. The 

load/store instructions can now refer to memory in terms of two-dimensional 

arrays, providing addresses in terms of x and y values. Data can be converted from 

one format to another (for example, from integer to floating point or vice-versa) as it 

passes between DRAM and the core registers at the full rate. These formatting and 

converting features are further examples of optimizations unique to GPUs—not 

worthwhile in general-purpose CPUs, but here they will be used sufficiently often to 

justify their inclusion. 

A set of four Special Function Units (SFUs) is also available to handle 

transcendental and other special operations such as sin, cos, exp, and rcp 

(reciprocal). Four of these operations can be issued per cycle in each SM. 

Within the SM, cores are divided into two execution blocks of 16 cores each. 

Along with the group of 16 load-store units and the four SFUs, there are four 

execution blocks per SM. In each cycle, a total of 32 instructions can be dispatched 

from one or two warps to these blocks. It takes two cycles for the 32 instructions in 

each warp to execute on the cores or load/store units. A warp of 32 special-function 

instructions is issued in a single cycle but takes eight cycles to complete on the four 

SFUs. Figure 7 shows a sequence of instructions being distributed among the 

available execution blocks. 
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Figure 7. A total of 32 instructions from one or two warps can be dispatched in each cycle 

to any two of the four execution blocks within a Fermi SM: two blocks of 16 cores each, one 

block of four Special Function Units, and one block of 16 load/store units. This figure shows 

how instructions are issued to the execution blocks. (Source: NVIDIA) 

ISA improvements 

Fermi debuts the Parallel Thread eXecution (PTX) 2.0 instruction-set 

architecture (ISA). PTX 2.0 defines an instruction set and a new virtual machine 

architecture that amounts to an idealized processor designed for parallel thread 

operation. 

Because this virtual machine model doesn’t literally model the Fermi hardware, 

it can be portable from one generation to the next. NVIDIA intends PTX 2.0 to span 

multiple generations of GPU hardware and multiple GPU sizes within each 

generation, just as PTX 1.0 did. 

Compilers supporting NVIDIA GPUs provide PTX-compliant binaries that act as 

a hardware-neutral distribution format for GPU computing applications and 

middleware. When applications are installed on a target machine, the GPU driver 

translates the PTX binaries into the low-level machine instructions that are directly 

executed by the hardware. (PTX 1.0 binaries can also be translated by Fermi GPU 

drivers into native instructions.) 
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This final translation step imposes no further performance penalties. Kernels 

and libraries for even the most performance-sensitive applications can be hand-

coded to the PTX 2.0 ISA, making them portable across GPU generations and 

implementations. 

All of the architecturally visible improvements in Fermi are represented in PTX 

2.0. Predication is one of the more significant enhancements in the new ISA. 

All instructions support predication. Each instruction can be executed or 

skipped based on condition codes. Predication allows each thread—each core—to 

perform different operations as needed while execution continues at full speed. 

Where predication isn’t sufficient, Fermi also supports the usual if-then-else 

structure with branch statements. 

Most CPUs rely exclusively on conditional branches and incorporate branch-

prediction hardware to allow speculation along the likely path. That’s a reasonable 

solution for branch-intensive serial code, but less efficient than predication for 

streaming applications. 

Another major improvement in Fermi and PTX 2.0 is a new unified addressing 

model. All addresses in the GPU are allocated from a continuous 40-bit (one 

terabyte) address space. Global, shared, and local addresses are defined as ranges 

within this address space and can be accessed by common load/store instructions. 

(The load/store instructions support 64-bit addresses to allow for future growth.) 

The Cache and Memory Hierarchy 

Like earlier GPUs, the Fermi architecture provides for local memory in each SM. 

New to Fermi is the ability to use some of this local memory as a first-level (L1) 

cache for global memory references. The local memory is 64K in size, and can be 

split 16K/48K or 48K/16K between L1 cache and shared memory. 

Shared memory, the traditional use for local SM memory, provides low-latency 

access to moderate amounts of data (such as intermediate results in a series of 

calculations, one row or column of data for matrix operations, a line of video, etc.). 

Because the access latency to this memory is also completely predictable, 

algorithms can be written to interleave loads, calculations, and stores with 

maximum efficiency. 

The decision to allocate 16K or 48K of the local memory as cache usually 

depends on two factors: how much shared memory is needed, and how predictable 

the kernel’s accesses to global memory (usually the off-chip DRAM) are likely to be. 
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A larger shared-memory requirement argues for less cache; more frequent or 

unpredictable accesses to larger regions of DRAM argues for more cache. 

Some embedded processors support local memory in a similar way, but this 

feature is almost never available on a PC or server processor because mainstream 

operating systems have no way to manage local memory; there is no support for it 

in their programming models. This is one of the reasons why high-performance 

computing applications running on general-purpose processors are so frequently 

bottlenecked by memory bandwidth; the application has no way to manage where 

memory is allocated and algorithms can’t be fully optimized for access latency. 

Each Fermi GPU is also equipped with an L2 cache (768KB in size for a 512-core 

chip). The L2 cache covers GPU local DRAM as well as system memory. 

The L2 cache subsystem also implements another feature not found on CPUs: a 

set of memory read-modify-write operations that are atomic—that is, 

uninterruptible—and thus ideal for managing access to data that must be shared 

across thread blocks or even kernels. Normally this functionality is provided 

through a two-step process; a CPU uses an atomic test-and-set instruction to 

manage a semaphore, and the semaphore manages access to a predefined location 

or region in memory. 

Fermi can implement that same solution when needed, but it’s much simpler 

from the software perspective to be able to issue a standard integer ALU operation 

that performs the atomic operation directly rather than having to wait until a 

semaphore becomes available.   

Fermi’s atomic operations are implemented by a set of integer ALUs logically 

that can lock access to a single memory address while the read-modify-write 

sequence is completed. This memory address can be in system memory, in the GPU’s 

locally connected DRAM, or even in the memory spaces of other PCI Express-

connected devices. During the brief lock interval, the rest of memory continues to 

operate normally. Locks in system memory are atomic with respect to the 

operations of the GPU performing the atomic operation; software synchronization is 

ordinarily used to assign regions of memory to GPU control, thus avoiding 

conflicting writes from the CPU or other devices. 

Consider a kernel designed to calculate a histogram for an image, where the 

histogram consists of one counter for each brightness level in the image. A CPU 

might loop through the whole image and increment the appropriate counter value 

based on the brightness of each pixel. A GPU without atomic operations might assign 

one SM to each part of the image and let them run until they’re all done (by 
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imposing a synchronization barrier) and then run a second short program to add up 

all the results. 

With the atomic operations in Fermi, once the regional histograms are 

computed, those results can be combined into the final histogram using atomic add 

operations; no second pass is required. 

Similar improvements can be made in other applications such as ray tracing, 

pattern recognition, and linear algebra routines such as matrix multiplication as 

implemented in the commonly used Basic Linear Algebra Subprograms (BLAS). 

According to NVIDIA, atomic operations on Fermi are 5× to 20× faster than on 

previous GPUs using conventional synchronization methods. 

The final stage of the local memory hierarchy is the GPU’s directly connected 

DRAM. Fermi provides six 64-bit DRAM channels that support SDDR3 and GDDR5 

DRAMs. Up to 6GB of GDDR5 DRAM can be connected to the chip for a significant 

boost in capacity and bandwidth over NVIDIA’s previous products. 

Fermi is the first GPU to provide ECC (error correcting code) protection for 

DRAM; the chip’s register files, shared memories, L1 and L2 caches are also ECC 

protected. The level of protection is known as SECDED: single (bit) error correction, 

double error detection. SECDED is the usual level of protection in most ECC-

equipped systems. 

Fermi’s ECC protection for DRAM is unique among GPUs; so is its 

implementation. Instead of each 64-bit memory channel carrying eight extra bits for 

ECC information, NVIDIA has a proprietary (and undisclosed) solution for packing 

the ECC bits into reserved lines of memory. 

The GigaThread controller that manages application context switching 

(described earlier) also provides a pair of streaming data-transfer engines, each of 

which can fully saturate Fermi’s PCI Express host interface. Typically, one will be 

used to move data from system memory to GPU memory when setting up a GPU 

computation, while the other will be used to move result data from GPU memory to 

system memory. 
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Conclusions 

In just a few years, NVIDIA has advanced the state of the art in GPU design from 

almost purely graphics-focused products like the 7800 series to the flexible Fermi 

architecture. 

Fermi is still derived from NVIDIA’s graphics products, which ensures that 

NVIDIA will sell millions of software-compatible chips to PC gamers. In the PC 

market, Fermi’s capacity for GPU computing will deliver substantial improvements 

in gameplay, multimedia encoding and enhancement, and other popular PC 

applications. 

Those sales to PC users generate an indirect benefit for customers interested 

primarily in high-performance computing: Fermi’s affordability and availability will 

be unmatched by any other computing architecture in its performance range. 

Although it may sometimes appear that GPUs are becoming more CPU-like with 

each new product generation, fundamental technical differences among computing 

applications lead to lasting differences in how CPUs and GPUs are designed and 

used. 

CPUs will continue to be best for dynamic workloads marked by short 

sequences of computational operations and unpredictable control flow. Modern 

CPUs, which devote large portions of their silicon real estate to caches, large branch 

predictors, and complex instruction set decoders will always be optimized for this 

kind of code. 

At the other extreme, workloads that are dominated by computational work 

performed within a simpler control flow need a different kind of processor 

architecture, one optimized for streaming calculations but also equipped with the 

ability to support popular programming languages. Fermi is just such an 

architecture. 

Fermi is the first computing architecture to deliver such a high level of double-

precision floating-point performance from a single chip with a flexible, error-

protected memory hierarchy and support for languages including C++ and 

FORTRAN. As such, Fermi is the world’s first complete GPU computing architecture. 


