
AVIS 2005 Preliminary Version

On distributed bisimilarity over Basic Parallel
Processes 1

Petr Jančar 2, Zdeněk Sawa 3

Center for Applied Cybernetics,
Dept of Computer Science, Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

Abstract

Distributed bisimilarity is one of non-interleaving equivalences studied on concur-
rent systems; it refines the classical bisimilarity by taking also the spatial distribu-
tion of (sub)components into account. In the area of verification of infinite-state
systems, one of the simplest (most basic) classes is the class of Basic Parallel Pro-
cesses (BPP); here distributed bisimilarity is known to coincide with many other
non-interleaving equivalences. While the classical (interleaving) bisimilarity on BPP
is known to be PSPACE-complete, for distributed bisimilarity a polynomial time
algorithm was shown by Lasota (2003). Lasota’s algorithm is technically a bit com-
plicated, and uses the algorithm by Hirshfeld, Jerrum, Moller (1996) for deciding
bisimilarity on normed BPP as a subroutine. Lasota has not estimated the degree
of the polynomial for his algorithm, and it is not an easy task to do. In this paper
we show a direct and conceptually simpler algorithm, which allows to bound the
complexity by O(n3) (when starting from the normal form used by Lasota).

Key words: verification, equivalence checking, distributed
bisimilarity, basic parallel processes

1 Introduction

Finding efficient algorithms for various verification problems is of ever growing
importance. One category of such problems is ‘equivalence checking’, where
the aim is to verify that two systems (processes) are behaviorally equiva-
lent. The notion of behaviour depends heavily on the context, and a plethora
of behavioural equivalences have been proposed and studied. We can refer

1 Supported by the Czech Ministry of Education, Grant No. 1M6840770004, and by the
Grant Agency of the Czech Republic, Grant No. 201/03/1161.
2 e-mail: petr.jancar@vsb.cz
3 e-mail: zdenek.sawa@vsb.cz

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Jančar and Sawa

to [10] for a survey of so called interleaving equivalences (where concurrency
is modelled by interleaving and nondeterministic choice). If we have reasons to
take ‘true concurrency’ into account, we can resort to various non-interleaving
equivalences. As examples of these equivalences we can name distributed
bisimilarity [1], location equivalence [2], causal equivalence [4], history pre-
serving bisimilarity [11], or performance equivalence [5].

The properties and decision problems for behavioural equivalences have
been studied on various classes of systems, including infinite-state systems.
One of the simplest (most basic) classes of infinite state systems is the class
of Basic Parallel Processes (BPP for short), introduced by Christensen in [3].

Since (interleaving) bisimilarity is known to be PSPACE-complete [7], the
question of polynomial time algorithms for non-interleaving semantics is of
particular interest. One can concentrate on distributed bisimilarity since it
is known to coincide with many other non-interleaving equivalences on BPP
(see [9] for references).

Already Christensen [3] showed that the problem of deciding distributed
bisimilarity on BPP is decidable. The first polynomial time algorithm for the
problem was shown by Lasota in [9], which has been the main motivating
paper for us. Lasota’s algorithm is technically a bit complicated, and uses the
algorithm from [6] for deciding bisimilarity on normed BPP as a subroutine.
Lasota has not estimated the degree of the polynomial for his algorithm, and
it is not an easy task to do.

Remark: No complexity bound was given in [6] (for the problem of deciding
strong bisimilarity on normed BPP) but it seems to be Ω(n5). Even if we use
the more efficient algorithm with time complexity in O(n3) [8] as a subrou-
tine, it seems to result (just) in the estimation O(n5) for the whole Lasota’s
algorithm.

In this paper we show a direct and conceptually simpler algorithm, which
allows to bound the complexity by O(n3), when starting from the normal
form used by Lasota. The improvement is mainly inspired by the technique
introduced in [7].

Section 2 contains basic definitions, Section 3 presents some remarks to the
normal form (used by Lasota) and is completed by an Appendix; Section 4
presents the main result of the paper – a new efficient polynomial time algo-
rithm for deciding distributed bisimilarity on BPP. Section 5 contains some
final remarks.

2 Definitions

Let Act = {a, b, c, . . .} be a countably infinite set of atomic actions and let
Var = {X,Y, Z, . . .} be a countably infinite set of process variables. The class
of BPP expressions over Act and Var is defined by the following abstract

2

Jančar and Sawa

syntax:

P ::= 0 | X | a.P | P1 + P2 | P1 ‖ P2

where 0 denotes the empty process, X is a process variable, a. is an action
prefix, + denotes non-deterministic choice, and ‖ parallel composition.

A BPP process definition is a finite family of recursive equations

∆ = {Xi
def
= Pi | 1 ≤ i ≤ n}

where all Xi are distinct and all Pi are BPP expressions where every occur-
rence of a variable in Pi is guarded, i.e., it is within the scope of an action
prefix. (This guarantees that the transition system induced by the rules be-
low is finitely branching.) The sets of actions and variables occurring in ∆
are denoted Act(∆) and Var(∆), respectively. A BPP process is a pair (P, ∆)
where ∆ is a BPP process definition and P is a process expression containing
only actions and variables from Act(∆) and Var(∆). We usually write just P

instead of (P, ∆) when ∆ is obvious from the context.

Distributed bisimilarity, which we want to define as a binary relation over
BPP processes, should take the (spatial) distribution of (sub)processes into
account. So we have to look for a suitable modification of the standard (inter-
leaving) semantics. A natural candidate for such a modification is to view each
transition (from a process) as going to a pair of processes, the local derivative
and the concurrent derivative.

Remark: The intuition behind this definition is that processes are distributed
in space, and local and concurrent derivatives are two parts of the whole
process. Local derivative records a location at which the action is observed,
and concurrent derivative records the rest of the process.

We write transitions as P
a

−→ [P ′, P ′′] where P is the original process, P ′

and P ′′ are its local and concurrent derivatives, and a is the performed action.

Given a fixed BPP process definition ∆, the transitions are induced by the
following SOS (structural operational semantics)-rules

a.P
a

−→ [P,0]

Pj
a

−→ [P ′, P ′′] for some j ∈ I
∑

i∈I Pi
a

−→ [P ′, P ′′]

P
a

−→ [P ′, P ′′]

P ‖ Q
a

−→ [P ′, P ′′ ‖ Q]

Q
a

−→ [Q′, Q′′]

P ‖ Q
a

−→ [Q′, P ‖ Q′′]

P
a

−→ [P ′, P ′′]

X
a

−→ [P ′, P ′′]
((X

def
= P) ∈ ∆)

A relation R (on the set of processes induced by ∆) is a distributed bisim-
ulation iff for each (P,Q) ∈ R and each a ∈ Act two following conditions
hold:

3

Jančar and Sawa

• if P
a

−→ [P ′, P ′′] then Q
a

−→ [Q′, Q′′] for some Q′, Q′′ such that (P ′, Q′) ∈ R
and (P ′′, Q′′) ∈ R, and

• if Q
a

−→ [Q′, Q′′] then P
a

−→ [P ′, P ′′] for some P ′, P ′′ such that (P ′, Q′) ∈ R
and (P ′′, Q′′) ∈ R.

Processes P and Q are distributed bisimilar, denoted P ∼ Q, iff there is a
distributed bisimulation R such that (P,Q) ∈ R. The relation ∼ is called
distributed bisimulation equivalence or distributed bisimilarity.

We consider the following problem called bpp-dbisim in this paper:

Instance: A BPP process definition ∆ and two variables X,Y ∈ Var(∆).
Question: Is X ∼ Y ?

Remark: We can use this definition without losing generality because a more
general problem where we have two process expressions P1 and P2 over a
process definition ∆, and the question is whether P1 ∼ P2, can be easily
transformed to bpp-dbisim.

3 Normal form

Lasota [9] uses a special normal form for BPP processes, a modification of the
form used by Christensen [3]. It is useful for us as well.

We first observe that non-deterministic choice (+) and parallel compo-
sition (‖) are associative and commutative with respect to ∼, so we can
work with them modulo associativity and commutativity.

Processes of the form X1 ‖ X2 ‖ · · · ‖ Xn, where n ≥ 0 and each Xi ∈ Var ,
are called basic processes. We can view 0 as the basic process with n = 0.

For the normal form we also need an auxiliary new process operator, called
left merge:

P1 T P2

is similar to parallel composition P1 ‖ P2 but P1 (the left component) must
perform an action first. The relevant SOS rule is:

P
a

−→ [P ′, P ′′]

P T Q
a

−→ [P ′, P ′′ ‖ Q]

The point is that every BPP process definition ∆ can be transformed into
equivalent (distributed bisimilar) normal form ∆′ with all equations of the
form

X
def
=

∑

i∈I

((ai.Pi) T Qi)

where all Pi and Qi are basic processes. We note that the variables in Qi

are syntactically unguarded. But since we start from a guarded (standard)
BPP process definition, it will be guaranteed that the following relation ≺ is
irreflexive (and is thus a strict order):

4

Jančar and Sawa

We first define relation ≺1⊆ Var(∆′) × Var(∆′) such that Y ≺1 X holds

iff X
def
=

∑
i∈I((a.Pi) T Qi) and Y occurs in some Qi; then we take ≺ as

the transitive closure of ≺1. For technical convenience, we can extend ≺ to
some arbitrary (but further fixed) linear order. In the next section relation ≺
represents such a linear order.

Lasota sketched a transformation into normal form. In the Appendix, we
provide a more detailed description of such a transformation, which is more
suitable for complexity analysis. It can be shown that the transformation can
be done in O(n4), but unfortunately the size of the process definition is Θ(n4)
in the worst case.

In the next section we provide an algorithm for bpp-dbisim working in
O(n3), assuming the input is in the normal form.

We finish this section by rewriting the normal form in a notation which is
more convenient for description of the algorithm.

Due to associativity and commutativity of parallel composition ‖ , the
order of variables in a basic process is not important, and so we can identify
a basic process with a multiset of variables. For example,

X ‖ X ‖ X ‖ X ‖ X ‖ X ‖ X ‖ Y ‖ Y ‖ Z ‖ Z ‖ Z

can be represented as {7 X, 2 Y, 3 Z}.

We use Var⊕ to denote the set of all multisets of Var(∆). For P ∈ Var⊕

and X ∈ Var we use P (X) to denote the number of occurrences of X in P .
The relation ≥ on Var⊕ is defined as follows: P ≥ Q iff P (X) ≥ Q(X) for
every X ∈ Var(∆). We use P ⊕ Q to denote the union of P,Q ∈ Var⊕, i.e.,
(P⊕Q)(X) = P (X)+Q(X) for each X ∈ Var(∆). We use P⊖Q to denote the
difference of P,Q ∈ Var⊕ such that P ≥ Q, i.e., (P ⊖Q)(X) = P (X)−Q(X)
for each X ∈ Var(∆).

We represent a BPP process definition ∆ in the normal form as a finite set
of rules of the form

X
a

−→ (P,Q)

where X ∈ Var(∆), a ∈ Act , and P,Q ∈ Var⊕. Each original rule

X
def
=

∑

1≤i≤m

((ai.Pi) T Qi)

gives rise to new rules X
a1−→ (P1, Q1), X

a2−→ (P2, Q2), . . . , X
am−→ (Pm, Qm).

For example, a BPP process definition

X
def
= (a.XY T 0) + (b.0 T 0)

Y
def
= a.XZ T XX

Z
def
= (a.Y Z T XXXY) + (a.X T XY)

5

Jančar and Sawa

(where X ≺ Y ≺ Z) is represented by the following set of rules:

X
a

−→ (XY,0) X
b

−→ (0,0) Y
a

−→ (XZ,XX)

Z
a

−→ (Y Z,XXXY) Z
a

−→ (X,XY)

(For clarity we do not use multiset representations in examples.)

For each t = (X
a

−→ (P,Q)) ∈ ∆, we define pre(t) = X and λ(t) = a. We

write P
t

−→ [P ′, P ′′], for a rule t = (X
a

−→ (P ′, Q′)), iff P ′′ = (P ⊖{X})⊕Q′.

For example, if t is a rule Z
a

−→ (Y Z,XXXY) in ∆, then

XXXY ZZ
t

−→ [Y Z,XXXXXXY Y Z]

is a possible transition.

We use N to denote the set of non-negative integers.

4 New algorithm

Let us assume that we have an input instance of bpp-dbisim consisting of some
BPP process definition ∆ in normal form and two variables X,Y ∈ Var(∆).
We assume that ∆ is given by a set of rules of the form

X
a

−→ (P,Q) .

(We suppose that P and Q are represented is such a way that the represen-
tation contains the numbers of occurrences of variables in P and Q encoded
in binary. This is important for the complexity analysis.) We assume that
Var(∆) = {X1, X2, . . . , Xk} and X1 ≺ X2 ≺ · · · ≺ Xk for the linear order ≺
discussed in the previous section.

The main idea of the algorithm is to construct a sequence of approxima-
tions of distributed bisimilarity ∼ from above. The algorithm is inspired by
the ideas introduced in [7].

4.1 Preliminaries

Before going into details, we need some technical definitions. Let D be some
(non-empty) set and let f : Var⊕ → D be a function. We say that f is
bisimulation invariant iff for every P,Q ∈ Var⊕ P ∼ Q implies f(P) =
f(Q). The notion ‘bisimulation invariant’ can be used also for predicates
over processes from Var⊕, because a predicate can be viewed as a function
f : Var⊕ → D where D = {0, 1}.

Rule t ∈ ∆ is disabled in P ∈ Var⊕ iff P (pre(t)) = 0, and it is enabled
in P iff P (pre(t)) > 0. For T ⊆ ∆ we define predicates disabled(T) and
enabled(T) on elements of Var⊕ such that disabled(T)(P) holds iff every
t ∈ T is disabled in P , and enabled(T)(P) iff ¬disabled(T)(P).

6

Jančar and Sawa

Let a ∈ Act be an action and let Ta = {t ∈ ∆ | λ(t) = a}. Note that
disabled(Ta) is bisimulation invariant for every a ∈ Act .

Given a set T ⊆ ∆, the norm of T , denoted norm(T), is a function
norm(T) : Var⊕ → N defined for P ∈ Var⊕ so that the value of norm(T)(P)
is the length of the shortest sequence Q0, Q1, . . . , Qm of basic processes (the
length of the sequence is m) where Q0 = P , disabled(T)(Qm), and for each

1 ≤ i ≤ m there are some ai and Pi such that Qi−1
ai−→ [Pi, Qi].

It will be shown that if disabled(T) is bisimulation invariant then also
norm(T) is bisimulation invariant. Moreover, it will be shown that for any
T ⊆ ∆, the function norm(T) can be expressed as a linear function, i.e., as a
function L : Var⊕ → N of the form

L(P) =
k∑

i=1

ci · P (Xi)

for P ∈ Var⊕, where each coefficient ci ∈ N can be computed efficiently.

4.2 Algorithm

The algorithm creates a set of linear functions L such that each linear function
L from L will be the norm of some set of rules T ⊆ ∆ such that disabled(T) is
bisimulation invariant. Because of this, each L from L will be also bisimulation
invariant, and therefore L(P) 6= L(Q) implies P 6∼ Q. Moreover, L will be
constructed in such a way that if ∀L ∈ L : L(P) = L(Q) then P ∼ Q. More
formally we define for L an equivalence relation ≡L on Var⊕ such that P ≡L Q

iff ∀L ∈ L : L(P) = L(Q), and we show that P ∼ Q iff P ≡L Q.

The algorithm starts with L = ∅ and successively adds functions to L until
no more function can be added.

For each linear function L(P) =
∑k

i=1 ci · P (Xi) and rule t ∈ ∆ we can
compute the value δL

t representing the ‘change’ on value of L caused by t

(where t is of the form Xℓ
a

−→ (Q,Q′)) as

δL
t = −cℓ +

k∑

i=1

ci · Q
′(Xi) .

Note that δL
t does not depend on the actual value of L(P) and that δL

t can
be easily computed when we know coefficients ci of L; also note that L(P ′′) =

L(P) + δL
t when P

t
−→ [P ′, P ′′].

For each L we can define the equivalence =L on rules from ∆. Let us have

rules t = (X
a

−→ (P, P ′)) and t′ = (Y
a′

−→ (Q,Q′)). We define t =L t′ iff
a = a′, L(P) = L(Q), and δL

t = δL
t′ . For a set of linear functions L we define

the equivalence =L such that t =L t′ iff ∀L ∈ L : t =L t′.

The algorithm maintains a partition of (rules of) ∆, denoted T , and suc-
cessively refines it. For each class T of T the algorithm adds to L a function

7

Jančar and Sawa

L = norm(T). The algorithm also maintains a ‘queue’ Q of unprocessed
classes of T .

The algorithm starts with Q = T = {Ta | a ∈ Act} where Ta = {t ∈ ∆ |
λ(t) = a}, and proceeds as follows.

While Q 6= ∅:

(i) Take some T ∈ Q and remove T from Q.

(ii) Compute coefficients of L = norm(T) and add L to L. (The computation
of coefficients is described in more detail in Subsection 4.4.)

(iii) For each t ∈ ∆ where t is of the form (X
a

−→ (P,Q)) compute values
L(P), and δL

t , and refine T according to the relation =L. (Put transitions
t, t′ such that t 6=L t′ to different classes of the refinement of T .)

(iv) Add to Q each new class of T created in the previous step.

4.3 Correctness of the Algorithm

Now we show that the set L computed by the algorithm really represents
distributed bisimilarity in the sense that for each P,Q ∈ Var⊕ we have P ∼ Q

iff P ≡L Q.

Claim 4.1 Let T ⊆ ∆ be a set of rules such that disabled(T) is bisimulation
invariant. Then norm(T) is bisimulation invariant.

Proof. Let L = norm(T). We show that if P ∼ Q and L(P) = m, then
L(Q) = m, which proves the result. We proceed by induction on m. If
m = 0, the L(Q) = 0 follows from the assumption that disabled(T) is
bisimulation invariant. Consider m > 0 and let us assume L(Q) = m′ where
m′ 6= m. Without loss of generality we can assume that m < m′. There
must be a transition P

a
−→ [P ′, P ′′] such that L(P ′′) = m − 1. Since P ∼ Q,

there must be a matching transition Q
a

−→ [Q′, Q′′] such that P ′ ∼ Q′ and
P ′′ ∼ Q′′, but obviously L(Q′′) ≥ m′ − 1 > m − 1, but on the other hand
P ′′ ∼ Q′′ and L(P ′′) = m − 1 imply L(Q′′) = m − 1 by induction hypothesis,
a contradiction. 2

Lemma 4.2 If P ∼ Q then P ≡L Q.

Proof. It is sufficient to show that each L added to L in step (ii) of the
algorithm is bisimulation invariant. Because L is computed as norm(T) from
some T ⊆ ∆, due to Claim 4.1 it is sufficient to show that disabled(T) is
bisimulation invariant. We show that that following invariant holds in every
step of the algorithm: For every class T of T , disabled(T) is bisimulation
invariant. To show it, we proceed by induction of the number of steps of the
algorithm. The invariant obviously holds at the start of the algorithm when
T contains classes Ta for each a ∈ Act .

Now consider T created in step (iii) of the algorithm. Let us assume
P ∼ Q where enabled(T)(P) and disabled(T)(Q), so there is some t ∈ T

8

Jančar and Sawa

such that P
t

−→ [P ′, P ′′] and there must be some t′ such that Q
t′

−→ [Q′, Q′′]
such that λ(t) = λ(t′) and P ′ ∼ Q′ and P ′′ ∼ Q′′. Obviously t′ 6∈ T , and so
t 6=L t′ for some L ∈ L which is bisimulation invariant by induction hypothesis
and Claim 4.1. From P ∼ Q we have L(P) = L(Q), L(P ′) = L(Q′) and
L(P ′′) = L(Q′′), but t 6=L t′ implies that L(P ′) 6= L(Q′) or δL

t 6= δL
t′ . Because

L(P ′′) = L(P) + δL
t and L(Q′′) = L(Q) + δL

t′ , we obtain that either L(P ′) 6=
L(Q′) or L(P ′′) 6= L(Q)′′, so P ′ 6∼ Q′ or P ′′ 6∼ Q′′, a contradiction. 2

Lemma 4.3 If P ≡L Q then P ∼ Q.

Proof. We just need to show that ≡L is distributed bisimulation. Let us

have P,Q ∈ Var⊕ such that P ≡L Q and a rule t such that P
t

−→ [P ′, P ′′].
Let T be the set of all rules t′ such that t′ =L t. Obviously enabled(T)(P)
and enabled(T)(Q). So let t′ be a rule from T enabled in Q, such that

Q
t′

−→ [Q′, Q′′] From t =L t′ we obtain L(P ′) = L(Q′) for every L ∈ L, and
so P ′ ≡L Q′. t =L t′ also implies δL

t = δL
t′ for every L ∈ L, and because

L(P) = L(Q) for every L, and L(P ′′) = L(P) + δL
t and L(Q′′) = L(Q) + δL

t′ ,
we obtain L(P ′′) = L(Q′′) for every L, and so P ′′ ≡L Q′′. 2

4.4 Computation of Coefficients of Linear Functions

Now we show that norm(T) for T ⊆ ∆ can be really expressed as a linear
function

L(P) =
k∑

i=1

ci · P (Xi)

and that coefficients ci in L can be computed efficiently.

Recall the assumed order X1 ≺ X2 ≺ · · · ≺ Xk. The subroutine that com-
putes coefficients c1, c2, . . . , ck, computes them according to this order. Each
coefficient ci can be computed as norm(T)({Xi}). If disabled(T)({Xi})
then ci = 0. Otherwise consider the set Ti of all rules t from T such that
pre(t) = Xi. For each t ∈ Ti where t = (Xi

a
−→ (P,Q)) we can compute the

value dt = norm(T)(Q) as

dt = 1 +
i−1∑

j=1

cj · Q(Xj) .

Intuitively, dt represents the distance to disabling T if t is chosen as the rule
used for the first transition. Note that dt can be computed this way, since
variables Xj such that j ≥ i do not occur in Q, and coefficients cj where
j < i were already computed. We then compute ci simply as min{dt | t ∈ Ti}.
Obviously ci = norm(T)({Xi}).

To analyze the complexity, we need the following definitions. For x ∈ N,
size(x) denotes the number of bits of x when encoded in binary. We suppose
that size(x+y) = 1+max{size(x), size(y)}, and size(x ·y) = size(x)+size(y).

9

Jančar and Sawa

For t ∈ ∆, size(t) denotes the number of bits in the representation of t where
numbers of occurrences of variables on right-hand sides are encoded in binary.

We use n to denote the size of ∆, i.e., n =
∑

t∈∆ size(t).

Proposition 4.4 size(ci) ∈ O(n) for every coefficient ci of L.

Proof. Let X ′
1, X

′
2, . . . , X

′
k′ be a subset of variables where ci > 0, and let ti be

the rule (with X ′
i is on the left-hand side) that was used in the computation

of ci. We show by induction on i the following proposition from which the
result directly follows:

size(ci) ≤
i∑

j=1

size(tj)

This holds trivially for i = 1 because c1 is always 1, so suppose i > 1. Let
ti = (X

a
−→ (P,Q)). Note that

ci = 1 +
i−1∑

j=1

cj · Q(Xj)

and size(cj · Q(Xj)) = size(cj) + size(Q(Xj)). The sum of all such products
can be written in the size of maximal of them plus some number less then
their count (overflow caused by addition). This size is less then

size(max{cj | 1 ≤ j < i}) +
i−1∑

j=1

size(Q(Xj)).

The second summand (the sum) is less then size(ti). By induction hypothesis
maximal cj can be written in the count of bits needed for t1, t2, . . . , ti−1. There-
fore ci can be written in the space needed for representations of t1, t2, . . . , ti.2

Proposition 4.5 Coefficients of a norm (i.e., linear function) L can be com-
puted in time O(n2).

Proof. The most time-consuming step is computation of all dt. In computa-
tion of this, multiplications are more time-consuming than additions. Hence it
suffices to show that aggregated complexity of all multiplications is in O(n2).

In our algorithm, the value of dt is computed at most once for each t

(where t is of the form X
a

−→ (P,Q)). During computation of dt we need to
determine all products cj ·Q(Xj) where Q(Xj) > 0. From Proposition 4.4 we
know that size(cj) is in O(n) for every cj. Hence one product is computed
in O(n · size(Q(Xj))). If we sum complexities of such products for all rules

ti ∈ ∆ (of the form Xi
ai−→ (Pi, Qi)) and all variables, we get the aggregated

complexity of all multiplications

O(
∑

ti∈∆

∑

Xj∈Var

(Qi(Xj)>0)

(n·size(Qi(Xj)))) = O(n·
∑

ti∈∆

∑

Xj∈Var

(Qi(Xj)>0)

size(Qi(Xj))) = O(n2).

10

Jančar and Sawa

2

Proposition 4.6 Values of δL
t for a linear function L and all rules t ∈ ∆ can

be computed in time O(n2).

Proof. Again the complexity of additions is dominated by the complexity of
multiplications cj ·Qi(Xj) for ti of the form Xi

ai−→ (Pi, Qi). Each such product
is computed only once. From Proposition 4.4 we know that each cj is in O(n).
Each Qi(Xj) is used only once and is part of ∆. Hence we can similarly as
in the previous case for coefficients deduce that aggregated complexity of all
multiplications is in O(n2), from which the result follows. 2

4.5 Overall Complexity of the Algorithm

In the analysis of the complexity of the algorithm we use the following well
known fact.

Fact 4.7 Let U be a non-empty finite set, and let U1,U2, . . . be a sequence
of partitions of U such that each Ui+1 is a refinement of Ui. Then the total
number of different classes in all these partitions is less then 2 · |U |.

Proof idea. Use induction on |U |. 2

Theorem 4.8 Assuming the input processes in the normal form, there is an
algorithm deciding distributed bisimilarity on BPP in time O(n3).

Proof. We can use the algorithm described above to compute L and then
check whether {X} ≡L {Y } where X and Y are variables from the instance
of bpp-dbisim. The correctness of the algorithm follows from Lemmas 4.2
and 4.3. The number of subsets of ∆ inserted into Q (and so the the number
of functions in L) is O(n) as follows from Fact 4.7. As follows from Proposi-
tions 4.5 and 4.6, each such subset can be processed in time O(n2), and hence
the overall time complexity of the algorithm is O(n3). 2

5 Conclusion

We have presented a new algorithm for deciding distributed bisimilarity on
BPP. Time complexity of the algorithm is O(n3), in the case of inputs in nor-
mal form, and so it improves the previous result by Lasota [9]. The algorithm
presented here is also conceptually simpler. As distributed bisimilarity coin-
cides on BPP with many other non-interleaving equivalences, the algorithm
can be used to decide any such equivalence.

Since the transformation of a general BPP process into normal form re-
quires time (and the size of output) Θ(n4) in the worst case, it would be
interesting to explore the possibility of a direct algorithm which would avoid
the transformation into normal form.

11

Jančar and Sawa

References

[1] Castellani, I., “Bisimulations for Concurrency,” Ph.D. thesis, University of
Edinburgh (1988).

[2] Castellani, I., Process algebras with localities, chapter 15, Handbook of Process
Algebra (2001), pp. 945–1046.

[3] Christensen, S., “Decidability and Decomposition in Process Algebras,” Ph.D.
thesis, The University of Edinburgh (1993).

[4] Darondeau, P. and P. Degano, Causal trees, in: Automata, Languages and
Programming (ICALP ’89) (1989), pp. 234–248.

[5] Gorrieri, R., M. Roccetti and S. Stancampiano, A theory of processes with
durational actions, Theoretical Computer Science 140 (1995), pp. 73–94.

[6] Hirshfeld, Y., M. Jerrum and F. Moller, A polynomial-time algorithm
for deciding bisimulation equivalence of normed basic parallel processes,
Mathematical Structures in Computer Science 6 (1996), pp. 251–259.

[7] Jančar, P., Strong bisimilarity on basic parallel processes is PSPACE-complete,
in: Proceedings of the Eighteenth Annual IEEE Symposium on Logic in
Computer Science (LICS-03) (2003), pp. 218–227.

[8] Jančar, P. and M. Kot, Bisimilarity on normed basic parallel processes can
be decided in time O(n3), in: R. Bharadwaj, editor, Proceedings of the Third
International Workshop on Automated Verification of Infinite-State Systems –
AVIS 2004, 2004.

[9] Lasota, S., A polynomial-time algorithm for deciding true concurrency
equivalences of Basic Parallel Processes, in: MFCS: Symposium on
Mathematical Foundations of Computer Science, 2003.

[10] van Glabbeek, R., The linear time—branching time spectrum, Handbook of
Process Algebra (1999), pp. 3–99.

[11] van Glabbeek, R. J. and U. Goltz, Equivalence notions for concurrent systems
and refinement of actions, in: A. Kreczmar and G. Mirkowska, editors, Proc.
Conf. on Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science 379 (1989), pp. 237–248.

Appendix: Transformation to normal form

Let us assume ∆ is a family of equations of the form

∆ = {Xi
def
= Pi | 1 ≤ i ≤ k}

where each Pi is defined by the following abstract syntax

P ::= 0 | X | a.P | P1 + P2 | P1 ‖ P2

12

Jančar and Sawa

where each occurrence of a variable in Pi is guarded, i.e., in a scope of an
action prefix.

Each expression Q has a corresponding syntax tree with leaves labelled
with 0 or variables, and with inner nodes labelled with a., + and ‖. We can
identify Q with this syntax tree. (We assume that subexpressions of Q are
parenthesized in Q.) Each subexpression Q′ of Q has a corresponding node
in the tree representing Q. The size of Q, denoted size(Q), is the number

of nodes of the tree that represents Q, the size of an equation Xi
def
= Pi is

size(Pi) + O(1), and the size of ∆ is the sum of sizes of its equations. In
the rest of Appendix we use n to denote the size of ∆. We show that the
transformation of ∆ to normal form can be done in O(n4).

We use S(Q) to denote the set of subexpressions of Q (including Q).

The transformation to normal form is done in two steps.

Step 1: Create ∆′ as follows: Start with ∆′ = ∅ and for each definition

(Xi
def
= Pi) ∈ ∆ and each Q ∈ S(Pi) add a new variable YQ to ∆′ with the

definition

YQ
def
= Q if Q = 0

YQ
def
= a.YQ1

if Q = a.Q1

YQ
def
= YQ1

+ YQ2
if Q = Q1 + Q2

YQ
def
= YQ1

‖ YQ2
if Q = Q1 ‖ Q2

For Q = X where X ∈ Var(∆), identify YQ with X. For each definition

(Xi
def
= Pi) ∈ ∆ add to ∆′ also the definition Xi

def
= YPi

.

Note that ∆′ is in fact only a different representation of the syntax trees
of expressions in ∆. The size of ∆′ is in O(n). Note also that ∆′ is not correct
BPP process definition since it can contain expressions that are not guarded.

Step 2: In this step we construct ∆′′ in normal form represented as a set of
rules of the form X

a
−→ (Y,Q). (Note that Y is one variable, not a multiset

of variables.)

The set of variables of ∆′′ is the same as of ∆′, i.e., Var(∆′′) = Var(∆′).
We use V to denote this set of variables and V⊕ to denote the set of multisets
of V .

Let RRules = Act × V × V⊕. Intuitively, elements of RRules are rules
without left hand sides (Right parts of Rules). For example if X

a
−→ (Y,Q)

is a rule then 〈a, Y,Q〉 is its corresponding right part.

For each Z ∈ V we compute the value deriv(Z) of the function deriv : V →
P(RRules) (which will be defined below), and add to ∆′′ the rules created from
elements of deriv(Z) by adding Z as the left hand side to them, i.e.,

∆′′ = {Z
a

−→ (X,Q) | Z ∈ V, 〈a,X,Q〉 ∈ deriv(Z) } .

13

Jančar and Sawa

The value of deriv(Z) is defined inductively as follows when (Z
def
= R) ∈ ∆′:

∅ if R = 0

{〈a, Y, ∅〉} if R = a.Y

deriv(Y) ∪ deriv(Y ′) if R = Y + Y ′

extend(deriv(Y), Y ′) ∪ extend(deriv(Y ′), Y) if R = Y ‖ Y ′

deriv(Y) if R = Y

where the function extend : P(RRules)×V → P(RRules) is defined as follows:

extend(U, Y) = {〈a,X, P ∪ {Y }〉 | 〈a,X, P 〉 ∈ U} .

For example, if U = {〈a,X,XY Y Z〉, 〈b, Y,X〉}, then

extend(U, Y) = {〈a,X,XY Y Y Z〉, 〈b, Y,XY 〉} .

In the definition of deriv we must specify the order in which the values are
computed to ensure the correctness of the definition. To specify the order we
need some auxiliary definitions.

For an expression Q of ∆ we define top(Q) as the expression that we obtain
from Q by replacing each occurrence of a subexpression of a form a.Q′ with
a.YQ′ . For example, top(a.(X + c.Z) + 0) = a.YQ′ + 0 where Q′ = X + c.Z.

Consider the syntax tree for top(Pi) where (Xi
def
= Pi) ∈ ∆. Note that

all its branches end with 0 or with a.YQ for some Q, and all its remaining
nodes are labelled with + or ‖. Since the cases R = 0 and R = a.Y are the
elementary cases in the definition of deriv , we can compute deriv(YQ) for each
YQ corresponding to some subexpression Q of top(Pi) (with the exception of
leaves of top(Pi) which are labelled with variables). In this computation we
proceed in a bottom-up fashion (children at first, then their parents in the
syntax tree).

This way we compute deriv(YPi
) for each Pi such that (Xi

def
= Pi) ∈ ∆,

and so we can set deriv(Xi) = deriv(YPi
) for each Xi ∈ Var(∆). Now we can

compute the values of deriv for the rest of variables in V , again proceeding in
a bottom-up fashion with respect to the structure of the trees of expressions
of ∆.

To analyze the complexity of the transformation to normal form, we must
analyze the number of elements in deriv(Y) for each Y ∈ V, and the sizes of
these elements. Note that when we have an expression Q where the sum of
numbers of elements of deriv at its leaves is m, then the number of elements of
deriv(YQ) is at most m, and if m′ is the maximal size of an element at leaves
of Q, then the size of the maximal element in deriv(YQ) is at most m′ + |Q|.

14

Jančar and Sawa

Using these facts we easily obtain that the total number of elements in all

deriv(YPi
) where (Xi

def
= Pi) ∈ ∆ is in O(n) and the size of these elements is

also in O(n). From this we obtain that |deriv(Z)| is in O(n2) for any Z ∈ V,
and that the maximal size of elements of deriv(Z) is in O(n). Since we have
O(n) variables in V , we obtain that the total size of ∆′′ is in O(n4).

The computation of the values of deriv according to its inductive definition
is straightforward, and so the running time of the algorithm is proportional
to the size of ∆′′ and is also in O(n4).

15

	Introduction
	Definitions
	Normal form
	New algorithm
	Preliminaries
	Algorithm
	Correctness of the Algorithm
	Computation of Coefficients of Linear Functions
	Overall Complexity of the Algorithm

	Conclusion
	References

