
Fundamenta Informaticae XX (2013) 1–10 1

IOS Press

Efficient Construction of Semilinear Representations of Languages

Accepted by Unary Nondeterministic Finite Automata

Zdeněk Sawa∗

Center for Applied Cybernetics, Department of Computer Science

Technical University of Ostrava

17. listopadu 15, Ostrava-Poruba, 708 33, Czech Republic

zdenek.sawa@vsb.cz

Abstract. In languages over a unary alphabet, i.e., an alphabet with only one letter, words can be

identified with their lengths. It is well known that each regular language over a unary alphabet can

be represented as the union of a finite number of arithmetic progressions. Given a nondeterministic

finite automaton (NFA) working over a unary alphabet (a unary NFA), the arithmetic progressions

representing the language accepted by the automaton can be easily computed by the determinization

of the given NFA. However, the number of the arithmetic progressions computed in this way can be

exponential with respect to the size of the original automaton. Chrobak (1986) has shown that in

fact O(n2) arithmetic progressions are sufficient for the representation of the language accepted by

a unary NFA with n states, and Martinez (2002) has shown how these progressions can be computed

in polynomial time. Recently, To (2009) has pointed out that Chrobak’s construction and Martinez’s

algorithm, which is based on it, contain a subtle error and has shown how to correct this error. Geffert

(2007) presented an alternative proof of Chrobak’s result, also improving some of the bounds. In

this paper, a new simpler and more efficient algorithm for the same problem is presented, using some

ideas from Geffert (2007). The time complexity of the presented algorithm is O(n2(n+m)) and its

space complexity is O(n +m), where n is the number of states and m the number of transitions of

a given unary NFA.

1. Introduction

It is well known that Parikh images of regular (and even context-free) languages are semilinear sets [9, 6].

In languages over a unary alphabet, i.e., an alphabet with only one letter, words can be identified with

∗Supported by the Czech Ministry of Education, Grant No. 1M0567, and the Czech Science Foundation – GACR, Grant

No. P202/11/0340.

2 Z. Sawa / Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA

their lengths (i.e., an can be identified with n), so the Parikh image of a unary language is just the set

of lengths of words of the language, and it can be identified with the language itself. It can be easily

shown that each regular unary language can be represented as the union of a finite number of arithmetic

progressions of the form {c+di | i ∈ N} where c and d are constants specifying the offset and the period

of a progression.

A unary nondeterministic finite automaton (a unary NFA) is an NFA with a one-letter alphabet.

Given a unary NFA A, a set of arithmetic progressions representing the language accepted by A can be

computed by determinization of A; however, this straightforward approach can produce an exponential

number of progressions, even if the resulting automaton is minimized. Chrobak [1, 2] has shown that

this exponential blowup is avoidable and that a language accepted by a unary NFA with n states can be

represented as the union of O(n2) progressions of the form {c + di | i ∈ N} where c < p(n) for some

p(n) ∈ O(n2) and 0 ≤ d ≤ n. The computational complexity of the construction of these progressions

was not analyzed in [1], but it can be seen that a naive straightforward implementation would require

exponential time. Later, Martinez [7, 8] has shown how the construction described in [1] can be realized

in polynomial time. The exact complexity of Martinez’s algorithm is O(kn4) where n is the number of

states of the automaton and k the number of strongly connected components of its graph. The result was

recently used for example in [5, 4] to obtain more efficient algorithms for some problems in automata

theory and the verification of one-counter processes.

Geffert presented in [3] a new alternative proof of Chrobak’s result, with improved exact bounds on

the number of arithmetic progressions and the sizes of offsets and periods in these progressions.

In [12], To pointed out that Chrobak’s construction and Martinez’s algorithm (whose correctness

relies on correctness of Chrobak’s construction) contain a subtle error, and he has shown modifications

that correct this error. (In errata [2], Chrobak has corrected some errors from [1] not related to problems

discussed here. The error pointed out by To was not corrected in the errata.) The construction in [3] is

completely different from the construction in [1], and so it does not contain the above mentioned error.

(To [12] does not mention the alternative construction from [3].)

In this paper, we give a simpler and more efficient algorithm for the same problem, i.e., for computing

a set of arithmetic progressions representing the language accepted by a given unary NFA. The time

complexity of the algorithm is O(n2(n + m)) and its space complexity O(n + m), where n is the

number of states and m the number of transitions of the unary NFA. The algorithm and the proof of its

correctness use some ideas from [3].

Section 2 gives basic definitions and formulates the main result, Section 3 describes the algorithm

and a proof of its correctness, and Section 4 contains a description of an efficient implementation of the

algorithm and an analysis of its complexity.

A preliminary version of results presented in this paper has been published on Workshop on Reach-

ability Problems 2010 [10].

Acknowledgement: I would like to thank the anonymous referee for pointing out to the paper of Gef-

fert [3], and for suggesting how ideas from [3] can be used to improve results and simplify proofs from

the previous version of the article.

Z. Sawa / Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA 3

2. Definitions and Main Result

The set of natural numbers {0, 1, 2, . . .} is denoted by N. For i, j ∈ N such that i ≤ j, [i, j] denotes the

set {i, i+ 1, . . . , j}, and [i, j) denotes the (possibly empty) set {i, i+ 1, . . . , j − 1}. Given c, d ∈ N, an

arithmetic progression is the set {c + d · i | i ∈ N}, denoted c + dN, where c is called the offset and d

the period of the progression.

The following definitions are standard (see e.g. [6]), except that they are specialized to the case

where a unary alphabet is used, i.e., an alphabet with one letter. In such alphabet, words can be identified

with their lengths and the (only) letter of the alphabet is not important. This means that a word an can

be identified with the number n. Since in the rest of the paper we consider only words over a unary

alphabet, words are assumed to be elements of N.

A unary nondeterministic finite automaton (a unary NFA) is a tuple A = (Q, δ, I, F) where Q is a

finite set of states, δ ⊆ Q × Q is a transition relation, and I, F ⊆ Q are sets of initial and final states,

respectively.

Assume a unary NFA A = (Q, δ, I, F). A path α of length k from q to q′, where q, q′ ∈ Q, is a

sequence of states q0, q1, . . . , qk from Q such that q = q0, q′ = qk, and (qi−1, qi) ∈ δ for each i ∈ [1, k].
Path α is a cycle (or loop) if k > 0 and q0 = qk. We write q

x
−→ q′ to denote that there exists a path

of length x from q to q′, and we write
x
x
q to denote that there exists a cycle of length x in state q,

i.e., q
x

−→ q and x ≥ 1. We also use notation like q1
x

−→
y
x
q2

z
−→ q3 to denote that q1

x
−→ q2,

y
x
q2

, and

q2
z

−→ q3.

A word x ∈ N is accepted by A if q0
x

−→ qf for some q0 ∈ I and qf ∈ F . The language L(A)
accepted by a unary NFA A is the set of all words accepted by A, i.e.,

L(A) = {x ∈ N | ∃q0 ∈ I : ∃qf ∈ F : q0
x

−→ qf} .

The paper describes an efficient algorithm for the following problem:

PROBLEM: UNFA-Arith-Progressions

INPUT: A unary NFA A.

OUTPUT: A set R = {(c1, d1), (c2, d2), . . . , (ck, dk)} of pairs of natural numbers such that

L(A) =
k⋃

i=1

(ci + diN) .

The main presented result is stated in the following theorem:

Theorem 2.1. There is an algorithm solving UNFA-Arith-Progressions with time complexity O(n2(n+
m)) and space complexity O(n +m) where n is the number of states and m the number of transitions

of a given unary NFA. Assuming that n ≥ 2, the algorithm constructs a set R consisting of two subsets

R1 and R2 such that |R1| ≤ n2 and |R2| ≤ n, where:

• each (c, d) ∈ R1 satisfies d = 0 and c ∈ [0, n2 − 1],

4 Z. Sawa / Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA

• each (c, d) ∈ R2 satisfies d ∈ [1, n] and c ∈ [n2 − d− 1, n2 − 2].

Remark: In the previous theorem and as well as in the rest of the paper we assume that n ≥ 2. This

makes no harm, since the trivial special case n = 1 can be easily dealt with separately.

3. L(A) as the Union of Arithmetic Progressions

In this section, we describe the algorithm for UNFA-Arith-Progressions and prove its correctness.

In the rest of the paper, we assume a fixed unary NFA A = (Q, δ, I, F) with |Q| = n where n ≥ 2,

given as an input of the problem.

3.1. The Algorithm

As mentioned before, the algorithm computes the resulting set R as the union of sets R1 and R2:

• R1 is the set of all of pairs (x, 0) where x ∈ L(A) and x ∈ [0, n2), and

• R2 contains only pairs (c, d) ⊆ N
2 with d ∈ [1, n] and c ∈ [n2 − d − 1, n2 − 2] where q0

n−1
−→

d
x
q

c−(n−1)
−→ qf for some q0 ∈ I , q ∈ Q, and qf ∈ F (note that c ≥ n − 1). Only a subset of such

pairs is included in R2. The exact definition of R2 will be given later.

At first, we can note that if x ∈ c+ dN for some (c, d) ∈ R, then x ∈ L(A), because if (c, d) ∈ R1

then c ∈ L(A) and d = 0 by the definition of R1, and so c + dN = {c} and x = c, which implies

x ∈ L(A); and if (c, d) ∈ R2 then there are q0 ∈ I , q ∈ Q, and qf ∈ F such that q0
n−1
−→

d
x
q

c−(n−1)
−→ qf ,

and so x ∈ L(A), because q0
x

−→ qf for each x ∈ c+ dN due to the following trivial observation:

Observation 3.1. If q1
c1−→

d
x
q

c2−→ q2 for some q1, q, q2 ∈ Q and c1, c2, d ∈ N then q1
x

−→ q2 for each

x ∈ (c1 + c2) + dN.

Before defining the set R2, we need some technical definitions. The states of A can be partitioned

into (maximal) strongly connected components (SCCs); recall that states q, q′ ∈ Q belong the same

strongly connected component C iff q
x

−→ q′ and q′
y

−→ q for some x, y ∈ N. A SCC C is nontrivial

if it contains at least one transition, i.e., q
1

−→ q′ for some (not necessarily different) states q, q′ ∈ C ,

and it is trivial otherwise (C contains exactly one state in this case). For q ∈ Q we define value sl(q) as

the length of the shortest loop that can be done in q, i.e., when sl(q) = d then
d
x
q and we have d′ ≥ d

for each d′ such that
d′
x
q . If there is no d ≥ 1 such that

d
x
q then sl(q) is undefined. Note that for each

nontrivial SCC C and each q ∈ C we have sl(q) ≤ |C|, since all states on the cycle of length sl(q) from

q to q belong to C , and no state (except q) is repeated on this cycle.

We call a state q important if q belongs to some nontrivial SCC C (which means that sl(q) is defined)

and the value sl(q) is minimal in the given SCC C , i.e., for each q′ ∈ C we have sl(q′) ≥ sl(q). The

Z. Sawa / Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA 5

set of all important states in a given SCC C is denoted imp(C) and the set of all important states of A is

denoted Imp.

The set R2 is then defined as follows:

• R2 is the set of all pairs (c, d) ⊆ N
2 where q0

n−1
−→

d
x
q

c′
−→ qf for some q0 ∈ I , q ∈ Imp, qf ∈ F ,

and c′ ∈ [n2 − n − d, n2 − n − 1], with d = sl(q) and c = (n − 1) + c′ (which means that

c ∈ [n2 − d− 1, n2 − 2]).

Both R1 and R2 can be easily computed in polynomial time. To compute R1, it is sufficient to test

for each x ∈ [0, n2) if x ∈ L(A), and to compute R2, it is sufficient to test for each q ∈ Imp (with

sl(q) = d) and each possible value of c ∈ [n2−d−1, n2−2], if the required conditions from the definition

of R2 are satisfied. All these tests can be done in polynomial time by standard graph algorithms. A more

efficient version of the algorithm, together with a more detailed analysis of its complexity, is described

in Section 4.

It is obvious from the definitions of R1 and R2 that each pair (c, d) from these sets satisfies bounds

on c and d specified in Theorem 2.1. It is also obvious that R1 contains at most n2 pairs. The fact that

R2 contains at most n pairs follows from the following observations. At first, note that if (c, d) ∈ R2

then d = sl(q) for some q ∈ Imp. Moreover, for each such d there are at most d possible values of c

such that (c, d) ∈ R2 since c ∈ [n2 − d − 1, n2 − 2]. Let C1, C2, . . . , Ck be all nontrivial SCCs of A,

and let d1, d2, . . . , dk be the values such that di = sl(q) for each q ∈ Ci ∩ Imp (note that di is uniquely

determined by Ci and that di ≤ |Ci|). Since (c, d) ∈ R2 implies that d is one of d1, d2, . . . , dk , we see

that |R2| ≤ d1 + d2 + · · ·+ dk ≤ |C1|+ |C2|+ · · ·+ |Ck| ≤ n.

To prove the correctness of the algorithm, we need to show that for each x ∈ L(A) there is some

pair (c, d) ∈ R such that x ∈ c + dN. For this we need the following crucial lemma whose proof is

postponed to the following subsection:

Lemma 3.1. Let x ≥ n2. If x ∈ L(A) then x ∈ c+ dN for some (c, d) ∈ R2.

For each x ∈ L(A) such that x < n2 we have (x, 0) ∈ R1, and for each x ∈ L(A) such that x ≥ n2

there is some pair (c, d) ∈ R2 such that x ∈ c + dN by Lemma 3.1. From this and from the previous

discussion we obtain the following theorem, which proves the correctness of the algorithm:

Theorem 3.1. Let x ∈ N. Then x ∈ L(A) iff x ∈ c+ dN for some (c, d) ∈ R.

The rest of this section is devoted to the proof of Lemma 3.1.

3.2. Proof of Lemma 3.1

Lemma 3.1 follows from (a slight modification of) results from [3]. We present a complete proof of

Lemma 3.1 here to make the article self-contained. Note that Proposition 3.1, Corollary 3.1, and Propo-

sition 3.2 and their proofs are based on ideas from [3].

Remark: The notion of important states is not used in [3]. Instead, it defines a similar concept of cardinal

states (with a more complicated definition; in particular, there is at most one cardinal state in each SCC).

6 Z. Sawa / Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA

The basic idea of the proof of Lemma 3.1 is following: given a path α from some q0 ∈ I to some

qf ∈ F of length x ≥ n2, we can transform α into some other path α′ from q0 to qf of the same length

and of the following form:

• α′ goes from q0 to some important state q by n− 1 steps,

• then α′ goes through a cycle of length d = sl(q) several times,

• and then α goes from q to qf by c′ steps, where c′ ∈ [n2 − n− d, n2 − n− 1].

This is done by a sequence of transformations, which are described by the following propositions.

Proposition 3.1. Let q1, q2 ∈ Q, x ∈ N, and d ≥ 1. If q1
x

−→ q2 then q1
y

−→ q2 for some y ∈ [0, n · d)
such that y ≤ x and y ≡ x (mod d).

Proof:

By induction on x. If x < nd then we can put y = x and we are done. So suppose x ≥ nd and let α be

a path of length x from q1 to q2. The path α can be presented in the form

r0
d

−→ r1
d

−→ r2
d

−→ · · ·
d

−→ rn−1
d

−→ rn
x−nd
−→ q2

where r0 = q1 and ri
d

−→ ri+1 for each i ∈ [0, n−1]. The sequence r0, r1, . . . , rn contains n+1 states,

and so by the pigeonhole principle there must be some i, j such that 0 ≤ i < j ≤ n and ri = rj . This

means that q1
id
−→ ri = rj

(n−j)d
−→ rn

x−nd
−→ q2, i.e., q1

x′

−→ q2 for x′ = x − (j − i)d. Due to x′ < x

we can apply the induction hypothesis, by which there is some y < nd such that q1
y

−→ q2 and y ≡ x′

(mod d). Since x′ ≡ x (mod d), we have y ≡ x (mod d). ⊓⊔

Corollary 3.1. Let q1, q2 ∈ Q, d ≥ 1, and x ≥ nd. If
d
x
q1

x
−→ q2 then q1

x−d
−→ q2.

Proof:

By Proposition 3.1, there is some y < nd such that q1
y

−→ q2 and y ≡ x (mod d), which means that

y = x− kd for some k ≥ 1. Together with
d
x
q1

this implies q1
(k−1)d
−→ q1

y
−→ q2, i.e., q1

x−d
−→ q2. ⊓⊔

Proposition 3.2. Let q1, q2 ∈ Q, and x ≥ n2. If q1
x

−→ q2 then q1
c

−→ q
x−c
−→ q2 for some q ∈ Imp and

c ∈ [0, n).

Proof:

Let α be a path from q1 to q2 of length x, i.e., a path of the form

s0
1

−→ s1
1

−→ . . .
1

−→ sx

where s0 = q1 and sx = q2. Let sb be the first state on α that belongs to a nontrivial SCC (i.e., si
belongs to a trivial SCC for i ∈ [0, b)), and let C be this nontrivial SCC containing sb. So we have

q1
b

−→ sb
x−b
−→ q2. Let β be one of the shortest paths from sb to imp(C), i.e., a path of the form

r0
1

−→ r1
1

−→ . . .
1

−→ rk

Z. Sawa / Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA 7

where r0 = sb, rk ∈ imp(C) and ri 6∈ imp(C) for i ∈ [0, k), such that each path from sb to imp(C)
has a length at least k. Note that states q1 = s0, s1, . . . , sb = r0, r1, . . . , rk are all different since states

si, where i ∈ [0, b), belong to separate trivial SCCs, and all states ri, where i ∈ [0, k], belong to the

nontrivial SCC C and form the shortest path β. This means that b + k ≤ n − 1, so if we show that

q1
b+k
−→ rk

x−(b+k)
−→ q2 we are done, since rk ∈ Imp.

Now we prove that the following holds for i = 0, 1, . . . , k:

q1
b+i
−→ ri

x−(b+i)
−→ q2 (∗)

The proof proceeds by induction on i. We have already proved (∗) for i = 0. Lets assume now that (∗)

holds for some i ∈ [0, k). We have ri+1
ℓ

−→ ri for some ℓ ∈ [1, n− 1], since ri and ri+1 are in the same

SCC C . Consider now the path γ of the form

q1
b+i
−→ ri

1
−→ ri+1

ℓ
−→ ri

x−(b+i)
−→ q2

of length x + ℓ + 1. Note also that
ℓ+1
x

ri+1
. Together with ri+1

ℓ+x−(b+i)
−→ q2 this allows us, under the

assumption that

ℓ+ x− (b+ i) ≥ n · (ℓ+ 1) (∗∗)

to apply Corollary 3.1 to show that ri+1
y

−→ q2 for y = ℓ + x− (b + i) − (ℓ + 1) = x − (b + i + 1),
which means that

q1
b+i+1
−→ ri+1

x−(b+i+1)
−→ q2 ,

i.e., that (∗) holds for i+ 1.

To finish the proof, we just need to check that the assumption (∗∗) is actually fulfilled. Note that (∗∗)
holds iff (n− 1) · ℓ+ n+ (b+ i) ≤ x. Due to ℓ ≤ n− 1 and b+ i ≤ n− 1, we have

(n− 1) · ℓ+ n+ (b+ i) ≤ (n− 1) · (n− 1) + n+ (n− 1) = n2 ≤ x ,

which shows that (∗∗) really holds. ⊓⊔

In the proof of Proposition 3.3, two cases will be considered, either there is a state q ∈ Imp such

that sl(q) = n, or not. Note that in the former case the automaton A consists of the only one SCC

containing all n states and that all these states are important, i.e., we have sl(q) = n and q ∈ Imp for

each q ∈ Q. It is rather obvious that in this case A is a trivial loop of length n, i.e., it can be presented

(after renaming states appropriately) in a form where Q = {q1, q2, . . . , qn} and δ = {(qi, qi+1) | i ∈
[1, n − 1]} ∪ {(qn, q1)}.

So we have the following observation:

Observation 3.2. Exactly one of the following cases holds for A:

• A is not a trivial loop, and then sl(q) ≤ n− 1 for each q ∈ Imp, or

• A is a trivial loop of length n, and then Imp = Q and sl(q) = n for each q ∈ Q.

8 Z. Sawa / Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA

Proposition 3.3. Let q1, q2 ∈ Q, and x ≥ n2. If q1
x

−→ q2 then q1
n−1
−→

d
x
q

b
−→ q2 for some q ∈ Imp,

d = sl(q), and b ∈ [0, n2 − n− 1] such that x = (n − 1) + k · d+ b for some k ≥ 0.

Proof:

We can distinguish two cases depending on whether A is a trivial loop of length n or not:

a) A is not a trivial loop:

Let us assume that q1
x

−→ q2 for a given x ≥ n2. By Proposition 3.2, q1
c

−→
d
x

q′
x−c
−→ q2 for some

c ∈ [0, n − 1], q′ ∈ Imp, and d = sl(q′). By Proposition 3.1, there is some y ∈ [0, n · d) such that

q′
y

−→ q2, y ≤ x− c, and y ≡ x− c (mod d). Since A is not a trivial loop, Observation 3.2 implies

d ≤ n − 1, and so y < n · (n − 1) = n2 − n. We see that there is a path α of length x from q1 to

q2 that goes from q1 to q′ by c steps, then several times through a cycle β of length d, and then goes

from q′ to q2 by y steps, so x = c + k′ · d + y for some k′ ≥ 0. From x ≥ n2 and y ≤ n2 − n − 1
follows that c + k′ · d ≥ n + 1, which together with c ≤ n − 1 implies that the state visited on α

after the first n − 1 steps is on the cycle β. Let us denote this state q. Since all states on β belong to

the same SCC as q′ and all of them are important, we have q ∈ Imp and sl(q) = d. Now we have

q1
n−1
−→

d
x
q

x−(n−1)
−→ q2. We can apply Proposition 3.1 once more and obtain q1

n−1
−→

d
x
q

b
−→ q2 for some

b ≥ 0 such that b ≡ x − (n − 1) (mod d) and b < nd ≤ n(n − 1) = n2 − n, which means that

b ∈ [0, n2 − n− 1] and x = (n− 1) + k · d+ b for some k ≥ 0.

b) A is a trivial loop (of length n):

Let α be the path from q1 to q2 of length x (there is only one such path since A is deterministic) and

let q be the state on α reached after first n − 1 steps. By Observation 3.2, q ∈ Imp and sl(q) = n.

Obviously, α is of the form

q1
n−1
−→ q

n
−→ q

n
−→ · · ·

n
−→ q

b
−→ q2

where b = (x− (n − 1)) mod n. Because b ≤ n − 1 and because n− 1 ≤ n2 − n − 1 holds when

n ≥ 2, we have b ≤ n2 − n− 1.

⊓⊔

Now we can finish the proof of Lemma 3.1:

Proof:

If x ∈ L(A) then there are some q0 ∈ I and qf ∈ F such that q0
x

−→ qf . If x ≥ n2, then by

Proposition 3.3 we have q0
n−1
−→

d
x
q

b
−→ qf for some q ∈ Imp, d = sl(q), and b ∈ [0, n2 − n− 1], where

x = (n − 1) + k · d+ b for some k ≥ 0. This means that q
c′

−→ qf for each c′ ∈ b+ dN. In particular,

there is exactly one such c′ in the interval [n2 − n− d, n2 − n− 1]. ⊓⊔

Z. Sawa / Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA 9

4. Efficient Implementation

In this section, we describe a more efficient implementation of the algorithm sketched in Subsection 3.1.

To avoid repeated computations during the construction of pairs in sets R1 and R2, the algorithm

precomputes some information — the decomposition of A into SCCs, the values sl(q) for each q ∈ Q,

the set of important states Imp, and also the following sets:

• Si = {q ∈ Q | ∃q0 ∈ I : q0
i

−→ q} for i ∈ [0, n2), and

• Ti = {q ∈ Q | ∃qf ∈ F : q
i

−→ qf} for i ∈ [0, n2 − n− 1).

Informally, Si contains all states that can be reached from some initial state by i steps, and Ti contains

all states from which some final state can be reached by i steps.

The algorithm also computes the set Qimp = Sn−1 ∩ Imp of important states that can be reached by

n − 1 steps from some initial state. Then it computes the set D = {sl(q) | q ∈ Qimp}, and assigns to

each d ∈ D the set of those states q of Qimp with sl(q) = d.

The algorithm then just checks the conditions from the definitions of R1 and R2 from Subsection 3.1:

• to construct R1, it generates for each i ∈ [0, n2) the set Si, and adds the pair (i, 0) to R1 iff

Si ∩ F 6= ∅; and

• to construct R2, it does the following for each c′ ∈ [n2 − 2n, n2 − n − 1] and each d ∈ D, such

that c′ ≥ n2 − n− d:

it tests if there exists some q ∈ Qimp with sl(q) = d such that q ∈ Tc′ , and adds (c, d) with

c = (n − 1) + c′ to R2, if there is such q.

Sets Si and Ti can be stored in memory as bit arrays, so operations like testing if an element is

member of a set, adding an element to a set, and so on, can be performed in a constant time.

The sets Si can be computed as follows: S0 = I and Si = Succ(Si−1) for i > 0, where for a set of

states Q′ ⊆ Q, the set Succ(Q′) is defined as

Succ(Q′) = {q ∈ Q | ∃q′ ∈ Q′ : (q′, q) ∈ δ} .

Similarly, T0 = F , and Ti+1 = Pre(Ti) for i ≥ 0, where Pre(Q′) = {q ∈ Q | ∃q′ ∈ Q′ : (q, q′) ∈ δ}.

Let m be the number of transitions of A (i.e., |δ| = m). Assuming that for each q ∈ Q we have the

sets of its immediate successors and predecessors (i.e., all q′ ∈ Q such that (q, q′) ∈ δ, and all q′ ∈ Q

such that (q′, q) ∈ Q) represented as lists, the sets Succ(Q′) and Pre(Q′) for a given Q′ ⊆ Q can be

easily computed in time O(n+m).
Using this, all the necessary sets Si and Ti can be computed in time O(n2(n + m)) as described

above.

The decomposition of A into SCCs can be done by Tarjan’s algorithm [11] in time O(n +m), and

the computation of sl(q) for one Q can be done by the breath-first search in time O(n + m), so it can

be done in time O(n(n + m)) for all states in Q. The computation of sets Imp, Qimp and partition of

states q of Qimp according to values of sl(q) then can be done in time O(n) once the set Sn−1 has been

computed.

When constructing R1, the test if Si∩F 6= ∅ can be done in time O(n), and so the computation of R1

(including the computation of all Si) takes time O(n2(n+m)). When constructing R2, all computations

10 Z. Sawa / Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA

for one value c′ can be done in time O(n) after the set Tc′ has been computed. So the computation of R2

takes time O(n2) if we do not count the time needed for the computation of sets Ti.

From all this we see that the total running time of the algorithm is O(n2(n +m)).
It is not necessary to store all values of the precomputed sets during the computation. In particular,

when constructing R1, the set Si−1 can be discarded after Si has been computed, and for the computation

of R2, we only need the set Qimp , values of sl(q) for q ∈ Qimp , and the partition of states in Qimp

according to values of sl(q). Space O(n) is sufficient to store this information. All other sets, that

were used only for the computation of this information, can be discarded after they were used. Also

information about successors and predecessors of states can be stored in space O(n+m), so the overall

space complexity of the algorithm is O(n+m).

Remark: Pairs of numbers produced by the algorithm can be written directly to the output and it is not

necessary to store them in the memory, so the space taken by the produced output does not contribute to

the space complexity of the algorithm.

This finishes the proof of Theorem 2.1.

References

[1] Chrobak, M.: Finite Automata and Unary Languages, Theoretical Computer Science, 47(2), 1986, 149–158.

[2] Chrobak, M.: Errata to: “Finite Automata and Unary Languages” [Theoret. Comput. Sci. 47 (1986) 149–

158], Theoretical Computer Science, 302(1-3), 2003, 497–498.

[3] Geffert, V.: Magic numbers in the state hierarchy of finite automata, Information and Computation, 205(11),

2007, 1652–1670.

[4] Göller, S., Mayr, R., To, A. W.: On the Computational Complexity of Verifying One-Counter Processes,

LICS’09, IEEE Computer Society, 2009.

[5] Gruber, H., Holzer, M.: Computational Complexity of NFA Minimization for Finite and Unary Languages,

LATA’08, LNCS 5196, Springer, 2008.

[6] Kozen, D. C.: Automata and Computability, Springer-Verlag, 1997.

[7] Martinez, A.: Efficient Computation of Regular Expressions from Unary NFAs, Descriptional Complexity of

Formal Systems (DFCS), 2002.

[8] Martinez, A.: Topics in Formal Languages: String Enumeration, Unary NFAs and State Complexity, Master

Thesis, University of Waterloo, 2002.

[9] Parikh, R. J.: On context-free languages, Journal of the ACM, 13(4), 1966, 570–581.

[10] Sawa, Z.: Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA,

4th International Workshop on Reachability Problems (RP 2010), LNCS 6227, Springer, 2010.

[11] Tarjan, R.: Depth-First Search and Linear Graph Algorithms, SIAM Journal of Computing, 1(2), June 1972,

146–160.

[12] To, A. W.: Unary finite automata vs. arithmetic progressions, Information Processing Letterss, 109(17),

2009, 1010–1014.

