
Acta Informatica manuscript No.
(will be inserted by the editor)

Zdeněk Sawa · Petr Jančar

Hardness of Equivalence Checking for
Composed Finite-State Systems⋆

27 November 2008

Abstract Computational complexity of comparing behaviours of systems
composed from interacting finite-state components is considered. The main
result shows that the respective problems are EXPTIME-hard for all rela-
tions between bisimulation equivalence and trace preorder, as conjectured
by Rabinovich (1997). The result is proved for a specific model of parallel
compositions where the components synchronize on shared actions but it can
be easily extended to other similar models, e.g., to labelled 1-safe Petri nets.
Further hardness results are shown for special cases of acyclic systems.

Key words: behavioural equivalences, communicating finite-state systems,
computational complexity

1 Introduction

One problem arising in the area of (automated) verification consists in com-
paring two finite-state systems w.r.t. a behavioural relation, like bisimulation
equivalence, simulation preorder, or trace equivalence. Systems are often pre-
sented as sets (parallel compositions) of communicating agents; the global
state space of such a composed system is usually exponential in the size of the
system presentation. This phenomenon is known as ‘state explosion’, which

⋆ The authors gratefully acknowledge the support by the Czech Ministry of
Education, Grant No. 1M0567

Z. Sawa · P. Jančar
FEI, Technical University of Ostrava, 17. listopadu 15, Ostrava-Poruba, 708 33,
Czech republic
Tel.: ++420 597 323 476, Fax: ++420 596 919 597
E-mail: Zdenek.Sawa@vsb.cz, Petr.Jancar@vsb.cz

2 Zdeněk Sawa, Petr Jančar

is the main challenge in the design of efficient algorithms for verification of
such systems.

The straightforward approach, where the global state space is explicitly con-
structed and the behavioural relation is decided on the resulting system,
requires exponential space. It is natural to ask if some more efficient algo-
rithms exist in special cases. For example, Groote and Moller [4] have shown
that if the components of the system can perform actions independently and
there is no communication between them then the bisimulation equivalence
(and some other equivalences that satisfy certain axioms) can be decided
in polynomial time. As one may expect, the problem becomes harder when
communication between components is allowed. Rabinovich [14] considered
a general model of composed systems which can be called Parallel Compo-
sition with Hiding (PCH); the components (are forced to) synchronize via
shared actions, and the identity of some actions can be ‘hidden’, which refers
to replacing with a special action τ . He formulated the EXPTIME-hardness
conjecture for PCH and any relation between bisimilarity and trace preorder;
Figure 1 shows van Glabbeek’s linear time – branching time spectrum [3],
containing various behavioural equivalences in that range.

Bisimulation equivalence

2−nested simulation equivalence

Ready simulation equivalence

Ready trace equivalence

Readiness equivalence

Failures equivalence

Completed trace equivalence

Trace equivalence

Simulation equivalence

Possible−futures equivalence

Failure trace equivalence

Fig. 1 The linear time – branching time spectrum

Hardness of Equivalence Checking for Composed FS Systems 3

Nevertheless, Rabinovich proved only PSPACE-hardness in general, though
he showed EXPSPACE-completeness for trace equivalence and mentioned EX-

PTIME-completeness for bisimilarity.

Laroussinie and Schnoebelen [9] approved the EXPTIME-hardness conjecture
for all relations between bisimilarity and simulation preorder, even for com-
posed systems with no hiding, denoted PC. It is hardly possible to extend
EXPTIME-hardness for PC to all relations in the spectrum-range since trace
equivalence is in PSPACE for this model, as was proved in [17]; see also [18]
for results for other types of ‘trace-like’ equivalences and composed systems.
But it is also not clear how the result of [9] could be extended using hiding.

In this paper, we approve Rabinovich’s conjecture in the whole, deriving
EXPTIME-hardness for PCH and any relation between bisimilarity and trace
preorder. (A preliminary version of this proof appeared in [15].)
We also study acyclic PC and PCH, which were also considered in [14]. We
provide an alternative (simpler) reduction, and raise the lower bound (of
NP-hardness and coNP-hardness) to DP-hardness. We also derive PSPACE-
hardness for acyclic PC and any relation between bisimilarity and simulation
preorder. Finally we provide an overview of all known relevant results.

Our EXPTIME-hardness proof is achieved by a reduction from the accep-
tance problem of alternating LBAs (linear bounded automata), denoted
Alba-accept. As an important ingredient, we first provide a new proof of
PTIME-hardness for explicit finite-state systems (given by listing the whole
state space) and any relation between bisimilarity and trace preorder; this is
achieved by a reduction from Agp, a problem on alternating graphs.
PTIME-hardness for bisimilarity on explicit finite-state systems was shown
in [1], and a construction demonstrating PTIME-hardness for the whole
spectrum-range was given in [16]; nevertheless, that construction could not
be used for our aims here.

For describing the behaviour of the composed system arising by the reduction
from an instance of Alba-accept in the EXPTIME-hardness proof, it is also
useful to introduce a ‘reactive’ version of linear bounded automata as an
intermediate model.
These reactive LBAs can be easily modeled not only by PCH but also by
other models of composed systems, like, e.g., labelled 1-safe Petri nets; the
EXPTIME-hardness result is thus carried over to them as well.

The paper is organized as follows. Section 2 contains basic definitions. Sec-
tion 3 provides a construction showing PTIME-hardness for explicit finite-
state systems. In Section 4 we apply the ideas from Section 3 to derive EX-

PTIME-hardness for composed systems; to this aim, also reactive LBAs are
introduced. Section 5 deals with acyclic PC and PCH. Section 6 contains an
overview of all relevant results.

4 Zdeněk Sawa, Petr Jančar

2 Definitions

2.1 Labelled transition systems, behavioural equivalences and preorders

A labelled transition system (LTS) is a tuple T = (S,Act ,−→) where S is a
set of states, Act is a set of actions (sometimes called the action alphabet),

and −→⊆ S × Act × S is the transition relation. We write s
a

−→ s′ instead
of (s, a, s′) ∈−→. We also write s

w
−→ s′ for w ∈ Act∗; for w = a1a2 · · ·an

(ai ∈ Act) this means that there are some states s0, s1, . . . , sn where s = s0,

s′ = sn, and s0
a1−→ s1

a2−→ · · ·
an−→ sn. For s ∈ S, w ∈ Act∗, the set of states

reachable from s by the action sequence w is denoted

reach(s, w) = {s′ ∈ S | s
w

−→ s′} .

We say that w ∈ Act∗ is enabled in s iff reach(s, w) 6= ∅; it is disabled
otherwise. A state s is called deterministic iff |reach(s, a)| ≤ 1 for each action
a ∈ Act .

A trace from s ∈ S is any w ∈ Act∗ such that reach(s, w) 6= ∅. We denote the
set of all traces from s as Traces(s). States s, t are in trace preorder, written
s ⊑tr t, iff Traces(s) ⊆ Traces(t); they are trace equivalent iff Traces(s) =
Traces(t).

A relation R ⊆ S × S is a simulation iff the following condition holds for
each s, t ∈ S such that (s, t) ∈ R:

if s
a

−→ s′ for some state s′ and some action a then there is some t′ such that
t

a
−→ t′ and (s′, t′) ∈ R.

A symmetric simulation is a bisimulation. States s, s′ are bisimilar, written
s ∼ s′, iff there is some bisimulation R such that (s, s′) ∈ R. The relation
∼ is called bisimulation equivalence or bisimilarity. States s, s′ are in the
simulation preorder, written s ⊑sim s′, iff there is a simulation R such that
(s, s′) ∈ R, and they are simulation equivalent iff s ⊑sim s′ and s′ ⊑sim s.

We note that we can also naturally compare states from different LTSs T1, T2,
viewing them as states in the LTS T which arises as the disjoint union of
T1, T2.

It is usual to describe the above relations in terms of games. In particular,
bisimilarity on a given LTS T can be described in terms of the bisimulation
game played by two players, called Player I and Player II. Positions in the
game are pairs of states of T and the game is played in rounds. In a round

starting in position (s1, s2) Player I chooses i ∈ {1, 2} and a transition si
a

−→

s′i. Player II then chooses some s′3−i such that s3−i
a

−→ s′3−i. The play then
continues by the next round from (s′1, s

′
2). If one of the players gets stuck,

he loses and the other player wins. Player II is the winner if the play is
infinite. The simulation game is the bisimulation game where Player I is
always obliged to choose i = 1 (i.e., to play on the left-hand side).

Any bisimulation (simulation) containing (s, t) naturally provides a winning
strategy for Player II in the bisimulation (simulation) game starting from

Hardness of Equivalence Checking for Composed FS Systems 5

(s, t). Hence s ∼ t (s ⊑sim t) iff Player II has a winning strategy in the bisim-
ulation (simulation) game starting in (s, t); Player I has a winning strategy
iff s 6∼ t (s 6⊑sim t).

2.2 Operations on labelled transition systems

There are several possible ways how to define systems composed of compo-
nents running in parallel and communicating with each other. In this paper
we use operations of parallel composition and hiding as defined for example
in [5] that were also used in [14].

We reserve symbol τ for denoting a special action; it serves for renaming the
usual (visible) actions whose identity we want to hide.

Remark. For the above defined behavioural relations, this τ is taken as a
normal action (so ‘bisimilarity’ means ‘strong bisimilarity’, etc.).

Given an LTS T = (S,Act ∪ {τ},−→), τ 6∈ Act , and B ⊆ Act , by

hide B in T

we denote the LTS T1 = (S, (Act − B) ∪ {τ},−→1) where s
a

−→1 s′ in T1 iff

– either a ∈ (Act − B) ∪ {τ} and s
a

−→ s′ in T ,

– or a = τ and s
b

−→ s′ in T for some b ∈ B.

The parallel composition of LTSs T1 = (S1,Act1∪{τ},−→1), T2 = (S2,Act2∪
{τ},−→2) (where τ 6∈ (Act1 ∪ Act2)) is the LTS

T1 ‖ T2 = (S1 × S2,Act1 ∪Act2 ∪ {τ},−→)

representing the product of T1 and T2 in which T1 and T2 synchronize on the

shared non-τ actions, i.e., where (s1, s2)
a

−→ (s′1, s
′
2) iff

– either a ∈ Act1 ∪ Act2 and for each i ∈ {1, 2} we have: if a ∈ Act i then

si
a

−→i s′i and otherwise s′i = si,

– or a = τ and si
τ

−→i s′i and s3−i = s′3−i for some i ∈ {1, 2}.

Hence if a ∈ Act1 ∩Act2 then both components perform a-transitions simul-
taneously; otherwise just one component does.

It is obvious that ‖ is associative and commutative with respect to isomor-
phism, and we freely write

T = T1 ‖ T2 ‖ · · · ‖ Tn

for the parallel composition of T1, T2, . . . , Tn.

Remark. The above described operations of parallel composition and hid-
ing constitute one natural choice of how to model communication between

6 Zdeněk Sawa, Petr Jančar

components running in parallel. Nevertheless our results can be extended to
other similar operators defined in literature; though the operators we used
allow multi-sided communication, our constructions are always realized by
only using two-sided communication. For example, CCS parallel composition
(where each action a has a complementary action ā) and restriction [12] could
have been used in the constructions instead of the operations defined above.

2.3 Central models and problems

In this paper we consider only finite labelled transition systems, where the
sets of states and actions are finite. By an explicit finite-state system, denoted
FS, we mean a finite LTS together with its presentation which lists all states,
actions and transitions. The size |T | of FS T = (S,Act ,−→) is |S|+ |Act |+
| −→ |.

By a system presented as parallel composition without hiding, denoted PC,
we mean a presentation (of an LTS) in the form

T = T1 ‖ T2 ‖ · · · ‖ Tn

where T1, T2, . . . , Tn are explicit finite-state systems, called components of
PC T ; we also assume that their action alphabets do not contain τ . The
size of PC T is |T | = |T1| + |T2| + . . . + |Tn|. A state of T , called a global
state, is E = (s1, s2, . . . , sn) where s1, s2, . . . , sn are states of the components
T1, T2, . . . , Tn respectively. We note that the number of (global) states of T
can be exponential in |T |.

Suppose that Act1,Act2, . . . ,Actn are action alphabets of T1, T2, . . . , Tn and

note that if E
a

−→ E′ then all components Ti such that a ∈ Act i must
perform an a-transition. We say that such components participate in the
transition.

It can be easily shown (see [14]) that any system constructed from explicit
finite-state systems by a finite number of applications of parallel composition
and hiding can be transformed into an isomorphic system (of the same size)
in the form

hide B in (T1 ‖ T2 ‖ · · · ‖ Tn)

where T1, T2, . . . , Tn are explicit finite-state systems. (We can use the fact
that (hide B in T) ‖ T ′ is isomorphic to hide B in (T ‖ T ′) provided that
actions of T ′ do not occur in B, which can be ensured by renaming of actions
in B with fresh names when necessary.) We call a system presented in the
specified form as parallel composition with hiding, denoted PCH, and we
define its size as |T1| + |T2| + · · · + |Tn| + |B|. PC is the special case of PCH
where B = ∅ and where components do not have τ actions.

Hardness of Equivalence Checking for Composed FS Systems 7

The general form of problems we consider is

Problem: C-RelR
Instance: Presentation of an LTS T of type C, with two distinguished

states s and s′.
Question: Is (s, s′) ∈ R ?

where C is a fixed type (class) of systems (such as FS, PC, or PCH) and R is
some fixed binary relation defined on states of LTSs; in fact, we only consider
relations R between bisimilarity and trace preorder, i.e., ∼⊆ R ⊆⊑tr .

Remark. Note that the more general problem where the instance consists of
presentations of two LTS T1 and T2 with initial states s1 and s2 (and question
is whether (s1, s2) ∈ R) can be easily transformed into the problem C-RelR
by considering the disjoint union of T1 and T2.

We are thus mainly interested in problems

Fs-RelR, Pc-RelR, Pch-RelR

but we will also consider problems restricted to acyclic systems: a PCH T
is acyclic iff (the graph of) every component of T is acyclic; the respective
problems are denoted

Apc-RelR, Apch-RelR.

It is also worth to note that systems constructed in our reductions are in a
special form: a PCH T is centralized iff it has a special control component
Tc such that at most two components participate in each transition and Tc

is always one of them.

We finish by stating a fact which we often use when establishing a hardness
result.

Observation 1 A problem P is PTIME-hard (PSPACE-hard, EXPTIME-
hard) iff the complement of P is PTIME-hard (PSPACE-hard, EXPTIME-
hard).

Remark. In this paper we consider a problem P to be C-hard (where C ∈
{PTIME, NP, coNP, PSPACE, EXPTIME, . . .}) iff every problem P ′ ∈ C
can be reduced to P using a logspace reduction.

3 Explicit Finite-State Systems

Being inspired by the acceptance problem for ALBA (Alternating Linear
Bounded Automata), and the related (alternating) graphs with configura-
tions as nodes, we first define Alternating Graph Problem (Agp), a variant

8 Zdeněk Sawa, Petr Jančar

∨ ∨

∧ ∧

∨ ∧

v1 v2

v3 v4

v5 v6

Fig. 2 Alternating graph

of the well known alternating reachability problem [6], which is PTIME-
complete. Then we show a logspace reduction which, given an instance of
Agp, constructs an FS T with two distinguished states s, s′ so that:

– s ∼ s′ if the answer to the Agp instance is No,
– s 6⊑tr s′ if the answer to the Agp instance is Yes.

This implies that Fs-RelR is PTIME-hard for any relation R such that
∼⊆ R ⊆⊑tr (Theorem 8). Note that we reduce Agp to the complement of
Fs-RelR and then use Observation 1.

Remark. Our construction here (providing an alternative proof of PTIME-
hardness) is different from that in [16]. Its main aim is to allow a natural
derivation of EXPTIME-hardness results in the next section.

3.1 Alternating Graphs

In this subsection we define formally Alternating Graph Problem (Agp)
which is a slight generalization of the well known alternating reachability
problem [6]. We also introduce some notions concerning alternating graphs
that will be useful in the later constructions.

An alternating graph is a finite directed graph where each node is labelled
either as conjunctive (universal) or as disjunctive (existential). Formally it is
a structure G = (V, E, t) where V is a finite set of nodes, E ⊆ V × V is a set
of edges, and t : V → {∧,∨} is a node-labelling function partitioning V into
the sets of conjunctive and disjunctive nodes.

See Figure 2 for an example of an alternating graph.

We use σ(v) to denote the set of successors of a node v, i.e.,

σ(v) = {v′ ∈ V | (v, v′) ∈ E} .

Hardness of Equivalence Checking for Composed FS Systems 9

Each conjunctive node v (t(v) = ∧) with σ(v) = ∅ is called accepting, each
disjunctive node v (t(v) = ∨) with σ(v) = ∅ is called rejecting.

For example, v6 is accepting and v1 is rejecting in Figure 2.

We now define the set SuccG (or Succ when G is clear from context) of
successful nodes (i.e. those from which accepting nodes are ‘alternation-
reachable’). At the same time we also define a mapping rank : Succ → N

which is naturally related to the inductive definition of Succ.
Succ is defined as the least subset of V satisfying (for each v ∈ V):

– if t(v) = ∧ and σ(v) ⊆ Succ then v ∈ Succ,
– if t(v) = ∨ and σ(v) ∩ Succ 6= ∅ then v ∈ Succ.

The mapping rank is determined by the following (inductive) conditions:

– for a conjunctive v ∈ Succ (t(v) = ∧), rank(v) = 1+max{rank(v′) | v′ ∈
σ(v)}, where we assume max ∅ = 0;

– for a disjunctive v ∈ Succ (t(v) = ∨), rank(v) = 1 + min{rank(v′) | v′ ∈
σ(v) ∩ Succ}.

We note that each accepting node is successful (belongs to Succ) and its
rank is 1; on the other hand, each rejecting node is unsuccessful (i.e., not
successful).

For example, for the alternating graph in Figure 2 we have Succ =
{v2, v4, v5, v6}, rank(v6) = 1, rank(v2) = rank(v5) = 2, and rank(v4) = 3.

Now we define Alternating graph problem (Agp):

Instance: An alternating graph G = (V, E, t) and a node v ∈ V .
Question: Is v successful?

Remark. In the alternating reachability problem as defined in [6] it is required
that there is exactly one accepting node in G and also no loops are allowed.

Problem Agp is PTIME-hard since it is a generalization of the alternating
reachability problem which is known to be PTIME-hard (see for example [6]
for a proof). It is clear from the given inductive definition that Succ can
be computed in polynomial time (measured in the size of the given G), and
Agp is thus in PTIME. Hence we have the following fact.

Fact 2 Agp is PTIME-complete.

3.2 Reducing AGP to equivalence (and preorder) problems

Given an alternating graph G = (V, E, t), with a rejecting node z, we aim
at constructing an LTS TG = (V,Act ,−→) (where the states correspond to

10 Zdeněk Sawa, Petr Jančar

the nodes of G) so that z ∼ v for each v ∈ V − SuccG and z 6⊑tr v for each
v ∈ SuccG.
We describe the construction of TG (i.e. of Act and −→) in stepwise manner:

– For each v ∈ V we define a set of actions Act(v):
– When t(v) = ∧, Act(v) = {cv}.
– When t(v) = ∨, Act(v) = {d(v,v′) | v′ ∈ σ(v)}.

(Note that Act(v) = ∅ when v is rejecting.)
– Act =

⋃

v∈V Act(v).
– The transition relation −→ is defined so that for each v, u, u′ ∈ V :

reach(v, cu) =

{

σ(u) if u = v
σ(u) ∪ {v} if u 6= v

reach(v, d(u,u′)) =

{

{u′} if u = v
{v} if u 6= v

(Recall that reach(v, a) = {v′ ∈ V | v
a

−→ v′} for v ∈ V , a ∈ Act .)

The construction can be equivalently described as follows:

a) For each edge (v, v′) ∈ E there is a transition v
a

−→ v′ labelled with a = cv

when t(v) = ∧ or with a = d(v,v′) when t(v) = ∨.

b) For each v ∈ V and a ∈ Act − Act(v) there is a loop v
a

−→ v.
c) For each u, u′, v ∈ V such that t(u) = ∧ and (u, u′) ∈ E there is a

transition v
cu−→ u′.

Observation 3 Logarithmic workspace is sufficient for the construction of
TG from G.

As an example, LTS TG constructed for the graph G in Figure 2 is depicted
in Figure 3. In this figure we write ci and di,j instead of cvi

and d(vi,vj). The
sets of actions are Act(v1) = ∅, Act(v2) = {d2,1, d2,4, d2,6}, Act(v3) = {c3},
Act(v4) = {c4}, Act(v5) = {d5,1, d5,2, d5,6}, Act(v6) = {c6}. Transitions
specified by item c) above are omitted in the figure. To complete the figure,
there should be the following transitions for each v ∈ V :

v
c3−→ v1 v

c3−→ v4 v
c3−→ v5 v

c4−→ v2 v
c4−→ v6

Observation 4 Action a ∈ Act is disabled in state v of TG iff a = cv and v
is accepting in G (i.e. t(v) = ∧ and σ(v) = ∅).

Proposition 5 Let v be an unsuccessful node (i.e., v ∈ V − SuccG) and
a ∈ Act an action:

1. There is some unsuccessful v′ (maybe v′ = v) such that v
a

−→ v′ in TG.
(Hence Traces(v) = Act∗ for each unsuccessful v.)

Hardness of Equivalence Checking for Composed FS Systems 11

v1 v2

v3 v4

v5 v6

d2,1

d2,4

d2,6

c3

c3

c3

c4

c4

d5,1

d5,2

d5,6

Act Act−Act(v2)

Act−{c3} Act−{c4}

Act−Act(v5) Act−{c6}

Fig. 3 Example of TG (with some transitions omitted)

2. If v
a

−→ v′ in TG where v′ ∈ SuccG then a = cu for some (conjunctive)

u (maybe v = u) and we have v′′
a

−→ v′ for each v′′ ∈ V .

Proof (1) It follows directly from considering the cases in the definition of
reach(v, a) using the fact that if v is unsuccessful, all nodes in σ(v) are
unsuccessful when t(v) = ∨ and there is at least one unsuccessful node in
σ(v) when σ(v) = ∧.

(2) Suppose v
a

−→ v′ for some unsuccessful v and successful v′. If a = d(v,v′)

then t(v) = ∨ and v′ ∈ SuccG implies v ∈ SuccG which is impossible. Also

v 6= v′ (since v 6∈ SuccG and v′ ∈ SuccG) so v
a

−→ v′ is not a loop. The
only remaining possibility is a = cu for some (conjunctive) u. ⊓⊔

Proposition 6 If v1, v2 ∈ V are unsuccessful in G then v1 ∼ v2 in TG.

Proof It is sufficient to show that the relation

R = {(v, v′) | v, v′ ∈ V − SuccG} ∪ {(v, v) | v ∈ V }

is a bisimulation. For each pair (v, v′) ∈ R it is easy to check that any
transition in v can be matched by some transition in v′ and vice versa. This
is trivial for v = v′, so suppose v 6= v′ and v, v′ ∈ V − SuccG and consider

some transition v
a

−→ v1. If v1 6∈ SuccG then by Proposition 5 (1) there

is some v′1 ∈ V − SuccG such that v′
a

−→ v′1 and we have (v1, v
′
1) ∈ R.

If v1 ∈ SuccG then a = cu for some u and v′′
a

−→ v1 for each v′′ ∈ V by

Proposition 5 (2), in particular v′
a

−→ v1. The remaining cases are symmetric.
⊓⊔

Proposition 7 For each G there is (a fixed) w ∈ Act∗ such that w 6∈
Traces(v) in TG for any v ∈ SuccG.

12 Zdeněk Sawa, Petr Jančar

Proof We attach the witness action to each v ∈ SuccG :

– if v is conjunctive then its witness action is cv,
– if v is disjunctive then we choose some d(v,v′) for which rank(v) = 1 +

rank(v′) as its witness action (v′ ∈ SuccG).

We now order the elements of SuccG into a sequence v1, v2, . . . , vm so that
i ≤ j implies rank(i) ≤ rank(j), and we use ai to denote the witness action of
vi (1 ≤ i ≤ m). We put w = amam−1 · · · a1. To show that w 6∈ Traces(v) for
any v ∈ SuccG we use the following claim that can be then easily verified
(note that if vi is a successful conjunctive node then each v′ ∈ σ(vi) is
successful and v′ = vk for some k < i):

Claim. If vj
ai−→ v′ for j ≤ i then v′ ∈ SuccG and v′ = vk for some k < i.

(The claim generalizes the fact that reach(v1, a1) = ∅; recall Observation 4
and note that v1 must be accepting in G.) Hence reach(v, amam−1 · · ·ai) ⊆
{vi−1, vi−2, . . . , v1} for any v ∈ SuccG, which also means that w =
amam−1 . . . a1 is disabled in all v ∈ SuccG. ⊓⊔

Theorem 8 Fs-RelR is PTIME-hard for any R such that ∼⊆ R ⊆⊑tr .

Proof Given an alternating graph G and a distinguished node x (i.e., an
instance of Agp), we can choose (or add) a rejecting node z and construct
TG (by the above logspace construction). Proposition 6 guarantees that if x 6∈
SuccG then z ∼ x and thus (z, x) ∈ R. Proposition 5 (1) and Proposition 7
guarantee that if x 6∈ SuccG then z 6⊑tr x and thus (z, x) 6∈ R.
We have thus indeed shown the reduction announced at the beginning of this
section. ⊓⊔

4 Composed Systems

The main result presented in this section is EXPTIME-hardness of Pch-RelR
for all relations R such that ∼⊆ R ⊆⊑tr . This is achieved by a logspace
reduction from the problem Alba-accept, the problem whether a given
alternating linear bounded automaton accepts a given word, which is known
to be EXPTIME-complete [2]. In fact, we also consider so called reactive linear
bounded automata (RLBAs) as a technically convenient intermediate step,
and derive EXPTIME-completeness for Rlba-RelR as well.

4.1 Alternating Linear Bounded Automata

We start with recalling the notion of (standard) linear bounded automata.
A (nondeterministic) linear bounded automaton (LBA) is a tuple

A = (Q, Σ, Γ, δ, q0, qacc, qrej)

Hardness of Equivalence Checking for Composed FS Systems 13

where Q is a finite set of control states, Σ is an input alphabet, Γ ⊇ Σ is
a tape alphabet, δ ⊆ (Q − {qacc, qrej}) × Γ × Q × Γ × {−1, 0, +1} is a set
of transitions, q0, qacc, qrej ∈ Q are the initial state, the accepting state and
the rejecting state, respectively. The alphabet Γ contains special symbols
⊢,⊣ 6∈ Σ which play the role of the endmarkers.

A configuration of A is a triple α = (q, w, i) where q is a control state, w =
⊢a1a2 · · · an⊣ (where ai ∈ Γ − {⊢,⊣}) is the tape content, and 0 ≤ i ≤ n + 1
is the head position.

A configuration α′ = (q′, w′, i′) is a successor of α = (q, w, i), written α⊢A α′

(or just α ⊢ α′ when A is obvious), iff there is (q, a, q′, a′, d) ∈ δ such that
w contains a on position i, w′ is obtained from w by writing a′ on position
i, and i′ = i + d. We stipulate that the endmarkers may not be overwritten,
and the transitions are constrained so that the head never moves left from ⊢
nor right from ⊣.

We define the length |α| of configuration α = (q,⊢u⊣, i) as |α| = |u|. Obvi-
ously |α| = |α′| when α ⊢ α′. The set of all configurations of A of length n is
denoted by

Conf (A,n) .

Given an LBA A and n ∈ N, there is the corresponding graph G(A,n) = (V, E)
where V = Conf (A,n) and E ⊆ V × V contains an edge (α, α′) iff α⊢A α′.

The initial configuration for an input u ∈ Σ∗ is αA
ini(u) = (q0,⊢u⊣, 1). A

configuration (q, w, i) is accepting iff q = qacc, and rejecting iff q = qrej . LBA
A accepts u ∈ Σ∗ iff some accepting α ∈ Conf (A,|u|) is reachable from αA

ini(u)
in G(A,|u|).

An alternating LBA (ALBA) is an LBA extended with a function

t : Q → {∧,∨}

that labels each control state as either conjunctive or disjunctive; we stipulate
t(qacc) = ∧, t(qrej) = ∨. The mapping t is extended to configurations: for
α = (q, w, i) we put t(α) = t(q).

An ALBA A and n ∈ N thus determine the alternating graph

G(A,n) = (V, E, t)

which arises from G(A,n) of the underlying LBA by adding the mapping t
(determined by A). Note that accepting (resp. rejecting) configurations of A
are accepting (resp. rejecting) nodes in G(A,n).

It is convenient to define acceptance as follows:

ALBA A accepts w ∈ Σ∗ iff αA
ini(w) is successful in G(A,|w|).

Problem Alba-accept

Instance: An ALBA A and a word w ∈ Σ∗.
Question: Does A accept w?

14 Zdeněk Sawa, Petr Jančar

is well-known to be EXPTIME-complete [2]. By |(A, w)| we denote the size of
a standard description of instance (A, w).

4.2 Idea of reducing Alba-accept to Pch-RelR

Let (A, w) be an instance of Alba-accept where A =
(Q, Σ, Γ, δ, q0, qacc, qrej , t), w ∈ Σ∗ and |w| = n.
If we consider G(A,n) (of exponential size) and then apply the construction
of Subsection 3.2, we obtain an (explicit) FS, denoted T(A,n). Both the set
of nodes of G(A,n) and the set of states of T(A,n) coincide with Conf (A,n); if

αrej is a rejecting configuration in Conf (A,n) then we have (in T(A,n)):

– αrej 6⊑tr αA
ini (w) when A accepts w;

– αrej ∼ αA
ini (w) when A does not accept w.

Our aim is, when given (A, w), to construct a PCH denoted M(A,n) which
will represent (‘realize’) T(A,n); moreover, we aim at a construction of M(A,n)

that can be done in logarithmic space. (Note that the logspace construction
will guarantee that the size of M(A,n) is polynomial in |(A, w)|.)

We know that a PCH can easily represent an LTS of exponential size; nev-
ertheless a technical problem is that not only the number of states in T(A,n)

(i.e., the cardinality of Conf (A,n)) is exponential but it is the case also for
the alphabet Act(A,n) of T(A,n); recall that Act(A,n) contains symbols of the
types cα and d(α,α′) where α, α′ ∈ Conf (A,n).

To handle the alphabet-cardinality problem, we choose some straightforward
(injective) encoding

repr : Act(A,n) → {0, 1}m (1)

which encodes all elements of Act(A,n) by 0, 1-strings of the same length m
(∀a ∈ Act (A,n) : |repr (a)| = m) polynomial in |(A, w)|. The details of repr
are not important. It is sufficient to require that decoding, including checking
if x ∈ {0, 1}m is in the range of repr , can be computed easily, which means
that it is performable by the reactive LBA B(A,n) described later.

The LTS represented by M(A,n) will be finer than T(A,n), having more states,
but its action alphabet will be just {0, 1, τ}. For each state α of T(A,n) there
will be a corresponding global state corresp(α) of M(A,n), and in the LTS
represented by M(A,n) the following will be ensured:

– corresp(α) ∼ corresp(α′) iff α ∼ α′ in T(A,n);
– corresp(α) 6⊑tr corresp(α′) iff α 6⊑tr α′ in T(A,n).

Each transition α
a

−→ α′ in T(A,n) will be ‘simulated’ by a sequence of tran-

sitions corresp(α)
u

−→ corresp(α′) performed by M(A,n) where u arises from
the sequence repr (a) ∈ {0, 1}m by a suitable ‘padding’ with (occurrences of)

Hardness of Equivalence Checking for Composed FS Systems 15

action τ ; moreover, for all transitions α
a

−→ α′, the corresponding sequences
u will have the same length, i.e. |u| = ℓ for a constant ℓ > m.

It is technically convenient to specify the intended behaviour of M(A,n) by
means of a special LBA, called a reactive LBA, and then show how reactive
LBAs can be naturally implemented by PCH. This is done in the following
two subsections.

4.3 Reducing Alba-accept to Rlba-RelR

We can imagine that each step (α ⊢ α′) in computations of an LBA also
comprises ‘emitting’ action τ ; so each computation can be ‘observed’ as a
sequence of τ -actions by an ‘external observer’. A reactive linear bounded
automaton, an RLBA, is an LBA which is moreover equipped with a set
Act of non-τ actions (τ 6∈ Act); each step now emits either τ or a ∈ Act .
For technical convenience, we require that the transitions emitting a non-τ
action depend only on the current control state and do not change the tape
nor the head position. RLBAs serve us for describing behaviours, not for
accepting (rejecting) inputs; therefore we do not need an input alphabet nor
accepting/rejecting states in the following formal definition.

An RLBA is a tuple B = (Qc , Qr , Γ,Act , δ, R), where Qc and Qr are finite
sets of computational control states and reactive control states, respectively
(Qc ∩ Qr = ∅), Γ is a tape alphabet, Act is a finite set of actions, τ 6∈ Act ,
δ ⊆ Qc × Γ × Q × Γ × {−1, 0, +1}, where Q = Qc ∪ Qr , is the set of
computational transitions, and R ⊆ Qr ×(Act∪{τ})×Q is the set of reactive
transitions. Configurations and the successor relation α⊢B α′ are defined as
in the case of LBAs (where (q, a, q′) ∈ R is understood as if (q, x, q′, x, 0) ∈ δ
for all x ∈ Γ).

Given n ∈ N, RLBA B determines the LTS

T (B, n) = (Conf (B,n),Act ∪ {τ},−→)

where Conf (B,n) is the set of all configurations of B of size n, and −→

contains a transition (q, w, i)
a

−→ (q′, w′, i′) iff

– either q ∈ Qc, (q, w, i)⊢B (q′, w′, i′) and a = τ ,
– or q ∈ Qr , (q, a, q′) ∈ R, w = w′ and i = i′.

It is now crucial to observe that, given an ALBA A with an input word w,
|w| = n, we can construct an RLBA B(A,n) described as follows. Here we
assume that each configuration of A has at most two successors (which is no
real restriction, in fact), though the construction can be easily adapted to
handle any fixed number of possible successors.

B(A,n) has a tape of length m + 2 (m taken from (1)), with five tracks as
sketched in Figure 4.

16 Zdeněk Sawa, Petr Jančar

Q

1 1 0 1 0 0 0 1 0 1 1 1 0 001 1 0 0 1 0 1

cur

Reach1

Reach2

Reach3

Fig. 4 RLBA B(A,n)

Track 1 serves for storing (the description of) a configuration of A; we might
view Track 1 as a variable “cur” (meaning ‘current’). Track 2, viewed as a
variable “act” serves for storing x ∈ {0, 1}m which might (or might not)
coincide with repr(a) for an action a of T(A,n). Tracks 3,4,5 will serve for
storing the configurations (nodes of T(A,n)) to which the transitions labelled

with repr−1(act) lead from cur in T(A,n).

B(A,n) performs the (possibly infinite) loop described by the pseudocode in
Figure 5.

Step 1: (Track 1 contains (the description of) a configuration cur of A. Now the
content of Track 2, referred to as act, is generated:)

for i := 1 to m do
nondeterministically select and emit action y ∈ {0, 1};
act[i] := y (i.e., write y on the i-th position of Track 2).

Step 2: (Compute the value of Reach, i.e., write (the descriptions of) the nodes of
T(A,n) reachable from cur by repr−1(act) to (some of) Tracks 3, 4, 5:)

when act is repr (cβ) for some β such that t(β) = ∧:
if cur = β then

Reach := {β′ | β ⊢A β′}
else

Reach := {β′ | β ⊢A β′} ∪ {cur}
when act is repr (d(β,β′)) for some β, β′ such that t(β) = ∨ and β ⊢A β′:

if cur = β then
Reach := {β′}

else
Reach := {cur}

otherwise (when act is not repr(a) for any a ∈ Act (A,n)):
Reach := ∅

Step 3: (Select a new state from Reach:)

nondeterministically select α ∈ Reach (from those of Tracks 3,4,5
which have been rewritten in the previous step; halt if Reach = ∅);
cur := α (i.e., copy α to Track 1)
goto Step 1

Fig. 5 Behaviour of RLBA B(A,n)

Hardness of Equivalence Checking for Composed FS Systems 17

Without giving further technical details, it should be clear that the activity
described by the pseudocode is indeed realizable by an RLBA, and moreover,
such B(A,n) can be constructed from (A, w) using only logarithmic workspace.
To see that logarithmic workspace is sufficient for this construction, just note
that this can be done using some fixed number of pointers pointing into the
instance (A, w) of Alba-accept and some fixed number of counters bounded
by the size of (A, w). When configurations of A are encoded in a standard
way (as sequences of the tape symbols representing the tape content with
the control state added to the symbol on the current position of the head,
all this encoded in binary), the structure of instructions of B(A,n) is quite
regular and most of these instructions depend only on n and Q and ∆ in the
definition of A (in fact only on the sizes of these sets). The only place where
δ (from the definition of A) plays some role is the computation of Reach

where the set {β′ | β ⊢A β′} must be constructed for β stored on Track 1. It
is obvious that instructions of B(A,n) that perform this computation can be
constructed by processing tuples in δ in the definition of A one by one for
which a fixed number of pointers is sufficient.

The only non-τ actions emitted during a computation of B(A,n) are actions
0,1 emitted in Step 1. Each reactive state q causing such emitting can be as-
sumed deterministic, in the sense that there is just one q1 and just one q2 such
that (q, 0, q1), (q, 1, q2) ∈ R. Otherwise the computation is fully deterministic
with the only exception of the first computational step in Step 3.

We can easily observe that the number of steps performed in any iteration of
the loop can be made constant (by padding the shorter computations with
τ -actions), and we can also make constant the number of steps after which
the nondeterministic choice in Step 3 is reached.

For any α ∈ T(A,n) we define corresp(α) as the state in the LTS generated by
B(A,n) which corresponds to the initial state (the beginning of Step 1) with
cur = α (i.e., α written in Track 1).

Proposition 9 In the LTS generated by B(A,n) (i.e., in T (B(A,n), m)) we
have:

– corresp(α) ∼ corresp(α′) iff α ∼ α′ in T(A,n);
– corresp(α) 6⊑tr corresp(α′) iff α 6⊑tr α′ in T(A,n).

Proof idea Due to the above described tight simulation of transitions in
T(A,n) by the loop in Figure 5, verification of the claim is straightforward.
(The bisimulation game on T(A,n) is tightly mimicked in the game on the
configurations of B(A,n); Player I can gain nothing by generating a sequence
in {0, 1}m outside the range of repr . Recall that transitions of B(A,n) are
deterministic in the sense that they depend only on the (visible) action per-
formed with the only exception of the step when nondeterministic choice of
Step 3 is performed, and this step is always reached at the same time in both
configurations.) ⊓⊔

For the problem Rlba-RelR

18 Zdeněk Sawa, Petr Jančar

Instance: An RLBA B and two configurations α, α′, |α| = |α′|.
Question: Is (α, α′) ∈ R in T (B, |α|) ?

we have thus derived the following theorem.

Theorem 10 Rlba-RelR is EXPTIME-hard for any R such that ∼⊆
R ⊆⊑tr .

Proof For each such R there is a logspace reduction from EXPTIME-
complete problem Alba-accept to Rlba-RelR: given an ALBA A and
w, we construct the above described RLBA B(A,n) with two configurations

corresp(αA
ini (w)) and corresp(αA

rej), where αrej is a rejecting configuration in
G(A,n). The rest follows similarly as in the proof of Theorem 8. ⊓⊔

4.4 Implementation of RLBA by PCH

An RLBA can be implemented by a PCH in a straightforward way, similarly
as, e.g., Rabinovich [14] did for LBA.

Lemma 11 Given an RLBA B and n ∈ N, logarithmic workspace is suffi-
cient to construct a centralized PCH P(B,n) which represents an LTS isomor-
phic to T (B, n).

Proof Assume B = (Qc, Qr , Γ,Act , δ, R). The constructed PCH P(B,n) will
be of the form

hide B in (Tc ‖ T0 ‖ T1 ‖ · · · ‖ Tn+1)

where Tc is a control component used to model the control unit of B and
to store the head position and where each of T0, T1, . . . , Tn+1 models one
individual cell of the tape of B. (We assume that the tape cells are numbered
by 0, 1, . . . , n + 1, the endmarkers being at positions 0 and n + 1.)

The state set of Ti (0 ≤ i ≤ n+1) is Γ (the current state of Ti represents the
current content of cell i), its action alphabet is Act i = {〈b, b′, i〉 | b, b′ ∈ Γ},

and there is a transition b
〈b,b′,i〉
−→ b′ for each b, b′ ∈ Γ .

The state set of Tc is {〈q, i〉 | q ∈ Q, 0 ≤ i ≤ n+1} and its action alphabet is

Actc = Act ∪Act0 ∪ Act1 ∪ · · · ∪ Actn+1

(for Act , taken from B, we assume Act ∩ Act i = ∅ for each i). For each
(q, b, q′, b′, d) ∈ δ (where q ∈ Qc) and i such that 0 ≤ i ≤ n + 1 and 0 ≤
i + d ≤ n + 1 there is a transition

〈q, i〉
〈b,b′,i〉
−→ 〈q′, i + d〉 ,

and for each (q, a, q′) ∈ R (where q ∈ Qr , q′ ∈ Q, and a ∈ Act ∪ {τ}) there

are transitions 〈q, i〉
a

−→ 〈q′, i〉 for all i, 0 ≤ i ≤ n + 1.

Hardness of Equivalence Checking for Composed FS Systems 19

The set of actions hidden in P(B,n) is B = Act0 ∪ Act1 ∪ · · · ∪ Actn+1.

Each configuration α = (q,⊢a1a2 · · · an⊣, i) of B is naturally represented as
the global state

Eα = (〈q, i〉,⊢, a1, a2, . . . , an,⊣)

of P(B,n). We note that α
a

−→ α′ iff Eα
a

−→ Eα′ . The required isomorphism
between LTSs can be obviously achieved; to this aim we restrict the state set
of T0 to {⊢} etc.

Finally we note that logarithmic workspace is sufficient for the construction
of P(B,n). ⊓⊔

From Theorem 10 we thus get the following theorem.

Theorem 12 The problem Pch-RelR is EXPTIME-hard for any R such
that ∼⊆ R ⊆⊑tr even for centralized PCH.

Remark. The construction can be also used for similar proofs (of EXPTIME-
hardness) for other types of composed systems which use other means of
synchronization, as, e.g., labelled 1-safe Petri nets.
The lower bound of EXPTIME-hardness can not be improved in general; this
follows from the results surveyed in Section 6. (‘Simulation-like’ equivalences
are in EXPTIME.)
We also note that hiding is crucial. We can not hope for general EXPTIME-
hardness in the case of PC since the trace preorder and ‘trace-like’ equiva-
lences are in PSPACE for them (see Section 6).

5 Acyclic PC and PCH

5.1 DP-hardness for acyclic PCH

Problem Apch-RelR (for acyclic PCH) is stated in [14] as NP-hard and
coNP-hard for each R, ∼⊆ R ⊆⊑tr . There is a proof of coNP-hardness and
it is mentioned that showing NP-hardness is similar (though it is, in fact, a
bit more complicated); also a modification for coNP-hardness of Apc-RelR
(without hiding) is suggested. Here we show a different (simpler) construction
which allows us to derive all the mentioned cases as well as DP-hardness for
Apch-RelR. (We recall that a problem is in DP iff the set of its positive
instances is the intersection of the sets of positive instances of two problems,
one being in NP and the other in coNP.)

Theorem 13 For any relation R such that ∼⊆ R ⊆⊑tr :

– Apch-RelR is DP-hard for acyclic and centralized PCH.
– Apc-RelR is coNP-hard for acyclic and centralized PC.

20 Zdeněk Sawa, Petr Jančar

Proof In [14], the well-known NP-complete problem SAT was used; we
start by recalling another NP-complete problem which seems more suit-
able to our aims. Given words u, v ∈ Σ∗, by shuffle(u, v) we denote
the result of merging, or interleaving, i.e. the set of words of the form
u1v1u2v2 · · ·unvn where ui, vi are (possibly empty) words from Σ∗ such that
u = u1u2 · · ·un and v = v1v2 . . . vn. The operation can be naturally gener-
alized to languages, shuffle(L1, L2) =

⋃

u∈L1,v∈L2
shuffle(u, v), and the use

shuffle(w1, w2, . . . , wk) with more arguments has the obvious meaning. The
following problem is known to be NP-complete [10,19]:

Problem: Shuffle

Instance: Words w1, w2, . . . , wk ∈ Σ∗ and w ∈ Σ∗ such that |w1|+ |w2|+
· · · + |wk| = |w| (for some finite alphabet Σ).

Question: Is it true that w ∈ shuffle(w1, w2, . . . , wk) ?

We start with showing NP-hardness of Apch-RelR. Given an instance
w1, w2, . . . , wk, w ∈ Σ∗ of Shuffle, we construct a pair of acyclic centralized
PCH T , T ′ with initial global states E0 and E′

0 so that:

– E0 ∼ E′
0 when w ∈ shuffle(w1, w2, . . . , wk) (the Shuffle-answer is Yes),

– E0 6⊑tr E′
0 otherwise (the Shuffle-answer is No).

The construction is obvious from Figure 6; the depicted fragment corresponds
to a case where Σ = {a, b}, w1 = abaa, w2 = bba, wk = abab, w = abba · · · ba
and |w| = n. PCH T consists of one component (with 2n + 2 states) as
depicted in the figure. PCH T ′ has a component Si for each word wi, with
alphabet Σi = {ai | a ∈ Σ} (the alphabets of Si and Sj are disjoint when
i 6= j); the control component Sc corresponds to w (w = abba · · · ba) as
depicted, its alphabet being Σc = Σ1∪Σ2∪· · ·∪Σk∪{d}. PCH T ′ is defined
as

T ′ = hide B in (Sc ‖ S1 ‖ S2 ‖ · · · ‖ Sk) where B = Σc − {d}.

The above announced global states are E0 = (s0) and E′
0 =

(s′0, v1,0, v2,0, . . . , vk,0). We note that τnd ∈ Traces(E0) but τnd ∈ Traces(E′
0)

(i.e., a global state (s′n, . . .) is reachable from E′
0) if and only if w ∈

shuffle(w1, w2, . . . , wk). This implies that E0 6⊑tr E′
0 when the answer for

the instance of Shuffle is No.

On the other hand, if w ∈ shuffle(w1, w2, . . . , wk) (the answer is Yes) then
E0 ∼ E′

0: in the bisimulation game, Player II can easily maintain during
the play that sn is reachable in T as long as (s′n, . . .) is reachable in T ′

and vice versa. (Note that E′
n = (s′n, . . .) is reachable from E′

0 and for each
E′

i = (s′i, . . .) (where 0 ≤ i < n) such that E′
n is reachable from E′

i there

is some E′
i+1 = (s′i+1, . . .) such that E′

i

τ
−→ E′

i+1 and E′
n is reachable from

E′
i+1. Moreover, if T is in state (ti) and T ′ in state (t′i, . . .), the same number

of τ -actions can performed on both sides but nothing else.)

Hardness of Equivalence Checking for Composed FS Systems 21

s0

s1

s2

s3

s4

sn−2

sn−1

sn

u

t1

t2

t3

t4

tn−2

tn−1

tn

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

d

...
...

...
...

s′0

s′1

s′2

s′3

s′4

s′n−2

s′n−1

s′n

u′

t′1

t′2

t′3

t′4

t′n−2

t′n−1

t′n

a1, . . . , ak

b1, . . . , bk

b1, . . . , bk

a1, . . . , ak

b1, . . . , bk

a1, . . . , ak

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

d

v1,0

v1,1

v1,2

v1,3

v1,4

a1

b1

a1

a1

v2,0

v2,1

v2,2

v2,3

b2

b2

a2

vk,0

vk,1

vk,2

vk,3

vk,4

ak

bk

ak

bk

. . .

T T ′

Sc S1 S2 . . . Sk

Fig. 6 T and T ′ for the proof of NP-hardness

Since logarithmic workspace is sufficient for constructing T , T ′, we have es-
tablished NP-hardness of Apch-RelR.

Remark. Formally, there is only one acyclic PCH in the instance of
Apch-RelR. It is straightforward to construct this one PCH from T , T ′ by
taking their disjoint union (possibly with some components extended with
some auxiliary states when necessary).

A proof of coNP-hardness of Apc-RelR (using no hiding) can look as follows.
We take T ′′ = (S′′

c ‖ S1 ‖ S2 ‖ · · · ‖ Sk) and T ′′′ = (S′′′
c ‖ S1 ‖ S2 ‖ · · · ‖

Sk) where S1,S2, . . . ,Sk are the same as in the previous construction, S′′
c is

obtained from Sc by deleting all states {t′1, t
′
2, . . . , t

′
n} (with the associated

transitions), and S′′′
c is obtained from S′′

c by deleting the transition s′n
d

−→ u′.
Let E′′

0 , E′′′
0 be the initial global states of T ′′ and T ′′′ defined analogously as

E′
0 for T ′.

Obviously, τnd 6∈ Traces(E′′′
0) but τnd ∈ Traces(E′′

0) if and only if w ∈
shuffle(w1, w2, . . . , wk). This implies that E′′

0 6⊑tr E′′′
0 when the answer for

22 Zdeněk Sawa, Petr Jančar

the instance of Shuffle is Yes. On the other hand, if the answer is No then
obviously E′′

0 ∼ E′′′
0 .

For showing DP-hardness of Apch-RelR, we can naturally use a reduction
from the following DP-complete problem.

Problem: Shuffle-Nonshuffle

Instance: Words u1, u2, . . . , uk, u ∈ Σ∗ and v1, v2, . . . , vk, v ∈ ∆∗, where
Σ ∩ ∆ = ∅.

Question: Is it true that u ∈ shuffle(u1, u2, . . . , uk) and v 6∈
shuffle(v1, v2, . . . , vk) ?

Let T and T ′ = hide B in (Sc ‖ S1 ‖ S2 ‖ · · · ‖ Sk) be the two PCH con-
structed for u1, u2, . . . , uk, u ∈ Σ∗ similarly as above when we were showing
NP-hardness, and let T ′′ = (S′′

c ‖ S′
1 ‖ S′

2 ‖ · · · ‖ S′
k) and T ′′′ = (S′′′

c ‖ S′
1 ‖

S′
2 ‖ · · · ‖ S′

k) be the two PC constructed for v1, v2, . . . , vk, v ∈ Σ∗ similarly
as above when we were showing coNP-hardness; the action alphabets used
in T , T ′ are now disjoint with those used in T ′′, T ′′′, and the components S′

i

(corresponding to vi) are different than Si (corresponding to ui).

We can now take

T1 = (S1
c ‖ S′

1 ‖ S′
2 ‖ · · · ‖ S′

k)

and

T2 = hide B in (S2
c ‖ S1 ‖ S2 ‖ · · · ‖ Sk ‖ S′

1 ‖ S′
2 ‖ · · · ‖ S′

k)

where S1
c comprises a copy of T , with its initial state s0, a copy of S′′

c , with
its initial state s′′0 , and an additional state s1, which is the initial state of

S1
c , and transitions s1 f

−→ s0, s1 g
−→ s′′0 for freshly chosen actions f, g; S2

c

similarly comprises Sc and S′′′
c and the initial state s2 with the transitions

s2 f
−→ s′0, s2 g

−→ s′′′0 leading to the initial states of Sc and S′′′
c , respectively.

(In process algebraic terms, S1
c = f.T + g.S′′

c and S2
c = f.Sc + g.S′′′

c .)
The set B of hidden actions is inherited from T ′, i.e., it is the union of the
action alphabets of S1, S2, . . . , Sk.

It can be easily verified that if the Shuffle-Nonshuffle-answer is Yes
then (the initial global states in) T1, T2 are bisimilar; if the answer is No

then T1 has a trace which is disabled in T2. ⊓⊔

Due to the following proposition Apc-RelR is not NP-hard in general unless
NP = coNP.

Proposition 14 Apc-Rel⊑tr
is in coNP.

Proof Given two acyclic PC P1, P2 (and their initial states), for showing
that P1 6⊑tr P2 it is sufficient to guess a trace w (of size |P1| at most)
and verify that w is enabled in P1 but disabled in P2. To find out if a given

Hardness of Equivalence Checking for Composed FS Systems 23

w = a1a2 . . . an is enabled in a given PC (with no τ -actions and no hiding), by
applying the usual subset construction for nondeterministic finite automata
to the components we can successively represent all global states reachable
by a1, a1a2, a1a2a3, . . . (as used, e.g., in [18]). ⊓⊔

It also seems unlikely that the lower bound of DP-hardness for Apch-RelR
can be much improved, as the next proposition shows.

Proposition 15 Apch-Rel⊑tr
is in Π

p
2 (in the polynomial hierarchy).

Proof Given two acyclic PCH P1, P2 (and their initial states), P1 ⊑tr P2

means that for every trace w (of size |P1| at most) which is enabled in P1

there is a sequence of global states in P2 which shows that w is enabled in
P2. ⊓⊔

Nevertheless, at least for ‘simulation-like’ relations we can derive PSPACE-
hardness, even with no hiding, as the next subsection shows.

5.2 PSPACE-hardness of simulation-like relations on acyclic PC

Theorem 16 Problem Apc-RelR is PSPACE-hard for any R between
bisimulation equivalence and simulation preorder (i.e., ∼⊆ R ⊑sim), even
when restricted to (acyclic and) centralized PC.

Proof We use the well-known PSPACE-complete problem Qbf (truth of quan-
tified boolean formulas) in the following form:

Instance: ϕ = ∃x1∀x2 · · · ∃xn−1∀xnF (x1, x2, . . . , xn) (where n is even).
Question: Is ϕ true?

We assume that F is in CNF, i.e., in the form C1 ∧C2 ∧ · · · ∧Cm where each
clause Cj = ℓj,1 ∨ ℓj,2 ∨ ℓj,3 contains exactly three literals (a literal being xi

or ¬xi).

Roughly speaking, our reduction will implement the following game:

1. Player I and Player II alternately assign boolean values to variables
x1, x2, . . . , xn (in this order).

2. After the assignment, Player II chooses a clause Cj .
3. If some of literals ℓj,1, ℓj,2, ℓj,3 is true under the assignment, Player I wins;

if not, Player II wins.

It is obvious that ϕ is true iff Player I has a winning strategy. The following
implementation of the above game is another application of so called ‘De-
fender’s Choice technique’ which has been used for similar results (see [7] for
a recent use).

24 Zdeněk Sawa, Petr Jančar

For ϕ = ∃x1∀x2 · · · ∃xn−1∀xnF (x1, x2, . . . , xn), where F = C1∧C2∧· · ·∧Cm,
we will construct an acyclic centralized PC

T = Sc ‖ S1 ‖ S2 ‖ · · · ‖ Sn

and two global states E, E′ so that E 6⊑sim E′ when ϕ is true and E ∼ E′

when ϕ is false.

ri

xi ¬xi

xi ¬xi

Fig. 7 Component Si representing variable xi

The component Si (i ∈ {1, 2, . . . , n}), corresponding to the boolean variable
xi, is depicted in Figure 7 (the topmost state ri being initial); its action
alphabet is Σi = {xi,¬xi}.

(A fragment of) the control component Sc is depicted in Figure 8; its action
alphabet is Σc = Σ1 ∪Σ2 ∪ · · · ∪Σn ∪ {c1, c2, . . . , cm, a}. The arrows leading
from s1, s

′
1, . . . , sn, s′n (with no labels in the figure) are deemed to have label a.

Let us consider the bisimulation game starting on the pair (E, E′) of global
states (of T) where E = (s0, r1, r2, . . . , rn) (on the left-hand side) and E′ =
(s′0, r1, r2, . . . , rn) (on the right-hand side). In the first round, Player I freely
chooses action x1 or ¬x1; after Player II’s response, the control components
are in states s1, s

′
1 respectively, and the copies of S1 (on both sides) either

both enable x1 or both enable ¬x1 – according to the choice having been
made by Player I.

In the next round, Player I is forced to play s1
a

−→ t2 – otherwise Player II
establishes equality of global states on both sides and wins easily. Now it is

Player II who chooses either s′1
a

−→ t′2,T or s′1
a

−→ t′2,F (which corresponds to

setting x2 true or false). To avoid equality, Player I must perform x2 or ¬x2

according to the choice of Player II; after Player II’s response, the control
components are in states s2, s

′
2 respectively, and the copies of S2 either both

enable x2 or both enable ¬x2 – according to the choice having been made by
Player II.

In the similar manner, the players alternately choose values for
x3, x4, . . . , xn−1, xn; after this phase, the control components are in states
sn, s′n and the copies of S1, S2, . . . , Sn remember the previous choices for
x1, x2, . . . , xn.

Player I is now forced to move sn
a

−→ u and Player II freely chooses s′n
a

−→ u′
j

(which corresponds to choosing clause Cj). Player I has to respect this choice

Hardness of Equivalence Checking for Composed FS Systems 25

s0

s1

x1 ¬x1

s′0

s′1

x1 ¬x1

t2

s2

x2 ¬x2

t′2,T t′2,F

s′2

x2 ¬x2

¬x2

x2

...
...

sn s′n

u u′

1 u′

2 u′

3 u′

m

v1 v2 v3 vm

c1 c2 c3
cm

v′

1 v′

2 v′

3 v′

m

c1 c2 c3 cm· · ·

· · ·

· · ·

c2 c3 cm

z1 z2 z3 zm

ℓ1,1

ℓ1,2
ℓ1,3

ℓm,1

ℓm,2
ℓm,3

· · ·

· · ·

· · ·

Fig. 8 Control component Sc

by playing u
cj

−→ vj (or u′
j

cj

−→ v′j); this is forced by the transitions u′
j

cj′

−→ vj′

for j 6= j′ (which are not fully indicated in the figure). The resulting control
component states are vj , v

′
j , and Player I can proceed (and win) if and only

if there is a literal xi or ¬xi among ℓj,1, ℓj,2, ℓj,3 which is enabled in the
component Si.

It is thus clear that if ϕ is true then Player I has a winning strategy in the
bisimulation game starting from (E, E′); moreover, Player I wins by playing
on the left-hand side only, which means that E 6⊑sim E′. On the other hand,
if ϕ is false then Player II obviously has a winning strategy, which means
that E ∼ E′.

Since T (with E, E′) can be constructed by using only logarithmic workspace
(wrt the size of ϕ), the proof of the theorem is finished. ⊓⊔

The PSPACE-hardness lower bound in Theorem 16 cannot be improved in
general, as the following proposition shows.

Proposition 17 Apch-Rel∼ and Apch-Rel⊑sim
are in PSPACE.

Proof All plays of the (bi)simulation game on APCH P1, P2 have length (i.e.,
number of rounds) at most |P1|. They can be naturally organized in a tree

26 Zdeněk Sawa, Petr Jančar

∼ ⊑sim ⊑tr

upper PTIME (a) PTIME (a) PSPACE (b)

FS PSPACE-hard (c)

lower PTIME-hard (d)

upper PSPACE (e) PSPACE (e) coNP (f)

APC PSPACE-hard (g)

lower coNP-hard (h)

upper PSPACE (e) PSPACE (e) Π
p
2 (i)

APCH PSPACE-hard (g)

lower DP-hard (h)

upper EXPTIME (j) EXPTIME (j) PSPACE (k)

PC EXPTIME-hard (l)

lower PSPACE-hard (m)

upper EXPTIME (j) EXPTIME (j) EXPSPACE (n)

PCH EXPTIME-hard (l) EXPSPACE-hard (o)

lower EXPTIME-hard (p)

Table 1 Overview of complexity results

which can be examined in polynomial space (by using the depth-first search),
by which the player who has a winning strategy is determined. ⊓⊔

6 Summary

Table 1 provides a summary of the known results for the equivalence-checking
problems considered in this paper. The ‘big’ rows in the table contain results
for different types of systems – FS, APC (acyclic PC), APCH (acyclic PCH),
PC (parallel compositions), and PCH (parallel compositions with hiding). For
each such type of systems, the known upper and lower complexity bounds
are presented. The columns correspond to specific relations: bisimilarity ∼,
simulation preorder ⊑sim and trace preorder ⊑tr . The cells that span the
columns for ∼ and ⊑sim contain hardness results holding for any R such
that ∼⊆ R ⊆⊑sim . The cells that span the columns from ∼ to ⊑tr contain
hardness results holding for any R such that ∼⊆ R ⊆⊑tr .
All hardness results in the table hold even for centralized systems.

Symbols (a)–(p) in the table refer to the following explanations.

a) Polynomiality easily follows by a greatest fixpoint construction; for more
efficient algorithms see e.g. [8,13].

b) It is a special case of language inclusion for nondeterministic finite au-
tomata (NFA), which is reducible to language equivalence – a well known
PSPACE-complete problem (see, e.g., [11]).

Hardness of Equivalence Checking for Composed FS Systems 27

c) This is easily derivable from the PSPACE-hardness of the above problem
for NFA.

d) Proved in [16]; Theorem 8 in this paper provides an alternative proof.
e) Proposition 17.
f) Proposition 14.
g) Theorem 16.
h) Theorem 13.
i) Proposition 15.
j) The global transition system (of exponential size) can be constructed

explicitly, for which a polynomial time algorithm from (a) can be used.
k) We can use the idea from [18], mentioned in Proposition 14. (It is suffi-

cient to generate and verify a distinguishing trace of at most exponential
length).

l) Proved in [9] (a reduction from Alba-accept using a variant of the
Defender Choice technique).

m) Proved in [14] (by a ‘master reduction’).
n) The explicitly constructed global transition system is an NFA of exponen-

tial size, to which we can apply a polynomial space algorithm (see (b)).
o) Proved in [14] by a reduction from RE2 (equivalence of regular expressions

with squaring).
p) Theorem 12.

References

1. Balcázar, J., Gabarró, J., Sántha, M.: Deciding bisimilarity is P-complete. For-
mal Aspects of Computing 4(6A), 638–648 (1992)

2. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1),
114–133 (1981)

3. van Glabbeek, R.: Handbook of process algebra. In: J. Bergstra, A. Ponse,
S. Smolka (eds.) Handbook of Process Algebra, chap. The Linear Time—
Branching Time Spectrum, pp. 3–99. Elsevier (2001)

4. Groote, J.F., Moller, F.: Verification of parallel systems via decomposition. In:
Proc. of Third International Conference on Concurrency Theory, Lecture Notes
in Computer Science, vol. 630, pp. 62–76. Springer Verlag (1992)

5. Hoare, C.A.R.: Communcating Sequential Processes. Prentice-Hall (1985)
6. Immerman, N.: Descriptive Complexity, pp. 53–54. Springer-Verlag (1998)
7. Jančar, P., Srba, J.: Undecidability of bisimilarity by Defender’s forcing.

J. ACM 55(1) (2008)
8. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and

three problems of equivalence. Information and Computation 86(1), 43–68
(1990)

9. Laroussinie, F., Schnoebelen, P.: The state explosion problem from trace to
bisimulation equivalence. In: Proc. 3rd Int. Conf. Foundations of Software
Science and Computation Structures (FOSSACS’2000), Berlin, Germany, Mar.-
Apr. 2000, Lecture Notes in Computer Science, vol. 1784, pp. 192–207. Springer
(2000)

10. Mansfield, A.: On the computational complexity of a merge recognition prob-
lem. DAMATH: Discrete Applied Mathematics and Combinatorial Operations
Research and Computer Science 5, 119–122 (1983)

11. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: 13th Annual Symposium on
Switching and Automata Theory, pp. 125–129. IEEE (1972)

12. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)

28 Zdeněk Sawa, Petr Jančar

13. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal
on Computing 16(6), 973–989 (1987)

14. Rabinovich, A.: Complexity of equivalence problems for concurrent systems of
finite agents. Information and Computation 139(2), 111–129 (1997)

15. Sawa, Z.: Equivalence checking of non-flat systems is EXPTIME-hard. In:
Proceedings of CONCUR 2003, Lecture Notes in Computer Science, vol. 2761,
pp. 237–250. Springer (2003)

16. Sawa, Z., Jančar, P.: Behavioural equivalences on finite-state systems are
PTIME-hard. Computing and Informatics 24(5), 513–528 (2005)

17. Shukla, S.K., Hunt, H.B., Rosenkrantz, D.J., Stearns, R.E.: On the complexity
of relational problems for finite state processes. In: Proceedings of ICALP’96,
Lecture Notes in Computer Science, vol. 1099, pp. 466–477. Springer-Verlag
(1996)

18. Valmari, A., Kervinen, A.: Alphabet-based synchronisation is exponentially
cheaper. In: Proceedings of CONCUR 2002, Lecture Notes in Computer Sci-
ence, vol. 2421, pp. 161–176 (2002)

19. Warmuth, M.K., Haussler, D.: On the complexity of iterated shuffle. Journal
of Computer and System Sciences 28(3), 345–358 (1984)

