Programming languages — C

ABSTRACT

(Cover sheet to be provided by 1SO Secretariat.)

This International Standard specifies the form and establishes the interpretation of
programs expressed in the programming language C. Its purpose is to promote
portability, reliability, maintainability, and efficient execution of C language programs
on a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C
language execution library. Annexes summarize aspects of both of them, and
enumerate factors that influence the portability of C programs.

Although this International Standard is intended to guide knowledgeable C language
programmers as well as implementors of C language trandation systems, the document
itself is not designed to serve as a tutorial.






I ntroduction

With the introduction of new devices and extended character sets, new features may be
added to this International Standard. Subclauses in the language and library clauses warn
implementors and programmers of usages which, though valid in themselves, may conflict
with future additions.

Certain features are obsolescent, which means that they may be considered for withdrawal
in future revisions of this Internationa Standard. They are retained because of their
widespread use, but their use in new implementations (for implementation features) or new
programs (for language [6.9] or library features [7.20]) is discouraged.

This International Standard is divided into four major subdivisions:

— the introduction and preliminary elements,

— the characteristics of environments that trandlate and execute C programs;
— the language syntax, constraints, and semantics,

— the library facilities.

Examples are provided to illustrate possible forms of the constructions described.
Footnotes are provided to emphasize consequences of the rules described in that subclause
or elsawhere in this International Standard. References are used to refer to other related
subclauses. A set of annexes summarizes information contained in this International
Standard. The introduction, the examples, the footnotes, the references, and the annexes are
not part of this International Standard.

The language clause (Clause 6) is derived from ** The C Reference Manual’ (see annex A).

The library clause (Clause 7) is based on the 1984 /usr/group Sandard (see annex A).
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Programming languages — C

1. Scope

This International Standard specifies the form and establishes the interpretation of
programs written in the C programming language.! It specifies

— the representation of C programs;

— the syntax and constraints of the C language;

— the semantic rules for interpreting C programs;

— the representation of input data to be processed by C programs;

— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.
This International Standard does not specify

— the mechanism by which C programs are transformed for use by a data-processing
system;

— the mechanism by which C programs are invoked for use by a data-processing
System;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C
program;

— the size or complexity of a program and its data that will exceed the capacity of
any specific data-processing system or the capacity of a particular processor;

— al minimal requirements of a data-processing system that is capable of supporting
a conforming implementation.

1. This International Standard is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementors and programmers.
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2. Normative references

The following standards contain provisions which, through reference in this text,
constitute provisions of this International Standard. At the time of publication, the
editions indicated were valid. All standards are subject to revision, and parties to
agreements based on this International Standard are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated below.
Members of IEC and 1SO maintain registers of currently valid International Standards.

IEC 559:1993, Binary floating-point arithmetic for microprocessor systems,
second edition.

ISO 646:1983, Information processing — IS0 7-bit coded character set for
information interchange.

ISO/IEC 2382-1:1993, Information technology — Vocabulary — Part 1.
Fundamental terms.

SO 4217:1987, Codes for the representation of currencies and funds.

ISO 8601:1988, Data elements and interchange formats — Information
interchange — Representation of dates and times.

ISO/IEC TR 10176, Information technology — Guidelines for the preparation of
programming language standards.

ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet
Coded Character Set (UCS) — Part 1. Architecture and Basic Multilingual
Plane.

2 General
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3. Definitions and conventions

In this International Standard, ‘‘shall’’ is to be interpreted as a requirement on an
implementation or on a program; conversely, ‘‘shall not’’ is to be interpreted as a
prohibition.

For the purposes of this International Standard, the following definitions apply. Other
terms are defined where they appear in italic type or being on the left side of a syntax
rule. Terms explicitly defined in this International Standard are not to be presumed to
refer implicitly to similar terms defined elsewhere. Terms not defined in this
International Standard are to be interpreted according to 1SO 2382-1.

3.1 Alignment

A requirement that objects of a particular type be located on storage boundaries with
addresses that are particular multiples of a byte address.

3.2 Argument

An expression in the comma-separated list bounded by the parentheses in a function
call expression, or a sequence of preprocessing tokens in the comma-separated list
bounded by the parentheses in a function-like macro invocation. Also known as
“*actual argument’’ or ‘‘actual parameter.’”’

3.3 Bit

The unit of data storage in the execution environment large enough to hold an object
that may have one of two vaues. It need not be possible to express the address of
each individual bit of an object.

3.4 Byte

The unit of data storage large enough to hold any member of the basic character set of
the execution environment. It shall be possible to express the address of each
individual byte of an object uniquely. A byte is composed of a contiguous sequence
of bits, the number of which is implementation-defined. The least significant bit is
called the low-order bit; the most significant bit is called the high-order bit.

Genera 3
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3.5 Character

A bit representation that fits in a byte. The representation of each member of the
basic character set in both the source and execution environments shall fit in a byte.

3.6 Constraints

Restrictions, both syntactic and semantic, by which the exposition of language
elements is to be interpreted.

3.7 Correctly rounded result

A representation in the result format that is nearest in value, subject to the effective
rounding mode, to what the result would be given unlimited range and precision.

3.8 Diagnostic message

A message belonging to an implementation-defined subset of the implementation’s
message output.

3.9 Forward references

References to later subclauses of this International Standard that contain additional
information relevant to this subclause.

3.10 Implementation

A particular set of software, running in a particular translation environment under
particular control options, that performs trandation of programs for, and supports
execution of functions in, a particular execution environment.

3.11 Implementation-defined behavior

Unspecified behavior where each implementation shall document how the choice is
made.

4 General
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3.12 Implementation limits
Restrictions imposed upon programs by the implementation.
3.13 L ocale-specific behavior

Behavior that depends on local conventions of nationality, culture, and language that
each implementation shall document.

3.14 Multibyte character

A sequence of one or more bytes representing a member of the extended character set
of either the source or the execution environment. The extended character set is a
superset of the basic character set.

3.15 Object

A region of data storage in the execution environment, the contents of which can
represent values. Except for bit-fields, objects are composed of contiguous sequences
of one or more bytes, the number, order, and encoding of which are either explicitly
specified or implementation-defined. When referenced, an object may be interpreted as
having a particular type; see 6.2.2.1.

3.16 Parameter

An object declared as part of a function declaration or definition that acquires a value
on entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition.
Also known as ‘‘formal argument’’ or ‘‘formal parameter.’”’

3.17 Recommended practice

Sections so entitled contain specification that is strongly recommended as being in
keeping with the intent of the standard, but that may be impractical for some
implementations.
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3.18 Undefined behavior

Behavior, upon use of a nonportable or erroneous program construct, of erroneous
data, or of indeterminately valued objects, for which this International Standard
imposes no requirements. Permissible undefined behavior ranges from ignoring the
situation completely with unpredictable results, to behaving during trandation or
program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution
(with the issuance of a diagnostic message).

If a “‘shal’” or *“‘shall not'’ requirement that appears outside of a constraint is
violated, the behavior is undefined. Undefined behavior is otherwise indicated in this
International Standard by the words *‘undefined behavior’” or by the omission of any
explicit definition of behavior. There is no difference in emphasis among these threg;
they all describe ‘*behavior that is undefined.’”’

The implementation must successfully translate a given program unless a syntax error
is detected, a constraint is violated, or it can determine that every possible execution
of that program would result in undefined behavior.

3.19 Unspecified behavior

Behavior where this International Standard provides two or more possibilities and
imposes no requirements on which is chosen in any instance. A program that is
correct in al other aspects, operating on correct data, containing unspecified behavior
shall be a correct program and act in accordance with subclause 5.1.2.3.

Examples

1. An example of unspecified behavior is the order in which the arguments to a
function are evaluated.

2. An example of undefined behavior is the behavior on integer overflow.

3. An example of implementation-defined behavior is the propagation of the high-
order bit when a signed integer is shifted right.

4. An example of locale-specific behavior is whether the i s| ower function returns
true for characters other than the 26 lowercase Latin |etters.

Forward references. bitwise shift operators (6.3.7), expressions (6.3), function calls
(6.3.2.2), the i sl ower function (7.3.1.7), localization (7.5).
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4. Compliance

A dtrictly conforming program shall use only those features of the language and
library specified in this International Standard.? It shall not produce output dependent
on any unspecified, undefined, or implementation-defined behavior, and shall not
exceed any minimum implementation limit.

The two forms of conforming implementation are hosted and freestanding. A
conforming hosted implementation shall accept any strictly conforming program. A
conforming freestanding implementation shall accept any strictly conforming program
in which the use of the features specified in the library clause (clause 7) is confined to
the contents of the standard headers <fl oat. h>, <limts. h> <stdarg. h>,
<stddef.h> and <iso0646.h> A conforming implementation may have
extensions (including additional library functions), provided they do not alter the
behavior of any strictly conforming program.3

A conforming program is one that is acceptable to a conforming implementation.*

An implementation shall be accompanied by a document that defines all
implementation-defined characteristics and all extensions.

Forward references. limits <f | oat . h> and <l i m ts. h> (7.1.5), variable arguments
<stdarg. h> (7.12), common definitions <st ddef . h> (7.1.6), alternate spellings
<i s0646. h> (7.17).

2. This implies that a strictly conforming program can use features in a conditionally normative annex
provided the use is conditioned by a #i f def directive with the conformance macro for the annex,
asin

#ifdef __STDC | EC 559 _ /* FE_UPWARD defined */
[* %]
f eset r ound( FE_UPWARD) ;

3. This implies that a conforming implementation reserves no identifiers other than those explicitly
reserved in this International Standard.

4. Strictly conforming programs are intended to be maximally portable among conforming
implementations. Conforming programs may depend upon nonportable features of a conforming
implementation.
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5. Environment

An implementation translates C source files and executes C programs in two data-
processing-system environments, which will be called the trandation environment and
the execution environment in this International Standard. Their characteristics define
and constrain the results of executing conforming C programs constructed according to
the syntactic and semantic rules for conforming implementations.

Forward references: In the environment clause (clause 5), only a few of many possible
forward references have been noted.

5.1 Conceptual models
5.1.1 Trandation environment
5.1.1.1 Program structure

A C program need not al be trandated at the same time. The text of the program is
kept in units called source files, also known as preprocessing files, in this International
Standard. A source file together with al the headers and source files included via the
preprocessing directive #i ncl ude is known as a preprocessing translation unit.
After preprocessing, a preprocessing trandlation unit is called a trandation unit.
Previoudly trandated translation units may be preserved individually or in libraries.
The separate trandation units of a program communicate by (for example) calls to
functions whose identifiers have external linkage, manipulation of objects whose
identifiers have external linkage, or manipulation of data files. Trandation units may
be separately translated and then later linked to produce an executable program.

Forward references: conditional inclusion (6.8.1), linkages of identifiers (6.1.2.2), source
file inclusion (6.8.2), external definitions (6.7), preprocessing directives (6.8).

5.1.1.2 Trandlation phases

The precedence among the syntax rules of translation is specified by the following
phases.®

1. Physical source file multibyte characters are mapped to the source character set
(introducing new-line characters for end-of-line indicators) if necessary. Any
multibyte source file character not in the basic source character set is replaced

5. Implementations must behave as if these separate phases occur, even though many are typicaly
folded together in practice.
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by the universal-character-name that designates that multibyte character.® Then,
trigraph sequences are replaced by corresponding single-character internal
representations.

2. Each instance of a backslash character immediately followed by a newline
character is deleted, splicing physical source lines to form logical source lines.
Only the last backslash on any physical source line shall be eligible for being
part of such a splice. A source file that is not empty shall end in a new-line
character, which shall not be immediately preceded by a backslash character
before any such splicing takes place.

3. The source file is decomposed into preprocessing tokens’ and sequences of
white-space characters (including comments). A source file shall not end in a
partial preprocessing token or comment. Each comment is replaced by one
gpace character. New-line characters are retained. Whether each nonempty
sequence of white-space characters other than new-line is retained or replaced by
one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and
pragnma unary operator expressions are executed. If a character sequence that
matches the syntax of a universal-character-name is produced by token
concatenation (6.8.3.3), the behavior is undefined. A #i ncl ude preprocessing
directive causes the named header or source file to be processed from phase 1
through phase 4, recursively. All preprocessing directives are then deleted.

5. Each source character set member, escape sequence, and universal-character-
name in character constants and string literals is converted to a member of the
execution character set.

6. Adjacent character string literal tokens are concatenated and adjacent wide string
literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each
preprocessing token is converted into a token. The resulting tokens are

6. The process of handling extended characters is specified in terms of mapping to an encoding that
uses only the basic source character set, and, in the case of character literals and strings, further
mapping to the execution character set. In practical terms, however, any internal encoding may be
used, so long as an actual extended character encountered in the input, and the same extended
character expressed in the input as a universal-character-name (i.e., using the\ U or \ u notation), are
handled equivalently.

7. As described in 6.1, the process of dividing a source file's characters into preprocessing tokens is
context-dependent. For example, see the handling of < within a#i ncl ude preprocessing directive.
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syntactically and semantically analyzed and translated as a trandation unit.

8. All external object and function references are resolved. Library components are
linked to satisfy external references to functions and objects not defined in the
current translation. All such trandator output is collected into a program image
which contains information needed for execution in its execution environment.

Constraints

A universal-character-name shall not specify a character short identifier in the range
0000 through 0020 or 007F through OO9F inclusive. A universal-character-name shall
not designate a character in the basic source character set.

Forward references. lexical elements (6.1), preprocessing directives (6.8), trigraph
sequences (5.2.1.1), external definitions (6.7).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified
in an implementation-defined manner) if a preprocessing translation unit or trandation
unit contains a violation of any syntax rule or constraint, even if the behavior is also
explicitly specified as undefined or implementation-defined. Diagnostic messages need
not be produced in other circumstances.®

Examples
An implementation shall issue a diagnostic for the trandation unit:
char i;
int i;
because in those cases where wording in this International Standard describes the

behavior for a construct as being both a constraint error and resulting in undefined
behavior, the constraint error shall be diagnosed.

8. The intent is that an implementation should identify the nature of, and where possible localize, each
violation. Of course, an implementation is free to produce any number of diagnostics as long as a
valid program is still correctly trandated. It may also successfully translate an invalid program.
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5.1.2 Execution environments

Two execution environments are defined: freestanding and hosted. In both cases,
program startup occurs when a designated C function is called by the execution
environment. All objects in static storage shall be initialized (set to their initia
values) before program startup. The manner and timing of such initialization are
otherwise unspecified. Program termination returns control to the execution
environment.

Forward references: initialization (6.5.8).
5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without
any benefit of an operating system), the name and type of the function called at
program startup are implementation-defined. Any library facilities available to a
freestanding program are implementation-defined.

The effect of program termination in a freestanding environment is implementation-
defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following
specifications if present.

5.1.2.2.1 Program startup

The function called at program startup is named mai n. The implementation declares
no prototype for this function. It shall be defined with no parameters:

int main(void) { /* .. * }

or with two parameters (referred to here as ar gc and ar gv, though any names may
be used, as they are local to the function in which they are declared):

int min(int argc, char *argv[]) { /* .. */ }
or equivalent,’ or in some other implementation-defined manner.

If they are defined, the parameters to the mai n function shall obey the following
constraints:

9. Thus, i nt can be replaced by a typedef name defined as i nt, or the type of ar gv can be written
aschar ** argv, and so on.

Environment 11
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— The value of ar gc shal be nonnegative.

— argv[argc] shal beanull pointer.

— If the value of ar gc is greater than zero, the array members ar gv[ 0] through

argv[argc-1] inclusve shal contain pointers to strings, which are given
implementation-defined values by the host environment prior to program startup.
The intent is to supply to the program information determined prior to program
startup from elsewhere in the hosted environment. If the host environment is not
capable of supplying strings with letters in both uppercase and lowercase, the
implementation shall ensure that the strings are received in lowercase.

If the value of ar gc is greater than zero, the string pointed to by ar gv[ 0]
represents the program name; ar gv[ 0] [ 0] shall be the null character if the
program name is not available from the host environment. If the value of ar gc is
greater than one, the strings pointed to by ar gv[ 1] through ar gv[ argc-1]
represent the program parameters.

— The parameters ar gc and ar gv and the strings pointed to by the ar gv array

shall be modifiable by the program, and retain their last-stored values between
program startup and program termination.

5.1.2.2.2 Program execution

In

a hosted environment, a program may use al the functions, macros, type

definitions, and objects described in the library clause (clause 7).

5.1.2.2.3 Program termination

A return from the initia call to the mai n function is equivalent to calling the exi t
function with the value returned by the mai n function as its argument.’® If the} that
terminates the mai n function is reached, the termination status returned to the host
environment is unspecified.

Forward references: definition of terms (7.1.1), the exi t function (7.14.4.3).

10. In accordance with subclause 6.1.2.4, objects with automatic storage duration declared in mai n will

12

no longer have storage guaranteed to be reserved in the former case even where they would in the
latter.
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5.1.2.3 Program execution

The semantic descriptions in this International Standard describe the behavior of an
abstract machine in which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or caling a function
that does any of those operations are all side effects,*' which are changes in the state
of the execution environment. Evaluation of an expression may produce side effects.
At certain specified points in the execution sequence called sequence points, al side
effects of previous evaluations shall be complete and no side effects of subsequent
evaluations shall have taken place.

In the abstract machine, all expressions are evaluated as specified by the semantics.
An actual implementation need not evaluate part of an expression if it can deduce that
its value is not used and that no needed side effects are produced (including any
caused by calling a function or accessing a volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, only
the values of objects as of the previous sequence point may be relied on. Objects that
may be modified between the previous sequence point and the next sequence point
need not have received their correct values yet.

An instance of each object with automatic storage duration is associated with each
entry into its block. Such an object exists and retains its last-stored value during the
execution of the block and while the block is suspended (by a call of a function or
receipt of a signal).

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous evaluations
are complete and subsequent evaluations have not yet occurred.

— At program termination, al data written into files shall be identical to the result
that execution of the program according to the abstract semantics would have
produced.

— The input and output dynamics of interactive devices shall take place as specified
in 7.13.3. The intent of these requirements is that unbuffered or line-buffered

11. The IEC 559 standard for binary floating-point arithmetic requires certain status flags and control
modes, with user access. Floating-point operations implicitly set the status flags, modes affect result
values of floating-point operations. Implementations that support such floating-point state will need
to regard changes to it as side effects — see Annex F for details. The floating-point environment
library <f env. h> provides a programming facility for indicating when these side effects matter,
freeing the implementations in other cases.
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output appear as soon as possible, to ensure that prompting messages actually
appear prior to a program waiting for input.

What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined
by each implementation.

Examples

1

14

An implementation might define a one-to-one correspondence between abstract
and actual semantics. at every sequence point, the values of the actual objects
would agree with those specified by the abstract semantics. The keyword
vol ati | e would then be redundant.

Alternatively, an implementation might perform various optimizations within
each translation unit, such that the actual semantics would agree with the
abstract semantics only when making function calls across trandation unit
boundaries. In such an implementation, at the time of each function entry and
function return where the calling function and the called function are in different
trandlation units, the values of all externally linked objects and of all objects
accessible via pointers therein would agree with the abstract semantics.
Furthermore, at the time of each such function entry the values of the parameters
of the called function and of all objects accessible via pointers therein would
agree with the abstract semantics. In this type of implementation, objects
referred to by interrupt service routines activated by the si gnal function would
require explicit specification of vol atile storage, as well as other
implementation-defined restrictions.

In executing the fragment

char cl1, c2;

[* ... %]

cl =cl + c2;
the ‘‘integer promotions”’ require that the abstract machine promote the value of
each variable to i nt size and then add the two i nt s and truncate the sum.
Provided the addition of two char s can be done without overflow, or with

overflow wrapping silently to produce the correct result, the actual execution
need only produce the same result, possibly omitting the promotions.

Similarly, in the fragment

Environment
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float f1, f2;

doubl e d;
[* ... */
fi1=1f2 * d;

the multiplication may be executed using single-precision arithmetic if the
implementation can ascertain that the result would be the same as if it were
executed using double-precision arithmetic (for example, if d were replaced by
the constant 2. 0, which has type doubl e).

4. Implementations employing wide registers must take care to honor appropriate
semantics. Values must be independent of whether they are represented in a
register or in memory. For example, an implicit spilling of a register must not
alter the value. Also, an explicit store and load must round to the precision of
the storage type. In particular, casts and assignments must perform their
specified conversion: for the fragment

doubl e di1, d2;

float f;

dl = f = expression;

dz2 (fl oat) expressions,

the values assigned to d1 and d2 must have been converted to f | oat .

5. Rearrangement for floating-point expressions is often restricted because of
l[imitations in precision as well as range. The implementation cannot generally
apply the mathematical associative rules for addition or multiplication, nor the
distributive rule, because of roundoff error, even in the absence of overflow and
underflow. Likewise, implementations cannot generaly replace decimal
constants in order to rearrange expressions. In the following fragment,
rearrangements suggested by mathematical rules for real numbers are often not
valid. See Annex F.8.

double x, vy, z;
[* .. *

X = (x *y) * z; [/ notequivalenttox *=vy * z;
z =(x-vy) +y; Il notequivalenttoz = x;
Z =X + X *y; /'l notequivalenttoz = x * (1.0 + vy);
y =x/ 5.0 /'l notequivalent of y = x * 0. 2;

6. Toillustrate the grouping behavior of expressions, in the following fragment
int a, b;
[* .*

a=a+ 32760 + b + 5;
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the expression statement behaves exactly the same as
a=(((a+ 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of
the sum (a + 32760) is next added to b, and that result is then added to 5
which results in the value assigned to a. On a machine in which overflows
produce an explicit trap and in which the range of values representable by an
i nt is[-32768, +32767], the implementation cannot rewrite this expression as

a=((a+ b) + 32765);

since if the values for a and b were, respectively, —32754 and —15, the sum
a + b would produce a trap while the original expression would not; nor can
the expression be rewritten either as

a = ((a + 32765) + b);
or
a=(a+ (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or —17 and
12. However on a machine in which overflow silently generates some value and
where positive and negative overflows cancel, the above expression statement
can be rewritten by the implementation in any of the above ways because the
same result will occur.

7. The grouping of an expression does not completely determine its evaluation. In
the following fragment

#i ncl ude <stdio. h>
int sum
char *p;
[* ..*
sum= sum* 10 - "0 + (*p++ = getchar());
the expression statement is grouped as if it were written as
sum = (((sum* 10) - "0") + ((*(pt+t)) = (getchar())));

but the actual increment of p can occur at any time between the previous
sequence point and the next sequence point (the ; ), and the call to get char
can occur at any point prior to the need of its returned value.
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Forward referencess compound statement, or block (6.6.2), expressions (6.3), files
(7.13.3), sequence points (6.3, 6.6), the si gnal function (7.11), type qudlifiers
(6.5.3).
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5.2 Environmental considerations
5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the
set in which source files are written, and the set interpreted in the execution
environment. The values of the members of the execution character set are
implementation-defined; any additional members beyond those required by this
subclause are locale-specific.

In a character constant or string literal, members of the execution character set shall be
represented by corresponding members of the source character set or by escape
sequences consisting of the backslash \ followed by one or more characters. A byte
with all bits set to O, called the null character, shal exist in the basic execution
character set; it is used to terminate a character string.

Both the basic source and basic execution character sets shall have at least the
following members. the 26 uppercase letters of the Latin aphabet

A B CDEFGHI J KL M
N OP QR ST UV WX'Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h i j Kk I m
n o p qr s t uv w X y z
the 10 decimal digits
0O 1.2 3 4 5 6 7 8 9
the following 29 graphic characters
et # % & () o+, -]
o < =>2 0 v ~_ {1 1} -

the space character, and control characters representing horizontal tab, vertical tab, and
form feed. In both the source and execution basic character sets, the value of each
character after O in the above list of decimal digits shall be one greater than the value
of the previous. In source files, there shall be some way of indicating the end of each
line of text; this International Standard treats such an end-of-line indicator as if it were
a single new-line character. In the execution character set, there shall be control
characters representing alert, backspace, carriage return, and new line. If any other
characters are encountered in a source file (except in a character constant, a string
literal, a header name, a comment, or a preprocessing token that is never converted to
a token), the behavior is undefined.
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The universal-character-name construct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit
hexadecimal-digit hexadecimal-digit

univer sal-character-name:
\ u hex-quad
\ U hex-quad hex-quad

The character designated by the universal-character-name \ Unnnnnnnn is that
character whose character short identifier is nnnnnnnn specified by 1SO/IEC 10646-1;
the character designated by the universal-character-name \ unnnn is that character
whose character short identifier is 0000nnnn specified by ISO/IEC 10646-1.

Forward references: identifiers (6.1.2), character constants (6.1.3.4), preprocessing
directives (6.8), string literals (6.1.4), comments (6.1.9), string (7.1.1).

52.1.1 Trigraph sequences

All occurrences in a source file of the following sequences of three characters (called
trigraph sequences'?) are replaced with the corresponding single character.

27=
22(
22l
22)
27’
22<
22!
22>
272-

| S~ — A >— — 3

No other trigraph sequences exist. Each ? that does not begin one of the trigraphs
listed above is not changed.

12. The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set
as described in I1SO/IEC 646:1991, which is a subset of the seven-bit ASCII code set.
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Examples

The following source line
printf("Eh???/n");

becomes (after replacement of the trigraph sequence ?7?/)
printf("Eh?\n");

5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent members
of the extended character set. The execution character set may also contain multibyte
characters, which need not have the same encoding as for the source character set. For
both character sets, the following shall hold:

— The single-byte characters defined in 5.2.1 shall be present.
— The presence, meaning, and representation of any additional members is locale-
specific.

— A multibyte character may have a state-dependent encoding, wherein each
sequence of multibyte characters begins in an initial shift state and enters other
locale-specific shift states when specific multibyte characters are encountered in the
sequence. While in the initial shift state, all single-byte characters retain their
usua interpretation and do not ater the shift state. The interpretation for
subsequent bytes in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of
shift state.

— A byte with al bits zero shall not occur in the second or subsequent bytes of a
multibyte character.

For the source character set, the following shall hold:

— A comment, string literal, character constant, or header name shall begin and end
in the initial shift state.

— A comment, string literal, character constant, or header name shall consist of a
sequence of valid multibyte characters.
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5.2.2 Character display semantics

The active position is that location on a display device where the next character output
by the f put ¢ function would appear. The intent of writing a printable character (as
defined by the i sprint function) to a display device is to display a graphic
representation of that character at the active position and then advance the active
position to the next position on the current line. The direction of writing is locale-
specific. If the active position is at the final position of a line (if there is one), the
behavior is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution
character set are intended to produce actions on display devices as follows:

\ a (alert) Produces an audible or visible alert. The active position shall not be
changed.

\ b (backspace) Moves the active position to the previous position on the current line.
If the active position is at the initial position of a line, the behavior is unspecified.

\ f (form feed) Moves the active position to the initial position at the start of the next
logical page.
\' n (new line) Moves the active position to the initial position of the next line.

\r (carriage return) Moves the active position to the initial position of the current
line.

\'t (horizontal tab) Moves the active position to the next horizontal tabulation
position on the current line. If the active position is at or past the last defined
horizontal tabulation position, the behavior is unspecified.

\'v (vertical tab) Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical
tabulation position, the behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value
which can be stored in a single char object. The externa representations in a text
file need not be identical to the internal representations, and are outside the scope of
this International Standard.

Forward references: the i spri nt function (7.3.1.8), the f put ¢ function (7.13.7.3).
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5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a
signal, or may be called by a signal handler, or both, with no alteration to earlier, but
still active, invocations' control flow (after the interruption), function return values, or
objects with automatic storage duration. All such objects shall be maintained outside
the function image (the instructions that comprise the executable representation of a
function) on a per-invocation basis.

5.2.4 Environmental limits

Both the trandation and execution environments constrain the implementation of
language trandators and libraries. The following summarizes the environmental limits
on a conforming implementation.

5.2.4.1 Trandation limits

The implementation shall be able to translate and execute at least one program that
contains at least one instance of every one of the following limits:'3

— 127 nesting levels of compound statements, iteration statements, and selection
statements

— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an
arithmetic, structure, union, or incomplete type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator

— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name

— 31 significant initial characters in an external identifier

— 4095 external identifiers in one tranglation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers ssmultaneously defined in one preprocessing trandation unit

— 127 parameters in one function definition

13. Implementations should avoid imposing fixed translation limits whenever possible.
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— 127 arguments in one function call

— 127 parameters in one macro definition
— 127 arguments in one macro invocation
— 4095 characters in alogical source line

— 4095 characters in a character string literal or wide string literal (after
concatenation)

— 65535 bytes in an object (in a hosted environment only)
— 15 nesting levels for #i ncl uded files

— 1023 case labels for a switch statement (excluding those for any nested
SW t ch statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single struct-declaration-list
5.2.4.2 Numerical limits

A conforming implementation shall document al the limits specified in this subclause,
which shall be specified in the headers <l i m ts. h> and <f | oat . h>.

5.24.2.1 Sizesof integer types<limts. h>

The values given below shall be replaced by constant expressions suitable for use in
#i1 f preprocessing directives. Moreover, except for CHAR BI T and MB_LEN_ MAX,
the following shall be replaced by expressions that have the same type as would an
expression that is an object of the corresponding type converted according to the
integer promotions. Their implementation-defined values shall be equal or greater in
magnitude (absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)
CHAR BI T 8

— minimum value for an object of type si gned char
SCHAR M N -127

— maximum value for an object of type si gned char
SCHAR_MAX +127

— maximum value for an object of type unsi gned char
UCHAR _MAX 255
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— minimum value for an object of type char
CHAR_M N see below

— maximum value for an object of type char
CHAR_MAX see below

— maximum number of bytes in a multibyte character, for any supported locale
MB_LEN_ MAX 1

— minimum value for an object of type short i nt
SHRT_M N - 32767

— maximum value for an object of type short i nt
SHRT_MAX +32767

— maximum value for an object of type unsi gned short i nt
USHRT _MAX 65535

— minimum value for an object of typei nt
| NT_M N - 32767

— maximum value for an object of typei nt
| NT_MAX +32767

— maximum value for an object of type unsi gned i nt
Ul NT_MAX 65535

— minimum value for an object of type | ong i nt
LONG M N -2147483647

— maximum value for an object of type | ong i nt
LONG_MAX +2147483647

— maximum value for an object of type unsi gned | ong i nt
ULONG_MAX 4294967295

— minimum value for an object of type |l ong | ong i nt
LLONG M N -9223372036854775807

— maximum value for an object of typel ong | ong i nt
LLONG_MAX +9223372036854775807

— maximum value for an object of type unsi gned | ong | ong i nt
ULLONG_MAX 18446744073709551615

If the value of an object of type char is treated as a signed integer when used in an
expression, the value of CHAR_M N shall be the same as that of SCHAR_M N and the
value of CHAR_MAX shall be the same as that of SCHAR_MAX. Otherwise, the value
of CHAR_M N shall be 0 and the value of CHAR_MAX shall be the same as that of
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UCHAR MAX.* The value UCHAR MAX+1 shall equal 2 raised to the power
CHAR BI T.

5.24.2.2 Characteristics of floating types <f | oat . h>

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic.®> The following parameters are used to
define the model for each floating-point type:

S sign (x1)

b base or radix of exponent representation (an integer > 1)

e exponent (an integer between a minimum e, anhd a maximum €,
p precision (the number of base-b digits in the significand)

f nonnegative integers less than b (the significand digits)

A normalized floating-point number x (f; > 0 if x # 0) is defined by the following
model:

D K
x=sxb®x S fi xb™ | ennses<en

k=1
Floating types might include values that are not normalized floating-point numbers, for
example subnormal numbers (x # 0, e = e, f1 = 0), infinities, and NaNs. A NaN
is an encoding signifying Not-aNumber. A quiet NaN propagates through amost
every arithmetic operation without raising an exception; a signaling NaN generally
raises an exception when occurring as an arithmetic operand.®

All integer values in the <f | oat . h> header, except FLT_ROUNDS, shall be constant
expressions suitable for use in #i f preprocessing directives; all floating values shall
be constant expressions. All except FLT_EVAL _METHOD, FLT_RAD X, and
FLT_ROUNDS have separate names for all three floating-point types. The floating-
point model representation is provided for al values except FLT_EVAL_METHOD and
FLT_ROUNDS.

The rounding mode for floating-point addition is characterized by the value of
FLT_ROUNDS:Y’

14. See 6.1.2.5.

15. The floating-point model is intended to clarify the description of each floating-point characteristic
and does not require the floating-point arithmetic of the implementation to be identical.

16. IEC 559:1993 specifies quiet and signaling NaNs. For implementations that do not support |IEC
559:1993, the terms quiet NaN and signaling NaN are intended to apply to encodings with similar
behavior.

17. Evaluation of FLT_ROUNDS correctly reflects any execution-time change of rounding mode through
the function f eset r ound in <f env. h>.

Environment 25



Working Draft, 1997-11-21, WG14/N794 J11/97-158

indeterminable

toward zero

to nearest

toward positive infinity
3 toward negative infinity

NPk, OB

All other values for FLT_ROUNDS characterize implementation-defined rounding
behavior.

The values of operations with floating operands and values subject to the usual
arithmetic conversions and of floating constants are evaluated to a format whose range
and precision may be greater than required by the type. The use of evaluation formats
is characterized by the value of FLT_EVAL_METHOD:'®

-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the type;

1 evauate operations and constants of type f | oat and doubl e to the range and
precison of the doubl e type, evaluate | ong doubl e operations and
constants to the range and precision of the | ong doubl e type;

2 evauate al operations and constants to the range and precision of the | ong
doubl e type.

All other negative values for FLT_EVAL_METHOD characterize implementation-
defined behavior.

The values given in the following list shall be replaced by implementation-defined
expressions that shall be equal or greater in magnitude (absolute value) to those
shown, with the same sign:

— radix of exponent representation, b
FLT_RADI X 2

— number of base-FLT_RADI X digits in the floating-point significand, p

18. The evaluation method determines evaluation formats of expressions involving all floating types, not
just real types. For example, if FLT_EVAL_METHOD is 1, then the product of two fl oat
conpl ex operands is represented in the doubl e conpl ex format, and its parts are evaluated to
doubl e.
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FLT_MANT DI G
DBL_MANT DI G
LDBL_MANT DI G

— number of decimal digits, q, such that any floating-point number with g decimal
digits can be rounded into a floating-point number with p radix b digits and back
again without change to the g decimal digits,

[ 0 if b isapower of 10
0P = 1) xlogyb + 0 otherwise

FLT DI G 6
DBL_DI G 10
LDBL_DI G 10

— minimum negative integer such that FLT_RADI X raised to that power minus 1 is a
normalized floating-point number, e,

FLT_M N_EXP
DBL_M N_EXP
LDBL_M N_EXP
— minimum negative integer such that 10 raised to that power is in the range of
normalized floating-point numbers, U mnm1 O
iz ing-point nu Dloglobe .
FLT M N_10_EXP -37
DBL_M N_10_EXP - 37
LDBL_M N_10_EXP -37

— maximum integer such that FLT RADI X raised to that power minus 1 is a
representable finite floating-point number, e,

FLT _MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP
— maximum integer such that 10 raised to that power is in the range of representable
finite floating-point numbers, U - oy L
oP 0/0g10((1 = b™P) x b™)

FLT MAX 10 EXP +37
DBL_MAX_10 EXP +37
LDBL_MAX_10 EXP +37

The values given in the following list shall be replaced by implementation-defined
expressions with values that shall be equal to or greater than those shown:
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— maximum representable finite floating-point number, (1 - b™) x p®=

FLT _MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

The values given in the following list shall be replaced by implementation-defined
expressions with values that shall be equal to or less than those shown:

— the difference between 1 and the least value greater than 1 that is representable in
the given floating point type, b1

FLT_EPSI LON 1E-5
DBL_EPSI LON 1E-9
LDBL_EPSI LON 1E-9

— minimum normalized positive floating-point number, et

FLT M N 1E- 37

DBL_M N 1E- 37

LDBL_M N 1E- 37
Examples

1. The following describes an artificial floating-point representation that meets the
minimum requirements of this International Standard, and the appropriate values
ina<fl oat. h> header for type f | oat :

6
x=sx16® x 5 f x16K, -3l<e <+32

k=1
FLT_RADI X 16
FLT_MANT DI G 6
FLT_EPSI LON 9. 53674316E- 07F
FLT DI G 6
FLT_M N_EXP -31
FLT M N 2. 93873588E- 39F
FLT_M N_10_EXP - 38
FLT_MAX_EXP +32
FLT_MAX 3. 40282347E+38F
FLT _MAX_10 EXP +38
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2. The following describes floating-point representations that also meet the
requirements for single-precison and double-precision normalized numbers in
IEC 559,'° and the appropriate values in a <f | oat . h> header for types f | oat
and doubl e:

24 i
Xp =s x 22 x 5 f x27F,
k=1

-125< e < +128

53
Xg =8 x 22 x 5 f x2K  -1021 < e < +1024

k=1
FLT_RADI X 2

FLT_MANT_DI G 24

FLT_EPSI LON 1.19209290E- O07F // decimal constant
FLT_EPSI LON OX1P- 23F // hex constant
FLT_DI G 6

FLT_M N_EXP -125

FLT_MN 1.17549435E- 38F // decimal constant
FLT_M N OX1P- 126F // hex constant
FLT_M N_10_EXP - 37

FLT_MAX_EXP +128

FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX OX1.fffffeP127F // hex constant
FLT_MAX _10_EXP +38

DBL_MANT_DI G 53

DBL_EPSI LON 2. 2204460492503131E-16 // decimal constant
DBL_EPSI LON OX1P-52 // hex constant
DBL_DI G 15

DBL_M N_EXP -1021

DBL_M N 2.2250738585072014E- 308 // decimal constant
DBL_M N OX1P- 1022 // hex constant
DBL_M N_10_EXP - 307

DBL_MAX_ EXP +1024

DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX OX1L. ffffffffffffePl023 // hex constant

DBL_MAX_10_EXP +308

19. The floating-point model in that standard sums powers of b from zero, so the values of the exponent
limits are one less than shown here.
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Forward references: conditional inclusion (6.8.1).
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6. Language

In the syntax notation used in the language clause (clause 6), syntactic categories
(nonterminals) are indicated by italic type, and literal words and character set members
(terminals) by bol d type. A colon (:) following a nontermina introduces its
definition. Alternative definitions are listed on separate lines, except when prefaced by
the words **one of.”” An optional symbol is indicated by the subscript ‘‘opt,”” so that

{ expronOlot }

indicates an optional expression enclosed in braces.

6.1 Lexical eements
Syntax

token:
keyword
identifier
constant
string-literal
operator
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a
keyword, an identifier, a constant, a string literal, an operator, or a punctuator.

Semantics

A token is the minimal lexical element of the language in trandation phases 7 and 8.
The categories of tokens are: keywords, identifiers, constants, string literals,
operators, and punctuators. A preprocessing token is the minimal lexical element of
the language in tranglation phases 3 through 6. The categories of preprocessing token
are. header names, identifiers, preprocessing numbers, character constants, string
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literals, operators, punctuators, and single non-white-space characters that do not
lexically match the other preprocessing token categories. If a’ or a " character
matches the last category, the behavior is undefined. Preprocessing tokens can be
separated by white space; this consists of comments (described later), or white-space
characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As
described in 6.8, in certain circumstances during trandation phase 4, white space (or
the absence thereof) serves as more than preprocessing token separation. White space
may appear within a preprocessing token only as part of a header name or between the
quotation characters in a character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character,
the next preprocessing token is the longest sequence of characters that could constitute
a preprocessing token.

A header name preprocessing token is only recognized within a #i ncl ude
preprocessing directive, and within such a directive, a sequence of characters that
could be either a header name or a string literal is recognized as the former.

Examples

1. The program fragment 1Ex is parsed as a preprocessing number token (one that
is not a valid floating or integer constant token), even though a parse as the pair
of preprocessing tokens 1 and Ex might produce a valid expression (for
example, if Ex were a macro defined as +1). Similarly, the program fragment
1E1 is parsed as a preprocessing number (one that is a valid floating constant
token), whether or not E is a macro name.

2. The program fragment x+++++y is parsed as x ++ ++ + y, which violates a
constraint on increment operators, even though the parse x ++ + ++y might
yield a correct expression.

Forward references. character constants (6.1.3.4), comments (6.1.9), expressions (6.3),
floating constants (6.1.3.1), header names (6.1.7), macro replacement (6.8.3), postfix
increment and decrement operators (6.3.2.4), prefix increment and decrement operators
(6.3.3.1), preprocessing directives (6.8), preprocessing numbers (6.1.8), string literals
(6.1.4).
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6.1.1 Keywords
Syntax
keyword: one of

aut o br eak case char
conpl ex const continue default
do doubl e el se enum
extern fl oat for goto
if i magi nary inline i nt
| ong register restrict return
short si gned si zeof static
struct switch t ypedef uni on
unsi gned void volatile while

Semantics

The token conpl ex is reserved in trandation units where the header <conpl ex. h>
is included; the token i magi nary is reserved in translation units where both the
header <conpl ex. h> is included and the macro _| magi nary | is defined; al
other keyword tokens are reserved in al trandation units. When reserved, the above
tokens (entirely in lowercase) are keywords (in trandation phases 7 and 8), and shall
not be used otherwise. When the token conpl ex or i magi nary is reserved, its use
prior to the first inclusion of the header <conpl ex. h> results in undefined behavior.

6.1.2 ldentifiers
Syntax
identifier:
nondigit
identifier nondigit
identifier digit
nondigit: one of
univer sal-character-name

_~a b ¢ d e f g h i j k I m
n o p qr s t uwv wXx vy z
A B CDEF GHI J KL M
N OP QR ST UV WX Y Z
digit: one of
0O 1 2 3 4 5 6 7 8 9
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Description

An identifier is a sequence of nondigit characters (including the underscore _ and the
lowercase and uppercase letters) and digits. Each universal-character-name in an
identifier shall designate a character whose encoding in 1SO 10646-1 falls into one of
the ranges specified in Annex H.%° The first character shall be a nondigit character.

Semantics

An identifier can denote an object, a function, or one of the following entities that will
be described later: atag or a member of a structure, union, or enumeration; a typedef
name; a label name; a macro name; or a macro parameter. The same identifier can
denote different entities at different points in the program. A member of an
enumeration is called an enumeration constant. Macro names and macro parameters
are not considered further here, because prior to the semantic phase of program
trandation any occurrences of macro names in the source file are replaced by the
preprocessing token sequences that constitute their macro definitions.

There is no specific limit on the maximum length of an identifier.

When preprocessing tokens are converted to tokens during trandation phase 7, if a
preprocessing token could be converted to either a keyword or an identifier, it is
converted to a keyword.

Implementation limits

The implementation shall treat at least the first 63 characters of an internal name (a
macro name or an identifier that does not have external linkage) as significant. The
implementation may further restrict the significance of an external name (an identifier
that has external linkage) to 31 characters. In both external and internal names,
lower-case and upper-case letters are different. The number of significant characters in
an identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two
identifiers differ in a nonsignificant character, the behavior is undefined.

20. On systems in which linkers cannot accept extended characters, an encoding of the universal-
character-name may be used in forming valid externa identifiers. For example, some otherwise
unused character or sequence of characters may be used to encode the \ u in a universal-character-
name. Extended characters may produce a long external identifier.
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Forward references: linkages of identifiers (6.1.2.2), macro replacement (6.8.3).
6.1.2.1 Scopes of identifiers

For each different entity that an identifier designates, the identifier is visible (i.e., can
be used) only within a region of program text called its scope. Different entities
designated by the same identifier either have non-overlapping scopes, or are in
different name spaces. There are four kinds of scopes: function, file, block, and
function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in
a got o statement) anywhere in the function in which it appears, and is declared
implicitly by its syntactic appearance (followed by a: and a statement). Label names
shall be unique within a function.

Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier). If the declarator or type specifier that declares the
identifier appears outside of any block or list of parameters, the identifier has file
scope, which terminates at the end of the trandation unit. If the declarator or type
specifier that declares the identifier appears inside a block or within the list of
parameter declarations in a function definition, the identifier has block scope, which
terminates at the } that closes the associated block. If the declarator or type specifier
that declares the identifier appears within the list of parameter declarations in a
function prototype (not part of a function definition), the identifier has function
prototype scope, which terminates at the end of the function declarator. If an
identifier designates two different entities in the same name space, the scopes might
overlap. If so, the scope of one entity (the inner scope) will be a strict subset of the
scope of the other entity (the outer scope). Within the inner scope, the identifier
designates the entity declared in the inner scope; the entity declared in the outer scope
is hidden (and not visible) within the inner scope.

Unless explicitly stated otherwise, where this International Standard uses the term
identifier to refer to some entity (as opposed to the syntactic construct), it refers to the
entity in the relevant name space whose declaration is visible at the point the identifier
oCCurs.

Two identifiers have the same scope if and only if their scopes terminate at the same
point.

Structure, union, and enumeration tags have scope that begins just after the appearance
of the tag in a type specifier that declares the tag. Each enumeration constant has
scope that begins just after the appearance of its defining enumerator in an enumerator
list. Any other identifier has scope that begins just after the completion of its
declarator.
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Forward referencess compound statement, or block (6.6.2), declarations (6.5),
enumeration specifiers (6.5.2.2), function calls (6.3.2.2), function declarators (including
prototypes) (6.5.5.3), function definitions (6.7.1), the got o statement (6.6.6.1), labeled
statements (6.6.1), name spaces of identifiers (6.1.2.3), scope of macro definitions
(6.8.3.5), source file inclusion (6.8.2), tags (6.5.2.3), type specifiers (6.5.2).

6.1.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be
made to refer to the same object or function by a process called linkage. There are
three kinds of linkage: external, internal, and none.

In the set of trandation units and libraries that constitutes an entire program, each
instance of a particular identifier with external linkage denotes the same object or
function. Within one transation unit, each instance of an identifier with internal
linkage denotes the same object or function. Identifiers with no linkage denote unique
entities.

If the declaration of a file scope identifier for an object or a function contains the
storage-class specifier st at i ¢, the identifier has internal linkage.?!

For an identifier declared with the storage-class specifier ext er n in a scope in which
a prior declaration of that identifier is visible?? if the prior declaration specifies
internal or externa linkage, the linkage of the identifier at the later declaration
becomes the linkage specified at the prior declaration. If no prior declaration is
visible, or if the prior declaration specifies no linkage, then the identifier has external
linkage.

If the declaration of an identifier for a function has no storage-class specifier, its
linkage is determined exactly as if it were declared with the storage-class specifier
extern. If the declaration of an identifier for an object has file scope and no
storage-class specifier, its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other
than an object or a function; an identifier declared to be a function parameter; a block
scope identifier for an object declared without the storage-class specifier ext er n.

If, within a trandation unit, the same identifier appears with both internal and external
linkage, the behavior is undefined.

21. A function declaration can contain the storage-class specifier st ati ¢ only if it is at file scope; see
6.5.1.

22. As specified in 6.1.2.1, the later declaration might hide the prior declaration.
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Forward referencess compound statement, or block (6.6.2), declarations (6.5),
expressions (6.3), external definitions (6.7).

6.1.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a
trandation unit, the syntactic context disambiguates uses that refer to different entities.
Thus, there are separate name spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any®®
of the keywords st r uct, uni on, or enunj;

— the members of structures or unions; each structure or union has a separate name
space for its members (disambiguated by the type of the expression used to access
the member viathe . or - > operator);

— all other identifiers, called ordinary identifiers (declared in ordinary declarators or
as enumeration constants).

Forward references. enumeration specifiers (6.5.2.2), labeled statements (6.6.1), structure
and union specifiers (6.5.2.1), structure and union members (6.3.2.3), tags (6.5.2.3).

6.1.2.4 Storage durations of objects

An object has a storage duration that determines its lifetime. There are three storage
durations. static, automatic, and allocated. Allocated storage is described in 7.14.3.

An object whose identifier is declared with external or internal linkage, or with the
storage-class specifier stati c has static storage duration. For such an object,
storage is reserved and its stored value is initialized only once, prior to program
startup. The object exists, has a constant address, and retains its last-stored value
throughout the execution of the entire program.?*

An object whose identifier is declared with no linkage and without the storage-class
specifier static has automatic storage duration. Storage is guaranteed to be
reserved for a new instance of such an object on each normal entry into the block with
which it is associated. If the block with which the object is associated is entered by a

23. There is only one name space for tags even though three are possible.

24. The term constant address means that two pointers to the object constructed at possibly different
times will compare equal. The address may be different during two different executions of the same
program.

In the case of a volatile object, the last store may not be explicit in the program.
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jump from outside the block to a labeled statement in the block or in an enclosed
block, then storage is guaranteed to be reserved provided the object does not have a
variable length array type. If the object is variably modified and the block is entered
by a jump to a labeled statement, then the behavior is undefined. If an initiaization is
specified for the value stored in the object, it is performed on each normal entry, but
not if the block is entered by a jump to a labeled statement beyond the declaration. A
backwards jump might cause the initializer to be evaluated more than once; if so, a
new value will be stored each time. Storage for the object is no longer guaranteed to
be reserved when execution of the block ends in any way. (Entering an enclosed
block suspends but does not end execution of the enclosing block. Calling a function
suspends but does not end execution of the block containing the call.) The value of a
pointer that referred to an object with automatic storage duration that is no longer
guaranteed to be reserved is indeterminate. During execution of the associated block,
the object has a constant address.

Forward referencess compound statement, or block (6.6.2), function calls (6.3.2.2),
declarators (6.5.5), array declarators (6.5.5.2), initialization (6.5.8).

6.1.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by
the type of the expression used to access it. (An identifier declared to be an object is
the simplest such expression; the type is specified in the declaration of the identifier.)
Types are partitioned into object types (types that describe objects), function types
(types that describe functions), and incomplete types (types that describe objects but
lack information needed to determine their sizes).

An object declared as type char is large enough to store any member of the basic
execution character set. If a member of the required source character set enumerated
in 5.2.1 is stored in a char object, its value is guaranteed to be positive. If any other
character is stored in a char object, the resulting value is implementation-defined but
shall be within the range of values that can be represented in that type.

There are five standard signed integer types, designated as si gned char, short
int,int, long int, and long long int. (These and other types may be
designated in severa additional ways, as described in 6.5.2) There may aso be
implementation-defined extended signed integer types.?® The standard and extended
signed integer types are collectively called just signed integer types.®

25. Implementation-defined keywords must have the form of an identifier reserved for any use as
described in 7.1.3.

26. Therefore, any statement in this Standard about signed integer types also applies to the extended
signed integer types.
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An object declared as type si gned char occupies the same amount of storage as a
““plain’’ char object. A *“‘plain’’ i nt object has the natural size suggested by the
architecture of the execution environment (large enough to contain any value in the
range | NT_M Nto | NT_MAX as defined in the header <l i m t s. h>).

For each of the signed integer types, there is a corresponding (but different) unsigned
integer type (designated with the keyword unsi gned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The
unsigned integer types that correspond to the standard signed integer types are the
standard unsigned integer types. The unsigned integer types that correspond to the
extended signed integer types are the extended unsigned integer types.

The extended signed integer types and extended unsigned integer types are collectively
called the extended integer types.

For any two types with the same signedness and different integer conversion rank, the
range of values of the type with smaller integer conversion rank is a subrange of the
values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the
corresponding unsigned integer type, and the representation of the same value in each
type is the same.?’ A computation involving unsigned operands can never overflow,
because a result that cannot be represented by the resulting unsigned integer type is
reduced modulo the number that is one greater than the largest value that can be
represented by the resulting unsigned integer type.

There are three real floating types, designated as fl oat, doubl e, and | ong
doubl e. The set of values of the type f | oat is a subset of the set of values of the
type doubl e; the set of values of the type doubl e is a subset of the set of values of
the type | ong doubl e.

There are three complex types, designated as f | oat conpl ex, doubl e conpl ex,
and 1ong double conplex.?® The rea floating and complex types are
collectively called the floating types.

For each floating type there is a corresponding real type, which is always a rea
floating type. For rea floating types, it is the same type. For complex types, it is the
type given by deleting the keyword conpl ex from the type name.

27. The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

28. A specification for imaginary types is in informative Annex G.
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Each complex type has the same representation and alignment requirements as an array
type containing exactly two elements of the corresponding real type; the first element
is equal to the real part, and the second element to the imaginary part, of the complex
number.

The type char, the signed and unsigned integer types, and the floating types are
collectively called the basic types. Even if the implementation defines two or more
basic types to have the same representation, they are nevertheless different types.?®

The three types char, si gned char, and unsi gned char are collectively called
the character types. The implementation shall define char to have the same range,
representation, and behavior as one of si gned char and unsi gned char %

An enumeration comprises a set of named integer constant values. Each distinct
enumeration constitutes a different enumerated type.

The voi d type comprises an empty set of values; it is an incomplete type that cannot
be completed.

Any number of derived types can be constructed from the object, function, and
incomplete types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a
particular member object type, caled the element type.3! Array types are
characterized by their element type and by the number of elements in the array.
An array type is said to be derived from its element type, and if its element type is
T, the array type is sometimes called ‘“‘array of T.”” The construction of an array
type from an element type is called *‘array type derivation.’”’

— A structure type describes a sequentially allocated nonempty set of member
objects, each of which has an optionally specified name and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of
which has an optionally specified name and possibly distinct type.

29. An implementation may define new keywords that provide alternative ways to designate a basic (or
any other) type. An aternate way to designed a basic type does not violate the requirement that all
basic types be different. Implementation-defined keywords must have the form of an identifier
reserved for any use as described in 7.1.3.

30. CHAR_M N, defined in <l i m t's. h>, will have one of the values 0 or SCHAR_M N, and this can
be used to distinguish the two options. Irrespective of the choice made, char is a separate type
from the other two, and it not compatible with either.

31. Since object types do not include incomplete types, an array of incomplete type cannot be
constructed.
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— A function type describes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A
function type is said to be derived from its return type, and if its return type is T,
the function type is sometimes called ‘‘function returning T.”” The construction of
a function type from a return type is called **function type derivation.’”’

— A pointer type may be derived from a function type, an object type, or an
incomplete type, caled the referenced type. A pointer type describes an object
whose value provides a reference to an entity of the referenced type. A pointer
type derived from the referenced type T is sometimes called ‘‘pointer to T.”” The
construction of a pointer type from a referenced type is caled ‘‘pointer type
derivation.”’

These methods of constructing derived types can be applied recursively.

The type char, the signed and unsigned integer types, and the enumerated types are
collectively called integer types. The integer and real floating types are collectively
called real types.

Integer and floating types are collectively called arithmetic types. Arithmetic types
and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.*?

Each arithmetic type belongs to one type-domain. The real type-domain comprises the
real types. The complex type-domain comprises the complex types.

An array type of unknown size is an incomplete type. It is completed, for an identifier
of that type, by specifying the size in a later declaration (with internal or external
linkage). A structure or union type of unknown content (as described in 6.5.2.3) is an
incomplete type. It is completed, for all declarations of that type, by declaring the
same structure or union tag with its defining content later in the same scope.

Array, function, and pointer types are collectively caled derived declarator types. A
declarator type derivation from a type T is the construction of a derived declarator
type from T by the application of an array-type, a function-type, or a pointer-type
derivation to T.

A type is characterized by its type category, which is either the outermost derivation
of a derived type (as noted above in the construction of derived types), or the type
itself if the type consists of no derived types.

32. Note that aggregate type does not include union type because an object with union type can only
contain one member at atime.

Language 41



25

26

27

Working Draft, 1997-11-21, WG14/N794 J11/97-158

Any type so far mentioned is an unqualified type. Each unqualified type has several
qualified versions of its type3® corresponding to the combinations of one, two, or all
three of the const, volatile, and restrict qudifiers. The qualified or
unqualified versions of a type are distinct types that belong to the same type category
and have the same representation and alignment requirements.>’ A derived type is not
qgualified by the qualifiers (if any) of the type from which it is derived.

A pointer to voi d shall have the same representation and alignment requirements as a
pointer to a character type. Similarly, pointers to qualified or unqualified versions of
compatible types shall have the same representation and alignment requirements.?’ All
pointers to structure types shall have the same representation and alignment
requirements as each other. All pointers to union types shall have the same
representation and alignment requirements as each other. Pointers to other types need
not have the same representation or alignment requirements.

Examples

1. The type designated as “‘f | oat *’’ has type ‘‘pointer to fl oat.” Its type
category is pointer, not a floating type. The const-qualified version of this type
is designated as ‘‘f | oat * const’’ whereas the type designated as ‘‘const
float *' is not a quaified type — its type is ‘‘pointer to const-qualified
fl oat’’ and is a pointer to a qualified type.

2. The type designated as ‘‘struct tag (*[5])(fl oat)’’ has type ‘‘array of
pointer to function returning struct tag.”” The array has length five and the
function has a single parameter of type f | oat . Its type category is array.

Forward references. character constants (6.1.3.4), compatible type and composite type
(6.1.2.6), integer conversion rank (6.2.1.1), declarations (6.5), tags (6.5.2.3), type
qualifiers (6.5.3).

6.1.2.6 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for
determining whether two types are compatible are described in 6.5.2 for type
specifiers, in 6.5.3 for type qualifiers, and in 6.5.5 for declarators® Moreover, two
structure, union, or enumerated types declared in separate trandation units are
compatible if their tags and members satisfy the following requirements. If one is
declared with a tag, the other shall be declared with the same tag. If both are

33. See 6.5.3 regarding qualified array and function types.
34. Two types need not be identical to be compatible.
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completed types, then the following additional requirements apply: there shall be a
one-to-one correspondence between their members such that each par of
corresponding members are declared with compatible types, and such that if one
member of a corresponding pair is declared with a name, the other member is declared
with the same name. For two structures, corresponding members shall be declared in
the same order. For two structures or unions, corresponding bit-fields shall have the
same widths. For two enumerations, corresponding members shal have the same
values.

All declarations that refer to the same object or function shall have compatible type;
otherwise, the behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type
that is compatible with both of the two types and satisfies the following conditions:

— If one type is an array of known constant size, the composite type is an array of
that size; otherwise, if one type is a variable length array, the composite type is
that type.

— If only one type is a function type with a parameter type list (a function
prototype), the composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each
parameter in the composite parameter type list is the composite type of the
corresponding parameters.

These rules apply recursively to the types from which the two types are derived.

For an identifier with internal or external linkage declared in a scope in which a prior
declaration of that identifier is visible® if the prior declaration specifies internal or
external linkage, the type of the identifier at the later declaration becomes the
composite type.

Examples
Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:

35. As specified in 6.1.2.1, the later declaration might hide the prior declaration.
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int f(int (*)(char *), double (*)[3]);

Forward references. declarators (6.5.5), enumeration specifiers (6.5.2.2), structure and
union specifiers (6.5.2.1), type definitions (6.5.7), type qualifiers (6.5.3), type specifiers
(6.5.2).

6.1.2.7 Predefined identifiers

The following identifier shall be defined by the implementation:

__func__ The name of the lexically-enclosing function.

Forward references: the identifier __func__ (6.3.1.1).

6.1.2.8 Representations of types

The representations of all types are unspecified except as stated in this subclause.
6.1.2.8.1 General

Values of type unsi gned char shall be represented using a pure binary notation.®

When stored in objects of any other object type, values of that type consist of
n* CHAR _BI T bits, where n is the size of an object of that type, in bytes. The value
may be copied into an object of type unsi gned char [n] (eg., by mentpy); the
resulting set of bytes is called the object representation of the value. Two values with
the same object representation shall compare equal, but values that compare equal
might have different object representations.

Certain object representations might not represent a value of that type. If the stored
value of an object has such a representation and is accessed by an lvalue expression
that does not have character type, the behavior is undefined. If such a representation
is produced by a side effect that modifies all or any part of the object by an Ivalue
expression that does not have character type, the behavior is undefined.®” Such
representations are called trap representations.

When a value is stored in an object of structure or union type, including in a member
object, the bytes of the object representation that correspond to any padding bytes take

36. A positional representation for integers that uses the binary digits O and 1, in which the values
represented by successive bits are additive, begin with 1, and are multiplied by successive integral
powers of 2, except perhaps the bit with the highest position. (Adapted from the American National
Dictionary for Information Processing S’Stéﬂﬁ:g é?wbyte contains CHAR_BI T bits, and the values of
type unsi gned char range from 0 to 2 i

37. Thus an automatic variable can be initialized to a trap representation without causing undefined
behavior, but the value of the variable cannot be used until a proper value is stored in it.
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unspecified values.3® The values of padding bytes shall not affect whether the value of
such an object is a trap representation. Those bits of a structure or union object that
are in the same byte as a hit-field member, but are not part of that member, shall
similarly not affect whether the value of such an object is a trap representation.

When a value is stored in a member of an object of union type, the bytes of the object
representation that do not correspond to that member but do correspond to other
members take unspecified values, but the value of the union object shall not thereby
become a trap representation.

Where an operator is applied to a value which has more than one object representation,
which object representation is used shal not affect the value of the result. Where a
value is stored in an object using a type that has more than one object representation
for that value, it is unspecified which representation is used, but a trap representation
shall not be generated.

6.1.2.8.2 Integer types

For unsigned integer types other than unsi gned char, the bits of the object
representation shall be divided into two groups. value bits and padding bits (there need
not be any of the latter). If there are N value bits, each bit shall represent a different
power of 2 between 1 and 2N71, so that objects of that type shall be capable of
representing values from 0 to 2V-1 using a pure binary representation; this shall be
known as the value representation. The values of any padding bits are unspecified.®

For signed integer types, the bits of the object representation shall be divided into
three groups: value bits, padding bits, and the sign bit. There need not be any padding
bits; there shall be exactly one sign bit. Each bit that is a value bit shall have the
same value as the same bit in the object representation of the corresponding unsigned
type (if there are M value bits in the signed type and N in the unsigned type, then
M<N). If the sign bit is zero, it shall not affect the resulting value. If the sign bit is
one, then the value shall be modified in one of the following ways:

— the corresponding value with sign bit O is negated;

38. Thus, for example, structure assignment may be implemented element-at-a-time or via mencpy.

39. Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap
representation other than as part of an exception such as an overflow, and this cannot occur with
unsigned types. All other combinations of padding bits are alternative object representations of the
value specified by the value bits.
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— the sign bit has the value -2";
— the sign bit has the value 1 - 2N,

The values of any padding bits are unspecified® A valid (non-trap) object
representation of a signed integer type where the sign bit is zero is a valid object
representation of the corresponding unsigned type, and shall represent the same value.

The precision of an integer type is the number of bits it uses to represent values,
excluding any sign and padding bits. The width of an integer type is the same but
including any sign bit; thus for unsigned integer types the two values are the same,
while for signed integer types the width is one greater than the precision.

6.1.3 Constants

Syntax
constant;
floating-constant
integer-constant
enumer ation-constant
character-constant
Constraints

The value of a constant shall be in the range of representable values for its type.
Semantics

Each constant has a type, determined by its form and value, as detailed later.
6.1.3.1 Floating constants

Syntax

floating-constant:
decimal -floati ng-constant
hexadeci mal-floating-constant

decimal-floating-constant:
fractional-constant exponent-part opt floating-suffixO

t
digit-sequence exponent-part floatl ng-suffixo P

pt
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hexadeci mal -floating-constant:

0x hexadecimal-fractional-constant
binary-exponent-part floati ng-suffixo

0X hexadecimal-fractional -constant
binary-exponent-part floati ng-suffixo

0x hexadecimal-digit-sequence
binary-exponent-part floati ng-suffixo

0X hexadecimal-digit-sequence
binary-exponent-part floati ng-suffixo

pt
pt
pt
pt

fractional-constant:

digit-sequenceopt .
digit-sequence .

digit-sequence

exponent-part:
e signOt digit-sequence

E dign opt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit
hexadeci mal-fractional-constant:
hexadecimal-digit-sequence opt
hexadecimal-digit-sequence
hexadecimal-digit-sequence .

binary-exponent-part:

p signOt digit-sequence

P sign ot digit-sequence
hexadecimal-digit-sequence:

hexadecimal-digit

hexadecimal-digit-sequence hexadecimal-digit
hexadecimal-digit: one of

0 1 2 3 4 5 6 7 8 9

a b ¢ d e f
A B C D E F

floating-suffix: one of
f I F L

Language 47



Working Draft, 1997-11-21, WG14/N794 J11/97-158

Description

A floating constant has a significand part that may be followed by an exponent part
and a suffix that specifies its type. The components of the significand part may
include a digit sequence representing the whole-number part, followed by a period (. ),
followed by a digit sequence representing the fraction part. The components of the
exponent part are an e, E, p, or P followed by an exponent consisting of an optionally
signed digit sequence. Either the whole-number part or the fraction part shal be
present; for decimal floating constants, either the period or the exponent part shall be
present.

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the
digit sequence in the exponent part is interpreted as a decimal integer. For decimal
floating constants, the exponent indicates the power of 10 by which the significand
part is to be scaled. For hexadecimal floating constants, the exponent indicates the
power of 2 by which the significand part is to be scaed. For decimal floating
constants, and also for hexadecimal floating constants when FLT_RADI X is not a
power of 2, if the scaled value is in the range of representable values (for its type) the
result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an
implementation-defined manner. For hexadecimal floating constants, if FLT_RADI X
is a power of 2 and the scaled value is in the range of representable values (for its
type), then the result of a hexadecimal floating constant is correctly rounded.

An unsuffixed floating constant has type doubl e. If suffixed by the letter f or F, it
has type f | oat . If suffixed by the letter | or L, it has type | ong doubl e.

Recommended practice

The implementation produces a diagnostic message if a hexadecimal constant cannot
be represented exactly in its evaluation format; the implementation then proceeds with
the translation of the program.

The trandation-time conversion of floating constants matches the execution-time
conversion of character strings by library functions, such as st rt od, given matching
inputs suitable for both conversions, the same result format, and default execution-time
rounding.*°

40. The specification for the library functions recommends more accurate conversion than required for
floating constants. See strt od (7.14.1.5).
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6.1.3.2 Integer constants

Syntax

integer-constant:
decimal-constant i nteger-suffixO i
octal-constant integer-suffix oot

hexadecimal-constant i nteger-suﬂ‘ixOlot

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
Ox hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

integer -suffix:
unsigned-suffix Iong-suffix0 i
long-suffix unsigned-sufﬁx0 i
unsigned-suffix Iong-long-suffixo

t
long-long-suffix unsigned-sufﬁxoIO

pt
unsigned-suffix: one of
u U

long-suffix: one of
l L

long-long-suffix: one of
1 LL
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Description

An integer constant begins with a digit, but has no period or exponent part. It may
have a prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal
digits. An octal constant consists of the prefix O optionally followed by a sequence of
the digits O through 7 only. A hexadecimal constant consists of the prefix Ox or 0X
followed by a sequence of the decimal digits and the letters a (or A) through f (or F)
with values 10 through 15 respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal constant, base 8;
that of a hexadecima constant, base 16. The lexically first digit is the most
significant.

The type of an integer constant is the first of the corresponding list in which its value
can be represented. Unsuffixed decimal: int, long int, long long int;
unsuffixed octal or hexadecimal: i nt, unsigned int, |l ong int, unsi gned
long int,longlongint,unsigned!|onglongint; suffixed by the letter u
or U. unsigned int, unsigned long int, unsigned |long |long int;
decima suffixed by the letter | or L: long int, long long int; octa or
hexadecimal suffixed by the letter | or L: |1 ong i nt, unsigned |l ongint,|ong
 ong i nt, unsi gned | ong | ong i nt; suffixed by both the letters u or U and |
or L: unsigned |l ongint,unsigned!|onglongint; decima suffixed by | |
or LL: long long int; octal or hexadecimal suffixed by the letter || or LL:
l ong I ong i nt, unsi gned | ong | ong i nt ; suffixed by both u or Uand I | or
LL: unsigned long long int. If aninteger constant can not be represented by
any type in its ligt, it may have an extended integer type, if the extended integer type
can represent its value. If al of the types in the list for the constant are signed, the
extended integer type shall be signed. If al of the types in the list for the constant are
unsigned, the extended integer type shall be unsigned. If the list contains both signed
and unsigned types, the extended integer type may be signed or unsigned.

6.1.3.3 Enumeration constants

Syntax

enumer ation-constant:
identifier
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Semantics

An identifier declared as an enumeration constant has type i nt .

Forward references. enumeration specifiers (6.5.2.2).

6.1.3.4 Character constants

Syntax

character-constant:
' c-char-sequence
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quote ’ , backslash \ , or new-line character
escape-sequence
univer sal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadeci mal-escape-sequence

simple-escape-sequence:  one of
[ A A N
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadeci mal -escape-sequence:
\ X hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description

An integer character constant is a sequence of one or more multibyte characters

enclosed in single-quotes, asin’ x’ or ' ab’ . A wide character constant is the same,
except prefixed by the letter L. With a few exceptions detailed later, the elements of
the sequence are any members of the source character set; they are mapped in an
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implementation-defined manner to members of the execution character set.

The single-quote ' , the double-quote ", the question-mark ?, the backslash \, and
arbitrary integer values, are representable according to the following table of escape
sequences:

single-quote ’ \’
double-quote " \ "
guestion-mark ? \?
backslash \ \\
octal integer \ octal digits

hexadecimal integer \ xhexadecimal digits

The double-quote " and question-mark ? are representable either by themselves or by
the escape sequences \" and \ ?, respectively, but the single-quote * and the
backslash \ shall be represented, respectively, by the escape sequences\’ and \ \ .

The octal digits that follow the backslash in an octal escape sequence are taken to be
part of the construction of a single character for an integer character constant or of a
single wide character for a wide character constant. The numerical value of the octal
integer so formed specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the letter x in a hexadecimal
escape sequence are taken to be part of the construction of a single character for an
integer character constant or of a single wide character for a wide character constant.
The numerical value of the hexadecimal integer so formed specifies the value of the
desired character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that
can constitute the escape sequence.

In addition, certain nongraphic characters are representable by escape sequences
consisting of the backslash \ followed by a lowercase letter: \a,\b,\f,\n,\r,\t,
and \ v.*1 If any other escape sequence is encountered, the behavior is undefined.*?

41. The semantics of these characters were discussed in 5.2.2.
42. See ‘‘future language directions”’ (6.9.1).

52 Language



10

11

12

Working Draft, 1997-11-21, WG14/N794 J11/97-158

Constraints

The value of an octa or hexadecimal escape sequence shall be in the range of
representable values for the type unsi gned char for an integer character constant,
or the unsigned type corresponding to wchar _t for a wide character constant.

Semantics

An integer character constant has type i nt. The value of an integer character
constant containing a single character that maps to a member of the basic execution
character set is the numerical value of the representation of the mapped character
interpreted as an integer. The value of an integer character constant containing more
than one character, or containing a character or escape sequence not represented in the
basic execution character set, is implementation-defined. If an integer character
constant contains a single character or escape sequence, its value is the one that results
when an object with type char whose value is that of the single character or escape
sequence is converted to type i nt .

A wide character constant has type wchar _t, an integer type defined in the
<st ddef. h> header. The value of a wide character constant containing a single
multibyte character that maps to a member of the extended execution character set is
the wide character (code) corresponding to that multibyte character, as defined by the
nbt owc function, with an implementation-defined current locale. The value of a wide
character constant containing more than one multibyte character, or containing a
multibyte character or escape sequence not represented in the extended execution
character set, is implementation-defined.

Examples
1. The construction’ \ 0" is commonly used to represent the null character.

2. Consider implementations that use two’s-complement representation for integers
and eight bits for objects that have type char. In an implementation in which
type char has the same range of values as si gned char , the integer character
constant ' \ XFF' has the value —1; if type char has the same range of values
as unsi gned char, the character constant ’ \ XFF' has the value +255 .

3. Even if eight bits are used for objects that have type char, the construction
"\ x123" specifies an integer character constant containing only one character,
since a hexadecimal escape sequence is terminated only by a non-hexadecimal
character. To specify an integer character constant containing the two characters
whose values are ' \ x12' and ' 3’ , the construction * \ 0223’ may be used,
since an octal escape sequence is terminated after three octal digits. (The vaue
of this two-character integer character constant is implementation-defined.)
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4. Even if 12 or more bits are used for objects that have type wchar _t, the
construction L’ \ 1234’ specifies the implementation-defined value that results
from the combination of the values 0123 and’ 4’ .

Forward references: Ccharacters and integers (6.2.1.1), common definitions <st ddef . h>
(7.1.6), the nbt owc function (7.14.7.2).

6.1.4 String literals

Syntax

string-literal:
" s—char-sequenceopt"
L s—char-%quence0 ot
s-char-sequence:
s-char

s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote ", backslash \ , or new-line character
escape-sequence
universal-character-name

Description

A character string literal is a sequence of zero or more multibyte characters enclosed
in double-quotes, as in "xyz". A wide string literal is the same, except prefixed by
the letter L.

The same considerations apply to each element of the sequence in a character string
literal or a wide string literal as if it were in an integer character constant or a wide
character constant, except that the single-quote ’ is representable either by itself or by
the escape sequence \ ', but the double-quote " shall be represented by the escape
sequence \ ".

Semantics

In trandation phase 6, the multibyte character sequences specified by any sequence of
adjacent character and wide string literal tokens are concatenated into a single
multibyte character sequence. If any of the tokens are wide string literal tokens, the
resulting multibyte character sequence is treated as a wide string literal; otherwise, it is
treated as a character string literal.
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In trandation phase 7, a byte or code of value zero is appended to each multibyte
character sequence that results from a string literal or literals®® The multibyte
character sequence is then used to initialize an array of static storage duration and
length just sufficient to contain the sequence. For character string literals, the array
elements have type char, and are initialized with the individual bytes of the multibyte
character sequence; for wide string literals, the array elements have type wchar _t,
and are initialized with the sequence of wide characters corresponding to the multibyte
character sequence.

These arrays need not be distinct provided their elements have the appropriate values.
If the program attempts to modify such an array, the behavior is undefined.

Examples
This pair of adjacent character string literals
"\ x12" "3"

produces a single character string literal containing the two characters whose values
are’ \ x12’ and’ 3’ , because escape sequences are converted into single members of
the execution character set just prior to adjacent string literal concatenation.

Forward references. common definitions <st ddef . h> (7.1.6).
6.1.5 Operators

Syntax
operator: one of

1)y . -»

++ -- & * + - ~ | sizeof

/I % << > < > <= >= == I= ~ | && ||
?

= *= = O0F += -= <<= >>= = A= |:

43. A character string literal need not be a string (see 7.1.1), because a null character may be embedded
init by a\ O escape sequence.
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Constraints

The operators [ ], ( ), and ? : (independent of spelling) shal occur in pairs,
possibly separated by expressions. The operators # and ## (also spelled % and
% % , respectively) shall occur in macro-defining preprocessing directives only.

Semantics

An operator specifies an operation to be performed (an evaluation) that yields a value,
or yields a designator, or produces a side effect, or a combination thereof. An
operand is an entity on which an operator acts.

In all aspects of the language, these six tokens
< > <% % %W W%
behave, respectively, the same as these six tokens
[ 1 { } # ##
except for their spelling.*
Forward references: expressions (6.3), macro replacement (6.8.3).

6.1.6 Punctuators

Syntax
punctuator: one of
[ 1 )y {3}y *» ., - =, ... #
< > <% % W
Constraints

The punctuators [ ], ( ), and { } (independent of spelling) shall occur (after
trandation phase 4) in pairs, possibly separated by expressions, declarations, or
statements. The punctuator # (also spelled % ) shall occur in preprocessing directives
only.

44, Thus [ and <: behave differently when *‘stringized’’ (see subclause 6.8.3.2), but can otherwise be
freely interchanged.
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Semantics

A punctuator is a symbol that has independent syntactic and semantic significance but
does not specify an operation to be performed that yields a value. Depending on
context, the same symbol may also represent an operator or part of an operator.

Forward references. expressions (6.3), declarations (6.5), preprocessing directives (6.8),
statements (6.6).

6.1.7 Header names

Syntax

header-name:
<h-char-sequence>
" g-char-segquence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except
the new-line character and >

g-char-sequence:
g-char
g-char-sequence g-char

g-char:
any member of the source character set except
the new-line character and "

Semantics

The sequences in both forms of header names are mapped in an implementation-
defined manner to headers or external source file names as specified in 6.8.2.

If the characters *, \, ", //, or /* occur in the sequence between the < and >
delimiters, the behavior is undefined. Similarly, if the characters *, \, //, or /*
occur in the sequence between the " delimiters, the behavior is undefined.*® A header
name preprocessing token is recognized only within a #i ncl ude preprocessing
directive.

45. Thus, sequences of characters that resemble escape sequences cause undefined behavior.
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Examples
The following sequence of characters:

0x3<1l/ a. h>1e2
#i ncl ude <1/ a. h>
#defi ne const. nenber @

forms the following sequence of preprocessing tokens (with each individual
preprocessing token delimited by a{ on the left and a} on the right).

{Ox3H{<H1H/ HaH{. H{h}{>}{1le2}
{#}{i ncl ude} {<1/a.h>}
{#}{defi ne} {const}{. }{nmenber}{@{$}

Forward references: source file inclusion (6.8.2).

6.1.8 Preprocessing numbers

Syntax

pp-number:

digit
digit

pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Description

A preprocessing number begins with a digit optionally preceded by a period (.) and
may be followed by letters, underscores, digits, periods, and e+, e-, E+, E-, p+, p-,
P+, or P- character sequences.

Preprocessing number tokens lexically include all floating and integer constant tokens.
Semantics

A preprocessing number does not have type or a value;, it acquires both after a
successful conversion (as part of trandation phase 7) to a floating constant token or an
integer constant token.
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6.1.9 Comments

Except within a character constant, a string literal, or a comment, the characters / *
introduce a comment. The contents of a comment are examined only to identify
multibyte characters and to find the characters */ that terminate it.*®

Except within a character constant, a string literal, or a comment, the characters / /
introduce a comment that includes all multibyte characters up to, but not including, the
next new-line character. The contents of such a comment are examined only to
identify multibyte characters and to find the terminating new-line character.

Examples

"allb" /' four-character string literal
#include "//e" [/ undefined behavior

[ */ /1 comment, not syntax error
f =g/**//h; /'l equivalenttof = g / h;
/1\

i(); /| part of a two-line comment
I\

Q) /| part of a two-line comment

#define glue(x,y) x##ty
glue(/,/) k(); // syntax error, not comment

[*11*1 1(); /1 equivalentto | () ;
m=n//**/o0
+ p; /] equivalenttom = n + p;

46. Thus, /* ... */ comments do not nest.
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6.2 Conversions

Several operators convert operand values from one type to another automatically. This
subclause specifies the result required from such an implicit conversion, as well as
those that result from a cast operation (an explicit conversion). The list in 6.2.1.7
summarizes the conversions performed by most ordinary operators; it is supplemented
as required by the discussion of each operator in 6.3.

Conversion of an operand value to a compatible type causes no change to the value or
the representation.

Forward references: cast operators (6.3.4).

6.2.1 Arithmetic operands

6.2.1.1 Characters and integers

Every integer type has an integer conversion rank defined as follows:

— No two signed integer types shall have the same rank, even if they have the same
representation.

— The rank of a signed integer type shall be greater than the rank of any signed
integer type with less precision.

— The rank of any standard signed integer type shall be greater than the rank of any
extended signed integer type with the same precision.

— The rank of | ong | ong int shal be greater than the rank of | ong i nt,
which shall be greater than the rank of i nt, which shall be greater than the rank
of short i nt, which shall be greater than the rank of si gned char.

— The rank of any unsigned integer type shall equal the rank of the corresponding
signed integer type.

— Therank of char shall equa the rank of si gned char and unsi gned char.

— The rank of any enumerated type shall equal the rank of the compatible integer
type.
— The rank of any extended signed integer type relative to another extended signed

integer type with the same precision is implementation-defined, but still subject to
the other rules for determining the integer conversion rank.

— For all integer types T1, T2, and T3, if T1 has greater rank than T2 and T2 has
greater rank than T3, then T1 has greater rank than T3.

The following may be used in an expression wherever an i nt or unsi gned i nt
may be used.
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— An object or expression with an integer type whose integer conversion rank is less
than the rank of i nt and unsi gned i nt.

— A bit-field of typei nt, si gned i nt, orunsi gned int.

If an i nt can represent all values of the original type, the value is converted to an
i nt; otherwise, it is converted to an unsi gned i nt. These are caled the integer
promotions.*” All other types are unchanged by the integer promotions.

The integer promotions preserve value including sign. As discussed earlier, whether a
“plain’’ char is treated as signed is implementation-defined.

Forward references. enumeration specifiers (6.5.2.2), structure and union specifiers
(6.5.2.1).

6.2.1.2 Signed and unsigned integers

When a value with integer type is converted to another integer type, if the value can
be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new type
until the value is in the range of the new type.

Otherwise, the new type is signed and the value cannot be represented in it; the result
is implementation-defined.

6.2.1.3 Real floating and integer

When a value of real floating type is converted to integer type, the fractional part is
discarded. If the value of the integral part cannot be represented by the integer type,
the behavior is undefined.*®

When a value of integer type is converted to real floating type, if the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower value, chosen in an
implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined.

47. The integer promotions are applied only as part of the usua arithmetic conversions, to certain
argument expressions, to the operands of the unary +, -, and ~ operators, and to both operands of
the shift operators, as specified by their respective subclauses.

48. The remaindering operation performed when a value of integer type is converted to unsigned type
need not be performed when a value of real floating type is converted to unsigned type. Thus, the
range of portable real floating values is (—1,Utype MAX+1).
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6.2.1.4 Real floating types

When af | oat is promoted to doubl e or | ong doubl e, or adoubl e is promoted
to | ong doubl e, its value is unchanged.

When a doubl e is demoted to f | oat or al ong doubl e to doubl e or f| oat, if
the value being converted is outside the range of values that can be represented, the
behavior is undefined. If the value being converted is in the range of values that can
be represented but cannot be represented exactly, the result is either the nearest higher
or nearest lower value, chosen in an implementation-defined manner.

6.2.1.5 Complex types

When a value of complex type is converted to another complex type, both the real and
imaginary parts follow the conversion rules for the corresponding real types.

6.2.1.6 Real and complex

When a value of real type is converted to a complex type, the rea part of the complex
result value is determined by the rules of conversion to the corresponding rea type
and the imaginary part of the complex result value is a positive zero or an unsigned
zero.

When a value of complex type is converted to a rea type, the imaginary part of the
complex value is discarded and the value of the real part is converted according to the
conversion rules for the corresponding real type.

6.2.1.7 Usual arithmetic conversions

Many operators that expect operands of arithmetic type cause conversions and yield
result types in a smilar way. The purpose is to determine a common real type for the
operands and result. For the specified operands, each operand is converted, without
change of type-domain, to a type whose corresponding real type is the common real
type. Unless explicitly stated otherwise, the common real type is also the
corresponding real type of the result, whose type-domain is determined by the
operator. This pattern is called the usual arithmetic conversions:

First, if the corresponding rea type of either operand is | ong doubl e, the
other operand is converted, without change of type-domain, to a type whose
corresponding real typeis| ong doubl e.

Otherwise, if the corresponding real type of either operand is doubl e, the other
operand is converted, without change of type-domain, to a type whose
corresponding real type is doubl e.

Otherwise, if the corresponding real type of either operand is f | oat , the other
operand is converted, without change of type-domain, to a type whose
corresponding real type is f | oat .*°
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Otherwise, the integer promotions are performed on both operands. Then the
following rules are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have
unsigned integer types, the operand with the type of lesser integer
conversion rank is converted to the type of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater
or equal to the rank of the type of the other operand, then the operand
with signed integer type is converted to the type of the operand with
unsigned integer type.

Otherwise, if the type of the operand with signed integer type can
represent al of the values of the type of the operand with unsigned integer
type, then the operand with unsigned integer type is converted to the type
of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

The values of floating operands and of the results of floating expressions may be
represented in greater precision and range than that required by the type; the types are
not changed thereby.>

6.2.2 Other operands
6.2.2.1 Lvalues and function designators

An lvalue is an expression (with an object type or an incomplete type other than
voi d) that designates an object.>! When an object is said to have a particular type,
the type is specified by the Ivalue used to designate the object. A modifiable Ivalue is

49. For example, addition of a doubl e conpl ex and a f| oat entails just the conversion of the
f | oat operand to doubl e (and yields adoubl e conpl ex result).

50. The cast and assignment operators still must perform their specified conversions, as described in
6.2.1.3 and 6.2.1.4.

51. The name ‘“‘lvalue’’ comes originally from the assignment expression E1 = E2, in which the left
operand E1 must be a (modifiable) Ivalue. It is perhaps better considered as representing an object
“‘locator value.”” What is sometimes called ‘‘rvalue’’ is in this International Standard described as
the ‘*value of an expression.”’

An obvious example of an Ivalue is an identifier of an object. As a further example, if E is a unary
expression that is a pointer to an object, * E is an Ivalue that designates the object to which E points.
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an Ivalue that does not have array type, does not have an incomplete type, does not
have a const-qualified type, and if it is a structure or union, does not have any member
(including, recursively, any member or element of all contained aggregates or unions)
with a const-qualified type.

Except when it is the operand of the si zeof operator, the unary & operator, the ++
operator, the - - operator, or the left operand of the . operator or an assignment
operator, an Ivalue that does not have array type is converted to the value stored in the
designated object (and is no longer an lvalue). If the Ivalue has qualified type, the
value has the unqualified version of the type of the lvalue; otherwise, the value has the
type of the Ivalue. If the Ivalue has an incomplete type and does not have array type,
the behavior is undefined.

Except when it is the operand of the si zeof operator or the unary & operator, or is a
character string literal used to initialize an array of character type, or is a wide string
literal used to initialize an array with element type compatible with wchar _t, an
Ivalue that has type ‘‘array of type’’ is converted to an expression that has type
‘“‘pointer to type’’ that points to the initial element of the array object and is not an
Ivalue. If the array object has register storage class, the behavior is undefined.

A function designator is an expression that has function type. Except when it is the
operand of the si zeof operator® or the unary & operator, a function designator with
type ‘‘function returning type’’ is converted to an expression that has type *‘pointer to
function returning type.’”’

Forward references. address and indirection operators (6.3.3.2), assignment operators
(6.3.16), common definitions <st ddef. h> (7.1.6), initialization (6.5.8), postfix
increment and decrement operators (6.3.2.4), prefix increment and decrement operators
(6.3.3.1), the si zeof operator (6.3.3.4), structure and union members (6.3.2.3).

6.2.2.2 void

The (nonexistent) value of a void expression (an expression that has type voi d) shall
not be used in any way, and implicit or explicit conversions (except to voi d) shall
not be applied to such an expression. If an expression of any other type occurs in a
context where a void expression is required, its value or designator is discarded. (A
void expression is evaluated for its side effects.)

52. Because this conversion does not occur, the operand of the si zeof operator remains a function
designator and violates the constraint in 6.3.3.4.
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6.2.2.3 Pointers

A pointer to voi d may be converted to or from a pointer to any incomplete or object
type. A pointer to any incomplete or object type may be converted to a pointer to
voi d and back again; the result shall compare equal to the original pointer.

For any qudlifier g, a pointer to a non-g-qualified type may be converted to a pointer
to the g-qualified version of the type; the values stored in the original and converted
pointers shall compare equal.

An integer constant expression with the value 0, or such an expression cast to type
voi d *, is called a null pointer constant.>® If a null pointer constant is assigned to or
compared for equality to a pointer, the constant is converted to a pointer of that type.
Such a pointer, called a null pointer, is guaranteed to compare unequal to a pointer to
any object or function.

Conversion of a null pointer to another pointer type yields a null pointer of that type.
Any two null pointers shall compare equal.

An integer may be converted to any pointer type. The result is implementation-
defined, might not be properly aligned, and might not point to an entity of the
referenced type.>

Any pointer type may be converted to an integer type; the result is implementation-
defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result need not be in the range of values of any integer type.>®

A pointer to an object or incomplete type may be converted to a pointer to a different
object or incomplete type. If the resulting pointer is not correctly aligned® for the
pointed to type, the behavior is undefined. Otherwise, when converted back again, the
result shall compare equal to the original pointer.

A pointer to a function of one type may be converted to a pointer to a function of
another type and back again; the result shall compare equal to the original pointer. If
a converted pointer is used to call a function that has a type that is not compatible
with the type of the called function, the behavior is undefined.

53. The macro NULL is defined in <st ddef . h> as a null pointer constant; see 7.1.6.

54. The mapping functions for converting a pointer to an integer or an integer to a pointer are intended
to be consistent with the addressing structure of the execution environment.

55. Thus, if the conversion isto unsi gned i nt but yields a negative value, the behavior is undefined.

56. In general, the concept correctly aligned is transitive: if a pointer to type A is correctly aligned for a
pointer to type B, which in turn is correctly aligned for a pointer to type C, then a pointer to type A
is correctly aligned for a pointer to type C.
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Forward references. cast operators (6.3.4), equality operators (6.3.9), simple assignment
(6.3.16.1).
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6.3 Expressions

An expression is a sequence of operators and operands that specifies computation of a
value, or that designates an object or a function, or that generates side effects, or that
performs a combination thereof.

Between the previous and next sequence point an object shall have its stored value
modified at most once by the evaluation of an expression. Furthermore, the prior
value shall be accessed only to determine the value to be stored.®’

Except as indicated by the syntax®® or otherwise specified later (for the function-call
operator (), &&, ||, ?:, and comma operators), the order of evaluation of
subexpressions and the order in which side effects take place are both unspecified.

Some operators (the unary operator ~, and the binary operators <<, >>, & *, and |,
collectively described as bitwise operators) shall have operands that have integer type.
These operators return values that depend on the internal representations of integers,
and have implementation-defined and undefined aspects for signed types.

If an exception occurs during the evaluation of an expression (that is, if the result is
not mathematically defined or not in the range of representable values for its type), the
behavior is undefined.

The effective type of an object for an access to its stored value is the declared type of
the object, if it has one. If a value is stored into an object having no declared type
through an Ivalue having a type that is not a character type, then the type of the lvalue
becomes the effective type of the object for that access and for subsequent accesses
that do not modify the stored value. If a vaue is copied into an object having no

57. This paragraph renders undefined statement expressions such as

i = ++ + 1;

while alowing
=0 + 1

58. The syntax specifies the precedence of operators in the evaluation of an expression, which is the
same as the order of the major subclauses of this subclause, highest precedence first. Thus, for
example, the expressions allowed as the operands of the binary + operator (6.3.6) shall be those
expressions defined in 6.3.1 through 6.3.6. The exceptions are cast expressions (6.3.4) as operands
of unary operators (6.3.3), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.3.1), subscripting brackets [] (6.3.2.1), function-call parentheses ()
(6.3.2.2), and the conditional operator ?: (6.3.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is
indicated in each subclause by the syntax for the expressions discussed therein.
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declared type using mencpy or nenmove, or is copied as an array of character type,
then the effective type of the modified object for that access and for subsequent
accesses that do not modify the value is the effective type of the object from which
the value is copied, if it has one. For al other accesses to an object having no
declared type, the effective type of the object is smply the type of the Ivalue used for
the access.

An object shall have its stored value accessed only by an lvalue expression that has
one of the following types:>®

— atype compatible with the effective type of the object,
— aqualified version of a type compatible with the effective type of the object,

— atype that is the signed or unsigned type corresponding to the effective type of the
object,

— atype that is the signed or unsigned type corresponding to a qualified version of
the effective type of the object,

— an aggregate or union type that includes one of the aforementioned types among its
members (including, recursively, a member of a subaggregate or contained union),
or

— a character type.

A floating expresson may be contracted, that is, evaluated as though it were an
atomic operation, thereby omitting rounding errors implied by the source code and the
expression evaluation method.®® The FP_CONTRACT pragma in <mat h. h> provides
a way to disallow contracted expressions. Otherwise, whether and how expressions are
contracted is implementation-defined.5*

59. The intent of this list is to specify those circumstances in which an object may or may not be
aliased.

60. A contracted expression might also omit the raising of floating-point exception flags.

61. This license is specifically intended to allow implementations to exploit fast machine instructions
that combine multiple C operators. As contractions potentially undermine predictability, and can

even decrease accuracy for containing expressions, their use must be well-defined and clearly
documented.
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6.3.1 Primary expressions

Syntax
primary-expression:
identifier
constant
string-literal
( expression )

Semantics

An identifier is a primary expression, provided it has been declared as designating an
object (in which case it is an Ivalue) or a function (in which case it is a function
designator).%?

A constant is a primary expression. Its type depends on its form and value, as detailed
in 6.1.3.

A string literal is a primary expression. It is an lvalue with type as detailed in 6.1.4.

A parenthesized expression is a primary expression. Its type and value are identical to
those of the unparenthesized expression. It is an Ivalue, a function designator, or a
void expression if the unparenthesized expression is, respectively, an Ivalue, a function
designator, or a void expression.

Forward references: declarations (6.5).
6.3.1.1 Theidentifier __ func__
Semantics

The identifier _ _func_ _ is implicitly declared by the trandator as if, immediately
following the opening brace of each function definition, the declaration

static const char _ _func_ _[] = "function-name";

appeared, where function-name is the name of the lexically-enclosing function.?3 This
name is the unadorned name of the function.

This name is encoded as if the implicit declaration had been written in the source
character set and then trandated into the execution character set as indicated in

62. Thus, an undeclared identifier is a violation of the syntax.

63. Note that since the name __func__ isreserved for any use by the implementation (7.1.3), if any
other identifier is explicitly declared using the name __func_ _, the behavior is undefined.
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trandation phase 5.
Examples
Consider the code fragment:

#i ncl ude <stdio. h>

voi d nyfunc(void)

{
printf("%\n", _ _func__);
[* ..

}

Each time the function is called, it will print to the standard output stream:
myf unc
6.3.2 Postfix operators

Syntax

postfix-expression:
primary-expression
postfix-expression [ expression |
postfix-expression ( argument-expron-listO
postfix-expression . identifier
postfix-expression - > identifier
postfix-expression ++
postfix-expression - -
( type-name) { initializer-list }
( type-name) { initializer-list, }

pt)

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

6.3.2.1 Array subscripting
Constraints

One of the expressions shall have type *‘pointer to object type,”’ the other expression
shall have integer type, and the result has type ‘‘type.”’
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Semantics

A postfix expression followed by an expression in square brackets [ ] is a subscripted
designation of an element of an array object. The definition of the subscript operator
[] isthat E1[ E2] isidentical to (*( EL+(E2))). Because of the conversion rules
that apply to the binary + operator, if E1 is an array object (equivalently, a pointer to
the initial element of an array object) and E2 is an integer, E1[ E2] designates the
E2-th element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array
object. If E is an n-dimensiona array (n=2) with dimensions ixjx ... xk, then E
(used as other than an Ivalue) is converted to a pointer to an (n—1)-dimensiona array
with dimensions jx ... xk. If the unary * operator is applied to this pointer explicitly,
or implicitly as a result of subscripting, the result is the pointed-to (n—1)-dimensional
array, which itself is converted into a pointer if used as other than an lvalue. It
follows from this that arrays are stored in row-mgor order (last subscript varies
fastest).

Examples
Consider the array object defined by the declaration
int x[3][5];

Here x is a 3x5 array of i nt s; more precisely, X is an array of three element objects,
each of which is an array of five i nts. In the expression X[ i ] , which is equivalent
to (*(x+(i))), x is first converted to a pointer to the initia array of five i nts.
Then i is adjusted according to the type of x, which conceptually entails multiplying
i by the size of the object to which the pointer points, namely an array of five i nt
objects. The results are added and indirection is applied to yield an array of five
i nts. When used in the expression x[i][]], that in turn is converted to a pointer
to the first of theints, sox[i][]] yiedsani nt.

Forward references. additive operators (6.3.6), address and indirection operators
(6.3.3.2), array declarators (6.5.5.2).

6.3.2.2 Function calls
Constraints

The expression that denotes the called function® shall have type pointer to function
returning voi d or returning an object type other than an array type.

64. Most often, this is the result of converting an identifier that is a function designator.
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If the expression that denotes the called function has a type that includes a prototype,
the number of arguments shall agree with the number of parameters. Each argument
shall have a type such that its value may be assigned to an object with the unqualified
version of the type of its corresponding parameter.

Semantics

A postfix expression followed by parentheses () containing a possibly empty,
comma-separated list of expressions is a function call. The postfix expression denotes
the called function. The list of expressions specifies the arguments to the function.

An argument may be an expression of any object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the
corresponding argument.®° If the expression that denotes the called function has type
pointer to function returning an object type, the function call expression has the same
type as that object type, and has the value determined as specified in 6.6.6.4.
Otherwise, the function call has type voi d.

If the expression that denotes the called function has a type that does not include a
prototype, the integer promotions are performed on each argument, and arguments that
have type f | oat are promoted to doubl e. These are called the default argument
promotions. If the number of arguments does not agree with the number of
parameters, the behavior is undefined. If the function is defined with a type that does
not include a prototype, and the types of the arguments after promotion are not
compatible with those of the parameters after promotion, the behavior is undefined,
except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the
corresponding unsigned integer type, and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.

If the function is defined with a type that includes a prototype, and the types of the
arguments after promotion are not compatible with the types of the parameters, or if
the prototype ends with an elipsis (, ... ), the behavior is undefined.

If the expression that denotes the called function has a type that includes a prototype,
the arguments are implicitly converted, as if by assignment, to the types of the
corresponding parameters, taking the type of each parameter to be the unqualified

65. A function may change the values of its parameters, but these changes cannot affect the values of
the arguments. On the other hand, it is possible to pass a pointer to an object, and the function may
change the value of the object pointed to. A parameter declared to have array or function type is
converted to a parameter with a pointer type as described in 6.7.1.
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version of its declared type. The ellipsis notation in a function prototype declarator
causes argument type conversion to stop after the last declared parameter. The default
argument promotions are performed on trailing arguments.

If the function is defined with a type that is not compatible with the type (of the
expression) pointed to by the expression that denotes the called function, the behavior
is undefined.

No other conversions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that
does not include a function prototype declarator.

The order of evaluation of the function designator, the arguments, and subexpressions
within the arguments is unspecified, but there is a sequence point before the actual
cal.

Recursive function calls shall be permitted, both directly and indirectly through any
chain of other functions.

Examples
In the function call

(*pf[f10)]) (f20), F3() + f4())

the functionsf 1, f 2, f 3, and f 4 may be called in any order. All side effects shall be
completed before the function pointed to by pf [ f 1() ] is entered.

Forward referencess function declarators (including prototypes) (6.5.5.3), function
definitions (6.7.1), the r et ur n statement (6.6.6.4), ssimple assignment (6.3.16.1).

6.3.2.3 Structure and union members
Constraints

The first operand of the . operator shall have a qualified or unqualified structure or
union type, and the second operand shall name a member of that type.

The first operand of the -> operator shall have type ‘‘pointer to qualified or
unqualified structure’’ or ‘‘pointer to qualified or unqualified union,”” and the second
operand shall name a member of the type pointed to.

Semantics

A postfix expression followed by the . operator and an identifier designates a member
of a structure or union object. The vaue is that of the named member, and is an
Ivalue if the first expression is an lvalue. If the first expression has qualified type, the
result has the so-qualified version of the type of the designated member.
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A postfix expression followed by the - > operator and an identifier designates a
member of a structure or union object. The value is that of the named member of the
object to which the first expression points, and is an Ivalue.®® If the first expression is
a pointer to a qualified type, the result has the so-qualified version of the type of the
designated member.

With one exception, if the value of a member of a union object is used when the most
recent store to the object was to a different member, the behavior is implementation-
defined.®” One special guarantee is made in order to simplify the use of unions: If a
union contains several structures that share a common initial sequence (see below),
and if the union object currently contains one of these structures, it is permitted to
inspect the common initial part of any of them anywhere that a declaration of the
completed type of the union is visible. Two structures share a common initial
sequence if corresponding members have compatible types (and, for bit-fields, the
same widths) for a sequence of one or more initial members.

Examples

1. If f is a function returning a structure or union, and X is a member of that
structure or union, f () . x is avalid postfix expression but is not an lvalue.

2. The following is a valid fragment:

66. If &E is a valid pointer expression (where & is the *‘address-of’’ operator, which generates a pointer
to its operand), the expression ( &E) - >MOS is the same as E. MOS.

67. The ‘‘byte orders’ for scalar types are invisible to isolated programs that do not indulge in type
punning (for example, by assigning to one member of a union and inspecting the storage by
accessing another member that is an appropriately sized array of character type), but must be
accounted for when conforming to externally imposed storage layouts.
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uni on {
struct {
i nt al I types;
o
struct {
i nt type;
i nt i nt node;
}oni;
struct {
i nt type;
doubl e doubl enode;
} nf;
Py

u.nf.type = 1;
u. nf. doubl enode = 3. 14;
[* %
if (u.n.alltypes == 1)
if (sin(u.nf.doublenode) == 0.0)
[* ..*

3. The following is not a valid fragment (because the union type is not visible
within function f ):

struct t1 { int m };
struct t2 { int m };
int f(struct t1 * pl, struct t2 * p2)

{
if (pl->m< 0)
p2->m = - p2->m
return pl->m
}
int g()
{
uni on {
struct t1 si;
struct t2 s2;
Pou
[* ... *
return f(&u.sl, &u.s2);
}
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Forward references. address and indirection operators (6.3.3.2), structure and union
specifiers (6.5.2.1).

6.3.2.4 Postfix increment and decrement operators
Constraints

The operand of the postfix increment or decrement operator shal have qualified or
unqualified real or pointer type and shall be a modifiable Ivalue.

Semantics

The result of the postfix ++ operator is the value of the operand. After the result is
obtained, the value of the operand is incremented. (That is, the value 1 of the
appropriate type is added to it) See the discussions of additive operators and
compound assignment for information on constraints, types, and conversions and the
effects of operations on pointers. The side effect of updating the stored value of the
operand shall occur between the previous and the next sequence point.

The postfix - - operator is analogous to the postfix ++ operator, except that the value
of the operand is decremented (that is, the value 1 of the appropriate type is subtracted
from it).

Forward references: additive operators (6.3.6), compound assignment (6.3.16.2).
6.3.2.5 Compound literals

Constraints

The type name shall specify an object type or an array of unknown size.

No initializer shall attempt to provide a value for an object not contained within the
entire unnamed object specified by the compound literal.

If the compound literal occurs outside the body of a function, the initializer list shall
consist of constant expressions.

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-
enclosed list of initializers is a compound literal. It provides an unnamed object
whose value is given by the initializer list.%8

68. Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar
types or voi d only, and the result of a cast expression is not an lvalue.
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If the type name specifies an array of unknown size, the size is determined by the
initializer list as specified in 6.5.7, and the type of the compound literal is that of the
completed array type. Otherwise (when the type name specifies an object type), the
type of the compound literal is that specified by the type name. In either case, the
result is an Ivalue.

The value of the compound literal is that of an unnamed object initialized by the
initializer list. The object has static storage duration if and only if the compound
literal occurs outside the body of a function; otherwise, it has automatic storage
duration associated with the enclosing block.

All the semantic rules and constraints for initializer lists in 6.5.8 are applicable to
compound literals.%®

String literals, and compound literals with const-qualified types, need not designate
distinct objects.”

Examples
1. The file scope definition
int *p=(int []){2, 4};

initializes p to point to the first element of an array of two ints, the first having
the value two and the second, four. The expressions in this compound litera
must be constant. The unnamed object has static storage duration.

2. Incontrast, in

voi d f(void)

{ int *p;
[*.*x]
p = (int [2]){*p};
[*.*x]

}

p is assigned the address of the first element of an array of two ints, the first
having the value previousy pointed to by p and the second, zero. The
expressions in this compound literal need not be constant. The unnamed object

69. For example, subobjects without explicit initializers are initialized to zero.

70. This allows implementations to share storage for string literals and constant compound literals with
the same or overlapping representations.
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has automatic storage duration.

Initializers with designations can be combined with compound literals. Structure
objects created using compound literals can be passed to functions without
depending on member order:

draw i ne((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if dr awl i ne instead expected pointers to st ruct poi nt:

draw i ne( &(struct point){.x=1, .y=1},
& struct point){.x=3, .y=4});

A read-only compound literal can be specified through constructions like:
(const float []){1e0, 1lel, 1le2, 1e3, le4, 1le5, 1le6}
The following three expressions have different meanings:

"ltp/ il eXXXXXX
(char []){"/tnp/fileXXXXXX"}
(const char[]){"/tnp/fil eXXXXXX"}

The first aways has static storage duration and has type array of char , but need
not be modifiable; the last two have automatic storage duration when they occur
within the body of a function, and the first of these two is modifiable.

Like string literals, const-qualified compound literals can be placed into read-
only memory and can even be shared. For example,

(const char[]){"abc"} == "abc"
might yield 1 if the literals storage is shared.

Since compound literals are unnamed, a single compound literal cannot specify a
circularly linked object. For example, there is no way to write a self-referential
compound literal that could be used as the function argument in place of the
named object endl ess_zer os below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endl ess_zeros};
eval (endl ess_zeros);

Outside the body of a function, a compound literal is an initialization of a static
object; however, inside a function body, it is an assignment to an automatic
object. Therefore, the following two loops produce the same sequence of values
for the objects associated with their respective compound literals.
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for (int i =0; i < 10; i++) {
f((struct s){.a =1, .b = 42});
}
for (int i =0; i < 10; i++)
f((struct s){.a =1, .b = 42});
9. Each compound literal creates only a single object in a given scope:
struct s { int i; };
int f (void)
{

struct s *p = 0, *q;
int j;

for (j =0; j < 2; j++)
q = &((struct s){ j });
return == q & q.1 == 1;

o
O
o

}
The function f () aways returns the value 1.

Note that if the body of the f or loop were enclosed in braces, the lifetime of
the unnamed object would be the body of the loop only, and on entry next time
around p would be pointing to an object which is no longer guaranteed to exist,
which is undefined behavior.

6.3.3 Unary operators

Syntax

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
Si zeof unary-expression
si zeof ( type-name )

unary-operator: one of
& * + - ~ |
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6.3.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable lvalue.

Semantics

The value of the operand of the prefix ++ operator is incremented. The result is the
new value of the operand after incrementation. The expression ++E is equivalent to
(E+=1). See the discussions of additive operators and compound assignment for
information on constraints, types, side effects, and conversions and the effects of
operations on pointers.

The prefix - - operator is analogous to the prefix ++ operator, except that the value of
the operand is decremented.

Forward references. additive operators (6.3.6), compound assignment (6.3.16.2).
6.3.3.2 Address and indirection operators
Constraints

The operand of the unary & operator shall be either a function designator, the result of
a[] or unary * operator, or an lvalue that designates an object that is not a bit-field
and is not declared with the r egi st er storage-class specifier.

The operand of the unary * operator shall have pointer type.
Semantics

The result of the unary & (address-of) operator is a pointer to the object or function
designated by its operand. If the operand has type ‘‘type’’, the result has type
“‘pointer to type’’. If the operand is the result of a unary * operator, neither that
operator nor the & operator are evaluated, and the result shall be as if both were
omitted, even if the intermediate object does not exist, except that the constraints on
the operators still apply and the result is not an Ivalue. Similarly, if the operand is the
result of a[] operator, neither the & operator nor the unary * that is implied by the
[] are evaluated, and the result shall be as if the & operator was removed and the [ ]
operator was changed to a + operator.

The unary * operator denotes indirection. If the operand points to a function, the
result is a function designator; if it points to an object, the result is an Ivalue
designating the object. If the operand has type ‘‘pointer to type’’, the result has type
““type’’. If an invalid value has been assigned to the pointer, the behavior of the
unary * operator is undefined.”
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Forward references sStorage-class specifiers (6.5.1), structure and union specifiers
(6.5.2.1).

6.3.3.3 Unary arithmetic operators
Constraints

The operand of the unary + or - operator shall have arithmetic type; of the ~ operator,
integer type; of the ! operator, scalar type.

Semantics

The result of the unary + operator is the value of its operand. The integer promotion
is performed on the operand, and the result has the promoted type.

The result of the unary - operator is the negative of its operand. The integer
promotion is performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its operand (that is, each bit
in the result is set if and only if the corresponding bit in the converted operand is not
set). The integer promotion is performed on the operand, and the result has the
promoted type. The expression ~E is equivalent to (ULLONG MAX-E) if E is
promoted to type unsi gnhed | ong | ong, to (ULONG_MAX- E) if E is promoted to
type unsi gned | ong, to (U NT_MAX-E) if E is promoted to type unsi gned
i nt. (The constants ULLONG MAX, ULONG_MAX, and Ul NT_MAX are defined in the
header <l i mts. h>))

The result of the logical negation operator ! is O if the value of its operand compares
unequal to O, 1 if the value of its operand compares equal to 0. The result has type
i nt. The expression ! E is equivalent to (0==E) .

71. Thus & E is equivalent to E (even if E is a null pointer), and & E1[ E2]]) to (E1+(E2)). ltis
always true that if E is a function designator or an lvalue that is a valid operand of the unary &
operator, * &E is a function designator or an Ivalue equal to E. If *P isan lvalue and T is the name
of an object pointer type, * ( T) P is an Ivalue that has a type compatible with that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an
address inappropriately aligned for the type of object pointed to, and the address of an automatic
storage duration object when execution of the block with which the object is associated has
terminated.
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Forward references: limits <f | oat. h>and <l i m ts. h> (7.1.5).
6.3.3.4 Thesi zeof operator
Constraints

The si zeof operator shall not be applied to an expression that has function type or
an incomplete type, to the parenthesized name of such a type, or to an Ivalue that
designates a bit-field object.

Semantics

The si zeof operator yields the size (in bytes) of its operand, which may be an
expression or the parenthesized name of a type. The size is determined from the type
of the operand. The result is an integer. If the type of the operand is a variable
length array type, the operand is evaluated; otherwise, the operand is not evaluated and
the result is an integer constant.

When applied to an operand that has type char, unsi gned char, or si gned
char, (or a qualified version thereof) the result is 1. When applied to an operand that
has array type, the result is the total number of bytes in the array.”> When applied to
an operand that has structure or union type, the result is the total number of bytes in
such an object, including internal and trailing padding.

The value of the result is implementation-defined, and its type (an unsigned integer
type) issi ze_t defined in the <st ddef . h> header.

Examples

1. A principa use of the si zeof operator is in communication with routines such
as storage alocators and 1/0 systems. A storage-alocation function might
accept a size (in bytes) of an object to allocate and return a pointer to voi d.
For example:

extern void *alloc(size t);
doubl e *dp = al |l oc(sizeof *dp);

The implementation of the al | oc function should ensure that its return value is
aligned suitably for conversion to a pointer to doubl e.

2. Another use of the si zeof operator is to compute the number of elements in
an array:

72. When applied to a parameter declared to have array or function type, the si zeof operator yields
the size of the pointer obtained by converting asin 6.2.2.1; see 6.7.1.
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si zeof array / sizeof array[O]

3. In this example, the size of a variable-length array is computed and returned
from a function:

size_t fsize3 (int n)

{
char b[n+3]; /| Variable length array.
return sizeof b; /| Execution time si zeof .
}
int main()
{
size_t size;
size = fsize3(10); // fsize3 returns13.
return O;
}

Forward referencess. common definitions <st ddef. h> (7.1.6), declarations (6.5),
structure and union specifiers (6.5.2.1), type names (6.5.6), array declarators (6.5.5.2).

6.3.4 Cast operators

Syntax
cast-expression:
unary-expression
( type-name ) cast-expression
Constraints

Unless the type name specifies a void type, the type name shall specify qualified or
unqualified scalar type and the operand shall have scalar type.

Conversions that involve pointers, other than where permitted by the constraints of
6.3.16.1, shall be specified by means of an explicit cast.

Semantics

Preceding an expression by a parenthesized type name converts the value of the
expression to the named type. This construction is called a cast.”® A cast that
specifies no conversion has no effect on the type or value of an expression.”

73. A cast does not yield an lvalue. Thus, a cast to a qualified type has the same effect as a cast to the
unqualified version of the type.

74. 1f the value of the expression is represented with greater precision or range than required by the type
named by the cast (6.2.1.7), then the cast specifies a conversion even if the type of the expression is
the same as the named type.
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Forward referencess equality operators (6.3.9), function declarators (including
prototypes) (6.5.5.3), simple assignment (6.3.16.1), type names (6.5.6).

6.3.5 Multiplicative operators

Syntax

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression %cast-expression
Constraints

Each of the operands shall have arithmetic type. The operands of the % operator shall
have integer type.

Semantics
The usual arithmetic conversions are performed on the operands.
The result of the binary * operator is the product of the operands.

The result of the / operator is the quotient from the division of the first operand by
the second; the result of the % operator is the remainder. In both operations, if the
value of the second operand is zero, the behavior is undefined.

When integers are divided, the result of the / operator is the algebraic quotient with
any fractional part discarded.”™ If the quotient a/ b is representable, the expression
(a/b)*b + a%b shal equa a.

If either operand has complex type, the result has complex type.

75. This is often called ‘‘truncation toward zero’’.
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6.3.6 Additive operators

Syntax
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an object type and the other shal have integer type. (Incrementing is
equivalent to adding 1.)

For subtraction, one of the following shall hold:
— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— the left operand is a pointer to an object type and the right operand has integer
type. (Decrementing is equivalent to subtracting 1.)

Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performed
on them.

The result of the binary + operator is the sum of the operands.

The result of the binary - operator is the difference resulting from the subtraction of
the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as
a pointer to the first element of an array of length one with the type of the object as
its element type.

When an expression that has integer type is added to or subtracted from a pointer, the
result has the type of the pointer operand. If the pointer operand points to an element
of an array object, and the array is large enough, the result points to an element offset
from the original element such that the difference of the subscripts of the resulting and
origina array elements equals the integer expression. In other words, if the expression
P points to the i-th element of an array object, the expressions ( P) +N (equivalently,
N+(P)) and (P) - N (where N has the value n) point to, respectively, the i+n-th and
i—n-th elements of the array object, provided they exist. Moreover, if the expression
P points to the last element of an array object, the expression ( P) +1 points one past
the last element of the array object, and if the expression Q points one past the last
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element of an array object, the expression (Q -1 points to the last element of the
array object. If both the pointer operand and the result point to elements of the same
array object, or one past the last element of the array object, the evaluation shall not
produce an overflow; otherwise, the behavior is undefined. Unless both the pointer
operand and the result point to elements of the same array object, or the pointer
operand points one past the last element of an array object and the result points to an
element of the same array object, the behavior is undefined if the result is used as an
operand of a unary * operator that is actually evaluated.

When two pointers to elements of the same array object are subtracted, the result is
the difference of the subscripts of the two array elements. The size of the result is
implementation-defined, and its type (a signed integer type) isptrdi ff _t defined in
the <st ddef . h> header. If the result is not representable in an object of that type,
the behavior is undefined. In other words, if the expressions P and Q point to,
respectively, the i-th and j-th elements of an array object, the expression (P) - (Q
has the value i—j provided the value fits in an object of type ptrdi ff_t. Moreover,
if the expression P points either to an element of an array object or one past the last
element of an array object, and the expression Q points to the last element of the same
array object, the expression ((Q +1) - (P) has the same value as ((Q - (P)) +1
andas-((P)-((Q +1)), and has the value zero if the expression P points one past
the last element of the array object, even though the expression ( Q) +1 does not point
to an element of the array object. Unless both pointers point to elements of the same
array object, or one past the last element of the array object, the behavior is
undefined.®

If either operand has complex type, the result has complex type.
Examples

Pointer arithmetic is well defined with pointers to variable length array types.

76. Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s):
In this scheme the integer expression added to or subtracted from the converted pointer is first
multiplied by the size of the object originally pointed to, and the resulting pointer is converted back
to the original type. For pointer subtraction, the result of the difference between the character
pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap
another object in the program) just after the end of the object in order to satisfy the ‘‘one past the
last element’’ requirements.
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{
int n =4 m= 3;
int a[n][n;
int (*p)[m = & Il p == &a[ 0]
p += 1; Il p == &a[ 1]
(*p)[2] = 99; Il a[1][2] == 99
n=p- a [l n ==

}

If array a in the above example is declared to be an array of known constant size, and
pointer p is declared to be a pointer to an array of the same know constant size that
points to a, the results are the same.

Forward referencess array declarators (6.5.5.2), common definitions <st ddef . h>
(7.1.6).

6.3.7 Bitwise shift operators

Syntax
shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
Constraints

Each of the operands shall have integer type.
Semantics

The integer promotions are performed on each of the operands. The type of the result
is that of the promoted left operand. If the value of the right operand is negative or is
greater than or equal to the number of value and sign bits in the object representation
of the promoted left operand, the behavior is undefined.

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with
zeros. If E1 has an unsigned type, the value of the result is E1x25?, reduced modulo
ULLONG MAX+1 if E1 has type unsi gned | ong | ong, ULONG_MAX+1 if E1 has
type unsi gned | ong, U NT_MAX+1 otherwise. (The constants ULLONG MAX,
ULONG_MAX, and Ul NT_MAX are defined in the header <l i m ts. h>.) If E1 has a
signed type and nonnegative value, and E1x25 is less than or equal to | NT_MAX (if
E1l has type i nt), LONG MAX (if E1 has type | ong i nt), or LLONG MAX (if E1
has type | ong | ong i nt), then that is the resulting value. Otherwise, the behavior
is undefined.
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The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned
type or if E1 has a signed type and a nonnegative value, the value of the result is the
integral part of the quotient of E1 divided by the quantity, 2 raised to the power E2.
If E1 has a signed type and a negative value, the resulting value is implementation-
defined.

6.3.8 Relational operators

Syntax

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints

One of the following shall hold:
— both operands have real type;

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— both operands are pointers to qualified or unqualified versions of compatible
incomplete types.

Semantics

If both of the operands have arithmetic type, the usual arithmetic conversions are
performed.

For the purposes of these operators, a pointer to a nonarray object behaves the same as
a pointer to the first element of an array of length one with the type of the object as
its element type.

When two pointers are compared, the result depends on the relative locations in the
address space of the objects pointed to. If two pointers to object or incomplete types
both point to the same object, or both point one past the last element of the same array
object, they compare equal. If the objects pointed to are members of the same
aggregate object, pointers to structure members declared later compare greater than
pointers to members declared earlier in the structure, and pointers to array elements
with larger subscript values compare greater than pointers to elements of the same
array with lower subscript values. All pointers to members of the same union object
compare equal. If the expression P points to an element of an array object and the
expression Q points to the last element of the same array object, the pointer expression
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Q+1 compares greater than P. In all other cases, the behavior is undefined.

Each of the operators < (less than), > (greater than), <= (less than or equa to), and >=
(greater than or equal to) shall yield 1 if the specified relation is true and O if it is
false.”” The result has typei nt .

6.3.9 Equality operators
Syntax

equality-expression:
relational -expression
equality-expression == relational-expression
equality-expression ! = relational-expression

Constraints

One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object or incomplete type and the other is a pointer
to a qualified or unqualified version of voi d; or

— one operand is a pointer and the other is a null pointer constant.
Semantics

The == (equal to) and the ! = (not equal to) operators are analogous to the relational
operators except for their lower precedence.”® Where the operands have types and
values suitable for the relational operators, the semantics detailed in 6.3.8 apply.

If two pointers to object or incomplete types are both null pointers, they compare
equal. If two pointers to object or incomplete types compare equal, they both are null
pointers, or both point to the same object, or both point one past the last element of
the same array object.”® If two pointers to function types are both null pointers or
both point to the same function, they compare equal. If two pointers to function types
compare equal, either both are null pointers, or both point to the same function. If one

77. The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it
means ( a<b) <c; in other words, ‘‘if a is less than b compare 1 to ¢; otherwise, compare O to c.”’

78. Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.

79. If invalid prior pointer operations, such as accesses outside array bounds, produced undefined
behavior, the effect of subsequent comparisons is undefined.
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of the operands is a pointer to an object or incomplete type and the other has type
pointer to a qualified or unqualified version of voi d, the pointer to an object or
incomplete type is converted to the type of the other operand.

Values of complex types are equal if and only if both their real parts are equal and
also their imaginary parts are equal. Any two values of arithmetic types from different
type-domains are equa if and only if the results of their conversion to the complex
type corresponding to the common real type determined by the usual arithmetic
conversions are equal.

6.3.10 Bitwise AND operator

Syntax
AND-expression:
equality-expression
AND-expression & equality-expression
Constraints

Each of the operands shall have integer type.
Semantics
The usual arithmetic conversions are performed on the operands.

The result of the binary & operator is the bitwise AND of the operands (that is, each
bit in the result is set if and only if each of the corresponding bits in the converted
operands is set).

6.3.11 Bitwise exclusive OR operator

Syntax
exclusive-OR-expression:
AND-expression
exclusive-OR-expression * AND-expression
Constraints

Each of the operands shall have integer type.
Semantics
The usual arithmetic conversions are performed on the operands.

The result of the ™ operator is the bitwise exclusive OR of the operands (that is, each
bit in the result is set if and only if exactly one of the corresponding bits in the
converted operands is set).
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6.3.12 Bitwise inclusive OR operator

Syntax
inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression
Constraints

Each of the operands shall have integer type.
Semantics
The usual arithmetic conversions are performed on the operands.

The result of the | operator is the bitwise inclusive OR of the operands (that is, each
bit in the result is set if and only if a least one of the corresponding bits in the
converted operands is set).

6.3.13 Logical AND operator

Syntax
logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression
Constraints

Each of the operands shall have scalar type.
Semantics

The && operator shall yield 1 if both of its operands compare unequal to O; otherwise,
it yields 0. The result has typei nt .

Unlike the bitwise binary & operator, the && operator guarantees |left-to-right
evaluation; there is a sequence point after the evaluation of the first operand. If the
first operand compares equal to 0, the second operand is not evaluated.
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6.3.14 Logical OR operator

Syntax
logical-OR-expression:
logical-AND-expression
logical-OR-expression | | logical-AND-expression
Constraints

Each of the operands shall have scalar type.
Semantics

The || operator shall yield 1 if either of its operands compare unequa to O;
otherwise, it yields 0. The result has typei nt .

Unlike the bitwise | operator, the | | operator guarantees left-to-right evaluation; there
is a sequence point after the evaluation of the first operand. If the first operand
compares unegual to 0, the second operand is not evaluated.

6.3.15 Conditional operator

Syntax
conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression
Constraints

The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have compatible structure or union types,

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types,
— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object or incomplete type and the other is a pointer
to a qualified or unqualified version of voi d.
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Semantics

The first operand is evaluated; there is a sequence point after its evaluation. The
second operand is evaluated only if the first compares unequal to O; the third operand
is evaluated only if the first compares equal to O; the value of the second or third
operand (whichever is evaluated) is the result.

If both the second and third operands have arithmetic type, the usua arithmetic
conversions are performed to bring them to a common type and the result has that
type. If both the operands have structure or union type, the result has that type. If
both operands have void type, the result has void type.

If both the second and third operands are pointers or one is a null pointer constant and
the other is a pointer, the result type is a pointer to a type qualified with all the type
gualifiers of the types pointed-to by both operands. Furthermore, if both operands are
pointers to compatible types or differently qualified versions of a compatible type, the
result has the composite type; if one operand is a null pointer constant, the result has
the type of the other operand; otherwise, one operand is a pointer to void or a
qgualified version of voi d, in which case the other operand is converted to type
pointer to voi d, and the result has that type.

Examples

The common type that results when the second and third operands are pointers is
determined in two independent stages. The appropriate qualifiers, for example, do not
depend on whether the two pointers have compatible types.

Given the declarations

const void *c_vp;

voi d *vp;

const int *c_ip;

volatile int *v_ip;

int *ip;

const char *c_cp;
the third column in the following table is the common type that is the result of a
conditional expression in which the first two columns are the second and third
operands (in either order):

80. A conditional expression does not yield an Ivalue.
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cvp c_ip const void *

v ip O vol atile int *
cipv_.p const volatile int *
vp c_cp const void *

ip cip const int *

vp ip void *

6.3.16 Assignment operators

Syntax
assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
assignment-operator: one of
= *= [= O += .= <<= >>= &= N= | =
Constraints

An assignment operator shall have a modifiable Ivalue as its left operand.
Semantics

An assignment operator stores a value in the object designated by the left operand.
An assignment expression has the value of the left operand after the assignment, but is
not an Ivalue. The type of an assignment expression is the type of the left operand
unless the left operand has qualified type, in which case it is the unqualified version of
the type of the left operand. The side effect of updating the stored value of the left
operand shall occur between the previous and the next sequence point.

The order of evaluation of the operands is unspecified.
6.3.16.1 Simple assignment

Constraints

One of the following shall hold:8!

— the left operand has qualified or unqualified arithmetic type and the right has
arithmetic type;

81. The asymmetric appearance of these constraints with respect to type qualifiers is due to the
conversion (specified in 6.2.2.1) that changes Ivalues to ‘‘the value of the expression’” which
removes any type qualifiers from the type category of the expression.
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— the left operand has a qualified or unqualified version of a structure or union type
compatible with the type of the right;

— both operands are pointers to qualified or unqualified versions of compatible types,
and the type pointed to by the left has all the qualifiers of the type pointed to by
the right;

— one operand is a pointer to an object or incomplete type and the other is a pointer
to a qualified or unqualified version of voi d, and the type pointed to by the left
has all the qualifiers of the type pointed to by the right; or

— the left operand is a pointer and the right is a null pointer constant.
Semantics

In simple assignment (=), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left
operand.

If the value being stored in an object is accessed from another object that overlaps in
any way the storage of the first object, then the overlap shall be exact and the two
objects shall have qualified or unqualified versions of a compatible type; otherwise, the
behavior is undefined.

Examples

1. In the program fragment

int f(void);

char c;

[* ... *

if ((c =1() ==-1)
[* ... *

the i nt value returned by the function may be truncated when stored in the
char, and then converted back to i nt width prior to the comparison. In an
implementation in which “‘plan’”’ char has the same range of values as
unsi gned char (and char is narrower than int), the result of the
conversion cannot be negative, so the operands of the comparison can never
compare equal. Therefore, for full portability, the variable ¢ should be declared
asint.

2. In the fragment:
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char c;
int i;
long |;
Il = (c =1i);
the value of i is converted to the type of the assignment-expressionc = i, that

is, char type. The value of the expression enclosed in parentheses is then
converted to the type of the outer assignment-expression, that is, | ong type.

6.3.16.2 Compound assignment
Constraints

For the operators += and - = only, either the left operand shall be a pointer to an
object type and the right shall have integer type, or the left operand shall have
qualified or unqualified arithmetic type and the right shall have arithmetic type.

For the other operators, each operand shall have arithmetic type consistent with those
allowed by the corresponding binary operator.

Semantics

A compound assignment of the form E1 op= E2 differs from the simple assignment
expression E1 = E1 op ( E2) only in that the Ivalue E1 is evaluated only once.

6.3.17 Comma operator

Syntax
expression:
assignment-expression
expression , assignment-expression
Semantics

The left operand of a comma operator is evaluated as a void expression; there is a
sequence point after its evaluation. Then the right operand is evaluated; the result has
its type and value.®?

82. A comma operator does not yield an Ivalue.
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Examples

As indicated by the syntax, in contexts where a comma is a punctuator (in lists of
arguments to functions and lists of initializers) the comma operator as described in this
subclause cannot appear. On the other hand, it can be used within a parenthesized
expression or within the second expression of a conditional operator in such contexts.
In the function call

f(a, (t=3, t+2), c¢)
the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.5.8).
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6.4 Constant expressions

Syntax

constant-expression:
conditional-expression

Description

A constant expression can be evaluated during trandlation rather than runtime, and
accordingly may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call,
or comma operators, except when they are contained within the operand of a si zeof
operator.®3

Each constant expression shall evaluate to a constant that is in the range of
representable values for its type.

Semantics

An expression that evaluates to a constant is required in several contexts® If a
floating expression is evaluated in the trandation environment, the arithmetic precision
and range shall be at least as great as if the expression were being evaluated in the
execution environment.

An integer constant expression shall have integer type and shall only have operands
that are integer constants, enumeration constants, character constants, si zeof
expressions whose operand does not have variable length array type or a parenthesized
name of such a type, and floating constants that are the immediate operands of casts.
Cast operators in an integer constant expression shall only convert arithmetic types to
integer types, except as part of an operand to the si zeof operator.

More latitude is permitted for constant expressions in initializers. Such a constant
expression shall be, or evaluate to, one of the following:

83. The operand of a si zeof operator is not evaluated (6.3.3.4), and thus any operator in 6.3 may be
used.

84. An integer constant expression must be used to specify the size of a bit-field member of a structure,
the value of an enumeration constant, the size of an array, or the value of a case constant. Further
constraints that apply to the integer constant expressions used in conditional-inclusion preprocessing
directives are discussed in 6.8.1.
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— an arithmetic constant expression,

— anull pointer constant,

— an address constant, or

— an address constant for an object type plus or minus an integer constant expression.

An arithmetic constant expression shall have arithmetic type and shall only have
operands that are integer constants, floating constants, enumeration constants, character
constants, and si zeof expressions. Cast operators in an arithmetic constant
expression shall only convert arithmetic types to arithmetic types, except as part of an
operand to the si zeof operator.

An address constant is a null pointer, a pointer to an lvalue designating an object of
static storage duration, or to a function designator; it shall be created explicitly using
the unary & operator or an integer constant cast to pointer type, or implicitly by the
use of an expression of array or function type. The array-subscript [ ] and member-
access . and - > operators, the address & and indirection * unary operators, and
pointer casts may be used in the creation of an address constant, but the value of an
object shall not be accessed by use of these operators.

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for
nonconstant expressions.®®

Forward references. array declarators (6.5.5.2), initialization (6.5.8).

85. Thus, in the following initialization,

staticint i =2 || 1/ O;
the expression is a valid integer constant expression with value one.
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6.5 Declarations

Syntax
declaration:
declaration-specifiers init-declarator-listOlot ;
declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersO "
type-qualifier declaration-speci fiersopt
function-specifiers
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator
declarator = initializer
Constraints

A declaration shall declare at least a declarator (excluding the parameters of a function
or the members of a structure or union), a tag, or the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the
identifier (in a declarator or type specifier) with the same scope and in the same name
space, except for tags as specified in 6.5.2.3.

All declarations in the same scope that refer to the same object or function shall
specify compatible types.

Semantics

A declaration specifies the interpretation and attributes of a set of identifiers. A
definition of an identifier is a declaration for that identifier that:

— for an object, causes storage to be reserved for that object;
— for afunction, includes the function body;%

— for an enumeration constant or typedef name, is the (only) declaration of the
identifier.

86. Function definitions have a different syntax, described in 6.7.1.
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The declaration specifiers consist of a sequence of specifiers that indicate the linkage,
storage duration, and part of the type of the entities that the declarators denote. The
init-declarator-list is a comma-separated sequence of declarators, each of which may
have additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared.

If an identifier for an object is declared with no linkage, the type for the object shall
be complete by the end of its declarator, or by the end of its init-declarator if it has an
initializer.

Forward references. declarators (6.5.5), enumeration specifiers (6.5.2.2), initialization
(6.5.8), tags (6.5.2.3).

6.5.1 Storage-class specifiers

Syntax

storage-class-specifier:
t ypedef
extern
static
auto
regi ster

Constraints

At most, one storage-class specifier may be given in the declaration specifiers in a
declaration.®

Semantics

The t ypedef specifier is called a ‘* storage-class specifier’” for syntactic convenience
only; it is discussed in 6.5.7. The meanings of the various linkages and storage
durations were discussed in 6.1.2.2 and 6.1.2.4.

A declaration of an identifier for an object with storage-class specifier r egi st er
suggests that access to the object be as fast as possible. The extent to which such
suggestions are effective is implementation-defined.®

87. See ‘‘future language directions’’ (6.9.2).

88. The implementation may treat any regi ster declaration simply as an auto declaration.
However, whether or not addressable storage is actually used, the address of any part of an object
declared with storage-class specifier r egi st er may not be computed, either explicitly (by use of
the unary & operator as discussed in 6.3.3.2) or implicitly (by converting an array name to a pointer
as discussed in 6.2.2.1). Thus the only operator that can be applied to an array declared with
storage-class specifier r egi st er issi zeof .
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The declaration of an identifier for a function that has block scope shal have no
explicit storage-class specifier other than ext er n.

If an aggregate or union object is declared with a storage-class specifier other than
t ypedef , the properties resulting from the storage-class specifier, except with respect
to linkage, also apply to the members of the object, and so on recursively for any
aggregate or union member objects.

Forward references: type definitions (6.5.7).

6.5.2 Type specifiers

Syntax

type-specifier:
voi d
char
short
i nt
| ong
fl oat
doubl e
conpl ex
si ghed
unsi gned
struct-or-union-specifier
enum-specifier
typedef-name

Constraints

At least one type specifier shall be given in the declaration specifiers in a declaration.
Each list of type specifiers shall be one of the following sets (delimited by commas,
when there is more than one set on a line); the type specifiers may occur in any order,
possibly intermixed with the other declaration specifiers.

— void

— char

— si gned char

— unsi gnhed char

— short, signed short, short int, orsignedshort int

— unsi gned short, or unsi gned short int
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— int,signed, orsignedint

— unsi gned, or unsi gned i nt

— long, signedlong,longint,orsignedl|ongint

— unsi gned | ong, or unsi gned | ong i nt

— long | ong, signed | ong I ong, l ong I ong i nt, or si gned | ong | ong
i nt

— unsi gned | ong | ong, or unsi gned | ong | ong i nt

— fl oat

— doubl e

— |l ong doubl e

— fl oat conpl ex

— doubl e conpl ex

— | ong doubl e conpl ex

— struct-or-union specifier

— enum-specifier

— typedef-name

Semantics

Specifiers for structures, unions, and enumerations are discussed in 6.5.2.1 through
6.5.2.3. Declarations of typedef names are discussed in 6.5.7. The characteristics of
the other types are discussed in 6.1.2.5.

Each of the comma-separated sets designates the same type, except that for bit-fields,
it is implementation-defined whether the specified i nt is the same type as si gned
i nt or isthe same type as unsi gned i nt .

Forward references. enumeration specifiers (6.5.2.2), structure and union specifiers
(6.5.2.1), tags (6.5.2.3), type definitions (6.5.7).

6.5.2.1 Structure and union specifiers

Syntax

struct-or-union-specifier:
struct-or-union identifier . { struct-declaration-list }
struct-or-union identifier
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struct-or-union:;
struct
uni on

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list:
type-specifier specifier-qualifier-I ist0 "

type-qualifier specifier-qual ifier-listOlot

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator

declarator o constant-expression

pt -
Constraints

A structure or union shall not contain a member with incomplete or function type,
except that the last element of a structure may have incomplete array type. Hence it
shall not contain an instance of itself (but may contain a pointer to an instance of
itself).

The expression that specifies the width of a bit-field shall be an integer constant
expression that has nonnegative value that shall not exceed the number of bits in an
object of the type that is specified if the colon and expression are omitted. If the
value is zero, the declaration shall have no declarator.

Semantics

As discussed in 6.1.2.5, a structure is a type consisting of a sequence of members,
whose storage is alocated in an ordered sequence, and a union is a type consisting of
a segquence of members whose storage overlap.

Structure and union specifiers have the same form.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new
type, within a trandation unit. The struct-declaration-list is a sequence of declarations
for the members of the structure or union. If the struct-declaration-list contains no
named members, the behavior is undefined. The type is incomplete until after the }
that terminates the list.
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A member of a structure or union may have any object type other than a variably
modified type® In addition, a member may be declared to consist of a specified
number of bits (including a sign bit, if any). Such a member is called a bit-field;% its
width is preceded by a colon.

A bit-field shall have a type that is a qualified or unqualified version of si gned i nt
or unsi gned i nt. A bit-field is interpreted as a signed or unsigned integer type
consisting of the specified number of bits.%

An implementation may allocate any addressable storage unit large enough to hold a
bit-field. If enough space remains, a bit-field that immediately follows another bit-
field in a structure shall be packed into adjacent bits of the same unit. If insufficient
space remains, whether a bit-field that does not fit is put into the next unit or overlaps
adjacent units is implementation-defined. The order of alocation of bit-fields within a
unit (high-order to low-order or low-order to high-order) is implementation-defined.
The alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an
unnamed bit-field.% As a special case of this, a bit-field structure member with a
width of O indicates that no further bit-field is to be packed into the unit in which the
previous bit-field, if any, was placed.

Each non-bit-field member of a structure or union object is aigned in an
implementation-defined manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields
reside have addresses that increase in the order in which they are declared. A pointer
to a structure object, suitably converted, points to its initial member (or if that member
is a bit-field, then to the unit in which it resides), and vice versa. There may be
unnamed padding within a structure object, but not at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at
most one of the members can be stored in a union object at any time. A pointer to a

89. A structure or union can not contain a member with a variably modified type because member
names are not ordinary identifiers as defined in 6.1.2.3.

90. The unary & (address-of) operator may not be applied to a bit-field object; thus, there are no pointers
to or arrays of bit-field objects.

91. As specified in 6.5.2 above, if the actual type specifier used isi nt or there is no type specifier, or is
a typedef-name defined using either of these, then it is implementation-defined whether the bit-field
is signed or unsigned.

92. An unnamed bit-field structure member is useful for padding to conform to externally imposed
layouts.
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union object, suitably converted, points to each of its members (or if a member is a
bit-field, then to the unit in which it resides), and vice versa

There may be unnamed padding at the end of a structure or union, were the structure
or union to be an element of an array.

As a specia case, the last element of a structure may be an incomplete array type.
This is called a flexible array member, and the size of the structure shall be equal to
the offset of the last element of an otherwise identical structure that replaces the
flexible array member with an array of one element. When an Ivalue whose type is a
structure with a flexible array member is used to access an object, it behaves as if that
member were replaced by the longest array that would not make the structure larger
than the object being accessed. If this array would have no elements, then it behaves
as if it has one element, but the behavior is undefined if any attempt is made to access
that element.

Examples
After the declarations;

struct s { int n; double d[]; };
struct ss { int n; double d[1]; };

the three expressions:

si zeof (struct s)
of fsetof (struct s, d)
of fsetof (struct ss, d)

have the same value. The structure st ruct s has a flexible array member d.
If si zeof (doubl e) is 8, then after the following code is executed:

struct s *sl;
struct s *s2;
sl = malloc(sizeof (struct s) + 64);
s2 = mal |l oc(sizeof (struct s) + 46);

and assuming that the calls to mal | oc succeed, s1 and s2 behave as if they had
been declared as:

struct { int n; double d[8]; } *s1;
struct { int n; double d[5]; } *s2;

Following the further successful assignments:

sl = mall oc(sizeof (struct s) + 10);
s2 = malloc(sizeof (struct s) + 6);
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they then behave as if they had been declared as:
struct { int n; double d[1]; } *s1, *s2;

and:
doubl e *dp;
dp = &(s1->d[0]); /'l Permitted
*dp = 42; /'l Permitted
dp = &(s2->d[0]); /'l Permitted
*dp = 42; /1 Undefined behavior

Forward references: tags (6.5.2.3).

6.5.2.2 Enumeration specifiers

Syntax
enum-specifier:
enum identifier . { enumerator-list }
enum identifierot { enumerator-list , }
enum identifier
enumer ator-list:
enumer ator
enumerator-list , enumerator
enumer ator:
enumer ation-constant
enumeration-constant = constant-expression
Constraints

The expression that defines the value of an enumeration constant shall be an integer
constant expression that has a value representable as an i nt .

Semantics

The identifiers in an enumerator list are declared as constants that have type i nt and
may appear wherever such are permitted.®® An enumerator with = defines its
enumeration constant as the value of the constant expression. If the first enumerator
has no =, the value of its enumeration constant is 0. Each subsequent enumerator with
no = defines its enumeration constant as the value of the constant expression obtained

93. Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from
each other and from other identifiers declared in ordinary declarators.
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by adding 1 to the value of the previous enumeration constant. (The use of
enumerators with = may produce enumeration constants with values that duplicate
other values in the same enumeration.) The enumerators of an enumeration are also
known as its members.

Each enumerated type shall be compatible with an integer type. The choice of type is
implementation-defined, but shall be capable of representing the values of al the
members of the enumeration.

The enumerated type is complete at the } that terminates the list of enumerator
declarations.

Examples

enum hue { chartreuse, burgundy, claret=20, w nedark };
enum hue col, *cp;

col = claret;

cp = &col;

if (*cp !'= burgundy)
[* %

makes hue the tag of an enumeration, and then declares col as an object that has that
type and cp as a pointer to an object that has that type. The enumerated values are in
the set { O, 1, 20, 21}.

Forward references: tags (6.5.2.3).
6.5.2.3 Tags
Constraints
A specific type shall have its content defined at most once.
A type specifier of the form
enum identifier
without an enumerator list shall only appear after the type it specifies is completed.
Semantics

All declarations of structure, union, or enumerated types that have the same scope and
use the same tag declare the same type. The type is complete®® until the closing

94. An incomplete type may only by used when the size of an object of that type is not needed. It is
not needed, for example, when a typedef name is declared to be a specifier for a structure or union,
or when a pointer to or a function returning a structure or union is being declared. (See incomplete
typesin 6.1.2.5.) The specification shall be complete before such a function is called or defined.
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brace of the list defining the content, and complete thereafter.

Two declarations of structure, union, or enumerated types which are in different scopes
or use different tags declare distinct types. Each declaration of a structure, union, or
enumerated type which does not include a tag declares a distinct type.

A type specifier of the form

struct-or-union identifier opt { struct-declaration-list }
or

enum identifier { enumerator-list }
or

enum identifier { enumerator-list , }

declares a structure, union, or enumerated type. The list defines the structure content,
union content, or enumeration content. If an identifier is provided,®® the type
specifier aso declares the identifier to be the tag of that type.

A declaration of the form

struct-or-union identifier
specifies a structure of union type and declares the identifier as a tag of that type.®
If atype specifier of the form

struct-or-union identifier

occurs other than as part of one of the above forms, and no other declaration of the
identifier as a tag is visible, then it declares an incomplete structure or union type, and
declares the identifier as the tag of that type.®

If atype specifier of the form

struct-or-union identifier
or
enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier
as a tag is visible, then it specifies the same type as that other declaration, and does

95. If there is no identifier, the type can, within the trandation unit, only be referred to by the
declaration of which it is a part. Of course, when the declaration is of a typedef name, subsequent
declarations can make use of that typedef name to declare objects having the specified structure,
union, or enumerated type.

96. A similar construction with enumdoes not exist.
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not redeclare the tag.

Examples

1

3.

110

This mechanism allows declaration of a self-referential structure.

struct tnode {
i nt count;
struct tnode *left, *right;

3
specifies a structure that contains an integer and two pointers to objects of the
same type. Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be an object of the given type and sp to be a pointer to an object
of the given type. With these declarations, the expression sp- >l ef t refers to
the left struct tnode pointer of the object to which sp points; the
expression s. ri ght->count designates the count member of the right
struct t node pointed to from s.

The following alternative formulation uses the t ypedef mechanism:

t ypedef struct tnode TNODE;
struct tnode {

i nt count;

TNODE *l eft, *right;
3
TNCDE s, *sp;

To illustrate the use of prior declaration of a tag to specify a pair of mutually
referential structures, the declarations

struct s1 { struct s2 *s2p; /* .. */ }; [/l D1
struct s2 { struct sl *slp; /* .. */ }; [/ D2

specify a pair of structures that contain pointers to each other. Note, however,
that if s2 were already declared as a tag in an enclosing scope, the declaration
D1 would refer to it, not to the tag s2 declared in D2. To eliminate this
context sengitivity, the declaration

struct s2;

may be inserted ahead of D1. This declares a new tag s2 in the inner scope;
the declaration D2 then completes the specification of the new type.

An enumeration type is compatible with some integer type. An implementation
may delay the choice of which integer type until all enumeration constants have
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been seen. Thus in:
enumf { ¢ = sizeof (enumf) };

the behavior is undefined since the size of the respective enumeration type is not
necessarily known when si zeof is encountered.

Forward references. declarators (6.5.5), array declarators (6.5.5.2), type definitions
(6.5.7).

6.5.3 Type qualifiers

Syntax
type-qualifier:
const
restrict
vol atil e
Constraints

Types other than pointer types derived from object or incomplete types shall not be
restrict-qualified.

Semantics

The properties associated with qualified types are meaningful only for expressions that
are Ivalues.®’

If the same qualifier appears more than once in the same specifier-qualifier-list, either
directly or via one or more t ypedef s, the behavior is the same as if it appeared only
once.

If an attempt is made to modify an object defined with a const-qualified type through
use of an Ivalue with non-const-qualified type, the behavior is undefined. If an attempt
is made to refer to an object defined with a volatile-qualified type through use of an
lvalue with non-volatile-qualified type, the behavior is undefined.*®

97. The implementation may place a const object that is not vol atil e in a read-only region of
storage. Moreover, the implementation need not allocate storage for such an object if its address is
never used.

98. This applies to those objects that behave as if they were defined with qualified types, even if they
are never actualy defined as objects in the program (such as an object at a memory-mapped
input/output address).
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An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression
referring to such an object shall be evaluated strictly according to the rules of the
abstract machine, as described in 5.1.2.3. Furthermore, at every sequence point the
value last stored in the object shall agree with that prescribed by the abstract machine,
except as modified by the unknown factors mentioned previously.*® What constitutes
an access to an object that has volatile-qualified type is implementation-defined.

An object that is referenced through a restrict-qualified pointer has a specia
association with that pointer. This association, defined in 6.5.3.1 below, requires that
all references to that object shall use, directly or indirectly, the value of that pointer.
For example, a statement that assigns a value returned by mal | oc to a single pointer
establishes this association between the alocated object and the pointer. The intended
use of the restrict quaifier (like the regi st er storage class) is to promote
optimization, and deleting all instances of the qualifier from a conforming program
does not change its meaning (i.e., observable behavior).

If the specification of an array type includes any type qualifiers, the element type is
so-qualified, not the array type. If the specification of a function type includes any
type qualifiers, the behavior is undefined.!®

For two qualified types to be compatible, both shall have the identicaly qualified
version of a compatible type; the order of type qualifiers within a list of specifiers or
qualifiers does not affect the specified type.

Examples
1. An object declared
extern const volatile int real time_clock;

may be modifiable by hardware, but cannot be assigned to, incremented, or
decremented.

2. The following declarations and expressions illustrate the behavior when type
gualifiers modify an aggregate type:

99. A vol ati | e declaration may be used to describe an object corresponding to a memory-mapped
input/output port or an object accessed by an asynchronously interrupting function. Actions on
objects so declared shall not be ‘‘optimized out’” by an implementation or reordered except as
permitted by the rules for evaluating expressions.

100. Both of these can occur through the use of t ypedef s.
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const struct s { int mem } cs ={ 1 };

struct s ncs; // theobject ncs is modifiable

typedef int A 2][3];

const A a = {{4, 5 6}, {7, 8 9}}; // arrayof array of
/'l const int

int *pi;

const int *pci;

Nncs = CS; // valid

CS = ncs; /1 violates modifiable Ivalue constraint for =
pi = &ics.nmem // valid

pi &cs. mem // violates type constraints for =
pci = &cs.nmem // valid
pi a[ 0] ; /'l invalid: a[ 0] hastype‘‘const int *”

6.5.3.1 Formal definition of restri ct

Let D be a declaration of an ordinary identifier that provides a means of designating an
object P as a restrict-qualified pointer.

If D appears inside a block and does not have storage class ext er n, let B denote the
block. If D appears in the list of parameter declarations of a function definition, let B
denote the associated block. Otherwise, let B denote the block of mai n (or the block
of whatever function is called at program startup in a freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some
seguence point in the execution of B prior to the evaluation of E) modifying P to point
to a copy of the array object into which it formerly pointed would change the value of
E. (In other words, E depends on the value of P itself rather than on the value of an
object referenced indirectly through P. For example, if identifier p has type (i nt
**restrict), then the pointer expressions p and p+1 are based on the restricted
pointer object designated by p, but the pointer expressions *p and p[ 1] are not.)
Note that ‘*based’’ is defined only for expressions with pointer types.

During each execution of B, let A be the array object that is determined dynamically
by all references through pointer expressions based on P. Then all references to
values of A shall be through pointer expressions based on P. Furthermore, if P is
assigned the value of a pointer expression E that is based on another restricted pointer
object P2, associated with block B2, then either the execution of B2 shall begin before
the execution of B, or the execution of B2 shall end prior to the assignment. If these
requirements are not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program during
which storage is guaranteed to be reserved for an instance of an object that is
associated with B and that has automatic storage duration. A reference to a value
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means either an access to or a modification of the value. During an execution of B,
attention is confined to those references that are actually evaluated. (This excludes
references that appear in unevaluated expressions, and also excludes references that are
““avallable’’, in the sense of employing visible identifiers, but do not actually appear in
the text of B.)

A trandator is free to ignore any or all aliasing implications of uses of restri ct.

Examples

1

114

The file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert that if an object is referenced using the value of one of a, b, or c, then it
is never referenced using the value of either of the other two.

The function parameter declarations in the following example

void f(int n, int * restrict p, int * restrict q)
{
while (n-- > 0)
*p++ = *Qt,

}

assert that, during each execution of the function, if an object is referenced
through one of the pointer parameters, then it is not aso referenced through the
other.

The benefit of the restri ct qualifiers is that they enable a trandator to make
an effective dependence anaysis of function f without examining any of the
calls of f in the program. The cost is that the programmer must examine all of
those calls to ensure that none give undefined behavior. For example, the
second call of f in g has undefined behavior because each of d[ 1] through
d[ 49] is referenced through both p and g.

voi d g(void)

{
extern float d[100];

f(50, d + 50, d); // ok
f(50, d + 1, d); // undefined behavior

}

The function parameter declarations
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void h(int n, int * const restrict p,
int * const g, int * const r)
{
int i;
for (i =0; I <n; i++)
pli] =qli] +r[i];
}

show how const can be used in conjunction with restrict. The const
gualifiers imply, without the need to examine the body of h, that q and r cannot
become based on p. The fact that p is restrict-qualified therefore implies that an
object referenced through p is never referenced through either of g or r. Thisis
the precise assertion required to optimize the loop. Note that a call of the form
h(100, a, b, b) has defined behavior, which would not be true if al three
of p, q, and r were restrict-qualified.

4. The rule limiting assignments between restricted pointers does not distinguish
between a function call and an equivalent nested block. With one exception,
only ‘‘outer-to-inner’’ assignments between restricted pointers declared in nested
blocks have defined behavior.

{
int * restrict pl;
int * restrict qi,
pl = ql; // undefined behavior
{
int * restrict p2 = pl; // ok
int * restrict g2 = ql1; // ok
pl = q2; // undefined behavior
p2 = q2; // undefined behavior
}
}

The exception allows the value of a restricted pointer to be carried out of the
block in which it (or, more precisely, the ordinary identifier used to designate it)
is declared when that block finishes execution. For example, this permits
new_vect or to return avect or.

Language 115



Working Draft, 1997-11-21, WG14/N794 J11/97-158

typedef struct { int n; float * restrict v; } vector;
vector new vector(int n)

{
vector t;
t.n = n;
t.v = malloc(n * sizeof (float));
return t;
}
6.5.4 Function specifiers
Syntax
function-specifier:
inline
Constraints

Function specifiers shall be used only in the declaration of an identifier for a function.

An inline definition (see below) of a function with external linkage shall not contain a
definition of an object with static storage duration that can be modified, and shall not
contain a reference to an identifier with internal linkage.

Thei nl i ne function specifier shall not appear in a declaration of mai n.
Semantics

A function declared with an i nl i ne function specifier is an inline function. Making
a function an inline function suggests that calls to the function be as fast as possible
by using, for example, an aternative to the usual function call mechanism known as
“inline substitution'’.1® The extent to which such suggestions are effective is

implementati on-defined. 102

Any function with interna linkage can be an inline function. For a function with
externa linkage, the following restrictions apply. If a function is declared with an
i nl i ne function specifier, then it shall aso be defined in the same trandation unit.

101. Inline substitution is not textual substitution, nor does it create a new function. Therefore, for
example, the expansion of a macro used within the body of the function uses the definition it had at
the point the function body appears, and not where the function is called; and identifiers refer to the
declarations in scope where the body occurs. Similarly, the address of the function is not affected
by the function’s being inlined.

102. For example, an implementation might never perform inline substitution, or might only perform
inline substitutions to calls in the scope of ani nl i ne declaration.
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If all of the file scope declarations for a function in a translation unit include the
i nl i ne function specifier without ext er n, then the definition in that trangation unit
is an inline definition. An inline definition does not provide an external definition for
the function, and does not forbid an external definition in another translation unit. An
inline definition provides an alternative to an externa definition, which a trandator
may use to implement any cal to the function in the same trandation unit. It is
unspecified whether a call to the function uses the inline definition or the external
definition.

Examples

The declaration of an inline function with external linkage can result in either an
external definition, or a definition available for use only within the translation unit. A
file scope declaration with ext ern creates an externa definition. The following
example shows an entire trandation unit.

i nline double fahr(double t)

{
return (9.0 * t) / 5.0 + 32.0;
}
i nline double cel s(double t)
{
return (5.0 * (t - 32.0)) / 9.0;
}

/ * Creates an external definition. */
extern doubl e fahr(double);

doubl e convert(int is_fahr, double tenp)

{
[ * A trandator may perform inline substitutions. */
return is_fahr ? cels(tenmp) : fahr(tenp);

}

Note that the definition of fahr is an external definition because f ahr is aso
declared with ext er n, but the definition of cel s is an inline definition. Because
there is a cadl to cel s, an externa definition of cel s in another trandation unit is
still required by 6.7.
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6.5.5 Declarators

Syntax

declarator:
pointer opt direct-declarator

direct-declarator:
identifier
( declarator )
direct-declarator | assignment-expronoIot ]
direct-declarator [ * ]

direct-declarator ( parameter-type-list )

direct-declarator ( identifier-listOpt )

pointer:
* typequalifier-listot
* typequa]ifier-listopt poi nter

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator

declaration-specifiers abstract-decl aratorOlot

identifier-list:
identifier
identifier-list , identifier
Semantics

Each declarator declares one identifier, and asserts that when an operand of the same
form as the declarator appears in an expression, it designates a function or object with
the scope, storage duration, and type indicated by the declaration specifiers.

A full declarator is a declarator that is not part of another declarator. The end of a
full declarator is a sequence point. If the nested sequence of declarators in a full
declarator contains a variable length array type, the type specified by the full
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declarator is said to be variably modified.
In the following subclauses, consider a declaration
T D1

where T contains the declaration specifiers that specify atype T (such asi nt) and D1
is a declarator that contains an identifier ident. The type specified for the identifier
ident in the various forms of declarator is described inductively using this notation.

If, in the declaration *‘T D1'’, D1 has the form
identifier

then the type specified for ident is T.

If, in the declaration ‘T D1’’, D1 has the form
( D)

then ident has the type specified by the declaration *‘T D’. Thus, a declarator in
parentheses is identical to the unparenthesized declarator, but the binding of
complicated declarators may be altered by parentheses.

Implementation limits

The implementation shall allow the specification of types that have at least 12 pointer,
array, and function declarators (in any valid combinations) modifying an arithmetic,
structure, union, or incomplete type, either directly or via one or more t ypedef s.

Forward references. array declarators (6.5.5.2), type definitions (6.5.7).
6.5.5.1 Pointer declarators
Semantics
If, in the declaration ‘T D1'’, D1 has the form
* typequalifier-listopt D
and the type specified for ident in the declaration ‘T D’ is **derived-declarator-type-
list T, then the type specified for ident is ‘‘derived-declarator-type-list type-

qualifier-list pointer to T''. For each type qualifier in the list, ident is a so-qualified
pointer.

For two pointer types to be compatible, both shall be identically qualified and both
shall be pointers to compatible types.
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Examples

The following pair of declarations demonstrates the difference between a *‘variable
pointer to a constant value'’ and a ‘‘ constant pointer to a variable value'’.

const int *ptr_to_constant;
int *const constant ptr;

The contents of an object pointed to by ptr_to_constant shal not be modified
through that pointer, but ptr_t o_constant itself may be changed to point to
another object. Similarly, the contents of the i nt pointed to by constant ptr
may be modified, but const ant _pt r itself shall always point to the same location.

The declaration of the constant pointer const ant _ptr may be clarified by including
a definition for the type *‘pointer to i nt "’.

typedef int *int_ptr;
const int_ptr constant_ptr;

declares const ant _pt r as an object that has type ** const-qualified pointer to i nt "".
6.5.5.2 Array declarators
Constraints

The[ and] may delimit an expression or *. If [ and] delimit an expression (which
specifies the size of an array), it shall have an integer type. If the expression is a
constant expression then it shall have a value greater than zero. The element type
shall not be an incomplete or function type.

Only ordinary identifiers (as defined in 6.1.2.3) with block scope or function prototype
scope and without linkage can have a variably modified type. If an identifier is
declared to be an object with static storage duration, it shall not have a variable length

array type.
Semantics
If, in the declaration **T D1’’, D1 has the form
D] assignment-expression opt]
or
O *]
and the type specified for ident in the declaration *“T D’ is ‘‘derived-declarator-type-

list T'’, then the type specified for ident is ‘‘derived-declarator-type-list array of
T 193 |f the size is not present, the array type is an incomplete type. If * is used
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instead of a size expression, the array type is a variable length array type of
unspecified size, which can only be used in declarations with function prototype scope.
If the size expression is an integer constant expression and the element type has a
known constant size, the array type is not a variable length array type. Otherwise, the
array type is a variable length array type. If the size expression is not a constant
expression, and it is evaluated at program execution time, it shall evaluate to a value
greater than zero. It is unspecified whether side effects are produced when the size
expression is evaluated. The size of each instance of a variable length array type does
not change during its lifetime.

For two array types to be compatible, both shall have compatible element types, and if
both size specifiers are present, and are integer constant expressions, then both size
specifiers shall have the same constant value. If the two array types are used in a
context which requires them to be compatible, it is undefined behavior if the two size
specifiers evaluate to unequal values.

Examples
1. float fa[1l1l], *afp[17];

declares an array of fl oat numbers and an array of pointers to fl oat
numbers.

2. Note the distinction between the declarations

extern int *x;
extern int y[];

The first declares x to be a pointer to i nt ; the second declares y to be an array
of i nt of unspecified size (an incomplete type), the storage for which is defined
elsewhere.

3. The following declarations demonstrate the compatibility rules for variably
modified types.

103. When several ‘‘array of’’ specifications are adjacent, a multidimensional array is declared.
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4.

122

extern int n;
extern int m
voi d fconpat (voi d)
{
int a[n][6][ni;
int (*p)[4][n+1];
int c[n][n][6][m;
int (*r)[n][n][n+1];
p a; // Error - not compatible because 4 ! = 6.
r c; [/ Compatible, but defined behavior
[l onlyifn == 6 and m == n+1.

}

All declarations of variably modified (VM) types must be declared at either
block scope or function prototype scope. Array objects declared with the
static or extern storage class specifier cannot have a variable length array
(VLA) type. However, an object declared with the stati c storage class
specifier can have a VM type (that is, a pointer to a VLA type). Finaly, all
identifiers declared with a VM type must be ordinary identifiers, and can not,
therefore, be members of structures or unions.
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extern int n;

int Aln]; [l Error - file scope VLA.
extern int (*p2)[n]; /'l Error - file scope VM.
int B[100]; /'l OK - file scope but not VM.

void fvla(int n, int nm[m) // OK - VLA with prototype scope.

{
typedef int VLA mM|[n /1 OK - block scope typedef VLA.

struct tag {

int (*y)[n]; /| Error -y not ordinary identifier.
int z[n]; [l Error - z not ordinary identifier.
b
int D[n; /] OK - auto VLA.
static int E[m; /' Error - static block scope VLA.
extern int F[n]; [l Error - F has linkage and is VLA.
int (*s)[n]; /1 OK - auto pointer to VLA.
extern int (*r)[n; /'l Error - r had linkage and is

/| a pointer to VLA.
static int (*q)[m = &B; // OK-qisa static block
/' pointer to VLA.

}

Forward references. function definitions (6.7.1), initialization (6.5.8).
6.5.5.3 Function declarators (including prototypes)
Constraints

A function declarator shall not specify a return type that is a function type or an array
type.

The only storage-class specifier that shall occur in a parameter declaration is
regi ster.

An identifier list in a function declarator that is not part of a function definition shall
be empty.

After all rewrites, the parameters in a parameter-type-list that is part of a function
definition shall not have incomplete type.1%4

104. Arrays and functions are rewritten as pointers.
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Semantics
If, in the declaration *‘T D1'’, D1 has the form

X parameter-type-list)
or

X |dent|f|er-I|stOpt)
and the type specified for ident in the declaration ‘T D’ is ‘*derived-declarator-type-
list T, then the type specified for ident is ‘‘derived-declarator-type-list function
returning T'’.

A parameter type list specifies the types of, and may declare identifiers for, the
parameters of the function. A declared parameter that is a member of a parameter
type list that is not part of a function definition, may use the [ *] notation in its
sequence of declarator specifiers to specify a variable length array type. If the list
terminates with an éllipsis (, . .. ), no information about the number or types of the
parameters after the comma is supplied.’®® The special case of an unnamed parameter
of type voi d as the only item in the list specifies that the function has no parameters.

If, in a parameter declaration, an identifier can be treated as a typedef name or as a
parameter name, it shall be taken as a typedef name.

If the function declarator is not part of a function definition, the parameters may have
incomplete type.

The storage-class specifier in the declaration specifiers for a parameter declaration, if
present, is ignored unless the declared parameter is one of the members of the
parameter type list for a function definition.

An identifier list declares only the identifiers of the parameters of the function. An
empty list in a function declarator that is part of a function definition specifies that the
function has no parameters. The empty list in a function declarator that is not part of
a function definition specifies that no information about the number or types of the
parameters is supplied.1®

For two function types to be compatible, both shall specify compatible return
types.’%” Moreover, the parameter type lists, if both are present, shall agree in the
number of parameters and in use of the ellipsis terminator; corresponding parameters

105. The macros defined in the <st dar g. h> header (7.12) may be used to access arguments that
correspond to the ellipsis.

106. See ‘‘future language directions'’ (6.9.3).
107. If both function types are ‘‘old style’’, parameter types are not compared.
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shall have compatible types. If one type has a parameter type list and the other type is
specified by a function declarator that is not part of a function definition and that
contains an empty identifier list, the parameter list shall not have an ellipsis terminator
and the type of each parameter shall be compatible with the type that results from the
application of the default argument promotions. If one type has a parameter type list
and the other type is specified by a function definition that contains a (possibly empty)
identifier list, both shall agree in the number of parameters, and the type of each
prototype parameter shall be compatible with the type that results from the application
of the default argument promotions to the type of the corresponding identifier. (In the
determination of type compatibility and of a composite type, each parameter declared
with function or array type is taken as having the type that results from conversion to
a pointer type, asin 6.7.1, and each parameter declared with qualified type is taken as
having the unqualified version of its declared type.)

Examples

1. The declaration

int f(void), *fip(), (*pfi)();

declares a function f with no parameters returning an i nt, a function f i p with
no parameter specification returning a pointer to an i nt, and a pointer pfi to a
function with no parameter specification returning an i nt. It is especialy
useful to compare the last two. The binding of *fi p() is*(fip()), so that
the declaration suggests, and the same construction in an expression requires, the
calling of a function fi p, and then using indirection through the pointer result
to yield an int. In the declarator (*pfi) (), the extra parentheses are
necessary to indicate that indirection through a pointer to a function yields a
function designator, which is then used to call the function; it returnsan i nt .

If the declaration occurs outside of any function, the identifiers have file scope
and external linkage. If the declaration occurs inside a function, the identifiers
of the functions f and fi p have block scope and either internal or external
linkage (depending on what file scope declarations for these identifiers are
visible), and the identifier of the pointer pf i has block scope and no linkage.

2. The declaration
int (*apfi[3])(int *x, int *y);

declares an array apfi of three pointers to functions returning i nt. Each of
these functions has two parameters that are pointers to i nt. The identifiers x
and y are declared for descriptive purposes only and go out of scope at the end
of the declaration of apfi .

Language 125



Working Draft, 1997-11-21, WG14/N794 J11/97-158

3. The declaration
int (*fpfi(int (*)(long), int))(int, ...);

declares a function f pfi that returns a pointer to a function returning an i nt .
The function f pfi has two parameters. a pointer to a function returning an
i nt (with one parameter of type | ong), and an i nt. The pointer returned by
f pfi points to a function that has one i nt parameter and accepts zero or more
additional arguments of any type.

4. The following prototype has a variably modified parameter.

voi d addscal ar(int n, int m
doubl e a[ n] [ n*m+300], doubl e x);

int main()

{
doubl e b[ 4] [ 308];
addscal ar (4, 2, b, 2.17);
return O;

}

voi d addscal ar(int n, int m
doubl e a[ n] [ n*m+300], doubl e Xx)

{
for (int i =0; I < n; |i+4)
for (int j =0, k = n*mt300; | < k; j++)
/1 aisa pointer to a VLA
/'l with n* m+300 elements
a[i][j] += x;
}

5. The following are all compatible function prototype declarators.
doubl e maxi mum(int n, int m double a[n][n]);
doubl e maxi munm(int n, int m double a[*][*]);
double maximum(int n, int m double a[ ][*]);
double maxi munm(int n, int m double a[ ][mM);

Forward references: function definitions (6.7.1), type names (6.5.6).
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6.5.6 Type names

Syntax
type-name:
specifier-qualifier-list abstract-declaratoroIot
abstract-declarator:
pointer
pointer opt direct-abstract-declarator
direct-abstract-declarator:
( abstract-declarator )
direct-abstract-declarator opt [ assignment-expronopt ]
direct-abstract-declaratorOt [ * ]
direct-abstract-declarator opt ( parameter-typellstO ot )
Semantics

In several contexts, it is desired to specify a type. This is accomplished using a type
name, which is syntactically a declaration for a function or an object of that type that
omits the identifier.1%®

Examples

The constructions

@ i nt

(b) int *

(© int *[3]

(d int (*)[3]

() int *()

) int (*)(void)

(9) int (*const [])(unsigned int, ...)

name respectively the types (@) i nt, (b) pointer to i nt, (c) array of three pointers to
int, (d pointer to an aray of three ints, (e function with no parameter
specification returning a pointer to i nt, (f) pointer to function with no parameters
returning an i nt, and (g) array of an unspecified number of constant pointers to
functions, each with one parameter that has type unsi gned i nt and an unspecified
number of other parameters, returning an i nt .

108. As indicated by the syntax, empty parentheses in a type name are interpreted as ‘‘function with no
parameter specification’’, rather than redundant parentheses around the omitted identifier.
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6.5.7 Type definitions

Syntax
typedef-name:
identifier
Constraints
If atypedef name specifies a variably modified type then it shall have block scope.

Semantics

In a declaration whose storage-class specifier ist ypedef , each declarator defines an
identifier to be a typedef name that specifies the type specified for the identifier in the
way described in 6.5.5. Any array Size expressions associated with variable length
array declarators shall be evaluated with the typedef name at the beginning of its scope
upon each normal entry to the block. A t ypedef declaration does not introduce a
new type, only a synonym for the type so specified. That is, in the following
declarations:

typedef T type_ident;
type_ident D

t ype_i dent is defined as a typedef name with the type specified by the declaration
specifiers in T (known as T), and the identifier in D has the type ‘‘ derived-declarator-
type-list T’ where the derived-declarator-type-list is specified by the declarators of D.
A typedef name shares the same name space as other identifiers declared in ordinary
declarators. If the identifier is redeclared in an inner scope or is declared as a member
of a structure or union in the same or an inner scope, the type specifiers shall not be
omitted in the inner declaration.

Examples
1. After

typedef int MLES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

M LES di st ance;

extern KLI CKSP *netri cp;
range Xx;

range z, *zp;

are al valid declarations. The type of di st ance isint, that of metricp is
“‘pointer to function with no parameter specification returning i nt *’, and that of
X and z is the specified structure; zp is a pointer to such a structure. The
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object di st ance has a type compatible with any other i nt object.
2. After the declarations

typedef struct s1 { int x; } tl1, *tpl;
typedef struct s2 { int x; } t2, *tp2;

type t 1 and the type pointed to by t p1 are compatible. Type t1 is aso
compatible with type st ruct s1, but not compatible with the types st r uct
s2,t 2, the type pointed to by t p2, and i nt .

3. The following obscure constructions

t ypedef signed int t;
typedef int plain;
struct tag {

unsi gned t: 4;

const t:5;

plain r:5;

¥

declare a typedef name t with type si gned i nt, a typedef name pl ai n with
type i nt, and a structure with three bit-field members, one named t that
contains values in the range [0, 15], an unnamed const-qualified bit-field which
(if it could be accessed) would contain values in a least the range [-15, +15],
and one named r that contains values in the range [0, 31] or values in at least
the range [-15, +15]. (The choice of range is implementation-defined.) The
first two bit-field declarations differ in that unsi gned is a type specifier (which
forcest to be the name of a structure member), while const is atype qualifier
(which modifiest which is still visible as a typedef name). If these declarations
are followed in an inner scope by

tf(t (t));
long t;

then a function f is declared with type ‘‘function returning si gned i nt with
one unnamed parameter with type pointer to function returning si gned i nt
with one unnamed parameter with type si gned i nt ', and an identifier t with

type | ong.

4. On the other hand, typedef names can be used to improve code readability. All
three of the following declarations of the si gnal function specify exactly the
same type, the first without making use of any typedef names.
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typedef void fv(int), (*pfv)(int);

void (*signal (int, void (*)(int)))(int);
fv *signal (int, fv *);
pfv signal (int, pfv);

5. The following is a block scope declaration of a typedef name A with a variable
length array type.

voi d tdef(int n)

{
typedef int A[n];
A a;
A *p;
p = &a;
}

6. The size expression that is part of the variable length array type named by
typedef name B is evaluated each time function copyt is entered. However,
the size of the variable length array type does not change if the value of n is
subsequently changed.

voi d copyt (int n)

{
typedef int B[n]; /1 Bisn ints, n evaluated now.
n += 1;
{
B a; /'l aisnints, n without += 1.
int b[n]; /'l aandb are different sizes
for (i =1; i < n; i++)
a[i-1] = b[i];
}
}

Forward references. the si gnal function (7.11.1.1).
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6.5.8 Initialization

Syntax
initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }
initializer-list:
d&signation0 i initializer
initializer-lisf, d%ignationoptinitializer
designation:
designator-list =
designator-list:
designator
designator-list designator
designator:
[ constant-expression ]
. identifier
Constraints

No initializer shall attempt to provide a value for an object not contained within the
entity being initialized.

The type of the entity to be initialized shall be an array of unknown size or an object
type that is not a variable length array type.

All the expressions in an initializer for an object that has static storage duration shall
be constant expressions or string literals.

If the declaration of an identifier has block scope, and the identifier has external or
internal linkage, the declaration shall have no initializer for the identifier.

If a designator has the form
[ constant-expression |

then the current object (defined below) shall have array type and the expression shall
be an integer constant expression. If the array is of unknown size, any nonnegative
value is valid.

If a designator has the form

. identifier
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then the current object (defined below) shal have structure or union type and the
identifier shall be a member of that type.

Semantics
An initializer specifies the initial value stored in an object.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed
members of objects of structure and union type do not participate in initialization.
Unnamed members of structure objects have indeterminate value even after
initialization. A union object containing only unnamed members has indeterminate
value even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate. If an object that has static storage duration is not initialized explicitly,
then:

— if it has pointer type, it is initialized to a null pointer;
— if it has arithmetic type, it isinitialized to zero;

— if it is an aggregate, every member is initialized (recursively) according to these
rules;

— if it is a union, the first named member is initialized (recursively) according to
these rules.

The initializer for a scalar shall be a single expression, optionally enclosed in braces.
The initial value of the object, including unnamed members, is that of the expression;
the same type constraints and conversions as for smple assignment apply, taking the
type of the scalar to be the unqualified version of its declared type.

Each brace-enclosed initializer list has an associated current object. When no
designations are present, subobjects of the current object are initialized in order
according to the type of the current object: array elements in increasing subscript
order, structure members in declaration order, and the first named member of a
union!® In contrast, a designation causes the following initidizer to begin
initialization of the subobject described by the designator. Initialization then continues
forward in order, beginning with the next subobject after that described by the
designator.*1°

109. If the initializer list for a subaggregate or contained union does not begin with a left brace, its
subobjects are initialized as usual, but the subaggregate or contained union does not become the
current object: current objects are associated only with brace-enclosed initializer lists.

110. After a union member is initialized, the next object is not the next member of the union;
instead, it is the next subobject of an object containing the union.
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Each designator list begins its description with the current object associated with the
closest surrounding brace pair. Each item in the designator list (in order) specifies a
particular member of its current object and changes the current object for the next
designator (if any) to be that member.*! The current object that results at the end of
the designator list is the subobject to be initialized by the following initializer.

The initialization shall occur in initializer list order, each initializer provided for a
particular subobject overriding any previoudly listed initializer for the same subobject;
all subobjects that are not initialized explicitly shall be initialized implicitly the same
as objects that have static storage duration.

The initializer for a structure or union object that has automatic storage duration either
shall be an initializer list as described below, or shal be a single expression that has
compatible structure or union type. In the latter case, the initial value of the object is
that of the expression.

The rest of this subclause deals with initializers for objects that have aggregate or
union type.

An array of character type may be initialized by a character string literal, optionally
enclosed in braces. Successive characters of the character string literal (including the
terminating null character if there is room or if the array is of unknown size) initialize
the elements of the array.

An array with element type compatible with wchar _t may be initialized by a wide
string literal, optionally enclosed in braces. Successive codes of the wide string literal
(including the terminating zero-valued code if there is room or if the array is of
unknown size) initialize the elements of the array.

Otherwise, the initializer for an object that has aggregate type shall be a brace-
enclosed list of initializers for the named members of the aggregate, written in
increasing subscript or member order; and the initializer for an object that has union
type shall be a brace-enclosed initializer for the first named member of the union.

If the aggregate contains members that are aggregates or unions, or if the first member
of a union is an aggregate or union, the rules apply recursively to the subaggregates or
contained unions. If the initializer of a subaggregate or contained union begins with a
left brace, the initializers enclosed by that brace and its matching right brace initialize
the members of the subaggregate or the first member of the contained union.
Otherwise, only enough initializers from the list are taken to account for the members

111. Thus, a designator can only specify a strict subobject of the aggregate or union that is associated
with the surrounding brace pair. Note, too, that each separate designator list is independent.
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of the subaggregate or the first member of the contained union; any remaining
initializers are left to initialize the next member of the aggregate of which the current
subaggregate or contained union is a part.

If there are fewer initializers in a brace-enclosed list than there are members of an
aggregate, or fewer characters in a string literal used to initialize an array of known
size than there are elements in the array, the remainder of the aggregate shall be
initialized implicitly the same as objects that have static storage duration.

If an array of unknown size is initialized, its size is determined by the largest indexed
element with an explicit initializer. At the end of its initializer list, the array no longer
has incomplete type.

The order in which any side effects occur among the initialization list expressions is
unspecified.11?

Examples
1. The declaration
int x[] ={ 1, 3, 5 };

defines and initializes x as a one-dimensional array object that has three
elements, as no size was specified and there are three initializers.

2. The declaration

int y[4][3] = {

]
1, 3,
2, 4,
3, 5

},
},
}

~N O O

[
{
{
{ :

¥

is a definition with a fully bracketed initiaization: 1, 3, and 5 initialize the first
row of y (the array object y[ 0] ), namely y[ 0] [ O] ,y[O][1],andy[ O] [ 2].
Likewise the next two lines initialize y[ 1] and y[ 2] . The initializer ends
early, so y[ 3] is initiaized with zeros. Precisely the same effect could have
been achieved by

112. In particular, the evaluation order need not be the same as the order of subobject initialization.
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int y[4][3] = {
1, 3, 5 2, 4, 6, 3, 5, 7
¥

The initializer for y[ O] does not begin with a left brace, so three items from
the list are used. Likewise the next three are taken successively for y[ 1] and

yl2].
3. The declaration
int z[4][3] = {
{1} {2}, {3} {4}
b
initializes the first column of z as specified and initializes the rest with zeros.
4. The declaration
struct { int a[3], b; } W] ={ { 1}, 2},

is a definition with an inconsistently bracketed initialization. It defines an array
with two element structures:. W 0] . a[ 0] is1 and W 1]. a[ 0] is 2; al the
other elements are zero.

5. The declaration

short q[4][3][2] = {
¥
, 3},
, 5 61}

ADNPE™—

{
{
{
b

contains an incompletely but consistently bracketed initialization. It defines a
three-dimensional array object: g[O][O0][O] is 1, q[1][O][O] is 2
g[1][0][1] is3,and 4, 5, and 6 initializeq[ 2] [0][0],q[2][0][1], and
a[ 2] [ 1] [ O], respectively; al the rest are zero. The initializer for g[ O] [ O]

does not begin with a left brace, so up to six items from the current list may be
used. There is only one, so the values for the remaining five elements are
initialized with zero. Likewise, the initializers for q[ 1] [ 0] and g[ 2] [ O] do
not begin with a left brace, so each uses up to six items, initializing their
respective two-dimensional subaggregates. If there had been more than six

items in any of the lists, a diagnostic message would have been issued. The
same initialization result could have been achieved by:
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136

short q[4][3][2] = {
1, 0, 0, 0, O, O,
2, 3, 0, 0, 0, O,
4, 5, 6
};
or by:
short q[4][3][2] = {
{
{ 11},
1,
{
{ 2, 31},
}
{
{ 4 5}
{ 6},
}

b
in a fully bracketed form.

Note that the fully bracketed and minimally bracketed forms of initialization are,
in general, less likely to cause confusion.

One form of initialization that completes array types involves typedef names.
Given the declaration

typedef int Al]; /| OK - declared with block scope
the declaration
Aa={1 21}, b={3 4, 5};
is identical to
int a[] ={ 1, 2}, b[] ={ 3, 4, 5};
due to the rules for incomplete types.
The declaration
char s[] = "abc", t[3] = "abc";

defines “*plain’” char array objects s and t whose elements are initialized with
character string literals. This declaration is identical to
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char s[] ={ 'a, 'b, 'c’, '\0 },
tfl ={'a, 'b’, "¢ };

The contents of the arrays are modifiable. On the other hand, the declaration
char *p = "abc";

defines p with type “‘pointer to char’’ that is initialized to point to an object
with type ‘‘array of char’ with length 4 whose elements are initialized with a
character string literal. If an attempt is made to use p to modify the contents of
the array, the behavior is undefined.

8. Arrays can be initialized to correspond to the elements of an enumeration by
using designators:

enum { nmenber _one, nenber _two };
const char *nni] = {

[ menmber _two] = "nenber two",
[ menber _one] = "nenber one",
1
9. Structure members can be initialized to nonzero values without depending on
their order:
div_t answer = { .quot =2, .rem= -1 };

10. Designators can be used to provide explicit initialization when unadorned
initializer lists might be misunderstood:

struct { int a[3], b; } W] =
{ [0].a = {1}, [1].a[0] = 2 };

11. Space can be ‘‘alocated’” from both ends of an array by using a single
designator:

int af MAX] = {
1, 3, 5, 7, 9, [MAX-5] =8, 6, 4, 2, O
3

In the above, if MAX is greater than ten, there will be some zero-valued elements
in the middle; if it is less than ten, some of the values provided by the first five
initializers will be overridden by the second five.

12.  Any member of a union can be initialized:

union { /* .. */ } u={ .any_nenber = 42 };
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Forward references. common definitions <st ddef . h> (7.1.6).
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6.6 Statements

Syntax

statement:
label ed-statement
compound-statement
expression-statement
sel ection-statement
iteration-statement
jump-statement

Semantics

A statement specifies an action to be performed. Except as indicated, statements are
executed in sequence.

A full expression is an expression that is not part of another expression. Each of the
following is a full expression: an initializer; the expresson in an expression
statement; the controlling expression of a selection statement (i f or swi t ch); the
controlling expression of a whi | e or do statement; each of the (optional) expressions
of afor statement; the (optional) expression in ar et urn statement. The end of a
full expression is a sequence point.

Forward references. expression and null statements (6.6.3), selection statements (6.6.4),
iteration statements (6.6.5), the r et ur n statement (6.6.6.4).

6.6.1 Labded statements

Syntax
| abel ed-statement:
identifier : statement
case constant-expression : statement
default : statement
Constraints

A case or default label shal appear only in a switch statement. Further
constraints on such labels are discussed under the swi t ch statement.

Semantics

Any statement may be preceded by a prefix that declares an identifier as a label name.
Labels in themselves do not ater the flow of control, which continues unimpeded
across them.
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Forward references. the got o statement (6.6.6.1), the swi t ch statement (6.6.4.2).

6.6.2 Compound statement, or block

Syntax
compound-statement:
{ block-ltemllstopt }
block-item-list:
block-item
block-item-list block-item
block-item:
declaration
statement
Semantics

A compound statement (also called a block) allows a set of statements to be grouped
into one syntactic unit, which may have its own set of declarations and initializations
(as discussed in 6.1.2.4). The initializers of objects that have automatic storage
duration, and the variable length array declarators of ordinary identifiers with block
scope are evaluated and the values are stored in the objects (including storing an
indeterminate value in objects without an initializer) each time that the declaration is
reached in the order of execution, as if it were a statement, and within each declaration
in the order that declarators appear.

6.6.3 Expression and null statements

Syntax
expression-statement:
express Onopt ;
Semantics

The expression in an expression statement is evaluated as a void expression for its side
effects. 113

A null statement (consisting of just a semicolon) performs no operations.

113. Such as assignments, and function calls which have side effects.
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Examples

1. If afunction cal is evaluated as an expression statement for its side effects only,
the discarding of its value may be made explicit by converting the expression to
a void expression by means of a cast:

int p(int);
[* ..*
(voi d)p(0);
2. In the program fragment
char *s;
[* %
while (*s++ 1="\0")

a null statement is used to supply an empty loop body to the iteration statement.

3. A null statement may also be used to carry a label just before the closing } of a
compound statement.

while (loopl) {

[* %
while (loop2) {
[* %

if (want _out)
goto end_I| oopl;

[* .
}
[* .
end_| oopl: ;

}

Forward references; iteration statements (6.6.5).
6.6.4 Selection statements
Syntax

sel ection-statement:
if ( expresson ) statement
if ( expression ) statement el se statement
switch ( expression ) statement
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Semantics

A selection statement selects among a set of statements depending on the value of a
controlling expression.

6.6.4.1 Theif statement

Constraints

The controlling expression of an i f statement shall have scalar type.
Semantics

In both forms, the first substatement is executed if the expression compares unequal to
0. In the el se form, the second substatement is executed if the expression compares
equal to 0. If the first substatement is reached via a label, the second substatement is
not executed.

An el se is associated with the lexically nearest preceeding i f that is allowed by the
grammar.

6.6.4.2 The sw t ch statement
Constraints

The controlling expression of a swi t ch statement shall have integer type, and shall
not cause a block to be entered by a jump from outside the block to a statement that
follows a case or default label in the block (or an enclosed block) if that block
contains the declaration of a variably modified object or variably modified typedef
name. The expression of each case label shall be an integer constant expression. No
two of the case constant expressions in the same swi t ch statement shall have the
same value after conversion. There may be at most one def aul t label inaswi tch
statement. (Any enclosed swi t ch statement may have a def aul t label or case
constant expressions with values that duplicate case constant expressions in the
enclosing swi t ch statement.)

Semantics

A swi t ch statement causes control to jump to, into, or past the statement that is the
switch body, depending on the value of a controlling expression, and on the presence
of adef aul t label and the values of any case labels on or in the switch body. A
case or default label is accessible only within the closest enclosing swi t ch
statement.

The integer promotions are performed on the controlling expression. The constant
expression in each case label is converted to the promoted type of the controlling
expression. |If a converted value matches that of the promoted controlling expression,
control jumps to the statement following the matched case label. Otherwise, if there
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is a def aul t label, control jumps to the labeled statement. If no converted case
constant expression matches and there is no def aul t label, no part of the switch
body is executed.

Implementation limits

As discussed previoudly (5.2.4.1), the implementation may limit the number of case
valuesin asw t ch statement.

Examples
In the artificial program fragment

switch (expr)

{
int i = 4;
fCi);
case O:
i = 17;
[ * falls through into def aul t code */
defaul t:
printf("%\n", i);
}

the object whose identifier is i exists with automatic storage duration (within the
block) but is never initialized, and thus if the controlling expression has a nonzero
value, the call to the pri nt f function will access an indeterminate value. Similarly,
the call to the function f cannot be reached.

6.6.5 lteration statements

Syntax
iteration-statement:
whil e ( expresson ) statement
do statement whil e ( expression ) ;
for ( expronOt ; expronOt ; expronOt ) statement
for ( declaration ; expronopt ; expronopt) statement
Constraints

The controlling expression of an iteration statement shall have scalar type.

The declaration part of a for statement shall only declare identifiers for objects
having storage class aut o or r egi st er.
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Semantics

An iteration statement causes a statement called the loop body to be executed
repeatedly until the controlling expression compares equal to 0.

6.6.5.1 Thewhi | e statement

The evaluation of the controlling expression takes place before each execution of the
loop body.

6.6.5.2 The do statement

The evaluation of the controlling expression takes place after each execution of the
loop body.

6.6.5.3 Thef or statement
Except for the behavior of a cont i nue statement in the loop body, the statement
for ( clause-l ; expression-2 ; expression-3 ) statement

and the sequence of statements

{
clause-1 ;
while ( expression-2 ) {
Statement
expression-3 ;
}
}

are equivalent (where clause-1 can be an expression or a declaration).'*

Both clause-1 and expression-3 can be omitted. If either or both are an expression,
they are evaluated as a void expression. An omitted expression-2 is replaced by a
nonzero constant.

114. Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use
in the loop; expression-2, the controlling expression, specifies an evaluation made before each
iteration, such that execution of the loop continues until the expression compares equa to O;
expression-3 specifies an operation (such as incrementing) that is performed after each iteration. |If
clause-1 is a declaration, then the scope of any variable it declares is the remainder of the
declaration and the entire loop, including the other two expressions.
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Forward references. the cont i nue statement (6.6.6.2).

6.6.6 Jump statements

Syntax
jump-statement:
got o identifier ;
conti nue ;
break ;
return expronopt :
Semantics

A jump statement causes an unconditional jump to another place.
6.6.6.1 The got o statement
Constraints

The identifier in a got o statement shall name a label located somewhere in the
enclosing function. A got o statement shall not cause a block to be entered by a jump
from outside the block to a labeled statement in the block (or an enclosed block) if
that block contains the declaration of a variably modified object or variably modified
typedef name.

Semantics

A got o statement causes an unconditional jump to the statement prefixed by the
named label in the enclosing function.

Examples

1. It is sometimes convenient to jump into the middle of a complicated set of
statements. The following outline presents one possible approach to a problem
based on these three assumptions:

1. The genera initialization code accesses objects only visible to the current
function.

2. The generd initialization code is too large to warrant duplication.

3. The code to determine the next operation must be at the head of the loop.
(To alow it to be reached by cont i nue statements, for example.)
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[* .. *
goto first _tine;
for (;;) {
/| determine next operation
[* .. *
i f (needtoreinitialize) {
/'] reinitialize-only code
[* %
first _tine:
/1 general initialization code
[* .. *
conti nue;
}
/'l handle other operations
[* .. *
}

2. A got o statement is not allowed to jump past any declarations of objects with
variably modified types. A jump within the block, however, is permitted.

goto | ab3; [l Error: going INTO scope of VLA.
{
doubl e a[n];
a[j] = 4.4
| ab3:
a[j] = 3.3;
goto | ab 4; /1 OK, going WITHIN scope of VLA.
a[j] = 5.5;
| ab4:
a[j] = 6.6;
}
got o | ab4; /'l Error: going INTO scope of VLA.

6.6.6.2 Theconti nue statement

Constraints

A cont i nue statement shall appear only in or as a loop body.
Semantics

A cont i nue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in
each of the statements
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while (/* ... *I) { do { for (/* .. *I) {
[* ... %] [* ... %/ [* ... %]
conti nue; conti nue; conti nue;
[* ... %] [* ... %/ [* ... %]

contin: ; contin: ; contin: ;

} } while (/* ... */); }

unless the cont i nue statement shown is in an enclosed iteration statement (in which
case it is interpreted within that statement), it is equivalent to got o conti n; .1*°

6.6.6.3 The br eak statement

Constraints

A br eak statement shall appear only in or as a switch body or loop body.
Semantics

A break statement terminates execution of the smallest enclosing switch or
iteration statement.

6.6.6.4 Ther et ur n statement
Constraints

A return statement with an expression shall not appear in a function whose return
type is voi d. A return statement without an expression shall only appear in a
function whose return type is voi d.

Semantics

A return statement terminates execution of the current function and returns control
to its caller. A function may have any number of r et ur n statements.

If areturn statement with an expression is executed, the value of the expression is
returned to the caller as the value of the function call expression. If the expression
has a type different from the return type of the function in which it appears, the value
is converted as if by assignment to an object having the return type of the function.

If a return statement without an expression is executed, and the value of the function
call is used by the caller, the behavior is undefined.

115. Following the cont i n: label is a null statement.

116. The r et ur n statement is not an assignment. The overlap restriction of subclause 6.3.16.1 does
not apply to the case of function return.
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Examples
In:

struct s { double i; } f(void);

uni on {
struct {
int f1;
struct s f2;
}oul;
struct {
struct s f3;
int f4,
}ouz;
} oo
struct s f(void)
{
return g.ul.f?2;
}
[* .. *

g.u2.1f3 =1();

there is no undefined behavior.
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6.7 External definitions

Syntax
tranglation-unit:
external-declaration
trandation-unit external-declaration
external-declaration:
function-definition
declaration
Constraints

The storage-class specifiers aut o and r egi st er shall not appear in the declaration
specifiers in an external declaration.

There shall be no more than one externa definition for each identifier declared with
internal linkage in a trandation unit. Moreover, if an identifier declared with interna
linkage is used in an expression (other than as a part of the operand of a si zeof
operator), there shall be exactly one external definition for the identifier in the
tranglation unit.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a transation
unit, which consists of a sequence of external declarations. These are described as
““external’’ because they appear outside any function (and hence have file scope). As
discussed in 6.5, a declaration that also causes storage to be reserved for an object or a
function named by the identifier is a definition.

An external definition is an external declaration that is also a definition of a function
or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a si zeof operator), somewhere in the entire
program there shall be exactly one external definition for the identifier; otherwise,
there shall be no more than one.!'’

117. Thus, if an identifier declared with external linkage is not used in an expression, there need be no
external definition for it.
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6.7.1 Function definitions
Syntax

function-definition:
declaration-specifiers declarator declaration-listOlot compound-statement

Constraints

The identifier declared in a function definition (which is the name of the function)

shall have a function type, as specified by the declarator portion of the function
definition.®

The return type of a function shall be voi d or an object type other than array type.

The storage-class specifier, if any, in the declaration specifiers shall be either ext er n
orstatic.

If the declarator includes a parameter type list, the declaration of each parameter shall
include an identifier (except for the special case of a parameter list consisting of a
single parameter of type voi d, in which there shal not be an identifier). No
declaration list shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall
have at least one declarator, those declarators shall declare only identifiers from the
identifier list, and every identifier in the identifier list shall be declared. An identifier
declared as a typedef name shall not be redeclared as a parameter. The declarations in
the declaration list shall contain no storage-class specifier other than r egi st er and
no initializations.

118. The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); [ * type F is **function of no arguments returning i nt '’ */
Ff, g; /* f and g both have type compatible with F */
Ff{/* . *} /* WRONG: syntax/constraint error */

Fag() { /* .. * } /* WRONG: declares that g returns a function */

int f(void) { /* .. * } /* RIGHT: f has type compatible with F */

int g() { /* .. * } /* RIGHT: g has type compatible with F */

F *e(void) { /* .. * } /* e returns a pointer to a function */

F *((e))(void) { /* .. *l } [* same: parenthesesirrelevant */

int (*fp)(void); /* fp points to a function that has type F */

F *Fp; /* Fp points to a function that has type F */
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Semantics

The declarator in a function definition specifies the name of the function being defined
and the identifiers of its parameters. If the declarator includes a parameter type list,
the list also specifies the types of all the parameters; such a declarator also serves as a
function prototype for later calls to the same function in the same trandation unit. If
the declarator includes an identifier list,'*® the types of the parameters shall be
declared in a following declaration list.

If a function that accepts a variable number of arguments is defined without a
parameter type list that ends with the ellipsis notation, the behavior is undefined.

Each parameter has automatic storage duration. Its identifier is an Ivalue®® The
layout of the storage for parameters is unspecified.

On entry to the function all size expressions of its variably modified parameters are
evaluated, and the value of each argument expression shall be converted to the type of
its corresponding parameter, as if by assignment to the parameter. Array expressions
and function designators as arguments are converted to pointers before the call. A
declaration of a parameter as ‘‘array of type’’ shal be adjusted to ‘‘pointer to type,”
and a declaration of a parameter as ‘‘function returning type’’ shall be adjusted to
““pointer to function returning type,”’ asin 6.2.2.1. The resulting parameter type shall
be an object type.

After all parameters have been assigned, the compound statement that constitutes the
body of the function definition is executed.

If the} that terminates a function is reached, and the value of the function call is used
by the caller, the behavior is undefined.

Examples
1. In the following:

extern int max(int a, int b)

{
}

returna>b ? a: b;

119. See ‘‘future language directions’’ (6.9.4).

120. A parameter is in effect declared at the head of the compound statement that constitutes the
function body, and therefore may not be redeclared in the function body (except in an enclosed
block).
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extern is the storage-class specifier and int is the type specifier;
max(int a, int b) isthefunction declarator; and

{ returna>b ?a: b; }

is the function body. The following similar definition uses the identifier-list
form for the parameter declarations:

extern int max(a, b)
int a, b;

{
}

Here int a, b; is the declaration list for the parameters. The difference
between these two definitions is that the first form acts as a prototype
declaration that forces conversion of the arguments of subsequent calls to the
function, whereas the second form may not.

returna >b ? a: b;

To pass one function to another, one might say

int f(void);
[* ..
a(f);

Then the definition of g might read
void g(int (*funcp)(void))

{
[* .. *l (*funcp)() /* or funcp() .. */
}
or, equivalently,
void g(int func(void))
{
[* .. *] func() /* or (*func)() .. */
}

Language
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6.7.2 External object definitions
Semantics

If the declaration of an identifier for an object has file scope and an initiaizer, the
declaration is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer,
and without a storage-class specifier or with the storage-class specifier stati c,
constitutes a tentative definition. If a trandlation unit contains one or more tentative
definitions for an identifier, and the trandation unit contains no external definition for
that identifier, then the behavior is exactly as if the trandation unit contains a file
scope declaration of that identifier, with the composite type as of the end of the
tranglation unit, with an initializer equal to 0.

If the declaration of an identifier for an object is a tentative definition and has internal
linkage, the declared type shall not be an incomplete type.

Examples
1

int il = 1; /' | definition, external linkage
static int i2 = 2; [/ definition, internal linkage
extern int i3 = 3; [/ definition, external linkage
int id4,; /| tentative definition, external linkage
static int i5; /| tentative definition, internal linkage
int il; /1 valid tentative definition, refers to previous
int i2; /1 6.1.2.2 renders undefined, linkage disagreement
int i3; /1 valid tentative definition, refers to previous
int i4; /'] valid tentative definition, refers to previous
int ib5; /1 6.1.2.2 renders undefined, linkage disagreement
extern int i1, /'l refers to previous, whose linkage is external
extern int i2; /'l refers to previous, whose linkage is internal
extern int i3; /'l refers to previous, whose linkage is external
extern int i4; /'l refers to previous, whose linkage is external
extern int i5; /| refers to previous, whose linkage is internal

2. If a the end of the trandation unit containing
int i[];
the array 1 still has incomplete type, the array is assumed to have one element.
This element is initialized to zero on program startup.
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6.8 Preprocessing directives

Syntax
preprocessing-file:
groupOlot
group:
group-part
group group-part
group-part:
pp-tokensO i new-line
if-section
control-line
if-section:
if-group ellf-groupsopt else~groupopt endif-line
if-group:
#if constant-expression new-line group,, ot
# ifdef identifier new-line group,,
# i fndef identifier new-line groupopt
elif-groups:
elif-group
eif-groups €lif-group
elif-group:
#elif constant-expression new-line groupopt
else-group:
# el se new-line groupOlot
endif-line:
# endif new-line
154
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control-line:
# i ncl ude pp-tokens new-line
# define identifier replacement-list new-line
# define identifier lparen identifier-list . )
replacement-list new-line

# define identifier Iparen ... ) replacement-list new-line

# define identifier Iparen identifier-list , ... )
replacement-list new-line

# undef identifier new-line

# line pp-tokens new-line

# error pp-tokensOt new-line

# pragna pp-tokensOpt new-line

# new-line

[paren:
the left-parenthesis character without preceding white-space

replacement-list:

pp-tokens opt

pp-tokens:
preprocessing-token
pp-tokens  preprocessing-token

new-line:
the new-line character

Description

A preprocessing directive consists of a sequence of preprocessing tokens that begins
with a # preprocessing token that (at the start of trandation phase 4) is either the first
character in the source file (optionally after white space containing no new-line
characters) or that follows white space containing at least one new-line character, and
is ended by the next new-line character.®> A new-line character ends the
preprocessing directive even if it occurs within what would otherwise be an invocation
of a function-like macro.

121. Thus, preprocessing directives are commonly called ‘‘lines’”” These ‘‘lines’ have no other
syntactic significance, as al white space is equivalent except in certain situations during
preprocessing (see the # character string literal creation operator in 6.8.3.2, for example).
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Constraints

The only white-space characters that shall appear between preprocessing tokens within
a preprocessing directive (from just after the introducing # preprocessing token
through just before the terminating new-line character) are space and horizontal-tab
(including spaces that have replaced comments or possibly other white-space
characters in translation phase 3).

In the definition of an object-like macro, if the first character of a replacement list is
not a character required by subclause 5.2.1, then there shall be white-space separation
between the identifier and the replacement list.*??

Semantics

The implementation can process and skip sections of source files conditionally, include
other source files, and replace macros. These capabilities are called preprocessing,
because conceptually they occur before trandation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.

Examples
In:

#defi ne EMPTY
EMPTY # include <file. h>

the sequence of preprocessing tokens on the second line is not a preprocessing
directive, because it does not begin with a # at the start of trandation phase 4, even
though it will do so after the macro EMPTY has been replaced.

122. This alows an implementation to choose to interpret the directive:
#defi ne TH S$SAND$THAT(a, b) ((a) + (b))
as defining a function-like macro THI SSANDSTHAT, rather than an object-like macro THI S.
Whichever choice it makes, it must also issue a diagnostic.
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6.8.1 Conditional inclusion
Constraints

The expression that controls conditional incluson shall be an integer constant
expression except that: it shall not contain a cast; identifiers (including those lexically
identical to keywords) are interpreted as described below;?® and it may contain unary
operator expressions of the form

def i ned identifier
or
defined ( identifier )

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it
is predefined or if it has been the subject of a #defi ne preprocessing directive
without an intervening #undef directive with the same subject identifier), O if it is
not.

Semantics
Preprocessing directives of the forms

#if constant-expression new-line group,, .

# elif constant-expression new-line group,, ot

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will
become the controlling constant expression are replaced (except for those macro names
modified by the defi ned unary operator), just as in normal text. If the token
def i ned is generated as a result of this replacement process or use of the defi ned
unary operator does not match one of the two specified forms prior to macro
replacement, the behavior is undefined. After al replacements due to macro expansion
and the def i ned unary operator have been performed, al remaining identifiers are
replaced with the pp-number O, and then each preprocessing token is converted into a
token. The resulting tokens compose the controlling constant expression which is
evaluated according to the rules of 6.4, except that all signed integer types and all
unsigned integer types act as if they have the same representation as, respectively, the
types i nt max_t and ui nt max_t defined in the header <i nttypes. h>. This
includes interpreting character constants, which may involve converting escape
sequences into execution character set members. Whether the numeric value for these

123. Because the controlling constant expression is evaluated during tranglation phase 4, al identifiers
either are or are not macro names — there simply are no keywords, enumeration constants, etc.
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character constants matches the value obtained when an identical character constant
occurs in an expression (other than within a #if or #elif directive) is
implementation-defined.'?* Also, whether a single-character character constant may
have a negative value is implementation-defined.

Preprocessing directives of the forms

# ifdef identifier new-line group,,

# i fndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their
conditions are equivalent to #i f defi ned identifier and #i f ! defi ned identifier
respectively.

Each directive's condition is checked in order. If it evaluates to false (zero), the group
that it controls is skipped: directives are processed only through the name that
determines the directive in order to keep track of the level of nested conditionals; the
rest of the directives preprocessing tokens are ignored, as are the other preprocessing
tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and there is a
#el se directive, the group controlled by the #el se is processed; lacking a #el se
directive, al the groups until the #endi f are skipped.'?®®

Forward referencess. macro replacement (6.8.3), source file inclusion (6.8.2), largest
integer types (7.4.1.5).

124. Thus, the constant expression in the following #i f directive and i f statement is not guaranteed to
evaluate to the same value in these two contexts.

#if 'z - 'a == 25
if ("2 - 'a == 25)

125. As indicated by the syntax, a preprocessing token shall not follow a #el se or #endi f directive
before the terminating new-line character. However, comments may appear anywhere in a source
file, including within a preprocessing directive.
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6.8.2 Source file inclusion
Constraints

A #i ncl ude directive shall identify a header or source file that can be processed by
the implementation.

Semantics
A preprocessing directive of the form
# incl ude <h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely
by the specified sequence between the < and > delimiters, and causes the replacement
of that directive by the entire contents of the header. How the places are specified or
the header identified is implementation-defined.

A preprocessing directive of the form
# include "qg-char-sequence’ new-line

causes the replacement of that directive by the entire contents of the source file
identified by the specified sequence between the " delimiters. The named source file
is searched for in an implementation-defined manner. If this search is not supported,
or if the search fails, the directive is reprocessed as if it read

# incl ude <h-char-sequence> new-line

with the identical contained sequence (including > characters, if any) from the original
directive.

A preprocessing directive of the form
# i ncl ude pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens after i ncl ude in the directive are processed just as in normal text. (Each
identifier currently defined as a macro name is replaced by its replacement list of
preprocessing tokens.) The directive resulting after all replacements shall match one
of the two previous forms.*?® The method by which a sequence of preprocessing
tokens between a < and a > preprocessing token pair or a pair of " characters is
combined into a single header name preprocessing token is implementation-defined.

126. Note that adjacent string literals are not concatenated into a single string literal (see the trandlation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.
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The implementation shall provide unique mappings for sequences consisting of one or
more letters or digits (as defined in 5.2.1) followed by a period (. ) and a single letter.
The first character shall be a letter. The implementation may ignore the distinctions of
alphabetical case and restrict the mapping to eight significant characters before the
period.

A #i ncl ude preprocessing directive may appear in a source file that has been read
because of a #i ncl ude directive in another file, up to an implementation-defined
nesting limit (see 5.2.4.1).

Examples

1. The most common uses of #i ncl ude preprocessing directives are as in the
following:

#i ncl ude <stdio. h>
#i ncl ude "nyprog. h"

2. This illustrates macro-replaced #i ncl ude directives:

#1f VERSI ON ==
#define I NCFILE "versl.h"
#elif VERSI ON ==
#define I NCFILE "vers2.h" /] and so on
#el se
#define I NCFILE "versN. h"
#endi f
#i ncl ude | NCFI LE

Forward references: macro replacement (6.8.3).
6.8.3 Macro replacement
Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have
the same number, ordering, spelling, and white-space separation, where all white-space
separations are considered identical.

An identifier currently defined as a macro without use of Iparen (an object-like macro)
shall not be redefined by another #def i ne preprocessing directive unless the second
definition is an object-like macro definition and the two replacement lists are identical.

An identifier currently defined as a macro using Iparen (a function-like macro) shall
not be redefined by another #defi ne preprocessing directive unless the second
definition is a function-like macro definition that has the same number and spelling of
parameters, and the two replacement lists are identical.
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If the identifier-list in the macro definition does not end with an ellipsis, the number of
arguments, including those arguments consisting of no preprocessing tokens, in an
invocation of a function-like macro shall agree with the number of parameters in the
macro definition. Otherwise, there shall be more arguments in the invocation than
there are parameters in the macro definition (excluding the . . . ). There shal exist a
) preprocessing token that terminates the invocation.

The identifier _ VA ARGS__ shall only occur in the replacement-list of a #def i ne
preprocessing directive using the ellipsis notation in the arguments.

A parameter identifier in a function-like macro shall be uniquely declared within its
scope.

Semantics

The identifier immediately following the def i ne is called the macro name. There is
one name space for macro names. Any white-space characters preceding or following
the replacement list of preprocessing tokens are not considered part of the replacement
list for either form of macro.

If a # preprocessing token, followed by an identifier, occurs lexically at the point at
which a preprocessing directive could begin, the identifier is not subject to macro
replacement.

A preprocessing directive of the form
# defi ne identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro
name?’ to be replaced by the replacement list of preprocessing tokens that constitute
the remainder of the directive. The replacement list is then rescanned for more macro
names as specified below.

A preprocessing directive of the form

# defi ne identifier Iparen identifier-listOt ) replacement-list new-line
# defi ne identifier lparen ... ) replacement-list new-line
# define identifier Iparen identifier-list , ... ) replacement-list new-line

defines a function-like macro with arguments, similar syntactically to a function call.
The parameters are specified by the optional list of identifiers, whose scope extends

127. Since, by macro-replacement time, all character constants and string literals are preprocessing
tokens, not sequences possibly containing identifier-like subsequences (see 5.1.1.2, trandation
phases), they are never scanned for macro names or parameters.

L anguage 161



11

12

Working Draft, 1997-11-21, WG14/N794 J11/97-158

from their declaration in the identifier list until the new-line character that terminates
the #def i ne preprocessing directive. Each subsequent instance of the function-like
macro name followed by a ( as the next preprocessing token introduces the sequence
of preprocessing tokens that is replaced by the replacement list in the definition (an
invocation of the macro). The replaced sequence of preprocessing tokens is terminated
by the matching ) preprocessing token, skipping intervening matched pairs of left and
right parenthesis preprocessing tokens. Within the sequence of preprocessing tokens
making up an invocation of a function-like macro, new-line is considered a normal
white-space character.

The sequence of preprocessing tokens bounded by the outside-most matching
parentheses forms the list of arguments for the function-like macro. The individual
arguments within the list are separated by comma preprocessing tokens, but comma
preprocessing tokens between matching inner parentheses do not separate arguments.
If there are sequences of preprocessing tokens within the list of arguments that would
otherwise act as preprocessing directives, the behavior is undefined.

If there is a ... in the identifier-list in the macro definition, then the trailing
arguments, including any separating comma preprocessing tokens, are merged to form
a single item: the variable arguments. The number of arguments so combined is such
that, following merger, the number of arguments is one more than the number of
parameters in the macro definition (excluding the . . .).

6.8.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless
preceded by a # or ## preprocessing token or followed by a ## preprocessing token
(see below), is replaced by the corresponding argument after all macros contained
therein have been expanded. Before being substituted, each argument’s preprocessing
tokens are completely macro replaced as if they formed the rest of the preprocessing
file; no other preprocessing tokens are available.

An identifier _ VA ARGS__ that occurs in the replacement list shall be treated as if
it were a parameter, and the variable arguments shall form the preprocessing tokens
used to replace it.

6.8.3.2 The# operator
Constraints

Each # preprocessing token in the replacement list for a function-like macro shall be
followed by a parameter as the next preprocessing token in the replacement list.
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Semantics

If, in the replacement list, a parameter is immediately preceded by a # preprocessing
token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding
argument. Each occurrence of white space between the argument’s preprocessing
tokens becomes a single space character in the character string literal. White space
before the first preprocessing token and after the last preprocessing token comprising
the argument is deleted. Otherwise, the original spelling of each preprocessing token
in the argument is retained in the character string literal, except for special handling
for producing the spelling of string literals and character constants: a \ character is
inserted before each " and \ character of a character constant or string litera
(including the delimiting " characters). If the replacement that results is not a valid
character string literal, the behavior is undefined. The character string literal
corresponding to an empty argument is "". The order of evaluation of # and ##
operators is unspecified.

6.8.3.3 The ## operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a
replacement list for either form of macro definition.

Semantics

If, in the replacement list, a parameter is immediately preceded or followed by a ##
preprocessing token, the parameter is replaced by the corresponding argument’s
preprocessing token sequence; however, if an argument consists of no preprocessing
tokens, the parameter is replaced by a placemarker preprocessing token instead.

For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instance of a ## preprocessing
token in the replacement list (not from an argument) is deleted and the preceding
preprocessing token is concatenated with the following preprocessing token
(placemarker preprocessing tokens are handled specialy: concatenation of two
placemarkers results in a single placemarker preprocessing token; concatenation of a
placemarker with a non—placemarker preprocessing token results in the
non—placemarker preprocessing token). If the result is not a valid preprocessing
token, the behavior is undefined. The resulting token is available for further macro
replacement. The order of evaluation of ## operators is unspecified.
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Examples

#define hash_hash # ## #

#define nkstr(a) # a

#define in_between(a) nkstr(a)

#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalentto
[l char p[] = "x ## y";

The expansion produces, at various stages.
join(x, )
i n_between(x hash_hash vy)
i n_between(x ## vy)

nkstr(x ## y)

"X ## y"

In other words, expanding hash_hash produces a new token, consisting of two
adjacent sharp signs, but this new token is not the catenation operator.

6.8.3.4 Rescanning and further replacement

After all parameters in the replacement list have been substituted and # and ##
processing has taken place, all placemarker preprocessing tokens are removed, then the
resulting preprocessing token sequence is rescanned with all subsequent preprocessing
tokens of the source file for more macro names to replace.

If the name of the macro being replaced is found during this scan of the replacement
list (not including the rest of the source file's preprocessing tokens), it is not replaced.
Further, if any nested replacements encounter the name of the macro being replaced, it
is not replaced. These nonreplaced macro name preprocessing tokens are no longer
available for further replacement even if they are later (re)examined in contexts in
which that macro name preprocessing token would otherwise have been replaced.

The resulting completely macro-replaced preprocessing token seguence is not
processed as a preprocessing directive even if it resembles one, but all pragma unary
operator expressions within it are then processed as specified in 6.8.9 below.
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6.8.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding
#undef directive is encountered or (if none is encountered) until the end of
trandation phase 4.

2 A preprocessing directive of the form
# undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored
if the specified identifier is not currently defined as a macro name.

Examples
3 1. The simplest use of this facility is to define a ‘*manifest constant,”” as in
#defi ne TABSI ZE 100
i nt tabl e[ TABSI ZE] ;

2. The following defines a function-like macro whose value is the maximum of its
arguments. It has the advantages of working for any compatible types of the
arguments and of generating in-line code without the overhead of function
caling. It has the disadvantages of evaluating one or the other of its arguments
a second time (including side effects) and generating more code than a function
if invoked several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are
bound properly.

3. Toillustrate the rules for redefinition and reexamination, the sequence
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#define x 3
#define f(a) f(x * (a))
#undef X

#define x 2
#define g f
#define z z[ O]
#define h a(~
#define m(a) a(w
#define w 0,1
#define t(a) a
#defi ne p() i nt

#define q(x) X
#define r(x,y) x ## vy
#define str(x) # x

F(y+1) + £(f(2)) %t(t(9)(0) + t)(1);

g(x+(3,4)-w) | h 5) &m
(f)~m(m;

p() i[a()] ={ a(1), r(2,3), r(4,),
char c[2][6] ={ str(hello), str() };

results in

F(z > (y+1)) + f(2 > (f(2* (z[0]))))

r(.5, r(,) };

%f(2 * (0)) + t(1);

f(2* (2+(3,4)-0,1)) | f(2* (~5)) &f(2* (0,1))"m0,1);

int i[] ={ 1, 23, 4, 5 };

char c[2][6] ={ "hello", "" };

4. To illustrate the rules for creating character string literals and concatenating

tokens, the sequence
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#define str(s) # s
#define xstr(s) str(s)
#defi ne debug(s, t) printf("x" #s "=9%, x" #t "= %", \

X ## s, X ## t)
#define I NCFI LE(n) vers ## n // from previous#i ncl ude example
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)

#defi ne H GHLOW "hel | 0"
#defi ne LOW Low", world"
debug(1, 2);

fputs(str(strncnp(”abc\0d", "abc", "\4’) // thisgoesaway
== 0) str(: @n), s);

#i ncl ude xstr (1 NCFI LE(2). h)

glue(HHGH, LOW;

xgl ue(H GH, LOW

results in

printf("x" "1" "= 9d, x" "2" "= 8", x1, x2);

f put s(
"strncnp(\"abc\\0d\", \"abc\", "\\4) == 0" ": @n",
s);

#i ncl ude "vers2. h" (after macro replacement, before file access)

"hel | 0";

“"hello" ", world"

or, after concatenation of the character string literals,

printf("xl= %, x2= %", x1, Xx2);

f put s(
"strncnp(\"abc\\0d\", \"abc\", '\\4) == 0. @n",
s);
#i ncl ude "vers2. h" (after macro replacement, before file access)
"hel |l o";

“hell o, world"
Space around the # and ## tokens in the macro definition is optional.
5. To illustrate the rules for
placemarker ## placemarker

the sequence
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#define t(Xx,y,z) X ## vy ## z
int j[] ={ t(1,2,3), t(,4,5), t(6,,7), t(8,9,),
t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[] ={ 123, 45, 67, 89,
10, 11, 12, };

6. To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE [ * white space */ (1-1) /* other */
#defi ne FUNC LI KE(a) (a)
#define FUNC LIKE( a )( / * note the white space */ \
a /* other stuff on this line
* [ )

But the following redefinitions are invalid:
#define OBJ_LIKE (0) [ * different token sequence */
#define OBJ_LIKE (1 - 1) /* different white space */
#define FUNC LIKE(b) ( a ) [/* different parameter usage */
#define FUNC LIKE(b) ( b ) /* different parameter spelling */

7. Finally, to show the variable argument list macro facilities:

#defi ne debug(...) fprintf(stderr, _ VA ARGS )
#define showist(...) puts(#_ _VA ARGS )
#define report(test, ...) ((test)?puts(#test):\

printf(__VA ARGS_ ))
debug("Fl ag");
debug("X = %\ n", Xx);
show i st (The first, second, and third itens.);
report(x>y, "x is % but y is %", x, y);

results in
fprintf(stderr, "Flag" );
fprintf(stderr, "X =29%\n", x );
puts( "The first, second, and third itens." );

((x>y) ?put s("x>y"):
printf("x is %l but y is %", x, y));
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6.8.4 Line control

Constraints

The string literal of a #l i ne directive, if present, shall be a character string literal.
Semantics

The line number of the current source line is one greater than the number of new-line
characters read or introduced in trandation phase 1 (5.1.1.2) while processing the
source file to the current token.

A preprocessing directive of the form
# | i ne digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines
begins with a source line that has a line number as specified by the digit sequence
(interpreted as a decimal integer). The digit sequence shall not specify zero, nor a
number greater than 2147483647.

A preprocessing directive of the form

# | i ne digit-sequence " s-char-sequence_ " new-line

opt
sets the line number similarly and changes the presumed name of the source file to be
the contents of the character string literal.
A preprocessing directive of the form
# |ine pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens after | i ne on the directive are processed just as in normal text (each identifier
currently defined as a macro name is replaced by its replacement list of preprocessing
tokens). The directive resulting after al replacements shall match one of the two
previous forms and is then processed as appropriate.

6.8.5 Error directive

Semantics

A preprocessing directive of the form
# error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified
sequence of preprocessing tokens.
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6.8.6 Pragma directive

Semantics

A preprocessing directive of the form
# pragna pp-tokensOlot new-line

where the preprocessing token STDC does not immediately follow the pr agma on the
directive causes the implementation to behave in a manner which it shall document.
The behavior might cause trandlation to fail or the resulting program to behave in a
non-conforming manner. Any such pragna that is not recognized by the
implementation is ignored.

If the preprocessing token STDC does immediately follow the pragma on the
directive, then no macro replacements are performed on the directive, and the directive
shall have one of the following forms whose meaning is described elsewhere:

#pragma STDC FP_CONTRACT on-off-switch
#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC CX LI M TED RANGE on-off-switch

on-off-switch: one of
ON OFF DEFAULT

Forward references. the FP_CONTRACT pragma (7.7.2), the FENV_ACCESS pragma
(7.6.1), the CX_LI M TED_RANGE pragma (7.8.1).

6.8.7 Null directive
Semantics
A preprocessing directive of the form
# new-line
has no effect.
6.8.8 Predefined macro names
The following macro names shall be defined by the implementation:
__LINE__ The line number of the current source line (a decimal constant).
__FILE__ The presumed name of the source file (a character string literal).

__DATE_ _ The date of trandation of the source file (a character string literal of the
form " Mmm dd yyyy", where the names of the months are the same as
those generated by the asct i nme function, and the first character of dd
is a gpace character if the value is less than 10). If the date of
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trandation is not available, an implementation-defined valid date shall be
supplied.

TI ME The time of trandation of the source file (a character string literal of the
form " hh: nm ss" asin the time generated by the asct i me function).
If the time of trandation is not available, an implementation-defined
valid time shall be supplied.

_STDC The decimal constant 1, intended to indicate a conforming
implementation.

__STDC VERSI ON__ The decimal constant 199901L.*%8

The following macro names are conditionally defined by the implementation:
1912.nr:c Ou+000m’ unu

__STDC | EC 559  The decima constant 1, intended to indicate conformance to
the specifications in Annex F (IEC 559 floating-point arithmetic).

__STDC | EC 559 COWMPLEX _ The decima constant 1, intended to indicate
adherence to the specifications in informative Annex G (IEC 559 compatible complex
arithmetic).

The values of the predefined macros (except for _ _LINE__and __FILE__) reman
constant throughout the translation unit.

None of these macro names, nor the identifier def i ned, shall be the subject of a
#defi ne or a #undef preprocessing directive. All predefined macro names shall
begin with a leading underscore followed by an uppercase letter or a second
underscore.

Forward references: the asct i me function (7.16.3.1).

128. The value in ISO/IEC 9899:1994 was 199409L.
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6.8.9 Pragma operator

Semantics

A unary operator expression of the form:
_Pragma ( string-literal )

is processed as follows. The string-literal is destringized by deleting the L prefix, if
present, deleting the leading and trailing double-quotes, replacing each escape
sequence \ " by a double-quote, and replacing each escape sequence \\ by a single
backslash. The resulting sequence of characters is processed through trandation phase
3 to produce preprocessing tokens that are executed as if they were the pp-tokens in a
pragma directive. The original four preprocessing tokens in the unary operator
expression are removed.

Examples
A directive of the form:

#pragma list on "..\listing.dir"
can also be expressed as:
_Pragma ( "listing on \".. \\listing.dir\"" )

The latter form is processed in the same way whether it appears literally as shown, or
results from macro replacement, as in:

#def i ne LI STI NG x) PRAGVA(listing on #x)
#defi ne PRAGVA(X) _Pragnma(#x)

LISTING ( ..\listing.dir )
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6.9 Future language directions
6.9.1 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other
characters may be used in extensions.

6.9.2 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the
declaration specifiers in a declaration is an obsolescent feature.

6.9.3 Function declarators

The use of function declarators with empty parentheses (not prototype-format
parameter type declarators) is an obsolescent feature.

6.9.4 Function definitions

The use of function definitions with separate parameter identifier and declaration lists
(not prototype-format parameter type and identifier declarators) is an obsolescent
feature.

6.9.5 Pragma directives

Pragmas whose first pp-token is STDC are reserved for future standardization.
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7. Library

7.1 Introduction
7.1.1 Definitions of terms

A string is a contiguous sequence of characters terminated by and including the first
null character. A ‘‘pointer to’’ a string is a pointer to its initial (lowest addressed)
character. The *‘length’’ of a string is the number of characters preceding the null
character and its ‘‘value’’ is the sequence of the values of the contained characters, in
order.

A letter is a printing character in the execution character set corresponding to any of
the 52 required lowercase and uppercase letters in the source character set, listed in
5.2.1.

The decimal-point character is the character used by functions that convert floating-
point numbers to or from character sequences to denote the beginning of the fractional
part of such character sequences.!®® It is represented in the text and examples by a
period, but may be changed by the set | ocal e function.

A wide character is a code value (a binary encoded integer) of an object of type
wchar _t that corresponds to a member of the extended character set.!®

A null wide character is a wide character with code value zero.

A wide string is a contiguous sequence of wide characters terminated by and including
the first null wide character. A pointer to a wide string is a pointer to its initial
(lowest addressed) wide character. The length of a wide string is the number of wide
characters preceding the null wide character and the value of a wide string is the
sequence of code values of the contained wide characters, in order.

A shift sequence is a contiguous sequence of bytes within a multibyte string that
(potentially) causes a change in shift state. (See subclause 5.2.1.2.) A shift sequence
shall not have a corresponding wide character; it is instead taken to be an adjunct to

129. The functions that make use of the decimal-point character are at of , fprintf, fscanf,
fworintf, fwscanf, |ocaleconv, printf, scanf, sprintf, sscanf, strtod,
swprintf, swscanf, vfprintf, viscanf, viwprintf, vfwscanf, vprintf, vscanf,
vsprintf, vsscanf, vswprintf, vswscanf, vwprintf, vwscanf, wprintf, and
wscanf .

130. An equivalent definition can be found in subclause 6.1.3.4.
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an adjacent multibyte character.'3!
Forward references. character handling (7.3), the set | ocal e function (7.5.1.1).
7.1.2 Standard headers

Each library function is declared, with a type that includes a prototype, in a header '3
whose contents are made available by the #i ncl ude preprocessing directive. The
header declares a set of related functions, plus any necessary types and additional
macros needed to facilitate their use. Declarations of types described in this clause
shall not include type qualifiers, unless explicity stated otherwise.

The standard headers are

<assert. h> <conpl ex. h> <ctype. h>
<errno. h> <fenv. h> <fl oat. h>
<inttypes. h> <i S0646. h> <limts.h>
<l ocal e. h> <mat h. h> <setjnp. h>
<si gnal . h> <stdarg. h> <st dbool . h>
<st ddef . h> <stdi 0. h> <stdlib. h>
<string. h> <t gmat h. h> <tinme. h>
<wchar . h> <wct ype. h>

If a file with the same name as one of the above < and > delimited sequences, not
provided as part of the implementation, is placed in any of the standard places for a
source file to be included, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once
in a given scope, with no effect different from being included only once, except that
the effect of including <assert. h> depends on the definition of NDEBUG. If used,
a header shall be included outside of any external declaration or definition, and it shall
first be included before the first reference to any of the functions or objects it declares,
or to any of the types or macros it defines. However, if an identifier is declared or
defined in more than one header, the second and subsequent associated headers may be
included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the

131. For state-dependent encodings, the values for MB_CUR_MAX and MB_LEN MAX must thus be large
enough to count all the bytes in any complete multibyte character plus at least one adjacent shift
sequence of maximum length. Whether these counts provide for more than one shift sequence is the
implementation’s choice.

132. A header is not necessarily a source file, nor are the < and > delimited sequences in header names
necessarily valid source file names.
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inclusion.

Any definition of an object-like macro described in this clause shall expand to code
that is fully protected by parentheses where necessary, so that it groups in an arbitrary
expression as if it were a single identifier.

Any declaration of a library function shall have externa linkage.
Forward references. diagnostics (7.2).
7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and
optionally declares or defines identifiers listed in its associated future library directions
subclause and identifiers which are aways reserved either for any use or for use as file
scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or
another underscore are always reserved for any use.

— All identifiers that begin with an underscore are always reserved for use as macros
and as identifiers with file scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library
directions) is reserved for use as specified if any of its associated headers is
included; unless explicitly stated otherwise (see 7.1.8).

— All identifiers with external linkage in any of the following subclauses (including
the future library directions) are always reserved for use as identifiers with external
linkage. 132

— Each identifier with file scope listed in any of the following subclauses (including
the future library directions) is reserved for use as macro and as an identifier with
file scope in the same name space if any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier that
is reserved in that context (other than as allowed by 7.1.8), the behavior is
undefined.t3*

133. The list of reserved identifiers with external linkage includes er r no, setj np, and va_end.

134. Since macro names are replaced whenever found, independent of scope and name space, macro
names matching any of the reserved identifier names must not be defined if an associated header, if
any, is included.
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If the program removes (with #undef) any macro definition of an identifier in the
first group listed above, the behavior is undefined.

7.1.4 Errors<errno. h>

The header <err no. h> defines several macros, al relating to the reporting of error
conditions.

The macros are

EDOM
El LSEQ
ERANGE

which expand to integer constant expressions with type i nt, distinct positive values,
and which are suitable for use in #i f preprocessing directives, and

errno

which expands to a modifiable lvalue™ that has type i nt , the value of which is set to
a positive error number by severa library functions. It is unspecified whether er r no
is a macro or an identifier declared with externa linkage. If a macro definition is
suppressed in order to access an actual object, or a program defines an identifier with
the name er r no, the behavior is undefined.

The value of err no is zero at program startup, but is never set to zero by any library
function.'® The value of errno may be set to nonzero by a library function call
whether or not there is an error, provided the use of er r no is not documented in the
description of the function in this International Standard.

Additional macro definitions, beginning with E and a digit or E and an uppercase
letter, 3" may also be specified by the implementation.

135. The macro er r no need not be the identifier of an object. It might expand to a modifiable lvalue
resulting from a function call (for example, *errno()).

136. Thus, a program that uses er r no for error checking should set it to zero before a library function
call, then inspect it before a subsequent library function call. Of course, a library function can save
the value of errno on entry and then set it to zero, as long as the original value is restored if
errno’svaueis till zero just before the return.

137. See ‘‘future library directions” (7.20.1).
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715 Limits<float.h>and<limts. h>

The headers <fl oat . h> and <l i m ts. h> define several macros that expand to
various limits and parameters.

The macros, their meanings, and the constraints (or restrictions) on their values are
listed in 5.2.4.2.

7.1.6 Common definitions <st ddef . h>

The following types and macros are defined in the standard header <st ddef. h>.
Some are also defined in other headers, as noted in their respective subclauses.

The types are
ptrdiff _t

which is the signed integer type of the result of subtracting two pointers;
size_t

which is the unsigned integer type of the result of the si zeof operator; and
wchar t

which is an integer type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the supported locales;
the null character shall have the code value zero and each member of the basic
character set defined in 5.2.1 shall have a code value equal to its value when used as
the lone character in an integer character constant.

The macros are
NULL

which expands to an implementation-defined null pointer constant; and
of f set of (type, member-designator)

which expands to an integer constant expression that has type si ze_t, the value of
which is the offset in bytes, to the structure member (designated by member-
designator), from the beginning of its structure (designated by type). The member-
designator shall be such that given

static type t;

then the expression &( t . member-designator) evaluates to an address constant. (If the
specified member is a bit-field, the behavior is undefined.)
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Forward references: localization (7.5).
7.1.7 Boolean type and values <st dbool . h>
The header <st dbool . h> defines one type and three macros.
The type is
bool

which is an integer type that promotes to i nt or unsigned int, and that is
suitable to be used as the type of a bit-field. A bit-field of any width and type bool
shall be capable for representing the value 1.1%

The macros are
true

which expands to the decimal constant 1,
fal se

which expands to the decimal constant O, and
__bool true fal se_are_defined

which expands to the decima constant 1. The macros are suitable for use in #i f
preprocessing directives.

138. The traditional choice for type bool has been int, but this is not a requirement of this
International Standard. Other available choices include, but are not limited to, char, unsi gned
i nt, and an enumeration type.

If an enumeration type is chosen, the names of its true and false members are "masked" by the
macrost r ue and f al se, but the member names might be available to the debugger:

typedef enum{ fal se=0, true=1 } bool;
#define false O
#define true 1

The type is suitable for bit-fields if it is i nt, unsi gned int, signed int, or some type
allowed by an implementation extension. It is required that a bool bit-field of width 1 be
unsi gned. Thus, bool cannot be si gned i nt, nor can it be plain i nt if width 1 plain i nt
bit-fields are si gned.
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7.1.8 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the
detailed descriptions that follow. If an argument to a function has an invalid value
(such as a value outside the domain of the function, or a pointer outside the address
gpace of the program, or a null pointer) or a type (after promotion) not expected by a
function with variable number of arguments, the behavior is undefined. If a function
argument is described as being an array, the pointer actually passed to the function
shall have a value such that all address computations and accesses to objects (that
would be valid if the pointer did point to the first element of such an array) are in fact
valid. Any function declared in a header may be additionally implemented as a
function-like macro defined in the header, so if a library function is declared explicitly
when its header is included, one of the techniques shown below can be used to ensure
the declaration is not affected by such a macro. Any macro definition of a function
can be suppressed locally by enclosing the name of the function in parentheses,
because the name is then not followed by the left parenthesis that indicates expansion
of a macro function name. For the same syntactic reason, it is permitted to take the
address of a library function even if it is also defined as a macro.'®*® The use of
#undef to remove any macro definition will also ensure that an actual function is
referred to. Any invocation of a library function that is implemented as a macro shall
expand to code that evaluates each of its arguments exactly once, fully protected by
parentheses where necessary, so it is generaly safe to use arbitrary expressions as
arguments.!®©  Likewise, those function-like macros described in the following
subclauses may be invoked in an expression anywhere a function with a compatible
return type could be called.’** All object-like macros listed as expanding to integer

139. This means that an implementation must provide an actual function for each library function, even
if it also provides a macro for that function.

140. Such macros might not contain the sequence points that the corresponding function calls do.

141. Because external identifiers and some macro names beginning with an underscore are reserved,
implementations may provide special semantics for such names. For example, the identifier
_BUI LTI N_abs could be used to indicate generation of in-line code for the abs function. Thus,
the appropriate header could specify

#def i ne abs(x) _BU LTI N abs(x)
for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a
genuine function may write

#undef abs

whether the implementation’s header provides a macro implementation of abs or a built-in
implementation. The prototype for the function, which precedes and is hidden by any macro
definition, is thereby revealed also.
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constant expressions shall additionally be suitable for use in #if preprocessing
directives.

Provided that a library function can be declared without reference to any type defined
in a header, it is also permissible to declare the function and use it without including
its associated header.

There is a sequence point immediately before a library function return.

The functions in the standard library are not guaranteed to be reentrant and may
modify objects with static storage duration.#?

Examples
The function at oi may be used in any of several ways:
— by use of its associated header (possibly generating a macro expansion)

#i ncl ude <stdlib. h>
const char *str;

[* ... %]

i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#i nclude <stdlib. h>
#undef at oi
const char *str;
[* ... *
i = atoi(str);
or
#i nclude <stdlib. h>
const char *str;
[* .. *
i = (atoi)(str);

— by explicit declaration

142. Thus, a signa handler cannot, in general, call standard library functions.

Library 181



Working Draft, 1997-11-21, WG14/N794 J11/97-158

182

extern int atoi(const char *);
const char *str;

[* ]

i = atoi(str);
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7.2 Diagnostics <assert. h>
The header <assert . h> defines the assert macro and refers to another macro,
NDEBUG

which is not defined by <assert. h>. If NDEBUG is defined as a macro name at the
point in the source file where <assert. h> is included, the assert macro is
defined simply as

#define assert(ignore) ((void)O0)

The assert macro shall be implemented as a macro, not as an actua function. If
the macro definition is suppressed in order to access an actual function, the behavior is
undefined.

7.2.1 Program diagnostics
7.21.1 Theassert macro
Synopsis

#i ncl ude <assert. h>
voi d assert(int expression);

Description

The assert macro puts diagnostic tests into programs. When it is executed, if
expression is fase (that is, compares equal to 0), the assert macro writes
information about the particular call that failed (including the text of the argument, the
name of the source file, and the source line number — the latter are respectively the
values of the preprocessing macros __FILE__ and _ _LINE__ and the identifier
__func__) on the standard error file in an implementation-defined format.'*3 It
then calls the abor t function.

Returns

The assert macro returns no value.

143. The message written might be of the form
Assertion failed: expression, function abc, file xyz, line nnn
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Forward references: the abort function (7.14.4.1).
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7.3 Character handling <ct ype. h>

The header <ct ype. h> declares several functions useful for testing and mapping
characters.* In all cases the argument is an i nt, the value of which shall be
representable as an unsi gned char or shall equal the value of the macro ECF. If
the argument has any other value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that
have local e-specific aspects only when not in the " C' locale are noted below.

The term printing character refers to a member of a locale-specific set of characters,
each of which occupies one printing position on a display device; the term control
character refers to a member of a locale-specific set of characters that are not printing
characters.}*®

Forward referencess ECF (7.13.1), localization (7.5).
7.3.1 Character testing functions

The functions in this subclause return nonzero (true) if and only if the value of the
argument ¢ conforms to that in the description of the function.

7.3.1.1 Thei sal numfunction

Synopsis

#i ncl ude <ctype. h>
int isalnumint c);

Description

The i sal num function tests for any character for which i sal pha or i sdigit is
true.

144. See ‘‘future library directions” (7.20.2).

145. In an implementation that uses the seven-bit ASCII character set, the printing characters are those
whose values lie from 0x20 (space) through Ox7E (tilde); the control characters are those whose
values lie from 0 (NUL) through Ox1F (US), and the character Ox7F (DEL).
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7.3.1.2 Thei sal pha function

Synopsis

#i ncl ude <ctype. h>
int isalpha(int c);

Description

The i sal pha function tests for any character for which i supper or i sl ower is
true, or any character that is one of a locale-specific set of characters for which none
of iscntrl, isdigit, i spunct, or i sspace is true!® In the "C' locale,
i sal pha returns true only for the characters for which i supper or i sl ower is
true.

7.3.1.3 Thei sbl ank function
Synopsis

#i ncl ude <ctype. h>
int isblank(int c);

Description

The i sbl ank function tests for any character for that is a standard blank character or
is one of a locale-specific set of characters, for which i sal numis false. The standard
blank characters are the following: space (" '), and horizontal tab (" \t’ ). In the
"C' locae, i sbl ank returns true only for the standard blank characters.

7.3.1.4 Theiscntrl function
Synopsis

#i ncl ude <ctype. h>
int iscntrl(int c);

Description

Thei scntrl function tests for any control character.

146. The functions i sl ower and i supper test true or false separately for each of these additional
characters; al four combinations are possible.
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7.3.1.5 Thei sdi git function

Synopsis

#i ncl ude <ctype. h>
int isdigit(int c);

Description

Thei sdi gi t function tests for any decimal-digit character (as defined in 5.2.1).
7.3.1.6 Thei sgraph function

Synopsis

#i ncl ude <ctype. h>
int isgraph(int c);

Description

The i sgr aph function tests for any printing character except space (" ' ).
7.3.1.7 Thei sl ower function

Synopsis

#i ncl ude <ctype. h>
int islower(int c);

Description

The i sl ower function tests for any character that is a lowercase letter or is one of a
locale-specific set of characters for which none of i scntrl, isdigit, ispunct,
ori sspace istrue. Inthe"C' locae, i sl ower returns true only for the characters
defined as lowercase letters (as defined in 5.2.1).

7.3.1.8 Thei sprint function
Synopsis

#i ncl ude <ctype. h>
int isprint(int c);

Description

Thei spri nt function tests for any printing character including space (* ' ).
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7.3.1.9 Thei spunct function

Synopsis

#i ncl ude <ctype. h>
int ispunct(int c);

Description

The i spunct function tests for any printing character that is one of a locale-specific
set of characters for which neither i sspace nor i sal numis true.

7.3.1.10 Thei sspace function
Synopsis

#i ncl ude <ctype. h>
int isspace(int c);

Description

The i sspace function tests for any character that is a standard white-space character
or is one of a locale-specific set of characters for which i sal numis fase. The
standard white-space characters are the following: space ( '), form feed (" \f'),
new-line (' \'n’), carriage return (' \r’ ), horizontal tab (" \t’), and vertica tab
C\v’'). Inthe "C" locale, i sspace returns true only for the standard white-space
characters.

7.3.1.11 Thei supper function
Synopsis

#i ncl ude <ctype. h>
int isupper(int c);

Description

The i supper function tests for any character that is an uppercase letter or is one of a
locale-specific set of characters for which none of i scntrl, isdigit, ispunct,
or i sspace istrue. Inthe" C" locae, i supper returns true only for the characters
defined as uppercase letters (as defined in 5.2.1).

7.3.1.12 Thei sxdi git function
Synopsis

#i ncl ude <ctype. h>
int isxdigit(int c);
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Description

The i sxdi git function tests for any hexadecimal-digit character (as defined in
6.1.3.1).

7.3.2 Character case mapping functions
7.3.21 Thet ol ower function
Synopsis

#i ncl ude <ctype. h>
int tolower(int c);

Description

The t ol ower function converts an uppercase letter to a corresponding lowercase
letter.

Returns

If the argument is a character for which i supper is true and there are one or more
corresponding characters, as specified by the current locale, for which i sl ower is
true, the t ol ower function returns one of the corresponding characters (always the
same one for any given locale); otherwise, the argument is returned unchanged.

7.3.2.2 Thet oupper function
Synopsis

#i ncl ude <ctype. h>
int toupper(int c);

Description
The t oupper function converts a lowercase letter to a corresponding uppercase |etter.
Returns

If the argument is a character for which i sl ower is true and there are one or more
corresponding characters, as specified by the current locale, for which i supper is
true, the t oupper function returns one of the corresponding characters (always the
same one for any given locale); otherwise, the argument is returned unchanged.
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7.4 Integer types<i nttypes. h>

The header <i nttypes. h> defines sets of typedef names for integer types having
specified widths, and defines corresponding sets of macros. It aso defines macros that
specify limits of integer types corresponding to typedef names defined in other
standard headers, and declares four functions for converting numeric character strings
to greatest-width integers.

Typedef names are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;
— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these typedef names may denote the same type.)

Corresponding macros specify limits of the defined types, construct suitable character
constants, and provide conversion specifiers for use with the formatted input/output
functions.

For each typedef name described herein that can be defined as a type existing in the
implementation, !4’ <i nt t ypes. h> shall define that typedef name, and it shall define
the associated macros. Conversely, for each typedef name described herein that cannot
be defined as a type existing in the implementation, <i nt t ypes. h> shall not define
that typedef name, nor shall it define the associated macros.

7.4.1 Typedef names for integer types

When typedef names differing only in the absence or presence of the initial u are
defined, they shall denote corresponding signed and unsigned types as described in
subclause 6.1.2.5.

147. Some of these typedef names may denote implementation-defined extended integer types.
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7.4.1.1 Exact-width integer types

Each of the following typedef names designates an integer type that has exactly the
specified width. These typedef names have the general form of i ntn_t or ui nt n_t
where n is the required width. For example, ui nt 8_t denotes an unsigned integer
type that has a width of exactly 8 bits.

The following designate exact-width signed integer types:

int8_t intl6_t int32_t int64_t
The following designate exact-width unsigned integer types:

uint8_t uint16_t uint32_t uint64_t
(Any of these types might not exist.)
7.4.1.2 Minimum-width integer types

Each of the following typedef names designates an integer type that has at least the
specified width, such that no integer type of lesser size has at |least the specified width.
These typedef names have the general foom of i nt _| eastn_t oruint | eastn_t
where n is the minimum required width. For example, i nt _| east 32_t denotes a
signed integer type that has a width of at least 32 bits.

The following designate minimum-width signed integer types:

int_|east8 t int | eastl6_t
int_|east32 t int | east64 t

The following designate minimum-width unsigned integer types:

uint least8 t uint leastl1l6 t
uint_least32 t uint | east64 t

(These types must exist.)
7.4.1.3 Fastest minimum-width integer types

Each of the following typedef names designates an integer type that is usually
fastest'*® to operate with among all integer types that have at least the specified width.
These typedef names have the general form of i nt _fastn_t or uint_fastn_t
where n is the minimum required width. For example, i nt _fast 16 _t denotes the

148. The designated type is not guaranteed to be fastest for all purposes; if the implementation has no
clear grounds for choosing one type over another, it will simply pick some integer type satisfying
the signedness and width requirements.

Library 191



Working Draft, 1997-11-21, WG14/N794 J11/97-158

fastest signed integer type that has a width of at least 16 bits.
The following designate fastest minimum-width signed integer types:

int_fast8 t int_fastl16 t
int_fast32_t int_fast64_t

The following designate fastest minimum-width unsigned integer types:

uint_fast8_t uint _fastl1l6 t
uint fast32 t uint fast64 t

(These types must exist.)
7.4.1.4 Integer types capable of holding object pointers

The following typedef name designates a signed integer type with the property that
any valid pointer to voi d can be converted to this type, then converted back to
pointer to voi d, and the result will compare equal to the original pointer:

intptr_t

The following typedef name designates an unsigned integer type with the property that
any valid pointer to voi d can be converted to this type, then converted back to
pointer to voi d, and the result will compare equal to the original pointer:

ui ntptr _t
(Either or both of these types might not exist.)
7.4.1.5 Greatest-width integer types

The following typedef name designates a signed integer type capable of representing
any value of any signed integer type:

i nt max_t

The following typedef name designates an unsigned integer type capable of
representing any value of any unsigned integer type:

ui nt max_t

(These types must exist.)
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7.4.2 Limits of specified-width integer types

The following object-like macros'*® specify the minimum and maximum limits of
integer types corresponding to the typedef names defined in <i ntt ypes. h>. Each
macro name corresponds to a similar typedef name in subclause 7.4.1.

Each instance of any defined macro shall be replaced by a constant expression suitable
for use in #i f preprocessing directives, and this expression shall have the same type
as would an expression that is an object of the corresponding type converted according
to the integer promotions. Its implementation-defined value shall be equal to or
greater in magnitude (absolute value) than the corresponding value given below, with
the same sign.

7.4.2.1 Limits of exact-width integer types

— minimum values of exact-width signed integer types

| NT8_M N ~127
| NT16_M N —32767
| NT32_M N —2147483647
| NT64_M N —9223372036854775807

(The value must be either that given or exactly 1 less.)

— maximum values of exact-width signed integer types

| NT8_MAX +127
| NT16_MAX +32767
| NT32_MAX +2147483647
| NT64_MAX +9223372036854775807

(The value must be exactly that given.)

— maximum values of exact-width unsigned integer types

Ul NT8_MAX 255
Ul NT16_MAX 65535
Ul NT32_ MAX 4294967295
Ul NT64_MAX 18446744073709551615

(The value must be exactly that given.)

149. C++ implementations should define these macros only when __ STDC LI M T_MACRCS is defined
before <i ntt ypes. h> isincluded.
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7.4.2.2 Limits of minimum-width integer types

minimum values of minimum-width signed integer types

| NT_LEAST8_M N =127
| NT_LEAST16_M N -32767
| NT_LEAST32_M N —-2147483647
| NT_LEAST64_ M N —9223372036854775807
maximum values of minimum-width signed integer types
| NT_LEAST8_MAX +127
| NT_LEAST16_MAX +32767
| NT_LEAST32_ MAX +2147483647
| NT_LEAST64_MAX +9223372036854775807
maximum values of minimum-width unsigned integer types
Ul NT_LEAST8_MAX 255
U NT_LEAST16_MAX 65535
Ul NT_LEAST32_MAX 4294967295

U NT_LEAST64_MAX 18446744073709551615

7.4.2.3 Limits of fastest minimum-width integer types

— minimum values of fastest minimum-width signed integer types

194

| NT_FAST8_M N =127

| NT_FAST16_M N -32767

| NT_FAST32_M N —-2147483647

| NT_FAST64_M N —9223372036854775807
maximum values of fastest minimum-width signed integer types
| NT_FAST8_MAX +127

| NT_FAST16_MAX +32767

| NT_FAST32_MAX +2147483647

| NT_FAST64_MAX +9223372036854775807
maximum values of fastest minimum-width unsigned integer types
Ul NT_FAST8_MAX 255

Ul NT_FAST16_MAX 65535

Ul NT_FAST32_MAX 4294967295

Ul NT_FAST64_MAX 18446744073709551615
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7.4.24 Limits of integer types capable of holding object pointers

— minimum value of pointer-holding signed integer type
| NTPTR_M N -32767

— maximum value of pointer-holding signed integer type
| NTPTR_MAX +32767

— maximum value of pointer-holding unsigned integer type
U NTPTR_MAX 65535

7.4.2.5 Limits of greatest-width integer types

— minimum value of greatest-width signed integer type
| NTMAX_M N —9223372036854775807

— maximum value of greatest-width signed integer type
I NTMAX_VAX +9223372036854775807

— maximum value of greatest-width unsigned integer type
Ul NTMAX_MAX 18446744073709551615

7.4.3 Macros for integer constants

The following function-like macros™® expand to integer constants suitable for
initializing objects that have integer types corresponding to typedef names defined in
<i nttypes. h> Each macro name corresponds to a similar typedef name in
subclause 7.4.1.2 or 7.4.1.5.

The argument in any instance of these macros shall be a decimal, octal, or
hexadecimal constant (as defined in subclause 6.1.3.2) with a value that does not
exceed the limits for the corresponding type.

7.4.3.1 Macros for minimum-width integer constants

Each of the following macros expands to an integer constant having the value specified
by its argument and a type with at least the specified width. These macro names have
the general form of | NTn_C or Ul NTn_C where n is the minimum required width.
For example, Ul NT64_C(0x123) might expand to the integer constant Ox123ULL.

The following expand to integer constants that have signed integer types:

150. C++ implementations should define these macros only when = STDC CONSTANT _MACRCS is
defined before <i ntt ypes. h> isincluded.
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| NT8_C( value) | NT16_C( value)
| NT32_C( value) | NT64_C( value)

The following expand to integer constants that have unsigned integer types:

Ul NT8_C( value) Ul NT16_C( value)
Ul NT32_C( value) Ul NT64 _C( value)

7.4.3.2 Macros for greatest-width integer constants

The following macro expands to an integer constant having the value specified by its
argument and the type i nt max_t:

| NTMAX_C( value)

The following macro expands to an integer constant having the value specified by its
argument and the type ui nt max_t:

U NTMAX_C( value)
7.4.4 Macros for format specifiers

Each of the following object-like macros™! expands to a string literal containing a
conversion specifier, possibly modified by a prefix such as hh, h, |, or | | , suitable
for use within the format argument of a formatted input/output function when
converting the corresponding integer type. These macro names have the general form
of PRI (character string literals for the f pri ntf family) or SCN (character string
literals for the f scanf family),1>? followed by the conversion specifier, followed by
a name corresponding to a similar typedef name in subclause 7.4.1. For example,
PRI dFAST32 can be used in a format string to print the value of an integer of type
int_fast32_t.

Thef printf macros for signed integers are:

151. C++ implementations should define these macros only when _ STDC FORMAT _MACRCS is
defined before <i nt t ypes. h> isincluded.

152. Separate macros are given for use with fprintf and fscanf functions because, typicaly,
different format specifiers are required for f pri nt f and f scanf even when the type is the same.
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PRI d8

PRI dLEASTS
PRI dFAST8
PRI dMVAX

PRI'i 8

PRI i LEAST8
PRI i FAST8
PRI i MAX

PRI 08

PRI oLEASTS
PRI oFAST8
PRI o MAX

PRI u8

PRI ULEASTS
PRI uFAST8
PRI uMAX

PRI x8

PRI XxLEASTS8
PRI xFAST8
PRI x MAX

PRI X8

PRI XLEASTS8
PRI XFAST8
PRI XMAX

SCNd8
SCNALEASTS8
SCNdFASTS8
SCNdMAX

SCNi 8

SCNi LEASTS8
SCNi FASTS8
SCNi MAX
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PRI d16

PRI dLEAST16
PRI dFAST16
PRI dPTR

PRI'i 16

PRI i LEAST16
PRI i FAST16
PRI'i PTR

The f pri ntf macros for unsigned integers are:

PRI 016

PRI oLEAST16
PRI oFAST16
PRI oPTR

PRI ul6

PRI ULEAST16
PRI uFAST16
PRI uPTR

PRI x16

PRI XxLEAST16
PRI XxFAST16
PRI xPTR

PRI X16

PRI XLEAST16
PRI XFAST16
PRI XPTR

The f scanf macros for signed integers are:

SCNd16
SCNJLEAST16
SCNdFAST16
SCNdPTR

SCNi 16

SCNi LEAST16
SCNi FAST16
SCNi PTR

PRI d32
PRI dLEAST32
PRI dFAST32

PRI'i 32
PRI i LEAST32
PRI i FAST32

PRI 032
PRI oLEAST32
PRI oFAST32

PRI u32
PRI ULEAST32
PRI UFAST32

PRI x32
PRI X LEAST32
PRI xFAST32

PRI X32
PRI XLEAST32
PRI XFAST32

SCNd32
SCNALEAST32
SCNdFAST32

SCNi 32
SCNi LEAST32
SCNi FAST32

PRI d64
PRI dLEAST64
PRI dFAST64

PRI i 64
PRI i LEAST64
PRI i FAST64

PRI 064
PRI oLEAST64
PRI oFAST64

PRI u64
PRI ULEAST64
PRI uFAST64

PRI x64
PRI XxLEAST64
PRI XxFAST64

PRI X64
PRI XLEAST64
PRI XFAST64

SCNd64
SCNALEAST64
SCNdFAST64

SCNi 64
SCNi LEAST64
SCNi FAST64
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The f scanf macros for unsigned integers are:

SCNo8 SCNo16 SCNo32 SCNo64
SCNoLEAST8 SCNoLEAST16 SCNoLEAST32 SCNoLEAST64
SCNoFASTS8 SCNoFAST16 SCNoFAST32 SCNoFAST64
SCNoVAX SCNoPTR

SCNu8 SCNul6 SCNu32 SCNu64
SCNULEASTS8 SCNULEAST16 SCNULEAST32 SCNULEAST64
SCNuFASTS8 SCNuFAST16 SCNUFAST32 SCNuFAST64
SCNuMAX SCNuPTR

SCNx 8 SCNx16 SCNx32 SCNx 64
SCNxLEAST8 SCNXLEAST16 SCNXLEAST32 SCNXLEAST64
SCNXFASTS8 SCNxFAST16 SCNXFAST32 SCNxFAST64
SCNx MAX SCNXPTR

Because the default argument promotions do not affect pointer parameters, there might
not exist suitable f scanf format specifiers for some of the typedef names defined in
this header. Consequently, as a special exception to the requirement that the
implementation shall define all macros associated with each typedef name defined in
this header, in such a case the problematic f scanf macros may be left undefined.

Examples

#i ncl ude <inttypes. h>
#i ncl ude <wchar. h>
int mai n(voi d)

{
uintmax_t 1 = U NTMAX_MAX; /'] this type always exists
wprintf(L"The | argest integer value is %920"
PRI xMAX "\'n", i);
return O,
}
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7.45 Limits of other integer types

The following object-like macros™! specify the minimum and maximum limits of
integer types corresponding to typedef names defined in other standard headers.

Each instance of these macros shall be replaced by a constant expression suitable for
use in #i f preprocessing directives, and this expression shall have the same type as
would an expression that is an object of the corresponding type converted according to
the integer promotions. Its implementation-defined value shall be equal to or greater
in magnitude (absolute value) than the corresponding value given below, with the
same sign.

— limitsof ptrdi ff _t

PTRDI FF_M N —65535

PTRDI FF_MAX +65535
— limits of si g_atom c_t

SIGATOMC M N see below

SI G ATOM C_MAX see below
— limit of si ze_t

S| ZE_MAX 65535
— limits of wchar _t

WCHAR M N see below

WCHAR NMAX see below
— limits of wi nt _t

WNT_MN see below

W NT_MVAX see below

If sig atomc_t is defined as a signed integer type, the vaue of
SIGATOMC M N shal be no greater than -127 and the vaue of
SI G_ATOM C_MAX shall be no less than 127; otherwise, si g_at om c_t is defined
as an unsigned integer type, and the value of SI G ATOM C_M N shall be 0 and the
value of SI G ATOM C_MAX shall be no less than 255.

If wehar _t is defined as a signed integer type, the value of WCHAR M N shall be no
greater than —127 and the value of WCHAR_MAX shall be no less than 127; otherwise,
wchar _t is defined as an unsigned integer type, and the value of WCHAR M N shall
be 0 and the value of WCHAR MAX shall be no less than 255.

If wi nt_t is defined as a signed integer type, the value of W NT_M N shall be no
greater than —32767 and the value of W NT_MAX shall be no less than 32767;
otherwise, wi nt _t is defined as an unsigned integer type, and the value of
W NT_M N shall be 0 and the value of W NT_MAX shall be no less than 65535.
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7.4.6 Conversion functions for greatest-width integer types
7.4.6.1 Thestrt oi max function
Synopsis

#i ncl ude <inttypes. h>
intmax_t strtoi max(const char * restrict nptr,
char ** restrict endptr, int base);

Description

The st rt oi max function is equivalent to st rt ol , except that the initia portion of
the string is converted to i nt max_t representation.

Returns

The st rt oi max function returns the converted value, if any. If no conversion could
be performed zero is returned. |If the correct value is outside the range of
representable values, | NTMAX_MAX or | NTMAX_M N is returned (according to the
sign of the value), and the value of the macro ERANGE is stored in er r no.

7.4.6.2 Thestrtounax function
Synopsis

#i ncl ude <inttypes. h>
ui nt max_t strtoumax(const char * restrict nptr,
char ** restrict endptr, int base);

Description

The st rt ourmax function is equivalent to st rt oul , except that the initial portion of
the string is converted to ui nt max_t representation.

Returns

The st rt ourmax function returns the converted value, if any. If no conversion could
be performed zero is returned. |If the correct value is outside the range of
representable values, U NTMAX_MAX is returned, and the value of the macro ERANGE
is stored in err no.

7.4.6.3 Thewcst oi nax function

Synopsis
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#i ncl ude <stddef. h> /1 for wchar t

#i ncl ude <inttypes. h>

i nt max_t wcstoi max(const wchar _t * restrict nptr,
wchar t ** restrict endptr, int base);

Description

The west oi max function is equivalent to west ol , except that the initial portion of
the wide string is converted to i nt max_t representation.

Returns

The west oi max function returns the converted value, if any. If no conversion could
be performed zero is returned. |If the correct value is outside the range of
representable values, | NTMAX_MAX or | NTMAX_M N is returned (according to the
sign of the value), and the value of the macro ERANCE is stored in er r no.

7.4.6.4 Thewcst ounax function
Synopsis

#i ncl ude <stddef. h> /1 for wchar t

#i ncl ude <inttypes. h>

ui nt max_t wcst oumax(const wchar _t * restrict nptr,
wchar t ** restrict endptr, int base);

Description

The west oumax function is equivalent to west oul , except that the initial portion of
the wide string is converted to ui nt max_t representation.

Returns

The west oumax function returns the converted value, if any. If no conversion could
be performed zero is returned. |If the correct value is outside the range of
representable values, U NTMAX_MAX is returned, and the value of the macro ERANGE
is stored in er r no.
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7.5 Localization <l ocal e. h>

The header <l ocal e. h> declares two functions, one type, and defines several

macros.

The type is

struct | conv

which contains members related to the formatting of numeric values. The structure
shall contain a least the following members, in any order. The semantics of the
members and their normal ranges is explained in 7.5.2.1.
members shall have the values specified in the comments.

char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char

*deci mal _poi nt;

*t housands_sep;

*gr oupi ng;
*int_curr_synbol ;
*currency_synbol ;
*nmon_deci mal _poi nt;
*nmon_t housands_sep;
*on_gr oupi ng;
*positive_sign;
*negati ve_sign;
int_frac_digits;
frac_digits;
p_cs_precedes;
p_sep_by space;
n_cs_precedes;
n_sep_by space;
p_si gn_posn

n_si gn_posn;

Il
11
Il
11
Il
11
Il
11
Il
/11
Il
/11
Il
/11
Il
/11
Il
/11

CHAR MAX
CHAR MAX
CHAR MAX
CHAR MAX
CHAR MAX
CHAR MAX
CHAR MAX
CHAR MAX

The macros defined are NULL (described in 7.1.6); and'>?

In the "C"

locale, the

153. ISO/IEC 9945-2, Information technology — Portable operating system interface (POSX) — Part 2:
shell and utilities specifies locale and charmap formats that may be used to specify locales for C.
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LC ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERI C
LC_TI ME

which expand to integer constant expressions with distinct values, suitable for use as
the first argument to the setl ocal e function. Additiona macro definitions,
beginning with the characters LC_ and an uppercase letter,'> may also be specified by
the implementation.

7.5.1 Locale control

75.1.1 Thesetl ocal e function

Synopsis

#i ncl ude <l ocal e. h>
char *setlocal e(int category, const char *|ocale);

Description

The set | ocal e function selects the appropriate portion of the program’s locale as
specified by the cat egory and | ocal e arguments. The set | ocal e function may
be used to change or query the program’s entire current locale or portions thereof.
The value LC_ALL for cat egor y names the program’s entire locale; the other values
for cat egory name only a portion of the program’s locale. LC_COLLATE affects
the behavior of the strcoll and strxfrm functions. LC CTYPE affects the
behavior of the character handling functions™ and the multibyte functions.
LC MONETARY affects the monetary formatting information returned by the
| ocal econv function. LC_NUMERI C affects the decimal-point character for the
formatted input/output functions and the string conversion functions, as well as the
nonmonetary formatting information returned by the | ocal econv function.
LC_TI ME affects the behavior of the st rfti ne function.

A value of "C' for | ocal e specifies the minimal environment for C trandation; a
vaue of "" for | ocal e specifies the locale-specific native environment. Other
implementation-defined strings may be passed as the second argument to set | ocal e.

154. See ‘‘future library directions’ (7.20.4).

155. The only functions in 7.3 whose behavior is not affected by the current locale are i sdi gi t and
isxdigit.
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At program startup, the equivalent of
setl ocal e(LC_ALL, "C");
IS executed.

The implementation shall behave as if no library function cals the setl ocal e
function.

Returns

If a pointer to a string is given for | ocal e and the selection can be honored, the
set | ocal e function returns a pointer to the string associated with the specified
cat egory for the new locale. If the selection cannot be honored, the set | ocal e
function returns a null pointer and the program’s locale is not changed.

A null pointer for | ocal e causes the set | ocal e function to return a pointer to the
string associated with the cat egory for the program’s current locale; the program’s
locale is not changed.'®®

The pointer to string returned by the set | ocal e function is such that a subsequent
call with that string value and its associated category will restore that part of the
program’s locale. The string pointed to shall not be modified by the program, but may
be overwritten by a subsequent call to the set | ocal e function.

Forward references. formatted input/output functions (7.13.6), the multibyte character
functions (7.14.7), the multibyte string functions (7.14.8), string conversion functions
(7.14.1), the strcol | function (7.15.4.3), the strfti nme function (7.16.3.6), the
st rxf r mfunction (7.15.4.5).

7.5.2 Numeric formatting convention inquiry
7.5.2.1 Thel ocal econv function
Synopsis

#i ncl ude <l ocal e. h>
struct |conv *|ocal econv(void);

156. The implementation must arrange to encode in a string the various categories due to a
heterogeneous locale when cat egor y has the value LC_ALL.

204 Library



Working Draft, 1997-11-21, WG14/N794 J11/97-158

Description

The | ocal econv function sets the components of an object with type struct
| conv with values appropriate for the formatting of numeric quantities (monetary and
otherwise) according to the rules of the current locale.

The members of the structure with type char * are pointers to strings, any of which
(except deci mal _poi nt) can point to " ", to indicate that the value is not available
in the current locale or is of zero length. Apat from grouping and
non_gr oupi ng, the strings shall start and end in the initial shift state. The
members with type char are nonnegative numbers, any of which can be CHAR MAX
to indicate that the value is not available in the current locale. The members include
the following:

char *deci mal _poi nt
The decimal-point character used to format nhonmonetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point
character in formatted nonmonetary quantities.

char *groupi ng
A string whose elements indicate the size of each group of digits in
formatted nonmonetary quantities.

char *int_curr_synbol
The international currency symbol applicable to the current locale. The first
three characters contain the alphabetic international currency symbol in
accordance with those specified in 1SO 4217:1987. The fourth character
(immediately preceding the null character) is the character used to separate
the international currency symbol from the monetary quantity.

char *currency_synbol
The local currency symbol applicable to the current locale.

char *non_deci mal _poi nt
The decimal-point used to format monetary quantities.

char *non_t housands_sep
The separator for groups of digits before the decimal-point in formatted
monetary quantities.

char *non_groupi ng
A string whose elements indicate the size of each group of digits in
formatted monetary quantities.
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char *positive_sign
The string used to indicate a nonnegative-valued formatted monetary
quantity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char int_frac digits
The number of fractional digits (those after the decimal-point) to be
displayed in an internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those after the decimal-point) to be
displayed in a formatted monetary quantity.

char p_cs_precedes
Set to 1 or O if the currency_synbol respectively precedes or succeeds
the value for a nonnegative formatted monetary quantity.

char p_sep_ by space
Set to 1 or O if the currency_synbol respectively is or is not separated
by a space from the value for a nonnegative formatted monetary quantity.

char n_cs_precedes
Setto 1 or O if the currency_synbol respectively precedes or succeeds
the value for a negative formatted monetary quantity.

char n_sep_by_ space
Set to 1 or O if the currency_synbol respectively is or is not separated
by a space from the value for a negative formatted monetary quantity.

char p_sign_posn
Set to a vaue indicating the positioning of the positive_sign for a
nonnegative formatted monetary quantity.

char n_sign_posn
Set to a vaue indicating the positioning of the negati ve_si gn for a
negative formatted monetary quantity.

The elements of gr oupi ng and non_gr oupi ng are interpreted according to the
following:

CHAR _MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the
digits.
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other The integer value is the number of digits that comprise the current
group. The next element is examined to determine the size of the next
group of digits before the current group.

The value of p_sign_posn and n_si gn_posn is interpreted according to the
following:

0 Parentheses surround the quantity and cur r ency_synbol .

1 The sign string precedes the quantity and cur r ency_synbol .
2 The sign string succeeds the quantity and cur r ency_synbol .
3 The sign string immediately precedes the cur r ency_synbol .
4 The sign string immediately succeeds the curr ency_synbol .

The implementation shall behave as if no library function calls the | ocal econv
function.

Returns

The | ocal econv function returns a pointer to the filled-in object. The structure
pointed to by the return value shall not be modified by the program, but may be
overwritten by a subsequent call to the | ocal econv function. In addition, calls to
the setlocal e function with categories LC ALL, LC MONETARY, or
LC_NUMERI C may overwrite the contents of the structure.

Examples

The following table illustrates the rules which may well be used by four countries to
format monetary quantities.

Country Positive format Negative format International format
Italy L.1.234 -L.1.234 | TL. 1. 234
Netherlands F 1.234,56 F -1.234,56 NLG 1. 234, 56
Norway krl.234, 56 krl.234, 56- NOK 1. 234, 56
Switzerland SFrs. 1,234.56 SFrs.1,234.56C CHF 1, 234. 56

For these four countries, the respective values for the monetary members of the
structure returned by | ocal econv are:
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Italy Netherlands Norway Switzerland
int_curr_synbol "I'TL." "NLG " "NOK " "CHF "
currency_synbol "L "F" "kr" "SFrs."
nmon_deci mal _point "" " " "
mon_t housands_sep "." " " "
non_gr oupi ng "\ 3" "\ 3" "\ 3" "\ 3"
positive_sign " " " "
negative_sign HE HE HE "C
int frac_digits O 2 2 2
frac_digits 0 2 2 2
p_cs_precedes 1 1 1 1
p_sep_by space 0 1 0 0
n_cs_precedes 1 1 1 1
n_sep_by space 0 1 0 0
p_sign_posn 1 1 1 1
n_si gn_posn 1 4 2 2

7.6 Floating-point environment <f env. h>

The header <f env. h> declares two types and several macros and functions to
provide access to the floating-point environment. The floating-point environment
refers collectively to any floating-point status flags and control modes supported by the
implementation.'®” A floating-point status flag is a system variable whose value is set
as a side effect of the arithmetic to provide auxiliary information. A floating-point
control mode is a system variable whose value may be set by the user to affect the
subsequent behavior of the arithmetic.

Certain programming conventions support the intended model of use for the floating-
point environment; %8

— a function call must not alter its caller’s modes, clear its caller’s flags, nor depend
on the state of its caller’s flags unless the function is so documented,

157. This header is designed to support the exception status flags and directed-rounding control modes
required by IEC 559, and other similar floating-point state information. Also it is designed to
facilitate code portability among all systems.

158. With these conventions, a programmer can safely assume default modes (or be unaware of them).
The responsibilities associated with accessing the floating-point environment fall on the programmer
or program that does so explicitly.
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— a function call is assumed to require default modes, unless its documentation
promises otherwise or unless the function is known not to use floating-point;

— a function cal is assumed to have the potential for raising floating-point
exceptions, unless its documentation promises otherwise, or unless the function is
known not to use floating-point.

The type

fenv_t
represents the entire floating-point environment.
The type

fexcept _t

represents the floating-point exception flags collectively, including any status the
implementation associates with the flags.

Each of the macros

FE_DI VBYZERO

FE_I NEXACT
FE_I NVALI D
FE_OVERFLOW

FE_UNDERFLOW

is defined if and only if the implementation supports the exception by means of the
functions in 7.6.2. The defined macros expand to integer constant expressions with
values such that bitwise ORs of all combinations of the macros result in distinct
values.

The macro

FE_ALL_EXCEPT
is ssimply the bitwise OR of all exception macros defined by the implementation.
Each of the macros

FE_DOWANWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the
represented rounding direction by means of the f egetround and fesetround
functions. The defined macros expand to integer constant expressions whose values
are distinct nonnegative values.*>
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The macro
FE _DFL_ENV
represents the default floating-point environment — the one installed at program

startup — and has type pointer to const-qualified fenv_t. It can be used as an
argument to <f env. h> functions that manage the floating-point environment.

Additional macro definitions, beginning with FE_ and having type pointer to const-
qualified f env_t , may also be specified by the implementation.

7.6.1 The FENV_ACCESS pragma

Synopsis

#i ncl ude <fenv. h>
#pragma STDC FENV_ACCESS on-off-switch

Description

The FENV_ACCESS pragma provides a means to inform the implementation when a
program might access the floating-point environment to test flags or run under non-
default modes!® The pragma can occur either outside external declarations or
preceding all explicit declarations and statements inside a compound statement. When
outside external declarations, the pragma takes effect from its occurrence until another
FENV_ACCESS pragma is encountered, or until the end of the trandation unit. When
inside a compound statement, the pragma takes effect from its occurrence until another
FENV_ACCESS pragma is encountered (within a nested compound statement), or until
the end of the compound statement; at the end of a compound statement the state for
the pragma is restored to its condition just before the compound statement. If this
pragma is used in any other context, the behavior is undefined. If part of a program
tests flags or runs under non-default mode settings, but was trandated with the state
for the FENV_ACCESS pragma off, then the behavior of that program is undefined.
The default state (on or off) for the pragma is implementation-defined.

159. Even though the rounding direction macros may expand to constants corresponding to the values of
FLT_ROUNDS, they are not required to do so.

160. The purpose of the FENV_ACCESS pragma is to allow certain optimizations, for example global
common subexpression elimination, code motion, and constant folding, that could subvert flag tests
and mode changes. In generd, if the state of FENV_ACCESS is off then the trandator can assume
that default modes are in effect and the flags are not tested.
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Examples

#i ncl ude <fenv. h>
voi d f(doubl e x)

{
#pragma STDC FENV_ACCESS ON
voi d g(doubl e);
voi d h(doubl e);
[* ..*
g(x + 1);
h(x + 1);
[* %
}

If the function g might depend on status flags set as a side effect of the first x + 1,
or if the second x + 1 might depend on control modes set as a side effect of the call
to function g, then the program must contain an appropriately placed invocation of
#pragma STDC FENV_ACCESS ON.16!

7.6.2 Exceptions

The following functions provide access to the exception flags.l®?> The i nt input
argument for the functions represents a subset of floating-point exceptions, and can be
constructed by bitwise ORs of the exception macros, for example FE_OVERFLOW |
FE | NEXACT. For other argument values the behavior of these functions is
undefined.

7.6.21 Thef ecl earexcept function
Synopsis

#i ncl ude <fenv. h>
voi d fecl earexcept (int excepts);

161. The side effects impose a temporal ordering that requires two evaluations of x + 1. On the other
hand, without the #pr agna STDC FENV_ACCESS ON pragma, and assuming the default state is
off, just one evaluation of x + 1 would suffice.

162. The functions f et est except, ferai seexcept, and f ecl earexcept support the basic
abstraction of flags that are either set or clear. An implementation may endow exception flags with
more information — for example, the address of the code which first raised the exception; the
functions f eget except f| ag and f eset except f | ag deal with the full content of flags.
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Description

The f ecl ear except function clears the supported exceptions represented by its
argument.

7.6.22 Thef eget exceptfl ag function

Synopsis

#i ncl ude <fenv. h>
voi d fegetexceptflag(fexcept_t *flagp,
i nt excepts);

Description

The f eget except f | ag function stores an implementation-defined representation of
the exception flags indicated by the argument except s in the object pointed to by
the argument f | agp.

7.6.2.3 Thef erai seexcept function
Synopsis

#i ncl ude <fenv. h>
voi d ferai seexcept (int excepts);

Description

The f erai seexcept function raises the supported exceptions represented by its
argument.t®® The order in which these exceptions are raised is unspecified, except as
stated in F.7.6. Whether the ferai seexcept function additionally raises the
inexact exception whenever it raises the overflow or underflow exception is
implementation-defined.

7.6.24 Thefeset exceptfl ag function
Synopsis

#i ncl ude <fenv. h>
voi d fesetexceptflag(const fexcept_t *flagp,
i nt excepts);

163. The effect is intended to be similar to that of exceptions raised by arithmetic operations. Hence,
enabled traps for exceptions raised by this function are taken. The specification in F.7.6 is in the
same spirit.
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Description

The f eset except f | ag function sets the complete status for those exception flags
indicated by the argument except s, according to the representation in the object
pointed to by f| agp. The value of *f | agp must have been set by a previous cal to
f eget except fl ag whose second argument represented at least those exceptions
represented by the argument except s; if not, the effect on the indicated exception
flags is undefined. This function does not raise exceptions, but only sets the state of
the flags.

7.6.25 Thef et est except function
Synopsis

#i ncl ude <fenv. h>
int fetestexcept(int excepts);

Description

The f et est except function determines which of a specified subset of the exception
flags are currently set. The except s argument specifies the exception flags to be
queried.'64

Returns

The f et est except function returns the value of the bitwise OR of the exception
macros corresponding to the currently set exceptions included in except s.

Examples

Cal f if invalid is set, then g if overflow is set:

164. This mechanism allows testing several exceptions with just one function call.
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#i ncl ude <fenv. h>
[* ... %]

{
#pragma STDC FENV_ACCESS ON

int set_excepts;
/'l maybe raise exceptions
set _excepts =
fetestexcept (FE_I NVALID | FE_OVERFLOW
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_ OVERFLOW g();
[* .. *
}

7.6.3 Rounding

The f eget r ound and f eset r ound functions provide control of rounding direction
modes.

7.6.3.1 Thef egetround function
Synopsis

#i ncl ude <fenv. h>
int fegetround(void);

Description
The f eget r ound function gets the current rounding direction.
Returns

The fegetround function returns the value of the rounding direction macro
representing the current rounding direction.

7.6.3.2 Thefesetround function
Synopsis

#i ncl ude <fenv. h>
int fesetround(int round);

Description

The fesetround function establishes the rounding direction represented by its
argument round. If the argument does not match a rounding direction macro, the
rounding direction is not changed.
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Returns

The fesetround function returns a nonzero vaue if and only if the argument
matches a rounding direction macro (that is, if and only if the requested rounding
direction can be established).

Examples

Save, set, and restore the rounding direction. Report an error and abort if setting the
rounding direction fails.

#i ncl ude <fenv. h>

#i ncl ude <assert. h>

[* %

{
#pragma STDC FENV_ACCESS ON
i nt save_round,
i nt setround_ok;
save_round = fegetround();
setround_ok = fesetround(FE_UPWARD) ;
assert (setround_ok);

[* .. *
f eset round(save_round);
[* .. *

}

7.6.4 Environment

The functions in this section manage the floating-point environment — status flags and
control modes — as one entity.

7.6.4.1 Thef eget env function
Synopsis

#i ncl ude <fenv. h>
void fegetenv(fenv_t *envp);

Description

The f eget env function stores the current floating-point environment in the object
pointed to by envp.
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7.6.4.2 Thef ehol dexcept function

Synopsis

#i ncl ude <fenv. h>
i nt fehol dexcept(fenv_t *envp);

Description

The f ehol dexcept function saves the current environment in the object pointed to
by envp, clears the exception flags, and installs a non-stop (continue on exceptions)
mode, if available, for all exceptions.'®®

Returns

The f ehol dexcept function returns nonzero if and only if non-stop exception
handling was successfully installed.

7.6.43 Thef eset env function

Synopsis

#i ncl ude <fenv. h>
voi d fesetenv(const fenv_t *envp);

Description

The f eset env function establishes the floating-point environment represented by the
object pointed to by envp. The argument envp must point to an object set by a call
to fegetenv or fehol dexcept, or equal the macro FE_DFL_ENV or an
implementation-defined environment macro. Note that f eset env merely installs the
state of the exception flags represented through its argument, and does not raise these
exceptions.

165. IEC 559 systems have a default non-stop mode, and typically at least one other mode for trap
handling or aborting; if the system provides only the non-stop mode then installing it is trivial. For
such systems, the f ehol dexcept function can be used in conjunction with the f eupdat eenv
function to write routines that hide spurious exceptions from their callers.
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7.6.44 Thef eupdat eenv function

Synopsis
#i ncl ude <fenv. h>
voi d feupdateenv(const fenv_t *envp);

Description

The f eupdat eenv function saves the currently raised exceptions in its automatic
storage, installs the environment represented through envp, and then raises the saved
exceptions. The argument envp must point to an object set by a cal to
f ehol dexcept or fegetenv, or equa the macro FE DFL_ENV or an
implementation-defined environment macro.

Examples
Hide spurious underflow exceptions:

#i ncl ude <fenv. h>
doubl e f(doubl e x)

{
#pragma STDC FENV_ACCESS ON
doubl e resul t;
fenv_t save_env;
f ehol dexcept (&save_env) ;
/'l compute result
if (/* test spurious underflow */)

f ecl ear except ( FE_UNDERFLOW ;

f eupdat eenv( &save_env);
return result;

}
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7.7 Mathematics <mat h. h>

The header <mat h. h> declares two types and severa mathematical functions and
defines several macros. Most synopses specify a function which takes one or more
doubl e arguments and returns a doubl e value; for each such function, there are
functions with the same name but with f and | suffixes which are corresponding
functions with fl oat and | ong doubl e arguments and return values.*®® Some
synopses specify a function which takes a doubl e argument and returns an integer-
type value; for each such function, there are functions with the same name but with f
and | suffixes which are corresponding functions with f |l oat and | ong doubl e
arguments. Integer arithmetic functions and conversion functions are discussed later.

The types

float t
doubl e_t

are floating types at least as wide as f | oat and doubl e, respectively, and such that
double_t is a least as wide as float _t. If FLT_EVAL_METHOD equals O,
float t and double t ae float and double, respectively;, if
FLT _EVAL_METHOD equals 1, they are both doubl e; if FLT_EVAL_METHCOD
equals 2, they are both | ong doubl e; and for other values of FLT_EVAL_METHCD,
they are otherwise implementation-defined.26’

The macro
HUGE VAL

expands to a positive doubl e constant expression, not necessarily representable as a
f |l oat. The macros

HUGE_VALF
HUGE_VALL

are respectively f | oat and | ong doubl e analogs of HUGE VAL .68

166. Particularly on systems with wide expression evaluation, a <mat h. h> function might pass
arguments and return values in wider format than the synopsis prototype indicates.

167. The types f | oat _t and doubl e_t are intended to be the implementation’s most efficient types
at least as wide as f | oat and doubl e, respectively. For FLT_EVAL_METHOD equa 0, 1, or 2,
the type float _t is the narrowest type used by the implementation to evaluate floating
expressions.

168. HUGE VAL, HUGE _VALF, and HUGE_VALL can be positive infinities in an implementation that
supports infinities.
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The macro
| NFI NI TY

expands to a constant expression of type fl oat representing an implementation-
defined positive or unsigned infinity, if available, else to a positive constant of type
f | oat that overflows at trandation time.

The macro
NAN

is defined if and only if the implementation supports quiet NaNs for the f | oat type.
It expands to a constant expression of type fl oat representing an implementation-
defined quiet NaN.

The macros

FP_I NFI NI TE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

are for number classification. They represent the mutualy exclusive kinds of floating-
point values. They expand to integer constant expressions with distinct values.

The macro
FP_FAST_FMA

is optionally defined. If defined, it indicates the f ma function generally executes
about as fast as a multiply and an add of doubl e operands.'®® The macros

FP_FAST_FMAF
FP_FAST_FMAL

are, respectively, f |1 oat and | ong doubl e analogs of FP_FAST_FMNA.

The macros

169. Typicaly, the FP_FAST_FMA macro is defined if and only if the f ma function is implemented
directly with a hardware multiply-add instruction. Software implementations are expected to be
substantially slower.
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FP_| LOGBO
FP_| LOGBNAN

expand to integer constant expressions whose values are returned by i | ogb( x) if x
is zero or NaN, respectively. The value of FP_I LOGBO shall be either | NT_M N or
- | NT_MAX. The value of FP_I LOGBNAN shall be either | NT_MAX or | NT_M N.

The macro
DECI MAL_DI G

expands to an integer constant expression whose value is implementation-defined. It
represents a number of decimal digits supported by conversion between decimal and
al interna floating-point formats.*"

Recommended practice

Conversion from (at least) doubl e to decimal with DECI MAL_DI G digits and back is
the identity function.!’*

7.7.1 Treatment of error conditions

The behavior of each of the functions in <mat h. h> is specified for all representable
values of its input arguments, except where stated otherwise.

For al functions, a domain error occurs if an input argument is outside the domain
over which the mathematical function is defined. The description of each function
lists any required domain errors; an implementation may define additional domain
errors, provided that such errors are consistent with the mathematical definition of the
function.1’? On a domain error, the function returns an implementation-defined value;
whether the integer expression err no acquires the value EDOM is implementation-
defined.

Similarly, a range error occurs if the mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude. A floating

170. DECI MAL_DI G is intended to give an appropriate number of digits to carry in canonical decimal
representations.

171. In order that correctly rounded conversion from an internal floating-point format with precision m
to decima with DEClI MAL_DI G digits and back be the identity function, DECI MAL_DI G should be
a positive integer n satisfying the inequality:

n=m if FLT_RADI X is 10

10" I>FLT_RADI X™ otherwise

172. In an implementation that supports infinities, this allows an infinity as an argument to be a domain
error if the mathematical domain of the function does not include the infinity.
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result overflows if the magnitude of the mathematical result is finite but so large that
the mathematical result cannot be represented, without extraordinary roundoff error, in
an object of the specified type. If afloating result overflows and default rounding is in
effect, or if the mathematical result is an exact infinity (for example | og( 0. 0) ), then
the function returns the value of the macro HUGE VAL, HUGE_VALF, or HUGE VALL
appropriate to the specified result type, with the same sign as the correct value of the
function; whether er r no acquires the value ERANGE when a range error occurs is
implementation-defined. The result underflows if the magnitude of the mathematical
result is so small that the mathematical result cannot be represented, without
extraordinary roundoff error, in an object of the specified type.l’® If the result
underflows, the function returns a value whose magnitude is no greater than the
smallest normalized positive number in the specified type and is otherwise
implementation-defined;  whether errno acquires the value ERANCE is
implementation-defined.

7.7.2 The FP_CONTRACT pragma
Synopsis

#i ncl ude <mat h. h>
#pragma STDC FP_CONTRACT on-off-switch

Description

The FP_CONTRACT pragma can be used to allow (if the state is on) or disalow (if
the state is off) the implementation to contract expressions (6.3). Each pragma can
occur either outside external declarations or preceding all explicit declarations and
statements inside a compound statement. When outside external declarations, the
pragma takes effect from its occurrence until another FP_CONTRACT pragma is
encountered, or until the end of the trandation unit. When inside a compound
statement, the pragma takes effect from its occurrence until another FP_CONTRACT
pragma is encountered (within a nested compound statement), or until the end of the
compound statement; at the end of a compound statement the state for the pragma is
restored to its condition just before the compound statement. If this pragmais used in
any other context, the behavior is undefined. The default state (on or off) for the
pragma is implementation-defined.

173. The term underflow here is intended to encompass both gradual underflow as in IEC 559 and also
flush-to-zero underflow.
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7.7.3 Classification macros

In the synopses in this subclause, real-floating indicates that the argument must be an
expression of real floating type. The result is undefined if an argument is not of real
floating type.

7.7.3.1 Thef pcl assify macro
Synopsis

#i ncl ude <mat h. h>
int fpclassify(real-floating x) ;

Description

The fpcl assi fy macro classifies its argument value as NaN, infinite, normal,
subnormal, or zero. First, an argument represented in a format wider than its semantic
type is converted to its semantic type. Then classification is based on the type of the
argument.t’

Returns

The fpcl assify macro returns the value of the number classification macro
appropriate to the value of its argument.

Examples
The f pcl assi fy macro might be implemented in terms of ordinary functions as

#define fpclassify(x) \

((sizeof (x) == sizeof (float)) ? \
__fpclassifyf(x) \
(sizeof (x) == sizeof (double)) ?\

__fpclassifyd(x) \
__fpclassifyl (x))

174. Since an expression can be evaluated with more range and precision than its type has, it is
important to know the type that classification is based on. For example, a norma | ong doubl e
value might become subnormal when converted to doubl e, and zero when converted to f | oat .

222 Library



Working Draft, 1997-11-21, WG14/N794 J11/97-158

7.7.3.2 Thesi gnbit macro

Synopsis

#i ncl ude <mat h. h>
int signbit(real-floating x) ;

Description
The si gnbi t macro determines whether the sign of its argument value is negative.l”®
Returns

The si gnbi t macro returns a nonzero value if and only if the sign of its argument
value is negative.

7.7.3.3 Theisfinite macro
Synopsis

#1 ncl ude <mat h. h>
int isfinite(real-floating Xx);

Description

The i sfinite macro determines whether its argument has a finite vaue (zero,
subnormal, or normal, and not infinite or NaN). First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument.

Returns

The i sfi ni t e macro returns a nonzero value if and only if its argument has a finite
value.

7.7.3.4 Thei snormal macro
Synopsis

#i ncl ude <mat h. h>
i nt isnormal (real-floating x) ;

175. The si gnbi t macro reports the sign of al values, including infinities, zeros, and NaNs.
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Description

The i snor mal macro determines whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN). First, an argument represented in a format wider than
its semantic type is converted to its semantic type. Then determination is based on the
type of the argument.

Returns

The i snormal macro returns a nonzero value if and only if its argument has a
normal value.

7.7.3.5 Thei snan macro
Synopsis

#i ncl ude <mat h. h>
i nt isnan(real-floating x);

Description

The i snan macro determines whether its argument value is a NaN. First, an
argument represented in a format wider than its semantic type is converted to its
semantic type. Then determination is based on the type of the argument.’’®

Returns

The i snan macro returns a nonzero value if and only if its argument has a NaN
value.

7.7.3.6 Thei si nf macro
Synopsis

#i ncl ude <mat h. h>
i nt isinf(real-floating Xx) ;

Description

The i si nf macro determines whether its argument value is an infinity (positive or
negative). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the
argument.

176. For the i snan macro, the type for determination doesn’'t matter unless the implementation
supports NaNs in the evaluation type but not in the semantic type.
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Returns

The i si nf macro returns a nonzero value if and only if its argument has an infinite
value.

7.7.4 Trigonometric functions
7.7.4.1 Theacos function
Synopsis

#i ncl ude <mat h. h>
doubl e acos(doubl e x);

Description

The acos function computes the principal value of the arc cosine of x. A domain
error occurs for arguments not in the range [—1, +1].

Returns

The acos function returns the arc cosine in the range [0, 11 radians.
7.74.2 Theasi n function

Synopsis

#i ncl ude <mat h. h>
doubl e asi n(doubl e x);

Description

The asi n function computes the principal value of the arc sine of x. A domain error
occurs for arguments not in the range [-1, +1].

Returns

The asi n function returns the arc sine in the range [-172, +172] radians.
7.7.4.3 Theat an function

Synopsis

#i ncl ude <mat h. h>
doubl e atan(doubl e x);

Description

The at an function computes the principal value of the arc tangent of x.
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Returns

The at an function returns the arc tangent in the range [-172, +172] radians.
7.74.4 Theat an2 function

Synopsis

#i ncl ude <mat h. h>
doubl e atan2(doubl e y, double x);

Description

The at an2 function computes the principal value of the arc tangent of y / x, using
the signs of both arguments to determine the quadrant of the return value. A domain
error may occur if both arguments are zero.

Returns

The at an2 function returns the arc tangent of y / x , in the range [T, +11 radians.
7.7.4.5 The cos function

Synopsis

#i ncl ude <mat h. h>
doubl e cos(doubl e x);

Description

The cos function computes the cosine of x (measured in radians).
Returns

The cos function returns the cosine value.

7.7.4.6 Thesi n function

Synopsis

#i ncl ude <nmat h. h>
doubl e sin(doubl e x);

Description

The si n function computes the sine of x (measured in radians).
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Returns

The si n function returns the sine value.
7.74.7 Thet an function

Synopsis

#i ncl ude <mat h. h>
doubl e tan(doubl e x);

Description

The t an function returns the tangent of x (measured in radians).
Returns

The t an function returns the tangent value.

7.7.5 Hyperboalic functions

7.75.1 Thecosh function

Synopsis

#i ncl ude <mat h. h>
doubl e cosh(doubl e x);

Description

The cosh function computes the hyperbolic cosine of x. A range error occurs if the
magnitude of x is too large.

Returns

The cosh function returns the hyperbolic cosine value.
7.7.5.2 Thesi nh function

Synopsis

#i ncl ude <mat h. h>
doubl e si nh(doubl e Xx);

Description

The si nh function computes the hyperbolic sine of x. A range error occurs if the
magnitude of x is too large.

Library 227



Working Draft, 1997-11-21, WG14/N794 J11/97-158

Returns

The si nh function returns the hyperbolic sine value.
7.75.3 Thet anh function

Synopsis

#i ncl ude <mat h. h>
doubl e tanh(doubl e x);

Description

The t anh function computes the hyperbolic tangent of x.
Returns

The t anh function returns the hyperbolic tangent value.
7.75.4 Theacosh function

Synopsis

#i ncl ude <mat h. h>
doubl e acosh(doubl e x);

Description

The acosh function computes the (nonnegetive) arc hyperbolic cosine of x. A
domain error occurs for arguments less than 1.

Returns

The acosh function returns the arc hyperbolic cosine in the range [0, +eo].
7.75.5 Theasi nh function

Synopsis

#i ncl ude <mat h. h>
doubl e asi nh(doubl e x);

Description
The asi nh function computes the arc hyperbolic sine of x.
Returns

The asi nh function returns the arc hyperbolic sine value.
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7.75.6 The at anh function

Synopsis

#i ncl ude <mat h. h>
doubl e at anh(doubl e x);

Description

The at anh function computes the arc hyperbolic tangent of x. A domain error
occurs for arguments not in the range [-1, +1].

Returns

The at anh function returns the arc hyperbolic tangent value.
7.7.6 Exponential and logarithmic functions

7.7.6.1 The exp function

Synopsis

#i ncl ude <mat h. h>
doubl e exp(doubl e x);

Description

The exp function computes the exponential function of x. A range error occurs if the
magnitude of x is too large.

Returns

The exp function returns the exponentia value.
7.7.6.2 Thefrexp function

Synopsis

#i ncl ude <mat h. h>
doubl e frexp(doubl e value, int *exp);

Description

The f r exp function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in the i nt object pointed to by exp.

Returns

The f r exp function returns the value x, such that x is a doubl e with magnitude in
the interval [1/2, 1) or zero, and val ue equals x x 2" ®*P_ |f val ue is zero, both
parts of the result are zero.
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7.7.6.3 Thel dexp function

Synopsis

#i ncl ude <mat h. h>
doubl e | dexp(double x, int exp);

Description

The | dexp function multiplies a floating-point number by an integral power of 2. A
range error may Occur.

Returns

The | dexp function returns the value of x x 2%%P.
7.7.6.4 Thel og function

Synopsis

#i ncl ude <mat h. h>
doubl e | og(doubl e x);

Description

The | og function computes the natural logarithm of x. A domain error occurs if the
argument is negative. A range error may occur if the argument is zero.

Returns

The | og function returns the natural logarithm value.
7.7.6.5 Thel 0gl0 function

Synopsis

#i ncl ude <mat h. h>
doubl e | ogl0(doubl e x);

Description

The | 0g10 function computes the base-ten logarithm of x. A domain error occurs if
the argument is negative. A range error may occur if the argument is zero.

Returns

The | 0g10 function returns the base-ten logarithm value.
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7.7.6.6 The nodf function

Synopsis

#i ncl ude <mat h. h>
doubl e nodf (doubl e val ue, double *iptr);

Description

The nodf function breaks the argument val ue into integral and fractional parts, each
of which has the same sign as the argument. It stores the integral part as a doubl e
in the object pointed to by i ptr.

Returns

The nodf function returns the value of the signed fractional part of val ue.
7.7.6.7 Theexp?2 function

Synopsis

#i ncl ude <mat h. h>
doubl e exp2(doubl e Xx);

Description

The exp2 function computes the base-2 exponential of x: 2. A range error occurs
if the magnitude of x is too large.

Returns

The exp?2 function returns the base-2 exponential value.
7.7.6.8 The expml function

Synopsis

#i ncl ude <mat h. h>
doubl e expnil(doubl e x);

Description

The expml function computes the base-e exponentia of the argument, minus 1:
e*-1.1" A range error occurs if x is too large.

177. For small magnitude x, expmil( x) is expected to be more accurate than exp(x) - 1.
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Returns

The expmil function returns the value of e* -1.
7.7.6.9 Thel oglp function

Synopsis

#i ncl ude <mat h. h>
doubl e | oglp(doubl e x);

Description

The | oglp function computes the base-e logarithm of 1 plus the argument.!’® A
domain error occurs if the argument is less than —1. A range error may occur if the
argument equals —1.

Returns

The | oglp function returns the value of the base-e logarithm of 1 plus the argument.
7.7.6.10 Thel og2 function

Synopsis

#i ncl ude <mat h. h>
doubl e | og2(doubl e x);

Description

The | 0g2 function computes the base-2 logarithm of x. A domain error occurs if the
argument is less than zero. A range error may occur if the argument is zero.

Returns

The | 0g2 function returns the base-2 logarithm value.
7.7.6.11 Thel ogb function

Synopsis

#i ncl ude <mat h. h>
doubl e | ogb(doubl e x);

178. For small magnitude x, | oglp(x) is expected to be more accurate than | og(1 + x).
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Description

The | ogb function extracts the exponent of x, as a signed integer value in the format
of x. If x is subnormal it is treated as though it were normalized; thus for positive
finite x,

1<x x FLT_RADI X °9°X) < FLT RADI X
A range error may occur if the argument is zero.

Returns

The | ogb function returns the signed exponent of its argument.
7.7.6.12 The scal bn function

Synopsis

#i ncl ude <mat h. h>
doubl e scal bn(double x, int n);

Description

The scal bn function computes x x FLT_RADI X" efficiently, not normally by
computing FLT_RADI X" explicitly. A range error may occur.

Returns

The scal bn function returns the value of x x FLT_RADI X".
7.7.6.13 The scal bl n function

Synopsis

#i ncl ude <mat h. h>
doubl e scal bl n(double x, long int n);

Description

The scal bl n function is equivalent to the scal bn function, except that the integer
argument isl ong i nt.

7.7.6.14 Thei |l ogb function
Synopsis

#i ncl ude <mat h. h>
int ilogb(double x);
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Description

The il ogb function extracts the exponent of x as a signed i nt vaue It is
equivalent to (int) |ogb(x), for finite nonzero x; it computes the vaue
FP_I LOGBO if x is zero; it computes the value | NT_MAX if x is infinite; and it
computes the value FP_I LOGBNAN if x isa NaN. A range error may occur if x is 0.

Returns

Thei | ogb function returns the exponent of x as a signed i nt value.
7.7.7 Power and absolute value functions

7.7.7.1 Thef abs function

Synopsis

#i ncl ude <mat h. h>
doubl e fabs(double x);

Description

The f abs function computes the absolute value of a floating-point number x.
Returns

The f abs function returns the absolute value of x.

7.7.7.2 The pow function

Synopsis

#i ncl ude <mat h. h>
doubl e pow(doubl e x, double y);

Description

The pow function computes x raised to the power y. A domain error occurs if X is
negative and y is finite and not an integer value. A domain error occurs if the result
cannot be represented when x is zero and y is less than or equal to zero. A range
error may occur.

Returns

The pow function returns the value of x raised to the power y.
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7.7.7.3 Thesqrt function

Synopsis

#i ncl ude <mat h. h>
doubl e sqrt (doubl e x);

Description

The sqrt function computes the nonnegative sguare root of x. A doman error
occurs if the argument is less than zero.

Returns

The sqgrt function returns the value of the square root.
7.7.7.4 Thecbrt function

Synopsis

#i ncl ude <mat h. h>
doubl e cbrt (double x);

Description

The cbrt function computes the rea cube root of x.
Returns

The cbrt function returns the value of the cube root.
7.7.75 Thehypot function

Synopsis

#i ncl ude <mat h. h>
doubl e hypot (doubl e x, double y);

Description

The hypot function computes the square root of the sum of the squares of x and vy,
without undue overflow or underflow. A range error may occur.

Returns

The hypot function returns the value of the square root of the sum of the squares.
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7.7.8 Error and gamma functions
7.78.1 Theerf function
Synopsis

#i ncl ude <mat h. h>
doubl e erf(double x);

Description

The er f function computes the error function of x.
Returns

The er f function returns the error function value.
7.7.8.2 Theerfc function

Synopsis

#i ncl ude <mat h. h>
doubl e erfc(double x);

Description

The er f ¢ function computes the complementary error function of x. A range error
occurs if x istoo large.

Returns

The er f ¢ function returns the complementary error function value.
7.7.8.3 The gamma function

Synopsis

#i ncl ude <mat h. h>
doubl e gamma(doubl e x);

Description

The gamma function computes the gamma function of x: I'(x). A domain error
occurs if X is a negative integer or zero. A range error may occur if the magnitude of
X istoo large.

Returns

The ganma function returns the gamma function value.
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7.7.8.4 Thel gamma function

Synopsis

#i ncl ude <nmat h. h>
doubl e | gamma(doubl e x);

Description

The | ganmma function computes the natural logarithm of the absolute value of gamma
of x: loge(Or(x)0). A range error occurs if X is too large or if x is a negative
integer or zero.

Returns

The | ganma function returns the value of the natural logarithm of the absolute value
of gamma of x.

7.7.9 Nearest integer functions
7.79.1 Theceil function
Synopsis

#i ncl ude <mat h. h>
doubl e cei |l (double x);

Description
The cei | function computes the smallest integer value not less than x.
Returns

The cei | function returns the smallest integer value not less than x, expressed as a
doubl e.

7.7.9.2 Thefl oor function
Synopsis

#i ncl ude <mat h. h>
doubl e fl oor(doubl e x);

Description

The f | oor function computes the largest integer value not greater than X.
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Returns

The f | oor function returns the largest integer value not greater than x, expressed as
adoubl e.

7.7.9.3 Thenear byi nt function
Synopsis

#i ncl ude <mat h. h>
doubl e near byi nt (doubl e x);

Description

The near byi nt function differs from the ri nt function (7.7.9.4) only in that the
near byi nt function does not raise the inexact exception. (See F.9.6.3-F.9.6.4.)

Returns

The near byi nt function returns the rounded integer value.
7.79.4 Therint function

Synopsis

#i ncl ude <mat h. h>
doubl e rint(double x);

Description

The ri nt function rounds its argument to an integer value in floating-point format,
using the current rounding direction.

Returns
Theri nt function returns the rounded integer value.
7.79.5 Thel rint function
Synopsis
#i ncl ude <mat h. h>
long int Irint(double x);

Description

The | rint function rounds its argument to the nearest integer value, rounding
according to the current rounding direction. If the rounded value is outside the range
of  ong int, the numeric result is unspecified. A range error may occur if the
magnitude of x is too large.
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Returns

The | rint function returns the rounded integer value, using the current rounding
direction.

7.79.6 Thellrint function
Synopsis

#i ncl ude <nmat h. h>
long long Ilrint(double x);

Description

The |l I rint function is equivalent to the | ri nt function, except that the returned
value hastype | ong | ong.

7.7.9.7 Theround function
Synopsis

#i ncl ude <mat h. h>
doubl e round(doubl e x);

Description

The r ound function rounds its argument to the nearest integer value in floating-point
format, rounding halfway cases away from zero, regardless of the current rounding
direction.

Returns
The r ound function returns the rounded integer value.
7.7.9.8 Thel r ound function
Synopsis
#i ncl ude <mat h. h>
I ong int |round(double x);

Description

The | round function rounds its argument to the nearest integer value, rounding
halfway cases away from zero, regardless of the current rounding direction. If the
rounded value is outside the range of | ong i nt, the numeric result is unspecified. A
range error may occur if the magnitude of x is too large.

Library 239



Working Draft, 1997-11-21, WG14/N794 J11/97-158

Returns

The | r ound function returns the rounded integer value.
7.7.9.9 Thel |l round function

Synopsis

#i ncl ude <mat h. h>
long Iong Il round(double x);

Description

The | | r ound function is equivalent to the | r ound function, except that the returned
value has type | ong | ong.

7.7.9.10 Thetrunc function
Synopsis

#i ncl ude <mat h. h>
doubl e trunc(doubl e x);

Description

The trunc function rounds its argument to the integer value, in floating format,
nearest to but no larger in magnitude than the argument.

Returns

The t r unc function returns the truncated integer value.
7.7.10 Remainder functions

7.7.10.1 Thef nod function

Synopsis

#i ncl ude <mat h. h>
doubl e fnod(doubl e x, double y);

Description
The f nod function computes the floating-point remainder of x /y .
Returns

The f nod function returns the value x — n x y, for some integer n such that, if y is
nonzero, the result has the same sign as x and magnitude less than the magnitude of
y. If y is zero, whether a domain error occurs or the f mod function returns zero is

240 Library



Working Draft, 1997-11-21, WG14/N794 J11/97-158

implementation-defined.
7.7.10.2 Ther emai nder function
Synopsis

#i ncl ude <mat h. h>
doubl e remai nder (doubl e x, double y);

Description

The r emai nder function computes the remainder x REM y required by IEC 559.17°
Returns

The r emai nder function returns the value of x REM vy .

7.7.10.3 The r enguo function

Synopsis

#i ncl ude <mat h. h>
doubl e renmguo(doubl e x, double y, int *quo);

Description

The r emguo function computes the same remainder as the r emmai nder function. In
the object pointed to by quo it stores a value whose sign is the sign of x /y and
whose magnitude is congruent mod 2" to the magnitude of the integral quotient of
X /'y, where n is an implementation-defined integer at least 3.

Returns

The r erquo function returns the value of x REM vy .

179. ‘“When
y £ 0,

the remainder r = x REM vy is defined regardless of the rounding mode by the mathematical relation
r =x —y xn, where n is the integer nearest the exact value of x/y; whenever On — x/y 0 = 1/2,
then n is even. Thus, the remainder is always exact. If r =0, its sign shall be that of x.”” This
definition is applicable for all implementations.
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7.7.11 Manipulation functions

7.7.11.1 Thecopysi gn function

Synopsis

#i ncl ude <mat h. h>
doubl e copysi gn(doubl e x, double y);

Description

The copysi gn function produces a value with the magnitude of x and the sign of y.
It produces a NaN (with the sign of y) if x is a NaN. On implementations that
represent a signed zero but do not treat negative zero consistently in arithmetic
operations, the copysi gn function regards the sign of zero as positive.

Returns

The copysi gn function returns a value with the magnitude of x and the sign of y.
7.7.11.2 The nan function

Synopsis

#i ncl ude <mat h. h>
doubl e nan(const char *tagp);

Description

If the implementation supports quiet NaNs for the doubl e type, then the call
nan( " n-char-sequence’) is equivaent to strtod(" NAN( n-char-sequence) ",
(char**) NULL); the cadl nan("") is equivaent to strtod("NAN()",
(char**) NULL). If tagp does not point to an n-char-sequence string then the
result NaN’s content is unspecified. If the implementation does not support quiet
NaNs for the doubl e type, a call to the nan function is unspecified.

Returns

The nan function returns a quiet NaN, if available, with content indicated through
t agp.

7.7.11.3 The next af t er function
Synopsis

#i ncl ude <mat h. h>
doubl e next after(doubl e x, double y);
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Description

The next af t er function determines the next representable value, in the type of the
function, after x in the direction of y, where x and y are first converted to the type of
the function.’® The next af t er function returnsy if x equalsy.

Returns

The next af t er function returns the next representable value in the specified format
after x in the direction of y.

7.7.11.4 The next af t er x function
Synopsis

#i ncl ude <mat h. h>
doubl e nextafterx(double x, |ong double y);

Description

The next af t er x function is equivalent to the next af t er function except that the
second parameter has type | ong doubl e 18!

7.7.12 Maximum, minimum, and positive difference functions
7.7.12.1 Thef di mfunction
Synopsis

#i ncl ude <mat h. h>
doubl e fdi m doubl e x, double y);

Description

The f di mfunction determines the positive difference between its arguments:
X -y if x >y
+0 if x <y

A range error may OcCcCur.

180. The argument values are converted to the type of the function, even by a macro implementation of
the function.

181. The result of the next af t er x function is determined in the type of the function, without loss of
range or precision in a floating second argument.
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Returns

The f di mfunction returns the positive difference value.
7.712.2 The f max function

Synopsis

#i ncl ude <mat h. h>
doubl e fmax(doubl e x, double y);

Description

The f max function determines the maximum numeric value of its arguments.'8
Returns

The f max function returns the maximum numeric value of its arguments.
7.7.12.3 Thef m n function

Synopsis

#i ncl ude <mat h. h>
doubl e fm n(doubl e x, double y);

Description
The f mi n function determines the minimum numeric value of its arguments.&3
Returns

The f m n function returns the minimum numeric value of its arguments.

182. NaN arguments are treated as missing data: if one argument is a NaN and the other numeric, then
f max chooses the numeric value. See F.9.9.2.

183. f mi n is analogous to f max in its treatment of NaNs.
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7.7.13 Floating multiply-add

7.7.13.1 Thef ma function

Synopsis

#i ncl ude <mat h. h>
doubl e fma(doubl e x, double y, double z);

Description

The f ma function computes the sum z plus the product x times y, rounded as one
ternary operation: it computes the sum z plus the product x timesy (as if) to infinite
precision and rounds once to the result format, according to the rounding mode
characterized by the value of FLT_ROUNDS.

Returns

The f ma function returns the sum z plus the product x times y, rounded as one
ternary operation.

7.7.14 Comparison macros

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values exactly one of the
relationships — less, greater, and equal — is true. Relational operators may raise the
invalid exception when argument values are NaNs. For a NaN and a numeric value,
or for two NaNs, just the unordered relationship is true.*® The following subclauses
provide macros that are quiet (non exception raising) versions of the relational
operators, and other comparison macros that facilitate writing efficient code that
accounts for NaNs without suffering the invalid exception. In the synopses in this
subclause, real-floating indicates that the argument must be an expression of red
floating type.

184. IEC 559 requires that the built-in relational operators raise the invalid exception if the operands
compare unordered, as an error indicator for programs written without consideration of NaNs; the
result in these cases is fase.
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7.7.14.1 Thei sgreater macro

Synopsis

#i ncl ude <mat h. h>
i nt isgreater(real-floating x, real-floating y);

Description

The i sgreater macro determines whether its first argument is greater than its
second argument. The value of i sgreater (x,y) isawaysequa to (x) > (y);
however, unlike (x) > (y), isgreater(x,y) does not raise the invalid
exception when x and y are unordered.

Returns

Thei sgr eat er macro returns the value of (x) > (y).
7.7.14.2 Thei sgreat er equal macro

Synopsis

#i ncl ude <mat h. h>
i nt isgreaterequal (real-floating x, real-floating y);

Description

The i sgr eat er equal macro determines whether its first argument is greater than
or equal to its second argument. The value of i sgr eat er equal (X, y) is aways
equal to (x) >= (y); however, unlike (x) >= (y), isgreaterequal (Xx,Y)
does not raise the invalid exception when x and y are unordered.

Returns
Thei sgr eat er equal macro returns the value of (x) >= (vy).
7.714.3 Thei sl ess macro
Synopsis
#i ncl ude <mat h. h>
i nt isless(real-floating x, real-floating y) ;

Description

The i sl ess macro determines whether its first argument is less than its second
argument. The value of i sl ess(x,y) is dways equa to (x) < (y); however,
unlike (x) < (y),isless(x,y) does not raise the invalid exception when x and
y are unordered.
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Returns

Thei sl ess macro returns the value of (x) < (y).
7.7.14.4 Thei sl essequal macro

Synopsis

#i ncl ude <mat h. h>
i nt islessequal (real-floating x, real-floating y) ;

Description

The i sl essequal macro determines whether its first argument is less than or equal
to its second argument. The value of i sl essequal (x,y) is aways equa to
(x) <= (y); however, unlike (x) <= (y),isl essequal (x,y) does not raise
the invalid exception when x and y are unordered.

Returns

Thei sl essequal macro returns the value of (x) <= (y).
7.7.145 Thei sl essgreat er macro

Synopsis

#i ncl ude <mat h. h>
i nt islessgreater(real-floating x, real-floating y);

Description

The i sl essgreat er macro determines whether its first argument is less than or
greater than its second argument. The i sl essgreat er (x,y) macro is similar to
(x) <(y) || (xX) > (y); however, i sl essgreater(x,y) does not raise
the invalid exception when x and y are unordered (nor does it evaluate x and y
twice).

Returns

Thei sl essgreat er macro returnsthe value of (x) < (y) || (x) > (y).
7.7.14.6 Thei sunor der ed macro

Synopsis

#i ncl ude <mat h. h>
i nt isunordered(real-floating x, real-floating y) ;
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Description
The i sunor der ed macro determines whether its arguments are unordered.
Returns

The i sunor der ed macro returns 1 if its arguments are unordered and O otherwise.
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7.8 Complex arithmetic <conpl ex. h>

The header <conpl ex. h> defines macros and declares functions that support
complex arithmetic. Each synopsis specifies a function with one or two doubl e
conpl ex parameters and returning a doubl e conpl ex or doubl e value;, for
each such function, there are similar functions with the same name but with f and |
suffixes. The f suffix indicates that f | oat (instead of doubl e) is the corresponding
real type for the parameters and result. Similarly the | suffix indicates that | ong
doubl e is the corresponding real type for the parameters and result.

The macro
_Conpl ex_|

expands to a constant expression of type const fl oat conpl ex, with the value
of the imaginary unit.*®® The macro

_lImagi nary_|
is defined if and only if the implementation supports imaginary types;'® it expands to
a constant expression of type const fl oat i magi nary, with the value of the
imaginary unit.

The macro
I

is defined to be _Conpl ex_| or, if defined, | magi nary_| . Notwithstanding the
provisions of subclause 7.1.3, it is permitted to undefine the macro | .

7.8.1 The CX LI M TED_RANGCE pragma

Synopsis
#i ncl ude <conpl ex. h>
#pragma STDC CX LI M TED RANGE on-off-switch

Description

The usual mathematical formula for multiplication of two complex numbers and the
one for division by a complex number are problematic because of their treatment of
infinities and because of undue overflow and underflow. The CX LI M TED RANGE
pragma can be used to inform the implementation that (where the state is on) the usua

185. The imaginary unit is a number i such that i * i = -1.
186. A specification for imaginary types is in informative Annex G.
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mathematical formulas for multiplication and division are acceptable.!®” The pragma
can occur either outside external declarations or preceding all explicit declarations and
statements inside a compound statement. When outside externa declarations, the
pragma takes effect from its occurrence until another CX_LI M TED_RANGE pragma
is encountered, or until the end of the trandation unit. When inside a compound
statement, the pragma takes effect from its occurrence until another
CX_LI M TED_RANGE pragma is encountered (within a nested compound statement),
or until the end of the compound statement; at the end of a compound statement the
state for the pragma is restored to its condition just before the compound statement. |f
this pragma is used in any other context, the behavior is undefined. The default state
for the pragma is off.

7.8.2 Complex functions

Values are interpreted as radians, not degrees. An implementation may set er r no but
is not required to.

7.8.2.1 Branch cuts

Some of the functions below have branch cuts, across which the function is
discontinuous. For implementations with a signed zero (including al IEC 559
implementations) that follow the specification of Annex G, the sign of zero
distinguishes one side of a cut from another so the function is continuous (except for
format limitations) as the cut is approached from either side. For example, for the
square root function, which has a branch cut along the negative real axis, the top of
the cut, with imaginary part +0, maps to the positive imaginary axis, and the bottom
of the cut, with imaginary part —0, maps to the negative imaginary axis.

Implementations that do not support a signed zero (see Annex F) cannot distinguish
the sides of branch cuts. These implementations must map a cut so the function is
continuous as the cut is approached coming around the finite endpoint of the cut in a
counter clockwise direction. (Branch cuts for the functions specified here have just
one finite endpoint.) For example, for the square root function, coming counter
clockwise around the finite endpoint of the cut along the negative real axis approaches
the cut from above, so the cut maps to the positive imaginary axis.

187. The purpose of the pragma is to allow the implementation to use the formulas

(X +y*i) * (u+ Vi) = (X*u = y*v) + (YU + X*V)*i
(X +y*i) [ (u+v*i) = (x*u + y*v) / (U*u + v*v) +
((y*u = x*v) / (U*u + v*v))*i

where the programmer can determine they are safe.
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7.8.2.2 The cacos function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex cacos(doubl e compl ex z);

Description

The cacos function computes the complex arc cosine of z, with branch cuts outside
the interval [-1, 1] aong the real axis.

Returns

The cacos function returns the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0, 1] along
the real axis.

7.8.2.3 The casi n function
Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex casi n(doubl e conpl ex z);

Description

The casi n function computes the complex arc sine of z, with branch cuts outside the
interval [-1, 1] aong the rea axis.

Returns

The casi n function returns the complex arc sine vaue, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-1V2, 172]
along the real axis.

7.8.2.4 The cat an function
Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex catan(doubl e conpl ex z);

Description

The cat an function computes the complex arc tangent of z, with branch cuts outside
the interval [, i] along the imaginary axis.
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Returns

The cat an function returns the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-172, 172]

along the real axis.
7.8.2.5 The ccos function
Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex ccos(doubl e conplex z);

Description

The ccos function computes the complex cosine of z.
Returns

The ccos function returns the complex cosine value.
7.8.2.6 Thecsi n function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex csin(doubl e conplex z);

Description

The csi n function computes the complex sine of z.
Returns

The csi n function returns the complex sine value.
7.8.2.7 Thect an function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex ctan(doubl e conplex z);

Description

The ct an function computes the complex tangent of z.
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Returns

The ct an function returns the complex tangent value.
7.8.2.8 The cacosh function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex cacosh(doubl e conplex z);

Description

The cacosh function computes the complex arc hyperbolic cosine of z, with a
branch cut at values less than 1 aong the real axis.

Returns

The cacosh function returns the complex arc hyperbolic cosine value, in the range of
a half-strip of non-negative values along the real axis and in the interval [-iTy it
along the imaginary axis.

7.8.2.9 The casi nh function
Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex casi nh(doubl e conpl ex z);

Description

The casi nh function computes the complex arc hyperbolic sine of z, with branch
cuts outside the interval [—i, i] along the imaginary axis.

Returns

The casi nh function returns the complex arc hyperbolic sine value, in the range of a
strip mathematically unbounded along the real axis and in the interva [-iTv2, iTV2]
along the imaginary axis.

7.8.2.10 The cat anh function
Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex catanh(doubl e conpl ex z);
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Description

The cat anh function computes the complex arc hyperbolic tangent of z, with branch
cuts outside the interval [-1, 1] along the real axis.

Returns

The cat anh function returns the complex arc hyperbolic tangent value, in the range
of a strip mathematically unbounded along the real axis and in the interval
[-iTY2, i172] aong the imaginary axis.

7.8.2.11 The ccosh function
Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex ccosh(doubl e conpl ex z);

Description

The ccosh function computes the complex hyperbolic cosine of z.
Returns

The ccosh function returns the complex hyperbolic cosine value.
7.8.2.12 Thecsi nh function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex csi nh(doubl e conpl ex z);

Description

The csi nh function computes the complex hyperbolic sine of z.
Returns

The csi nh function returns the complex hyperbolic sine value.
7.8.2.13 Thect anh function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex ctanh(doubl e compl ex z);
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Description

The ct anh function computes the complex hyperbolic tangent of z.
Returns

The ct anh function returns the complex hyperbolic tangent value.
7.8.2.14 The cexp function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conmpl ex cexp(doubl e conplex z);

Description

The cexp function computes the complex base-e exponential of z.
Returns

The cexp function returns the complex base-e exponential value.
7.8.2.15 Thecl og function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conmpl ex cl og(doubl e conplex z);

Description

The cl og function computes the complex natural (base-e) logarithm of z, with a
branch cut along the negative real axis.

Returns

The cl og function returns the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [-iTt, iT] along the
imaginary axis.

7.8.2.16 Thecsqrt function
Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex csqrt(doubl e conpl ex z);
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Description

The csqrt function computes the complex square root of z, with a branch cut along
the negative real axis.

Returns

The csqrt function returns the complex square root value, in the range of the right
half-plane (including the imaginary axis).

7.8.2.17 The cabs function
Synopsis

#i ncl ude <conpl ex. h>
doubl e cabs(doubl e conplex z);

Description

The cabs function computes the complex absolute value (also called norm, modulus,
or magnitude) of z.

Returns

The cabs function returns the complex absolute value.
7.8.2.18 The cpow function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex cpow doubl e conpl ex x, doubl e conplex y);

Description

The cpow function computes the complex power function x ¥, with a branch cut for
the first parameter along the negative real axis.

Returns

The cpow function returns the complex power function value.
7.8.2.19 Thecar g function

Synopsis

#i ncl ude <conpl ex. h>
doubl e car g(doubl e conplex z);
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Description

The car g function computes the argument (also called phase angle) of z, with a
branch cut along the negative real axis.

Returns

The car g function returns the value of the argument in the range [-Tt, 1.
7.8.2.20 The conj function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex conj (doubl e conplex z);

Description

The conj function computes the complex conjugate of z, by reversing the sign of its
imaginary part.

Returns

The conj function returns the complex conjugate value.
7.8.2.21 Theci mag function

Synopsis

#i ncl ude <conpl ex. h>
doubl e ci mag(doubl e conpl ex z);

Description
The ci mag function computes the imaginary part of z.18
Returns

The ci mag function returns the imaginary part value (as a real).

188. For a variable z of complex type, z == creal (z) + cinag(z)*I.
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7.8.2.22 Thecproj function

Synopsis

#i ncl ude <conpl ex. h>
doubl e conpl ex cproj (doubl e conplex z);

Description

The cpr oj function computes a projection of z onto the Riemann sphere: z projects
to z except that all complex infinities (even those with one infinite part and one NaN
part) project to positive infinity on the real axis. If z has an infinite part, then
cproj (z) isequivaent to

INFINITY + 1 * copysign(0.0, cimg(z))
Returns
The cpr oj function returns the value of the projection onto the Riemann sphere.
7.8.2.23 Thecreal function
Synopsis

#i ncl ude <conpl ex. h>
doubl e creal (doubl e conpl ex z);

Description
The cr eal function computes the real part of z.
Returns

The cr eal function returns the rea part value.
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7.9 Type-generic math <t gmat h. h>

The header <t gmat h. h> includes the headers <mat h. h> and <conpl ex. h> and
defines severa type-generic macros.

7.9.1 Type-generic macros

Of the <mat h. h> and <conpl ex. h> functions without an f (fl1 oat) or | (I ong
doubl e) suffix, several have one or more parameters whose corresponding real type
is doubl e. For each such function, except nodf, there is a corresponding type-
generic macro.’®® The parameters whose corresponding real type is doubl e in the
function synopsis are generic parameters. Use of the macro invokes a function
whose corresponding real type and type-domain are determined by the arguments for
the generic parameters.!®

Use of the macro invokes a function whose generic parameters have the corresponding
real type determined as follows:

— First, if any argument for generic parameters has type | ong doubl e, the type
determined is| ong doubl e.

— Otherwise, if any argument for generic parameters has type doubl e or is of
integer type, the type determined is doubl e.

— Otherwise, the type determined is f | oat .

For each unsuffixed function in <mat h. h> for which there is a function in
<conpl ex. h> with the same name except for a c prefix, the corresponding type-
generic macro (for both functions) has the same name as the function in <mat h. h>.
The corresponding type-generic macro for f abs and cabs isf abs.

189. Like other function-like macros in Standard libraries, each type-generic macro can be suppressed to
make available the corresponding ordinary function.

190. If the type of the argument is incompatible with the type of the parameter for the selected function,
the behavior is undefined.
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<mat h. h> function <conpl ex. h> function type-generic macro
acos cacos acos
asin casin asin
at an cat an at an
acosh cacosh acosh
asi nh casi nh asi nh
at anh cat anh at anh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
si nh csi nh si nh
t anh ct anh t anh
exp cexp exp
| og cl og | og
pow cpow pow
sqrt csqrt sqrt
f abs cabs f abs

4 |If a least one argument for a generic parameter is complex, then use of the macro
invokes a complex function; otherwise, use of the macro invokes a real function.

5 For each unsuffixed function in <mat h. h> without a c-prefixed counterpart in
<conpl ex. h>, the corresponding type-generic macro has the same name as the
function. These type-generic macros are:

atan2 cbrt cei
copysi gn erf erfc
exp2 expnil fdi m
floor fma f max
fmn f nod frexp
gama hypot il ogb
| dexp | gamma [1rint
'l round | 0g10 | oglp
| 0g2 | ogb [ rint

| round near byi nt next after
nextafterx remainder renguo
rint round scal bn
scal bl n trunc

6 If al arguments for generic parameters are real, then use of the macro invokes a real
function; otherwise, use of the macro results in undefined behavior.
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For each unsuffixed function in <conpl ex. h> that is not a c-prefixed counterpart to
a function in <mat h. h>, the corresponding type-generic macro has the same name as
the function. These type-generic macros are:

carg cimag conj
cproj creal
Use of the macro with any real or complex argument invokes a complex function.
Examples
With the declarations
#i ncl ude <tgmath. h>
int n;
float f;
doubl e d;
| ong doubl e Id;
fl oat conplex fc;

doubl e conpl ex dc;
| ong doubl e conpl ex | dc;

functions invoked by use of type-generic macros are shown in the following table:
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macro use invokes
exp(n) exp( n), the function
acosh(f) acoshf (f)
sin(d) si n(d), the function
atan(|d) atanl (1d)
| og(fc) cl ogf (fc)
sqgrt(dc) csqgrt(dc)
pow | dc, f) cpow (I dc, f)

remai nder (n, n)
nextafter(d, f)
nextafterx(f, 1d)
copysign(n, 1d)
ceil (fc)
rint(dc)
fmax(ldc, |d)
carg(n)

cproj (f)

creal (d)

ci mag(!d)
cabs(fc)
carg(dc)

cproj (1dc)

remai nder (n, n), the function
nextafter(d, f), thefunction
nextafterxf(f, 1d)
copysignl (n, |d)

undefined behavior

undefined behavior

undefined behavior

car g(n), the function
cprojf(f)

creal (d), the function

ci magl (1 d)

cabsf (fc)

car g(dc), the function

cprojl (ldc)
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7.10 Nonlocal jumps <set j np. h>

The header <set ] np. h> defines the macro set j np, and declares one function and
one type, for bypassing the normal function call and return discipline.**t

The type declared is

] mp_buf

which is an array type suitable for holding the information needed to restore a calling
environment.

It is unspecified whether setj np is a macro or an identifier declared with external
linkage. If a macro definition is suppressed in order to access an actual function, or a
program defines an external identifier with the name setj np, the behavior is
undefined.

7.10.1 Save calling environment
7.10.1.1 Thesetj np macro
Synopsis

#i ncl ude <setjnp. h>
int setjnp(jnp_buf env);

Description

The set j np macro saves its calling environment in its j np_buf argument for later
use by the | ongj np function.

Returns

If the return is from a direct invocation, the set j mp macro returns the value zero. If
the return is from a cal to the | ongj np function, the setj np macro returns a
nonzero value.

Environmental restriction

An invocation of the setj np macro shall appear only in one of the following
contexts:

— the entire controlling expression of a selection or iteration statement;

191. These functions are useful for dealing with unusual conditions encountered in a low-level function
of a program.
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— one operand of a relational or equality operator with the other operand an integer
constant expression, with the resulting expression being the entire controlling
expression of a selection or iteration statement;

— the operand of a unary ! operator with the resulting expression being the entire
controlling expression of a selection or iteration statement; or

— the entire expression of an expression statement (possibly cast to voi d).
If the invocation appears in any other context, the behavior is undefined.
7.10.2 Restore calling environment

7.10.2.1 Thel ongj np function

Synopsis

#i ncl ude <setjnp. h>
voi d | ongj mp(j np_buf env, int val);

Description

The | ongj np function restores the environment saved by the most recent invocation
of the set j np macro in the same invocation of the program, with the corresponding
j mp_buf argument. If there has been no such invocation, or if the function
containing the invocation of the setj np macro has terminated execution'® in the
interim, the behavior is undefined.

All accessible objects have values as of the time | ongj np was called, except that the
values of objects of automatic storage duration that are local to the function containing
the invocation of the corresponding set j np macro that do not have volatile-qualified
type and have been changed between the set j np invocation and | ongj np call are
indeterminate.

Returns

After | ongj np is completed, program execution continues as if the corresponding
invocation of the setj np macro had just returned the value specified by val . The
| ongj np function cannot cause the set j np macro to return the value O; if val isO,
the set j np macro returns the value 1.

192. For example, by executing a r et ur n statement or because another | ongj np call has caused a
transfer to a set j np invocation in a function earlier in the set of nested calls.
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Examples

The | ongj np function that returns control back to the point of the setj np
invocation might cause memory associated with a variable length array object to be
squandered.

#i ncl ude <setj np. h>
j mp_buf buf;

void g(int n);

void h(int n);

int n = 6;

void f(void)

{
int x[n]; /1 OK, f isnot terminated.
set | nmp( buf);
g(n);

}

void g(int n)

{
int a[n]; /'l a may remain allocated.
h(n);

}

void h(int n)

{
int b[n]; /'l b may remain allocated.
| ongj np(buf, 2); // might cause memory loss.

}
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7.11 Signal handling <si gnal . h>

The header <si gnal . h> declares a type and two functions and defines several
macros, for handling various signals (conditions that may be reported during program
execution).

The type defined is
sig_atomc_t

which is the (possibly volatile-qualified) integer type of an object that can be accessed
as an atomic entity, even in the presence of asynchronous interrupts.

The macros defined are

SI G DFL
SI G ERR
SIGIGN

which expand to positive integer constant expressions with type i nt and distinct
values that have type compatible with the second argument to and the return value of
the si gnal function, and whose value compares unequal to the address of any
declarable function; and the following, which expand to positive integer constant
expressions with distinct values that are the signal numbers, each corresponding to the
specified condition:

SI GABRT abnormal termination, such as is initiated by the abort function

SI GFPE an erroneous arithmetic operation, such as zero divide or an operation
resulting in overflow

SI G LL detection of an invalid function image, such as an illegal instruction
SI G NT receipt of an interactive attention signal

SI GSEGV an invalid access to storage

SI GTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of
explicit calls to the r ai se function. Additional signals and pointers to undeclarable
functions, with macro definitions beginning, respectively, with the letters SI G and an
uppercase letter or with SI G_ and an uppercase letter,*®3 may also be specified by the

193. See ‘‘future library directions’ (7.20.6). The names of the signa numbers reflect the following
terms (respectively): abort, floating-point exception, illegal instruction, interrupt, segmentation
violation, and termination.
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implementation. The complete set of signals, their semantics, and their default
handling is implementation-defined; all signal numbers shall be positive.

7.11.1 Specify signal handling

7.11.1.1 Thesi gnal function

Synopsis

#i ncl ude <signal . h>
void (*signal (int sig, void (*func)(int)))(int);

Description

The si gnal function chooses one of three ways in which receipt of the signal
number si g is to be subsequently handled. If the value of func is SI G DFL,
default handling for that signal will occur. If the value of func is SI G_| GN, the
signal will be ignored. Otherwise, f unc shall point to a function to be called when
that signal occurs. An invocation of such a function because of a signal, or
(recursively) of any further functions called by that invocation (other than functions in
the standard library), is called a signal handler.

When a signal occurs and f unc points to a function, it is implementation-defined
whether the equivaent of signal (sig, SIGDFL); is executed or the
implementation prevents some implementation-defined set of signals (at least including
si g) from occuring until the current signal handling has completed; in the case of
SI d LL, the implementation may aternatively define that no action is taken. Then
the equivalent of (*func) (si g); isexecuted. If and when the function returns, if
the value of si g is SI GFPE, SI G LL, SI GSEGV, or any other implementation-
defined value corresponding to a computational exception, the behavior is undefined;
otherwise the program will resume execution at the point it was interrupted.

If the signal occurs as the result of calling the abort or rai se function, the signal
handler shall not cal ther ai se function.

If the signal occurs other than as the result of calling the abort or rai se function,
the behavior is undefined if the signal handler refers to any object with static storage
duration other than by assigning a value to an object declared as vol atil e
sig_atom c_t, or the signa handler cals any function in the standard library other
than the abort function or the si gnal function with the first argument equal to the
signal number corresponding to the signal that caused the invocation of the handler.
Furthermore, if such a call to the si gnal function results in a SI G_ERR return, the
value of er r no is indeterminate.%

Library 267



Working Draft, 1997-11-21, WG14/N794 J11/97-158

At program startup, the equivalent of
signal (sig, SIGIGN;

may be executed for some signals selected in an implementation-defined manner; the
equivalent of

signal (sig, SIGDFL);
is executed for all other signals defined by the implementation.
The implementation shall behave as if no library function calls the si gnal function.
Returns

If the request can be honored, the si gnal function returns the value of f unc for the
most recent successful call to si gnal for the specified signa si g. Otherwise, a
value of SI G_ERR is returned and a positive value is stored in er r no.

Forward references: the abort function (7.14.4.1), the exi t function (7.14.4.3).
7.11.2 Send signal

7.11.2.1 Therai se function

Synopsis

#i ncl ude <signal . h>
int raise(int sig);

Description

The r ai se function carries out the actions described in subclause 7.11.1.1 for the
signa si g. If a signa handler is called, the r ai se function shal not return until
after the signal handler does.

Returns

The r ai se function returns zero if successful, nonzero if unsuccessful.

194. If any signal is generated by an asynchronous signal handler, the behavior is undefined.
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7.12 Variable arguments <st dar g. h>

The header <st dar g. h> declares a type and defines four macros, for advancing
through a list of arguments whose number and types are not known to the called
function when it is trandlated.

A function may be called with a variable number of arguments of varying types. As
described in 6.7.1, its parameter list contains one or more parameters. The rightmost
parameter plays a specia role in the access mechanism, and will be designated parmN
in this description.

The type declared is
va_|i st

which is an object type suitable for holding information needed by the macros
va_start,va_arg, va_end, and va_copy. If access to the varying arguments is
desired, the called function shall declare an object (referred to as ap in this subclause)
having type va_l i st. The object ap may be passed as an argument to another
function; if that function invokes the va_ar g macro with parameter ap, the value of
ap in the caling function is indeterminate and shall be passed to the va_end macro
prior to any further reference to ap.t®

7.12.1 Variable argument list access macros

Theva_start, va_arg, and va_copy macros described in this subclause shall be
implemented as macros, not functions. It is unspecified whether va_end is a macro
or an identifier declared with external linkage. If a macro definition is suppressed in
order to access an actual function, or a program defines an external identifier with the
name va_end, the behavior is undefined. Each invocation of the va_start or
va_copy macros shall be matched by a corresponding invocation of the va_end
macro in the function accepting a varying number of arguments.

7.12.1.1 Theva_start macro
Synopsis

#i ncl ude <stdarg. h>
void va_start(va_list ap, parmN);

195. It is permitted to create a pointer to ava_| i st and pass that pointer to another function, in which
case the origina function may make further use of the original list after the other function returns.
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Description
The va_st art macro shall be invoked before any access to the unnamed arguments.

The va_start macro initializes ap for subsequent use by va_arg and va_end.
va_start shall not be invoked again for the same ap without an intervening
invocation of va_end for the same ap.

The parameter parmN is the identifier of the rightmost parameter in the variable
parameter list in the function definition (the one just before the , ...). If the
parameter parmN is declared with the r egi st er storage class, with a function or
array type, or with a type that is not compatible with the type that results after
application of the default argument promotions, the behavior is undefined.

Returns
The va_st art macro returns no value.

7.12.1.2 Theva_ar g macro

Synopsis

#i ncl ude <stdarg. h>
type va_arg(va_list ap, type);

Description

The va_ar g macro expands to an expression that has the type and value of the next
argument in the call. The parameter ap shal be the same as the va_|i st ap
initialized by va_st art . Each invocation of va_ar g modifies ap so that the values
of successive arguments are returned in turn. The parameter type is a type name
specified such that the type of a pointer to an object that has the specified type can be
obtained simply by postfixing a * to type. If there is no actual next argument, or if
type is not compatible with the type of the actual next argument (as promoted
according to the default argument promotions), the behavior is undefined.

Returns

The first invocation of the va_ar g macro after that of the va_st art macro returns
the value of the argument after that specified by parmN. Successive invocations return
the values of the remaining arguments in succession.
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7.12.1.3 Theva_copy macro

Synopsis

#i ncl ude <stdarg. h>
voi d va_copy(va_list dest, va list src);

Description

The va_copy macro makestheva_ | i st dest beacopy of theva_|ist src, as
if theva_st art macro had been applied to it followed by the same sequence of uses
of the va_ar g macro as had previously been used to reach the present state of sr c.

Returns
The va_copy macro returns no value.
7.12.1.4 Theva_end macro
Synopsis
#i ncl ude <stdarg. h>
voi d va_end(va_list ap);

Description

The va_end macro facilitates a norma return from the function whose variable
argument list was referred to by the expansion of va_start that initialized the
va_list ap. The va_end macro may modify ap so that it is no longer usable
(without an intervening invocation of va_start). If there is no corresponding
invocation of the va_st art macro, or if the va_end macro is not invoked before
the return, the behavior is undefined.

Returns
The va_end macro returns no value.
Examples

The function f 1 gathers into an array a list of arguments that are pointers to strings
(but not more than MAXARGS arguments), then passes the array as a single argument
to function f 2. The number of pointers is specified by the first argument to f 1.
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#i ncl ude <stdarg. h>

#defi ne MAXARGS 31
void f1(int n_ptrs, ...)
{

va_list ap;
char *array[ MAXARGS] ;
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap, n_ptrs);

while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);

va_end(ap);
f2(n_ptrs, array);
}

Each call to f 1 shall have visible the definition of the function or a declaration such

as
void f1(int, ...);

The function f 3 is similar, but saves the status of the variable argument list after the
indicated number of arguments; after f 2 has been called once with the whole lit, the

trailing part of the list is gathered again and passed to function f 4.
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#i ncl ude <stdarg. h>
#defi ne MAXARGS 31

void f3(int n_ptrs, int f4 _after, ...)
{
va_|list ap, ap_save;
char *array[ MAXARGS] ;
int ptr_no = O;
if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs) {
array[ptr_no++] = va_arg(ap, char *);
if (ptr_no == f4 _after)
va_copy(ap_save, ap);
}
va_end(ap);
f2(n_ptrs, array);

/'l Now process the saved copy.

n_ptrs -=f4 after;
ptr_no = O;
while (ptr_no < n_ptrs)
array[ ptr_no++] = va_arg(ap_save, char *);
va_end(ap_save);
f4(n_ptrs, array);
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7.13 Input/output <st di 0. h>
7.13.1 Introduction

The header <st di 0. h> declares three types, several macros, and many functions for
performing input and output.

The types declared are si ze_t (described in 7.1.6);
FI LE

which is an object type capable of recording all the information needed to control a
stream, including its file position indicator, a pointer to its associated buffer (if any),
an error indicator that records whether a read/write error has occurred, and an end-of-
file indicator that records whether the end of the file has been reached; and

f pos_t

which is an object type other than an array type capable of recording al the
information needed to specify uniquely every position within a file.

The macros are NULL (described in 7.1.6);

1 OFBF
1 OLBF
1 ONBF

which expand to integer constant expressions with distinct values, suitable for use as
the third argument to the set vbuf function;

BUFSI Z

which expands to an integer constant expression, which is the size of the buffer used
by the set buf function;

ECF

which expands to an integer constant expression, with type i nt and a negative value,
that is returned by severa functions to indicate end-of-file, that is, no more input from
a stream,

FOPEN_MAX

which expands to an integer constant expression that is the minimum number of files
that the implementation guarantees can be open simultaneously;

FI LENAVE_NMAX

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold the longest file name string that the implementation
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guarantees can be opened;'%
L_t npnam

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold a temporary file name string generated by the t npnam
function;

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integer constant expressions with distinct values, suitable for use as
the third argument to the f seek function;

TVP_VAX

which expands to an integer constant expression that is the minimum number of
unigue file names that shall be generated by the t npnamfunction;

stderr
stdin
st dout

which are expressions of type ‘‘pointer to FI LE that point to the FI LE objects
associated, respectively, with the standard error, input, and output streams.

The header <wchar . h> declares a number of functions useful for wide-character
input and output. The wide-character input/output functions described in that
subclause provide operations analogous to most of those described here, except that
the fundamental units internal to the program are wide characters. The external
representation (in the file) is a sequence of ‘‘generalized’”” multibyte characters, as
described further in subclause 7.13.3.

The input/output functions are given the following collective terms:

— The wide-character input functions — those functions described in these
subclauses that perform input into wide characters and wide strings: f get wc,
f get ws, get we, get wehar, f wscanf , wscanf , vf wscanf, and vwscanf .

196. If the implementation imposes no practical limit on the length of file name strings, the value of
FI LENAME_MAX should instead be the recommended size of an array intended to hold a file name
string. Of course, file name string contents are subject to other system-specific constraints; therefore
all possible strings of length FI LENAME_MAX cannot be expected to be opened successfully.
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— The wide-character output functions — those functions described in these
subclauses that perform output from wide characters and wide strings. f put we,
fputws, putwc, putwchar, fwprintf, worintf, viwprintf, and
vwprintf.

— The wide-character input/output functions — the union of the unget we function,
the wide-character input functions, and the wide-character output functions.

— The byte input/output functions — those functions described in these subclauses
that perform input/output: fgetc, fgets, fprintf, fputc, fputs, fread,
fscanf, fwite, getc, getchar, gets, printf, putc, putchar, puts,
scanf,ungetc, viprintf,vfscanf,vprintf, andvscanf.

Forward references: files (7.13.3), the f seek function (7.13.9.2), streams (7.13.2), the
t npnamfunction (7.13.4.4), <wchar . h> (7.19).

7.13.2 Streams

Input and output, whether to or from physical devices such as terminals and tape
drives, or whether to or from files supported on structured storage devices, are mapped
into logical data streams, whose properties are more uniform than their various inputs
and outputs. Two forms of mapping are supported, for text streams and for binary
streams. 1%’

A text stream is an ordered sequence of characters composed into lines, each line
consisting of zero or more characters plus a terminating new-line character. Whether
the last line requires a terminating new-line character is implementation-defined.
Characters may have to be added, atered, or deleted on input and output to conform to
differing conventions for representing text in the host environment. Thus, there need
not be a one-to-one correspondence between the characters in a stream and those in the
external representation. Data read in from a text stream will necessarily compare
equal to the data that were earlier written out to that stream only if: the data consist
only of printable characters and the control characters horizontal tab and new-line; no
new-line character is immediately preceded by space characters; and the last character
is a new-line character. Whether space characters that are written out immediately
before a new-line character appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record
internal data. Data read in from a binary stream shall compare equal to the data that

197. An implementation need not distinguish between text streams and binary streams. In such an
implementation, there need be no new-line characters in a text stream nor any limit to the length of a
line.
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were earlier written out to that stream, under the same implementation. Such a stream
may, however, have an implementation-defined number of null characters appended to
the end of the stream.

Each stream has an orientation. After a stream is associated with an external file, but
before any operations are performed on it, the stream is without orientation. Once a
wide-character input/output function has been applied to a stream without orientation,
the stream becomes wide-oriented. Similarly, once a byte input/output function has
been applied to a stream without orientation, the stream becomes byte-oriented. Only
a cal to the freopen function or the fw de function can otherwise alter the
orientation of a stream. (A successful call to f r eopen removes any orientation.)!%

Byte input/output functions shall not be applied to a wide-oriented stream; and wide-
character input/output functions shall not be applied to a byte-oriented stream. The
remaining stream operations do not affect and are not affected by a stream's
orientation, except for the following additional restrictions:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both
text and binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that
leaves the file position indicator prior to the end-of-file, a wide-character output
function can overwrite a partial multibyte character; any file contents beyond the
byte(s) written are henceforth indeterminate.

Each wide-oriented stream has an associated nbstat e t object that stores the
current parse state of the stream. A successful call to f get pos stores a representation
of the value of this nbst at e_t object as part of the value of the f pos_t object. A
later successful call to f set pos using the same stored f pos_t value restores the
value of the associated nbstate t object as well as the position within the
controlled stream.

Environmental limits

An implementation shall support text files with lines containing at least 254 characters,
including the terminating new-line character. The value of the macro BUFSI Z shall
be at least 256.

198. The three predefined streams st di n, st dout , and st der r are unoriented at program startup.
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Forward references: freopen (7.13.54), fw de (7.19.3.10), nbstate_t (7.18.1),
f get pos (7.13.9.1), and f set pos (7.13.9.3).

7.13.3 Files

A stream is associated with an externa file (which may be a physica device) by
opening a file, which may involve creating a new file. Creating an existing file causes
its former contents to be discarded, if necessary. If a file can support positioning
requests (such as a disk file, as opposed to a terminal), then a file position indicator
associated with the stream is positioned at the start (character number zero) of the file,
unless the file is opened with append mode in which case it is implementation-defined
whether the file position indicator is initially positioned at the beginning or the end of
the file. The file position indicator is maintained by subsequent reads, writes, and
positioning requests, to facilitate an orderly progression through the file.

Binary files are not truncated, except as defined in 7.13.5.3. Whether a write on a text
stream causes the associated file to be truncated beyond that point is implementation-
defined.

When a stream is unbuffered, characters are intended to appear from the source or at
the destination as soon as possible. Otherwise characters may be accumulated and
transmitted to or from the host environment as a block. When a stream is fully
buffered, characters are intended to be transmitted to or from the host environment as
a block when a buffer is filled. When a stream is line buffered, characters are
intended to be transmitted to or from the host environment as a block when a new-line
character is encountered. Furthermore, characters are intended to be transmitted as a
block to the host environment when a buffer is filled, when input is requested on an
unbuffered stream, or when input is requested on a line buffered stream that requires
the transmission of characters from the host environment. Support for these
characteristics is implementation-defined, and may be affected via the set buf and
set vbuf functions.

A file may be disassociated from a controlling stream by closing the file. Output
streams are flushed (any unwritten buffer contents are transmitted to the host
environment) before the stream is disassociated from the file. The value of a pointer
to a FI LE object is indeterminate after the associated file is closed (including the
standard text streams). Whether a file of zero length (on which no characters have
been written by an output stream) actually exists is implementation-defined.

The file may be subsequently reopened, by the same or another program execution,
and its contents reclaimed or modified (if it can be repositioned at its start). If the
mai n function returns to its origina caller, or if the exi t function is called, all open
files are closed (hence al output streams are flushed) before program termination.
Other paths to program termination, such as calling the abort function, need not
close adl files properly.
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The address of the FI LE object used to control a stream may be significant; a copy of
a Fl LE object may not necessarily serve in place of the original.

At program startup, three text streams are predefined and need not be opened explicitly
— standard input (for reading conventiona input), standard output (for writing
conventional output), and standard error (for writing diagnostic output). When
opened, the standard error stream is not fully buffered; the standard input and standard
output streams are fully buffered if and only if the stream can be determined not to
refer to an interactive device.

Functions that open additional (nontemporary) files require a file name, which is a
string. The rules for composing valid file names are implementation-defined. Whether
the same file can be simultaneously open multiple times is aso implementation-
defined.

Although both text and binary wide-oriented streams are conceptually sequences of
wide characters, the external file associated with a wide-oriented stream is a sequence
of multibyte characters, generalized as follows:

— Multibyte encodings within files may contain embedded null bytes (unlike
multibyte encodings valid for use internal to the program).

— A file need not begin nor end in the initial shift state.*®®

Moreover, the encodings used for multibyte characters may differ among files. Both
the nature and choice of such encodings are implementation-defined.

The wide-character input functions read multibyte characters from the stream and
convert them to wide characters as if they were read by successive calls to the get we
function. Each conversion occurs as if by a cal to the nbrt owc function, with the
conversion state described by the stream’s own nbst at e t object. The byte input
functions read characters from the stream as if by successive calls to the fgetc
function.

The wide-character output functions convert wide characters to multibyte characters
and write them to the stream as if they were written by successive cals to the
f put we function. Each conversion occurs as if by a call to the wer t onmb function,
with the conversion state described by the stream’s own nbstate t object. The
byte output functions write characters to the stream as if by successive calls to the

199. Setting the file position indicator to end-of-file, as with f seek(file, 0, SEEK END), has
undefined behavior for a binary stream (because of possible trailing null characters) or for any
stream with state-dependent encoding that does not assuredly end in the initial shift state.
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f put ¢ function.

An encoding error occurs if the character sequence presented to the underlying
nbrt owc function does not form a valid (generalized) multibyte character, or if the
code value passed to the underlying wertonb does not correspond to a valid
(generalized) multibyte character. The wide-character input/output functions and the
byte input/output functions store the value of the macro ElI LSEQ in errno if and
only if an encoding error occurs.

Environmental limits

The value of FOPEN_MAX shall be at least eight, including the three standard text
streams.

Forward references: the exi t function (7.14.4.3), the f get ¢ function (7.13.7.1), the
f open function (7.13.5.3), the f put c function (7.13.7.3), the set buf function
(7.13.5.5), the set vbuf function (7.13.5.6), the f get wc function (7.19.3.1), the
f putwc function (7.19.3.3), conversion state (7.19.7), the nbrtowc function
(7.19.7.3.2), the wer t onb function (7.19.7.3.3).

7.13.4 Operations on files
7.13.4.1 Therenove function
Synopsis

#i ncl ude <stdio. h>
int renmove(const char *fil enane);

Description

The renove function causes the file whose name is the string pointed to by
fil enanme to be no longer accessible by that name. A subsequent attempt to open
that file using that name will fail, unless it is created anew. If the file is open, the
behavior of the r enove function is implementation-defined.

Returns

The r enove function returns zero if the operation succeeds, nonzero if it fails.
7.13.4.2 Ther enane function

Synopsis

#i ncl ude <stdio. h>
i nt rename(const char *old, const char *new);
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Description

The r enane function causes the file whose name is the string pointed to by ol d to
be henceforth known by the name given by the string pointed to by new. The file
named ol d is no longer accessible by that name. If a file named by the string pointed
to by new exists prior to the cal to the renane function, the behavior is
implementation-defined.

Returns

The r ename function returns zero if the operation succeeds, nonzero if it fails?® i
which case if the file existed previoudly it is still known by its original name.

n

7.13.4.3 Thet npfil e function

Synopsis

#i ncl ude <stdio. h>
FILE *tnpfile(void);

Description

The t mpfil e function creates a temporary binary file that will automatically be
removed when it is closed or at program termination. If the program terminates
abnormally, whether an open temporary file is removed is implementation-defined.
The file is opened for update with " wb+" mode.

Returns

The t npf i | e function returns a pointer to the stream of the file that it created. If the
file cannot be created, the t npf i | e function returns a null pointer.

Forward references. the f open function (7.13.5.3).
7.13.4.4 Thet npnamfunction
Synopsis

#i ncl ude <stdio. h>
char *tnpnam(char *s);

200. Among the reasons the implementation may cause the r enane function to fail are that the file is
open or that it is necessary to copy its contents to effectuate its renaming.
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Description

The t npnam function generates a string that is a valid file name and that is not the
same as the name of an existing file.?>

The t npnam function generates a different string each time it is called, up to
TMP_MAX times. If it is caled more than TMP_MAX times, the behavior is
implementation-defined.

The implementation shall behave as if no library function calls the t npnamfunction.
Returns

If the argument is a null pointer, the t mpnam function leaves its result in an internal
static object and returns a pointer to that object. Subsequent calls to the t npnam
function may modify the same object. If the argument is not a null pointer, it is
assumed to point to an array of at least L_t npnam char s; the t npnam function
writes its result in that array and returns the argument as its value.

Environmental limits

The value of the macro TMP_MAX shall be at least 25.
7.13.5 File access functions

7.13.5.1 Thef cl ose function

Synopsis

#i ncl ude <stdio. h>
int fclose(FILE *strean);

Description

The f cl ose function causes the stream pointed to by st r eamto be flushed and the
associated file to be closed. Any unwritten buffered data for the stream are delivered
to the host environment to be written to the file; any unread buffered data are
discarded. The stream is disassociated from the file. If the associated buffer was
automatically allocated, it is deallocated.

201. Files created using strings generated by the t mpnam function are temporary only in the sense that
their names should not collide with those generated by conventional naming rules for the
implementation. It is still necessary to use the r enove function to remove such files when their
use is ended, and before program termination.
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Returns

The f cl ose function returns zero if the stream was successfully closed, or EOF if
any errors were detected.

7.13.5.2 Theffl ush function
Synopsis

#i ncl ude <stdi o. h>
int fflush(FILE *stream;

Description

If st reampoints to an output stream or an update stream in which the most recent
operation was not input, the ffl ush function causes any unwritten data for that
stream to be delivered to the host environment to be written to the file; otherwise, the
behavior is undefined.

If st reamis anull pointer, the f f | ush function performs this flushing action on all
streams for which the behavior is defined above.

Returns

The f f | ush function sets the error indicator for the stream and returns ECF if a write
error occurs, otherwise it returns zero.

Forward references: the f open function (7.13.5.3), the unget ¢ function (7.13.7.11).
7.13.5.3 The f open function
Synopsis

#i ncl ude <stdio. h>
FILE *fopen(const char * restrict fil enane,
const char * restrict node);

Description

The fopen function opens the file whose name is the string pointed to by
fil ename, and associates a stream with it.

The argument node points to a string. If the string is one of the following, the file is
open in the indicated mode. Otherwise, the behavior is undefined.???

202. If the string begins with one of the above sequences, the implementation might choose to ignore
the remaining characters, or it might use them to select different kinds of a file (some of which
might not conform to the properties in 7.13.2).
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r open text file for reading

w truncate to zero length or create text file for writing

a append; open or create text file for writing at end-of-file

rb open binary file for reading

wb truncate to zero length or create binary file for writing

ab append; open or create binary file for writing at end-of-file

r+ open text file for update (reading and writing)

WH truncate to zero length or create text file for update

a+ append; open or create text file for update, writing at end-of-file

r+b or r b+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for update
a+tb or ab+ append; open or create binary file for update, writing at end-of-file

Opening a file with read mode (' r’ as the first character in the node argument) fails
if the file does not exist or cannot be read.

Opening a file with append mode (" a’ as the first character in the node argument)
causes all subsequent writes to the file to be forced to the then current end-of-file,
regardless of intervening calls to the f seek function. In some implementations,
opening a binary file with append mode (" b’ as the second or third character in the
above list of nbde argument values) may initially position the file position indicator
for the stream beyond the last data written, because of null character padding.

When a file is opened with update mode (' +' as the second or third character in the
above list of node argument values), both input and output may be performed on the
associated stream. However, output shall not be directly followed by input without an
intervening call to the ffl ush function or to a file positioning function (f seek,
f set pos, or r ewi nd), and input shall not be directly followed by output without an
intervening call to a file positioning function, unless the input operation encounters
end-of-file. Opening (or creating) a text file with update mode may instead open (or
create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to
refer to an interactive device. The error and end-of-file indicators for the stream are
cleared.

Returns

The f open function returns a pointer to the object controlling the stream. If the open
operation fails, f open returns a null pointer.

284 Library



Working Draft, 1997-11-21, WG14/N794 J11/97-158

Forward references: file positioning functions (7.13.9).

7.13.5.4 Thefreopen function

Synopsis

#i ncl ude <stdi o. h>

FI LE *freopen(const char * restrict fil enane,
const char * restrict nobde,
FILE * restrict stream;

Description

The freopen function opens the file whose name is the string pointed to by
filename and associates the stream pointed to by stream with it. The node
argument is used just as in the f open function.?®3

The freopen function first attempts to close any file that is associated with the
specified stream. Failure to close the file successfully is ignored. The error and end-
of-file indicators for the stream are cleared.

Returns

The f r eopen function returns a null pointer if the open operation fails. Otherwise,
f r eopen returns the value of st r eam

7.13.5.5 The set buf function
Synopsis

#i ncl ude <stdio. h>
void setbuf (FILE * restrict stream
char * restrict buf);

Description

Except that it returns no value, the set buf function is equivalent to the set vbuf
function invoked with the values | OFBF for node and BUFSI Z for si ze, or (if
buf isanull pointer), with the value _| ONBF for node.

203. The primary use of the freopen function is to change the file associated with a standard text
stream (st derr, st di n, or st dout ), as those identifiers need not be modifiable lvalues to which
the value returned by the f open function may be assigned.
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Returns
The set buf function returns no vaue.
Forward references. the set vbuf function (7.13.5.6).

7.13.5.6 Theset vbuf function
Synopsis

#i ncl ude <stdio. h>

int setvbuf (FILE * restrict stream
char * restrict buf,
i nt node, size_ t size);

Description

The set vbuf function may be used only after the stream pointed to by st r eamhas
been associated with an open file and before any other operation (other than an
unsuccessful call to set vbuf) is performed on the stream. The argument node
determines how st r eamwill be buffered, as follows: | OFBF causes input/output to
be fully buffered; | OLBF causes input/output to be line buffered; | ONBF causes
input/output to be unbuffered. If buf is not a null pointer, the array it points to may
be used instead of a buffer alocated by the set vbuf function’® and the argument
si ze specifies the size of the array; otherwise, si ze may determine the size of a
buffer alocated by the set vbuf function. The contents of the array at any time are
indeterminate.

Returns

The set vbuf function returns zero on success, or nonzero if an invalid vaue is given
for node or if the request cannot be honored.

204. The buffer must have a lifetime at least as great as the open stream, so the stream should be closed
before a buffer that has automatic storage duration is deallocated upon block exit.
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7.13.6 Formatted input/output functions

The formatted input/output functions’® shall behave as if there is a sequence point
after the actions associated with each specifier.

7.13.6.1 Thefprintf function

Synopsis

#i ncl ude <stdio. h>
int fprintf(FILE * restrict stream
const char * restrict format, ...);

Description

The fprintf function writes output to the stream pointed to by stream under
control of the string pointed to by f or mat that specifies how subsequent arguments
are converted for output. If there are insufficient arguments for the format, the
behavior is undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated (as aways) but are otherwise ignored. The fprintf
function returns when the end of the format string is encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives. ordinary multibyte
characters (not 99, which are copied unchanged to the output stream; and conversion
specifications, each of which results in fetching zero or more subsequent arguments.
Each conversion specification is introduced by the character % After the % the
following appear in sequence:

— Zero or more flags (in any order) that modify the meaning of the conversion
specification.

— An optiona minimum field width. If the converted value has fewer characters than
the field width, it will be padded with spaces (by default) on the left (or right, if
the left adjustment flag, described later, has been given) to the field width. The
field width takes the form of an asterisk * (described later) or a decimal integer.?®

— An optional precision that gives the minimum number of digits to appear for the d,
i, 0, u, X, and X conversions, the number of digits to appear after the decimal-
point character for a, A, e, E, f, and F conversions, the maximum number of
significant digits for the g and G conversions, or the maximum number of

205. The pri nt f functions perform writes to memory for the % specifier.
206. Note that O is taken as a flag, not as the beginning of afield width.
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characters to be written from a string in s conversions. The precision takes the
form of a period (. ) followed either by an asterisk * (described later) or by an
optional decimal integer; if only the period is specified, the precision is taken as
zero. If a precision appears with any other conversion specifier, the behavior is
undefined.

— An optional hh specifying that a following d, i , 0, u, X, or X conversion specifier
applies to a si gned char or unsi gned char argument (the argument will
have been promoted according to the integer promotions, and its value shall be
converted to si gned char or unsi gned char before printing); an optiona h
specifying that a following d, i, 0, u, x, or X conversion specifier applies to a
short int or unsi gned short int argument (the argument will have been
promoted according to the integer promotions, and its value shall be converted to
short int orunsi gned short i nt before printing); an optional h specifying
that a following n conversion specifier applies to a pointer to a short i nt
argument; an optional | (ell) specifying that a following d, i, o, u, x, or X
conversion specifier applies to al ong i nt or unsi gned | ong i nt argument;
an optiona | | (ell-ell) specifying that a following d, i , 0, u, X, or X conversion
specifier appliesto al ong | ong i nt or unsi gned | ong | ong i nt argument;
an optional | specifying that a following n conversion specifier applies to a pointer
to al ong i nt argument; an optional | | specifying that a following n conversion
specifier applies to a pointer to a | ong | ong i nt argument; an optional |
specifying that a following ¢ conversion specifier applies to a wi nt _t argument;
an optional | specifying that a following s conversion specifier applies to a pointer
to awchar _t argument; an optional | which has no effect on a following a, A,
e, E f, F, g, or G conversion specifier; or an optional L specifying that a
following a, A, e, E, f, F, g, or G conversion specifier appliesto al ong doubl e
argument. If an hh, h, |, 11, or L appears with any other conversion specifier,
the behavior is undefined.

— A character that specifies the type of conversion to be applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk.
In this case, an i nt argument supplies the field width or precision. The arguments
specifying field width, or precision, or both, shall appear (in that order) before the
argument (if any) to be converted. A negative field width argument is taken as a -
flag followed by a positive field width. A negative precision argument is taken as if
the precision were omitted.

The flag characters and their meanings are

- The result of the conversion will be left-justified within the field. (It will be
right-justified if this flag is not specified.)

288 Library



space

Working Draft, 1997-11-21, WG14/N794 J11/97-158

The result of a signed conversion will aways begin with a plus or minus sign.
(It will begin with a sign only when a negative value is converted if this flag is
not specified.)?’

If the first character of a signed conversion is not a sign, or if a signed
conversion results in no characters, a space will be prefixed to the result. If the
space and + flags both appear, the space flag will be ignored.

The result is to be converted to an ‘‘alternate form.”” For o conversion, it
increases the precision, if and only if necessary, to force the first digit of the
result to be a zero (if the value and precision are both 0, a single O is printed).
For x (or X) conversion, a nonzero result will have Ox (or OX) prefixed to it.
For a, A, e, E, f, F, g, and G conversions, the result will always contain a
decimal-point character, even if no digits follow it. (Normally, a decimal-point
character appears in the result of these conversions only if a digit follows it.)
For g and G conversions, trailing zeros are not removed from the result. For
other conversions, the behavior is undefined.

Ford,i,o,u, x, X a, A e E f,F, g, and G conversions, leading zeros
(following any indication of sign or base) are used to pad to the field width; no
space padding is performed. If the O and - flags both appear, the O flag will
be ignore