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Chapter 1. 
Introduction 

1.1 From Graphics Processing to 
General-Purpose Parallel Computing 

Driven by the insatiable market demand for realtime, high-definition 3D graphics, 
the programmable Graphic Processor Unit or GPU has evolved into a highly 
parallel, multithreaded, manycore processor with tremendous computational 
horsepower and very high memory bandwidth, as illustrated by Figure 1-1. 
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Figure 1-1. Floating-Point Operations per Second and 
Memory Bandwidth for the CPU and GPU 
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The reason behind the discrepancy in floating-point capability between the CPU and 
the GPU is that the GPU is specialized for compute-intensive, highly parallel 
computation – exactly what graphics rendering is about – and therefore designed 
such that more transistors are devoted to data processing rather than data caching 
and flow control, as schematically illustrated by Figure 1-2. 

 

 

Figure 1-2. The GPU Devotes More Transistors to Data 
Processing 

 

More specifically, the GPU is especially well-suited to address problems that can be 
expressed as data-parallel computations – the same program is executed on many 
data elements in parallel – with high arithmetic intensity – the ratio of arithmetic 
operations to memory operations. Because the same program is executed for each 
data element, there is a lower requirement for sophisticated flow control, and 
because it is executed on many data elements and has high arithmetic intensity, the 
memory access latency can be hidden with calculations instead of big data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model 
to speed up the computations. In 3D rendering, large sets of pixels and vertices are 
mapped to parallel threads. Similarly, image and media processing applications such 
as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel 
processing threads. In fact, many algorithms outside the field of image rendering 
and processing are accelerated by data-parallel processing, from general signal 
processing or physics simulation to computational finance or computational biology. 

1.2 CUDA™: a General-Purpose Parallel 
Computing Architecture 

In November 2006, NVIDIA introduced CUDA™, a general purpose parallel 
computing architecture – with a new parallel programming model and instruction 
set architecture – that leverages the parallel compute engine in NVIDIA GPUs to 
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solve many complex computational problems in a more efficient way than on a 
CPU. 

CUDA comes with a software environment that allows developers to use C as a 
high-level programming language. As illustrated by Figure 1-3, other languages or 
application programming interfaces are supported, such as CUDA FORTRAN, 
OpenCL, and DirectCompute. 

 

Figure 1-3. CUDA is Designed to Support Various Languages 
and Application Programming Interfaces 

1.3 A Scalable Programming Model 

The advent of multicore CPUs and manycore GPUs means that mainstream 
processor chips are now parallel systems. Furthermore, their parallelism continues 
to scale with Moore‟s law. The challenge is to develop application software that 
transparently scales its parallelism to leverage the increasing number of processor 
cores, much as 3D graphics applications transparently scale their parallelism to 
manycore GPUs with widely varying numbers of cores. 

The CUDA parallel programming model is designed to overcome this challenge 
while maintaining a low learning curve for programmers familiar with standard 
programming languages such as C. 

At its core are three key abstractions – a hierarchy of thread groups, shared 
memories, and barrier synchronization – that are simply exposed to the programmer 
as a minimal set of language extensions. 

These abstractions provide fine-grained data parallelism and thread parallelism, 
nested within coarse-grained data parallelism and task parallelism. They guide the 
programmer to partition the problem into coarse sub-problems that can be solved 
independently in parallel by blocks of threads, and each sub-problem into finer 
pieces that can be solved cooperatively in parallel by all threads within the block. 
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This decomposition preserves language expressivity by allowing threads to 
cooperate when solving each sub-problem, and at the same time enables automatic 
scalability. Indeed, each block of threads can be scheduled on any of the available 
processor cores, in any order, concurrently or sequentially, so that a compiled 
CUDA program can execute on any number of processor cores as illustrated by 
Figure 1-4, and only the runtime system needs to know the physical processor 
count. 

This scalable programming model allows the CUDA architecture to span a wide 
market range by simply scaling the number of processors and memory partitions: 
from the high-performance enthusiast GeForce GPUs and professional Quadro and 
Tesla computing products to a variety of inexpensive, mainstream GeForce GPUs 
(see Appendix A for a list of all CUDA-enabled GPUs). 

 

 

A multithreaded program is partitioned into blocks of threads that execute independently from each 
other, so that a GPU with more cores will automatically execute the program in less time than a GPU 
with fewer cores. 

Figure 1-4. Automatic Scalability 
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1.4 Document’s Structure 

This document is organized into the following chapters: 

 Chapter 1 is a general introduction to CUDA. 

 Chapter 2 outlines the CUDA programming model. 

 Chapter 3 describes the programming interface. 

 Chapter 4 describes the hardware implementation. 

 Chapter 5 gives some guidance on how to achieve maximum performance. 

 Appendix A lists all CUDA-enabled devices. 

 Appendix B is a detailed description of all extensions to the C language.  

 Appendix C lists the mathematical functions supported in CUDA. 

 Appendix D lists the C++ features supported in device code. 

 Appendix E gives more details on texture fetching. 

 Appendix F gives the technical specifications of various devices, as well as more 
architectural details. 
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Chapter 2. 
Programming Model 

This chapter introduces the main concepts behind the CUDA programming model 
by outlining how they are exposed in C. An extensive description of CUDA C is 
given in Chapter 3. 

Full code for the vector addition example used in this chapter and the next can be 
found in the vectorAdd SDK code sample. 

2.1 Kernels 

CUDA C extends C by allowing the programmer to define C functions, called 
kernels, that, when called, are executed N times in parallel by N different CUDA 
threads, as opposed to only once like regular C functions. 

A kernel is defined using the __global__ declaration specifier and the number of 
CUDA threads that execute that kernel for a given kernel call is specified using a 
new <<<…>>> execution configuration syntax (see Appendix B.16). Each thread that 
executes the kernel is given a unique thread ID that is accessible within the kernel 
through the built-in threadIdx variable. 

As an illustration, the following sample code adds two vectors A and B of size N 
and stores the result into vector C: 

// Kernel definition 

__global__ void VecAdd(float* A, float* B, float* C) 

{ 

    int i = threadIdx.x; 

    C[i] = A[i] + B[i]; 

} 

 

int main() 

{ 

    ... 

    // Kernel invocation with N threads 

    VecAdd<<<1, N>>>(A, B, C); 

} 

Here, each of the N threads that execute VecAdd() performs one pair-wise 
addition.  
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2.2 Thread Hierarchy 

For convenience, threadIdx is a 3-component vector, so that threads can be 
identified using a one-dimensional, two-dimensional, or three-dimensional thread 
index, forming a one-dimensional, two-dimensional, or three-dimensional thread 
block. This provides a natural way to invoke computation across the elements in a 
domain such as a vector, matrix, or volume. 

The index of a thread and its thread ID relate to each other in a straightforward 
way: For a one-dimensional block, they are the same; for a two-dimensional block 
of size (Dx, Dy), the thread ID of a thread of index (x, y) is (x + y Dx); for a three-
dimensional block of size (Dx, Dy, Dz), the thread ID of a thread of index (x, y, z) is 
(x + y Dx + z Dx Dy). 

As an example, the following code adds two matrices A and B of size NxN and 
stores the result into matrix C: 

// Kernel definition 

__global__ void MatAdd(float A[N][N], float B[N][N], 

                       float C[N][N]) 

{ 

    int i = threadIdx.x; 

    int j = threadIdx.y; 

    C[i][j] = A[i][j] + B[i][j]; 

} 

 

int main() 

{ 

    ... 

    // Kernel invocation with one block of N * N * 1 threads 

    int numBlocks = 1; 

    dim3 threadsPerBlock(N, N); 

    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); 

} 

There is a limit to the number of threads per block, since all threads of a block are 
expected to reside on the same processor core and must share the limited memory 
resources of that core. On current GPUs, a thread block may contain up to 1024 
threads. 

However, a kernel can be executed by multiple equally-shaped thread blocks, so that 
the total number of threads is equal to the number of threads per block times the 
number of blocks. 

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional 
grid of thread blocks as illustrated by Figure 2-1. The number of thread blocks in a 
grid is usually dictated by the size of the data being processed or the number of 
processors in the system, which it can greatly exceed. 
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Figure 2-1. Grid of Thread Blocks 

 

The number of threads per block and the number of blocks per grid specified in the 
<<<…>>> syntax can be of type int or dim3.  Two-dimensional blocks or grids can 
be specified as in the example above. 

Each block within the grid can be identified by a one-dimensional, two-dimensional, 
or three-dimensional index accessible within the kernel through the built-in 
blockIdx variable. The dimension of the thread block is accessible within the 
kernel through the built-in blockDim variable. 

Extending the previous MatAdd() example to handle multiple blocks, the code 
becomes as follows. 

// Kernel definition 

__global__ void MatAdd(float A[N][N], float B[N][N], 

                       float C[N][N]) 

{ 

    int i = blockIdx.x * blockDim.x + threadIdx.x; 

    int j = blockIdx.y * blockDim.y + threadIdx.y; 

    if (i < N && j < N) 

        C[i][j] = A[i][j] + B[i][j]; 
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} 

 

int main() 

{ 

    ... 

    // Kernel invocation 

    dim3 threadsPerBlock(16, 16); 

    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y); 

    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); 

} 

A thread block size of 16x16 (256 threads), although arbitrary in this case, is a 
common choice. The grid is created with enough blocks to have one thread per 
matrix element as before. For simplicity, this example assumes that the number of 
threads per grid in each dimension is evenly divisible by the number of threads per 
block in that dimension, although that need not be the case. 

Thread blocks are required to execute independently: It must be possible to execute 
them in any order, in parallel or in series. This independence requirement allows 
thread blocks to be scheduled in any order across any number of cores as illustrated 
by Figure 1-4, enabling programmers to write code that scales with the number of 
cores. 

Threads within a block can cooperate by sharing data through some shared memory 
and by synchronizing their execution to coordinate memory accesses. More 
precisely, one can specify synchronization points in the kernel by calling the 
__syncthreads() intrinsic function; __syncthreads() acts as a barrier at 
which all threads in the block must wait before any is allowed to proceed. 
Section 3.2.3 gives an example of using shared memory. 

For efficient cooperation, the shared memory is expected to be a low-latency 
memory near each processor core (much like an L1 cache) and __syncthreads() 
is expected to be lightweight. 

2.3 Memory Hierarchy 

CUDA threads may access data from multiple memory spaces during their 
execution as illustrated by Figure 2-2. Each thread has private local memory. Each 
thread block has shared memory visible to all threads of the block and with the 
same lifetime as the block. All threads have access to the same global memory. 

There are also two additional read-only memory spaces accessible by all threads: the 
constant and texture memory spaces. The global, constant, and texture memory 
spaces are optimized for different memory usages (see Sections 5.3.2.1, 5.3.2.4, and 
5.3.2.5). Texture memory also offers different addressing modes, as well as data 
filtering, for some specific data formats (see Section 3.2.10). 

The global, constant, and texture memory spaces are persistent across kernel 
launches by the same application. 
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Figure 2-2. Memory Hierarchy 

2.4 Heterogeneous Programming 

As illustrated by Figure 2-3, the CUDA programming model assumes that the 
CUDA threads execute on a physically separate device that operates as a coprocessor 
to the host running the C program. This is the case, for example, when the kernels 
execute on a GPU and the rest of the C program executes on a CPU. 
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The CUDA programming model also assumes that both the host and the device 
maintain their own separate memory spaces in DRAM, referred to as host memory and 
device memory, respectively. Therefore, a program manages the global, constant, and 
texture memory spaces visible to kernels through calls to the CUDA runtime 
(described in Chapter 3). This includes device memory allocation and deallocation as 
well as data transfer between host and device memory. 
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Serial code executes on the host while parallel code executes on the device. 

Figure 2-3. Heterogeneous Programming 
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2.5 Compute Capability 

The compute capability of a device is defined by a major revision number and a minor 
revision number. 

Devices with the same major revision number are of the same core architecture. The 
major revision number of devices based on the Fermi architecture is 2. Prior devices 
are all of compute capability 1.x (Their major revision number is 1). 

The minor revision number corresponds to an incremental improvement to the core 
architecture, possibly including new features. 

Appendix A lists of all CUDA-enabled devices along with their compute capability. 
Appendix F gives the technical specifications of each compute capability. 
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Appendix B. 
C Language Extensions 

B.1 Function Type Qualifiers 

Function type qualifiers specify whether a function executes on the host or on the 
device and whether it is callable from the host or from the device. 

B.1.1 __device__ 

The __device__ qualifier declares a function that is: 

 Executed on the device 

 Callable from the device only. 

B.1.2 __global__ 

The __global__ qualifier declares a function as being a kernel. Such a function is: 

 Executed on the device, 

 Callable from the host only. 

__global__ functions must have void return type. 

Any call to a __global__ function must specify its execution configuration as 
described in Section B.16. 

A call to a __global__ function is asynchronous, meaning it returns before the 
device has completed its execution. 

B.1.3 __host__ 

The __host__ qualifier declares a function that is: 

 Executed on the host, 

 Callable from the host only. 
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It is equivalent to declare a function with only the __host__ qualifier or to declare 
it without any of the __host__, __device__, or __global__ qualifier; in either 
case the function is compiled for the host only. 

The __global__ and __host__ qualifiers cannot be used together. 

The __device__ and __host__ qualifiers can be used together however, in 
which case the function is compiled for both the host and the device. The 
__CUDA_ARCH__ macro introduced in Section 3.1.4 can be used to differentiate 
code paths between host and device: 

__host__ __device__ func() 

{ 

#if __CUDA_ARCH__ == 100 

    // Device code path for compute capability 1.0 

#elif __CUDA_ARCH__ == 200 

    // Device code path for compute capability 2.0 

#elif !defined(__CUDA_ARCH__)  

    // Host code path 

#endif  

} 

B.1.4 __noinline__ and __forceinline__ 

When compiling code for devices of compute capability 1.x, a __device__ 
function is always inlined by default. When compiling code for devices of compute 
capability 2.x, a __device__ function is only inlined when deemed appropriate by 
the compiler. 

The __noinline__ function qualifier can be used as a hint for the compiler not to 
inline the function if possible. The function body must still be in the same file where 
it is called. For devices of compute capability 1.x, the compiler will not honor the 
__noinline__ qualifier for functions with pointer parameters and for functions 
with large parameter lists. For devices of compute capability 2.x, the compiler will 
always honor the __noinline__ qualifier. 

The __forceinline__ function qualifier can be used to force the compiler to 
inline the function. 

B.2 Variable Type Qualifiers 

Variable type qualifiers specify the memory location on the device of a variable. 

An automatic variable declared in device code without any of the __device__, 
__shared__ and __constant__ qualifiers described in this section generally 
resides in a register. However in some cases the compiler might choose to place it in 
local memory, which can have adverse performance consequences as detailed in 
Section 5.3.2.2. 

B.2.1 __device__ 

The __device__ qualifier declares a variable that resides on the device. 
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At most one of the other type qualifiers defined in the next three sections may be 
used together with __device__ to further specify which memory space the 
variable belongs to. If none of them is present, the variable: 

 Resides in global memory space, 

 Has the lifetime of an application, 

 Is accessible from all the threads within the grid and from the host through the 
runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() / 
cudaMemcpyToSymbol() / cudaMemcpyFromSymbol() for the runtime 
API and cuModuleGetGlobal() for the driver API). 

B.2.2 __constant__ 

The __constant__ qualifier, optionally used together with __device__, 
declares a variable that: 

 Resides in constant memory space, 

 Has the lifetime of an application, 

 Is accessible from all the threads within the grid and from the host through the 
runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() / 
cudaMemcpyToSymbol() / cudaMemcpyFromSymbol() for the runtime 
API and cuModuleGetGlobal() for the driver API). 

B.2.3 __shared__ 

The __shared__ qualifier, optionally used together with __device__, declares a 
variable that: 

 Resides in the shared memory space of a thread block, 

 Has the lifetime of the block, 

 Is only accessible from all the threads within the block. 

When declaring a variable in shared memory as an external array such as 

extern __shared__ float shared[]; 

the size of the array is determined at launch time (see Section B.16). All variables 
declared in this fashion, start at the same address in memory, so that the layout of 
the variables in the array must be explicitly managed through offsets. For example, if 
one wants the equivalent of 

short array0[128]; 

float array1[64]; 

int   array2[256]; 

in dynamically allocated shared memory, one could declare and initialize the arrays 
the following way: 

extern __shared__ float array[]; 

__device__ void func()      // __device__ or __global__ function 

{ 

    short* array0 = (short*)array;  

    float* array1 = (float*)&array0[128]; 

    int*   array2 =   (int*)&array1[64]; 
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} 

Note that pointers need to be aligned to the type they point to, so the following 
code, for example, does not work since array1 is not aligned to 4 bytes. 

extern __shared__ float array[]; 

__device__ void func()      // __device__ or __global__ function 

{ 

    short* array0 = (short*)array;  

    float* array1 = (float*)&array0[127]; 

} 

Alignment requirements for the built-in vector types are listed in Table B-1. 

B.2.4 __restrict__ 

nvcc supports restricted pointers via the __restrict__ keyword. 

Restricted pointers were introduced in C99 to alleviate the aliasing problem that 
exists in C-type languages, and which inhibits all kind of optimization from code re-
ordering to common sub-expression elimination. 

Here is an example subject to the aliasing issue, where use of restricted pointer can 
help the compiler to reduce the number of instructions: 

void foo(const float* a, 

         const float* b, 

         float* c) 

{ 

    c[0] = a[0] * b[0]; 

    c[1] = a[0] * b[0]; 

    c[2] = a[0] * b[0] * a[1]; 

    c[3] = a[0] * a[1]; 

    c[4] = a[0] * b[0]; 

    c[5] = b[0]; 

    ... 

} 

In C-type languages, the pointers a, b, and c may be aliased, so any write through c 
could modify elements of a or b. This means that to guarantee functional 
correctness, the compiler cannot load a[0] and b[0] into registers, multiply them, 
and store the result to both c[0] and c[1], because the results would differ from 
the abstract execution model if, say, a[0] is really the same location as c[0]. So 
the compiler cannot take advantage of the common sub-expression. Likewise, 
the compiler cannot just reorder the computation of c[4] into the proximity of the 
computation of c[0] and c[1] because the preceding write to c[3] could change 
the inputs to the computation of c[4]. 

By making a, b, and c restricted pointers, the programmer asserts to the compiler 
that the pointers are in fact not aliased, which in this case means writes through c 
would never overwrite elements of a or b. This changes the function prototype as 
follows: 

void foo(const float* __restrict__ a, 

         const float* __restrict__ b, 

         float* __restrict__ c); 

Note that all pointer arguments need to be made restricted for the compiler 
optimizer to derive any benefit. With the __restrict keywords added, the 
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compiler can now reorder and do common sub-expression elimination at will, while 
retaining functionality identical with the abstract execution model: 

void foo(const float* __restrict__ a, 

         const float* __restrict__ b, 

         float* __restrict__ c) 

{ 

    float t0 = a[0]; 

    float t1 = b[0]; 

    float t2 = t0 * t2; 

    float t3 = a[1]; 

    c[0] = t2; 

    c[1] = t2; 

    c[4] = t2; 

    c[2] = t2 * t3; 

    c[3] = t0 * t3; 

    c[5] = t1; 

    ... 

} 

The effects here are a reduced number of memory accesses and reduced number of 
computations. This is balanced by an increase in register pressure due to "cached" 
loads and common sub-expressions. 

Since register pressure is a critical issue in many CUDA codes, use of restricted 
pointers can have negative performance impact on CUDA code, due to reduced 
occupancy. 

B.3 Built-in Vector Types 

B.3.1 char1, uchar1, char2, uchar2, char3, uchar3, 
char4, uchar4, short1, ushort1, short2, ushort2, 
short3, ushort3, short4, ushort4, int1, uint1, int2, 
uint2, int3, uint3, int4, uint4, long1, ulong1, 
long2, ulong2, long3, ulong3, long4, ulong4, 
longlong1, ulonglong1, longlong2, ulonglong2, 
float1, float2, float3, float4, double1, double2 

These are vector types derived from the basic integer and floating-point types. They 
are structures and the 1st, 2nd, 3rd, and 4th components are accessible through the 
fields x, y, z, and w, respectively. They all come with a constructor function of the 
form make_<type name>; for example, 

int2 make_int2(int x, int y); 

which creates a vector of type int2 with value (x, y). 

In host code, the alignment requirement of a vector type is equal to the alignment 
requirement of its base type. This is not always the case in device code as detailed in 
Table B-1. 



Appendix B. C Language Extensions 

 

 

112  CUDA C Programming Guide Version 4.0 
 

Table B-1. Alignment Requirements in Device Code 

Type Alignment 

char1, uchar1 1 

char2, uchar2 2 

char3, uchar3 1 

char4, uchar4 4 

short1, ushort1 2 

short2, ushort2 4 

short3, ushort3 2 

short4, ushort4 8 

int1, uint1 4 

int2, uint2 8 

int3, uint3 4 

int4, uint4 16 

long1, ulong1 4 if sizeof(long) is equal to sizeof(int), 

8, otherwise 

long2, ulong2 8 if sizeof(long) is equal to sizeof(int), 

16, otherwise 

long3, ulong3 4 if sizeof(long) is equal to sizeof(int), 

8, otherwise 

long4, ulong4 16 

longlong1, ulonglong1 8 

longlong2, ulonglong2 16 

float1 4 

float2 8 

float3 4 

float4 16 

double1 8 

double2 16 

B.3.2 dim3 

This type is an integer vector type based on uint3 that is used to specify 
dimensions. When defining a variable of type dim3, any component left unspecified 
is initialized to 1. 

B.4 Built-in Variables 

Built-in variables specify the grid and block dimensions and the block and thread 
indices. They are only valid within functions that are executed on the device. 
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B.4.1 gridDim 

This variable is of type dim3 (see Section B.3.2) and contains the dimensions of the 
grid. 

B.4.2 blockIdx 

This variable is of type uint3 (see Section B.3.1) and contains the block index 
within the grid. 

B.4.3 blockDim 

This variable is of type dim3 (see Section B.3.2) and contains the dimensions of the 
block. 

B.4.4 threadIdx 

This variable is of type uint3 (see Section B.3.1) and contains the thread index 
within the block. 

B.4.5 warpSize 

This variable is of type int and contains the warp size in threads (see Section 4.1 
for the definition of a warp). 

B.5 Memory Fence Functions 

void __threadfence_block(); 

waits until all global and shared memory accesses made by the calling thread prior to 
__threadfence_block() are visible to all threads in the thread block. 

void __threadfence(); 

waits until all global and shared memory accesses made by the calling thread prior to 
__threadfence() are visible to: 

 All threads in the thread block for shared memory accesses, 

 All threads in the device for global memory accesses. 

void __threadfence_system(); 

waits until all global and shared memory accesses made by the calling thread prior to 
__threadfence_system() are visible to: 

 All threads in the thread block for shared memory accesses, 

 All threads in the device for global memory accesses, 

 Host threads for page-locked host memory accesses (see Section 3.2.4.3). 



gridDim

blockDim

x = blockIdx.x * blockDim.x + threadIdx.x
y = blockIdx.y * blockDim.y + threadIdx.y

Identifikace vlákna - globální proměnné
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__threadfence_system() is only supported by devices of compute 

capability 2.x. 

In general, when a thread issues a series of writes to memory in a particular order, 
other threads may see the effects of these memory writes in a different order. 
__threadfence_block(), __threadfence(), and 
__threadfence_system() can be used to enforce some ordering. 

One use case is when threads consume some data produced by other threads as 
illustrated by the following code sample of a kernel that computes the sum of an 
array of N numbers in one call. Each block first sums a subset of the array and 
stores the result in global memory. When all blocks are done, the last block done 
reads each of these partial sums from global memory and sums them to obtain the 
final result. In order to determine which block is finished last, each block atomically 
increments a counter to signal that it is done with computing and storing its partial 
sum (see Section B.11 about atomic functions).  The last block is the one that 
receives the counter value equal to gridDim.x-1. If no fence is placed between 
storing the partial sum and incrementing the counter, the counter might increment 
before the partial sum is stored and therefore, might reach gridDim.x-1 and let 
the last block start reading partial sums before they have been actually updated in 
memory.  

__device__ unsigned int count = 0; 

__shared__ bool isLastBlockDone; 

__global__ void sum(const float* array, unsigned int N, 

                    float* result) 

{ 

    // Each block sums a subset of the input array 

    float partialSum = calculatePartialSum(array, N); 

 

    if (threadIdx.x == 0) { 

 

        // Thread 0 of each block stores the partial sum 

        // to global memory 

        result[blockIdx.x] = partialSum; 

 

        // Thread 0 makes sure its result is visible to 

        // all other threads 

        __threadfence(); 

 

        // Thread 0 of each block signals that it is done 

        unsigned int value = atomicInc(&count, gridDim.x); 

 

        // Thread 0 of each block determines if its block is 

        // the last block to be done 

        isLastBlockDone = (value == (gridDim.x - 1)); 

    } 

 

    // Synchronize to make sure that each thread reads 

    // the correct value of isLastBlockDone 

    __syncthreads(); 

 

    if (isLastBlockDone) { 

 

        // The last block sums the partial sums 

        // stored in result[0 .. gridDim.x-1] 
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        float totalSum = calculateTotalSum(result); 

 

        if (threadIdx.x == 0) { 

 

            // Thread 0 of last block stores total sum 

            // to global memory and resets count so that 

            // next kernel call works properly 

            result[0] = totalSum; 

            count = 0; 

        } 

    } 

} 

B.6 Synchronization Functions 

void __syncthreads(); 

waits until all threads in the thread block have reached this point and all global and 
shared memory accesses made by these threads prior to __syncthreads() are 
visible to all threads in the block. 

__syncthreads() is used to coordinate communication between the threads of 
the same block. When some threads within a block access the same addresses in 
shared or global memory, there are potential read-after-write, write-after-read, or 
write-after-write hazards for some of these memory accesses. These data hazards 
can be avoided by synchronizing threads in-between these accesses. 

__syncthreads() is allowed in conditional code but only if the conditional 
evaluates identically across the entire thread block, otherwise the code execution is 
likely to hang or produce unintended side effects. 

Devices of compute capability 2.x support three variations of __syncthreads() 
described below. 

int __syncthreads_count(int predicate); 

is identical to __syncthreads() with the additional feature that it evaluates 
predicate for all threads of the block and returns the number of threads for 
which predicate evaluates to non-zero. 

int __syncthreads_and(int predicate); 

is identical to __syncthreads() with the additional feature that it evaluates 
predicate for all threads of the block and returns non-zero if and only if 
predicate evaluates to non-zero for all of them. 

int __syncthreads_or(int predicate); 

is identical to __syncthreads() with the additional feature that it evaluates 
predicate for all threads of the block and returns non-zero if and only if 
predicate evaluates to non-zero for any of them. 

B.7 Mathematical Functions 

Appendix C gives the list of all C/C++ standard library mathematical functions that 
are supported in device code and all intrinsic functions that are only supported in 
device code, along with their respective error bounds.  
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more details). All counters are reset before each kernel call (note that when an 
application is run via a CUDA debugger or profiler (cuda-gdb, CUDA Visual 
Profiler, Parallel Nsight), all launches are synchronous). 

B.14 Formatted Output 

Formatted output is only supported by devices of compute capability 2.x. 

int printf(const char *format[, arg, ...]); 

prints formatted output from a kernel to a host-side output stream. 

The in-kernel printf() function behaves in a similar way to the standard C-library 
printf() function, and the user is referred to the host system‟s manual pages for a 
complete description of printf() behavior. In essence, the string passed in as 
format is output to a stream on the host, with substitutions made from the 
argument list wherever a format specifier is encountered. Supported format 
specifiers are listed below. 

The printf() command is executed as any other device-side function: per-thread, 
and in the context of the calling thread. From a multi-threaded kernel, this means 
that a straightforward call to printf() will be executed by every thread, using that 
thread‟s data as specified. Multiple versions of the output string will then appear at 
the host stream, once for each thread which encountered the printf(). 

It is up to the programmer to limit the output to a single thread if only a single 
output string is desired (see Section B.14.4 for an illustrative example). 

Unlike the C-standard printf(), which returns the number of characters printed, 
CUDA‟s printf() returns the number of arguments parsed. If no arguments 
follow the format string, 0 is returned. If the format string is NULL, -1 is returned. 
If an internal error occurs, -2 is returned.  

B.14.1 Format Specifiers 

As for standard printf(), format specifiers take the form: 

%[flags][width][.precision][size]type 

The following fields are supported (see widely-available documentation for a 
complete description of all behaviors): 

 Flags:  „#‟  „ „  „0‟  „+‟  „-„ 

 Width: „*‟  „0-9‟ 

 Precision: „0-9‟ 

 Size: „h‟  „l‟  „ll‟ 

 Type: „%cdiouxXpeEfgGaAs‟ 

Note that CUDA‟s printf() will accept any combination of flag, width, precision, 
size and type, whether or not overall they form a valid format specifier. In other 
words, “%hd” will be accepted and printf will expect a double-precision variable in 
the corresponding location in the argument list. 
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B.14.2 Limitations 

Final formatting of the printf() output takes place on the host system. This 
means that the format string must be understood by the host-system‟s compiler and 
C library. Every effort has been made to ensure that the format specifiers supported 
by CUDA‟s printf function form a universal subset from the most common host 
compilers, but exact behavior will be host-O/S-dependent. 

As described in Section B.14.1, printf() will accept all combinations of valid flags 
and types. This is because it cannot determine what will and will not be valid on the 
host system where the final output is formatted. The effect of this is that output 
may be undefined if the program emits a format string which contains invalid 
combinations. 

The printf() command can accept at most 32 arguments in addition to the 
format string. Additional arguments beyond this will be ignored, and the format 
specifier output as-is. 

Owing to the differing size of the long type on 64-bit Windows platforms (four 
bytes on 64-bit Windows platforms, eight bytes on other 64-bit platforms), a kernel 
which is compiled on a non-Windows 64-bit machine but then run on a win64 
machine will see corrupted output for all format strings which include “%ld”. It is 
recommended that the compilation platform matches the execution platform to 
ensure safety. 

The output buffer for printf() is set to a fixed size before kernel launch (see 
Section B.14.3). It is circular and if more output is produced during kernel execution 
than can fit in the buffer, older output is overwritten. It is flushed only when one of 
these actions is performed: 

 Kernel launch via <<<>>> or cuLaunchKernel() (at the start of the launch, 
and if the CUDA_LAUNCH_BLOCKING environment variable is set to 1, at 
the end of the launch as well), 

 Synchronization via cudaDeviceSynchronize(),  
cuCtxSynchronize(), cudaStreamSynchronize(), 
cuStreamSynchronize(), cudaEventSynchronize(), or 
cuEventSynchronize(), 

 Memory copies via any blocking version of cudaMemcpy*() or 
cuMemcpy*(), 

 Module loading/unloading via cuModuleLoad() or cuModuleUnload(), 

 Context destruction via cudaDeviceReset() or cuCtxDestroy(). 

Note that the buffer is not flushed automatically when the program exits. The user 
must call cudaDeviceReset() or cuCtxDestroy() explicitly, as shown in the 
examples below. 

B.14.3 Associated Host-Side API 

The following API functions get and set the size of the buffer used to transfer the 
printf() arguments and internal metadata to the host (default is 1 megabyte): 

 Driver API: 
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 cuCtxGetLimit(size_t* size, CU_LIMIT_PRINTF_FIFO_SIZE) 

 cuCtxSetLimit(CU_LIMIT_PRINTF_FIFO_SIZE, size_t size) 

 Runtime API: 

 cudaDeviceGetLimit(size_t* size,cudaLimitPrintfFifoSize) 

 cudaDeviceSetLimit(cudaLimitPrintfFifoSize, size_t size) 

B.14.4 Examples 

The following code sample: 

// printf() is only supported 

// for devices of compute capability 2.0 and above 

#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 200) 

    #define printf(f, ...) ((void)(f, __VA_ARGS__),0) 

#endif 

 

__global__ void helloCUDA(float f) 

{ 

    printf(“Hello thread %d, f=%f\n”, threadIdx.x, f); 

} 

 

void main() 

{ 

    helloCUDA<<<1, 5>>>(1.2345f); 

    cudaDeviceReset(); 

} 

will output: 

Hello thread 2, f=1.2345 

Hello thread 1, f=1.2345 

Hello thread 4, f=1.2345 

Hello thread 0, f=1.2345 

Hello thread 3, f=1.2345 

Notice how each thread encounters the printf() command, so there are as many 
lines of output as there were threads launched in the grid. As expected, global values 
(i.e. float f) are common between all threads, and local values 
(i.e. threadIdx.x) are distinct per-thread. 

The following code sample: 

__global__ void helloCUDA(float f) 

{ 

    if (threadIdx.x == 0) 

        printf(“Hello thread %d, f=%f\n”, threadIdx.x, f) ; 

} 

 

void main() 

{ 

    helloCUDA<<<1, 5>>>(1.2345f); 

    cudaDeviceReset(); 

} 

will output: 

Hello thread 0, f=1.2345 


