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Abstract

This habilitation thesis gives an overview of five papers of the author in the
area of verification, in particular, in the study of computational complexity of
equivalence checking problems and related areas.

The first of these papers, Sawa, Jančar: Equivalences on Finite-State Systems
are PTIME-hard (2005), shows that deciding any relation between bisimulation
equivalence (bisimilarity) and trace preorder is PTIME-hard for finite-state sys-
tems that are presented explicitly (i.e., as a list of states and transitions).

The second paper, Sawa, Jančar: Hardness of equivalence checking for composed
finite-state systems (2009), gives a proof that deciding any relation between
bisimulation equivalence and trace preorder is EXPTIME-hard for systems com-
posed of interacting finite-state components. Further hardness results are shown
for special cases of acyclic systems.

The third paper, Jančar, Kot, Sawa: Complexity of deciding bisimilarity between
normed BPA and normed BPP (2010), presents a polynomial-time algorithm
deciding bisimilarity between a normed BPA process and a normed BPP process,
with running time O(n7).

The forth paper, Fröschle, Jančar, Lasota, Sawa: Non-Interleaving Bisimulation
Equivalences on Basic Parallel Processes (2010), describes polynomial time al-
gorithms for deciding hereditary history preserving bisimilarity (in O(n3 logn))
and history preserving bisimilarity (in O(n6)) on BPP processes.

The fifth paper, Jančar, Sawa: A note on emptiness for alternating finite au-
tomata with a one-letter alphabet (2007) gives a short direct self-contained proof
of PSPACE-hardness of the emptiness problem for alternating finite automata
with a singleton alphabet, which is much simpler than the original proof by
Holtzer (1995) relying on a series of reductions from several papers.
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1 Introduction 1

1 Introduction

Many software and hardware systems are used in critical applications where
bugs can have very serious consequences such as loss of important data, financial
loss, damage of physical facilities, or even loss of human lives. Examples of such
systems are software and hardware systems used in nuclear plants, aircrafts,
automobiles, in traffic control systems, etc. Other examples of complicated
systems, where bugs can have fatal consequences, are microprocessors, operating
systems, and implementations of different communication protocols.

Such systems often consist of many parts running in parallel and communicating
with each other. The practice shows that standard techniques such as simulation
and testing are often not sufficient to ensure correctness of a design of such
systems, because they can show presence of bugs but they can not guarantee
their absence. This is due to fact that by simulation and testing we can usually
explore only a small part of all potential runs of tested systems and only a small
part of states that can be reached by these runs.

Alternative approach, which complements simulation and testing, is formal ver-
ification. The aim of the verification is to provide a formal proof that a given
system has given required properties. Typical properties that can be verified
are, e.g., absence of a deadlock, fairness of an allocation of resources, etc. In par-
ticular, the goal of formal verification is to ensure that the required properties
are satisfied in all possible runs of a system.

Construction of such correctness proofs by hand can be very tedious and error-
prone, so the idea is to construct tools that will allow to automate the formal
verification as much as possible. One of approaches is theorem proving, which
requires some cooperation with a user, which specifies propositions that must
be proved, invariants that should hold, etc., and a tool (a theorem prover) helps
to perform routine steps of a proof, to check the correctness of the steps, etc.

More automatic approaches are model checking and equivalence checking. In
model checking we have some (model of a) system and a required property
specified in a form of a formula of some temporal logic (e.g., LTL or CTL). The
aim is to check whether the system satisfies the given formula.

In equivalence checking we have two systems, where usually one of them repre-
sents a specification of a required behaviour and the other an implementation.
The goal is to check whether a behaviour of both systems is equivalent in some
sense, or if a behaviour of the implementation is in some sense contained in a be-
haviour of the specification. In the former case, the equivalence of behaviours of
systems is formally defined by some behavioural equivalence, in the latter case,
the containment of behaviour of one system in a behaviour of some other system
is defined by some behavioural preorder. There exist a plethora of behavioural
equivalences and preorders that were defined in literature.

One of the main obstacles of more widespread use of tools for model checking
and equivalence checking is a high computational complexity (or even unde-
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cidability) of the corresponding problems on systems that appear in practice.
It is well known that both model checking and equivalence checking are unde-
cidable on systems, which are Turing powerful. Even on finite-state systems
where these problems often can be solved at least in principle, it is possible that
a given problem can not be solved in practice due to so called state explosion,
i.e., the situation where an algorithm must check a number of states, which is
exponential with respect to a size of a presentation of a given system, so the
amount of a required time is enormous even for systems of a moderate size.

This motivates a research of computational complexity and decidability of model
checking and equivalence checking for different types of systems. One of goals of
this research is to clarify where are the bounds of what can be done by efficient
algorithms, and also to find efficient algorithm for different problems where it
is possible.

This thesis gives an overview of (some of) results of the author in the study of
the computational complexity of equivalence checking problems. In particular,
the thesis presents results from five articles, where the author participated, and
that were published in well respected journals:

• Zdeněk Sawa, Petr Jančar: Behavioural Equivalences on Finite-State
Systems are PTIME-hard, Computing and Informatics, Volume 24, Is-
sue 5, pp. 513–528, Slovak Academy of Sciences, Institute of Informatics,
2005. [5]

• Zdeněk Sawa, Petr Jančar: Hardness of equivalence checking for com-
posed finite-state systems, Acta Informatica, Volume 46, Issue 3, pp. 169–
191, Springer, 2009. [3]

• Petr Jančar, Martin Kot, Zdeněk Sawa: Complexity of deciding
bisimilarity between normed BPA and normed BPP, Information and
Computation, Special Issue: 19th International Conference on Concur-
rency Theory (CONCUR 2008), Volume 208, Issue 10, pp. 1193–1205,
Elsevier, 2010. [2]

• Sibylle Fröschle, Petr Jančar, S lawomir Lasota,Zdeněk Sawa:

Non-Interleaving Bisimulation Equivalences on Basic Parallel Processes,
Information and Computation, Volume 208, Issue 1, pp. 42–62, Elsevier,
2010. [1]

• Petr Jančar, Zdeněk Sawa: A note on emptiness for alternating fi-
nite automata with a one-letter alphabet, Information Processing Letters,
Volume 104, Issue 5, pp. 164–167, Elsevier, 2007. [4]

The first of these papers [5] deals with the complexity of equivalence checking of
finite-state systems that are presented explicitly, i.e., by an explicit list of states
and transitions. It is shown that deciding any relation between bisimulation
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equivalence and trace preorder is PTIME-hard. This paper is discussed in more
detail in Section 3.

The second paper [3] generalizes the result of [5] to finite-state systems composed
of many components running in parallel that communicate with each other. It
is proved that deciding any relation between bisimilarity and trace preorder is
EXPTIME-hard on a wide variety of such systems, in particular, on systems
where components communicate by synchronizing on shared actions and where
some actions can be hidden, i.e., replaced by a special “invisible” action τ . This
approves the conjecture of Rabinovich [70] that proved PSPACE-hardness of this
problem and conjectured its EXPTIME-hardness. The paper [3] also contains
some additional results dealing with some special cases of the described problem,
for example some results dealing with systems where transition systems of com-
ponents are acyclic. The paper also presents an overview of known complexity
results on this type of systems. The paper [3] is described in Section 4.

The third paper [2] shows that bisimulation equivalence between two types of
infinite state systems – normed Basic Process Algebra (nBPA) and normed Ba-
sic Parallel Processes (nBPP) can be decided in a polynomial time. The paper
presents an algorithm with time complexity O(n7) for this problem. A prelimi-
nary version of the paper appeared on conference Concur 2008 as [7], where it
won the best paper award. The paper [2] is described in Section 5.

The fourth paper [1] deals with deciding of so called non-interleaving equiv-
alences on Basic Parallel Processes (BPP). Non-interleaving equivalences are
equivalences that distinguish between performing some actions in parallel and
performing them sequentially in an arbitrary order (i.e., the interleaving of ac-
tions), so these equivalences can be used to model systems composed of processes
running in parallel more faithfully. Two main results of [1] are two polyno-
mial time algorithms. The first of these algorithms decides hereditary history-
preserving bisimilarity (hhp-b) on BPP and its time complexity is O(n3 logn),
and the second decides history-preserving bisimilarity (hp-b) on BPP with time
complexity O(n6). Many other non-interleaving equivalences coincide with hp-b
on BPP, so the latter algorithm can be also used to decide these equivalences on
BPP. Paper [1] also clarifies definitions of hhp-b and hp-b on BPP. The results
from [1] are described in more detail in Section 6.

The fifth paper [4] presents a result that does not belong directly to the area
of automatic verification but rather to automata theory. It is an alternative
proof of PSPACE-hardness of deciding emptiness of a language accepted by an
alternating finite automaton with a one-letter alphabet, which was originally
shown by Holzer [44]. However, the proof presented in [4] is much simpler
than the original Holzer’s proof in [44]. The PSPACE-hardness of this automata
theoretic problem can be used to show PSPACE-hardness of some equivalence
checking and model checking problems, in particular, some problems dealing
with one-counter automata. The article [4] is discussed in Section 7.

The thesis is organized as follows. Section 2 presents some basic definitions. It
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describes behavioural equivalences and preorders and different types of labelled
transition systems. Sections 3–7 describe in more detail the above mentioned
five articles. Each of these sections corresponds to one of these articles. It gives
an overview of known related results (the state of the art) for the corresponding
article, shortly states the main results of the article, and then describes these
results in more detail and with appropriate technical definitions. Sometimes it
also presents main ideas of proofs.

The thesis also contains copies of the discussed five journal articles and a list of
publications of the author, together with a list of citations.
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2 Definitions

This section gives an overview of definitions of some notions and notation used
in the following sections. In particular, Subsection 2.1 recalls some standard
mathematical notation used in the rest of the thesis, Subsection 2.2 presents
the standard notion of a labelled transition system. Subsection 2.3 then gives
a short overview of definitions of some behavioural equivalences and preorders,
in particular of bisimulation equivalence (bisimilarity), simulation equivalence
and preorder, and trace equivalence and preorder.

Subsections 2.4 and 2.5 describe several particular types of labelled transition
systems discussed in the following subsections. Subsection 2.4 describes com-
posed finite-state systems; results concerning this type of systems are described
in detail in Section 4. Subsection 2.5 describes several types of infinite-state
systems that can be defined as natural subclasses of so called Process Rewrite
Systems (PRS). In particular, Basic Process Algebra (BPA) and Basic Paral-
lel Processes (BPP) are described in this subsection. Results concerning these
types of systems are discussed in detail in Sections 5 and 6.

Subsection 2.6 recalls definitions of some complexity classes and of types of
reductions between problems used in the rest of the thesis.

2.1 Used Notation

N denotes the set of natural numbers {0, 1, 2, . . .}.

Given a set A, |A| denotes the cardinality of A, P(A) denotes the set of all
subsets of A, and A∗ denotes the set of finite sequences of elements of A. For
w ∈ A∗, |w| denotes the length of w. Symbol ε denotes the empty sequence,
i.e., the only sequence such that |ε| = 0.

2.2 Labelled Transition Systems

A labelled transition system (an LTS for short) is a tuple T = (S,A,−→) where
S is a set of states, Act is a finite set of actions, and −→⊆ S × Act × S is the
transition relation.

A tuple (s, a, s′) ∈−→ (where s, s′ ∈ S and a ∈ Act) is called a transition.

Instead of (s, a, s′) ∈−→ we usually write s
a

−→ s′. We also use notation s
w

−→ s′

for finite sequences of actions w ∈ Act∗; for w = a1a2 . . . an (where ai ∈ Act)
this means that there are some states s0, s1, . . . , sn such that s0 = s, sn = s′,
and si−1

ai−→ si for each 1 ≤ i ≤ n.

2.3 Behavioural Equivalences and Preorders

Assume a fixed LTS T = (S,Act ,−→).
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For a state s ∈ S, we define the set of its traces as

Traces(s) = {w ∈ Act∗ | ∃s′ ∈ S : s
w

−→ s′} .

States s, t are in the trace preorder, written s ⊑tr t, iff Traces(s) ⊆ Traces(t),
and they are trace equivalent, written s ≡tr t iff s ⊑tr t and t ⊑tr s (i.e., iff
Traces(s) = Traces(t)).

A relation R ⊆ S × S is a simulation if for each (s1, s2) ∈ R and each a ∈ Act
we have:

• ∀t1 ∈ S : s1
a

−→ t1 ⇒ (∃t2 ∈ S : s2
a

−→ t2 ∧ (t1, t2) ∈ R).

A symmetric simulation is called bisimulation, i.e., a relation R ⊆ S × S is a
bisimulation if for each (s1, s2) ∈ R and each a ∈ Act we have:

• ∀t1 ∈ S : s1
a

−→ t1 ⇒ (∃t2 ∈ S : s2
a

−→ t2 ∧ (t1, t2) ∈ R), and

• ∀t2 ∈ S : s2
a

−→ t2 ⇒ (∃t1 ∈ S : s1
a

−→ t1 ∧ (t1, t2) ∈ R).

We say that a transition s1
a

−→ t1 is matched by s2
a

−→ t2, resp. s2
a

−→ t2 by
s1

a
−→ t1, if (t1, t2) ∈ R.

States s, t are in the simulation preorder, written s ⊑sim t, iff there is a simula-
tion R such that (s, t) ∈ R, and they are simulation equivalent, written s ≡sim t,
iff s ⊑sim t and t ⊑sim s. States s, t are bisimulation equivalent (or bisimilar),
written s ∼ t, iff there is some bisimulation R such that (s, t) ∈ R. The relation
∼ is called bisimulation equivalence or bisimilarity [69, 66].

Note that the union of bisimulations is a bisimulation; thus bisimilarity ∼ is the
maximal bisimulation (the union of all bisimulations). It is easy to check that
∼ is an equivalence relation.

It is useful to recall an alternative definition of bisimilarity based on games
(cf. for example [77]). The bisimulation game on a given LTS (S,A,−→) is
played by two players — Attacker and Defender. The positions in the game are
pairs (s1, s2) ∈ S × S. In a position (s1, s2), Attacker chooses i ∈ {1, 2} and

a transition from si, say si
a

−→ ti; Defender must respond by choosing some
transition with the same label a from the other component of the pair (s1, s2),

i.e., a transition s3−i
a

−→ t3−i . The play then continues from the position
(t1, t2). If one of the players gets stuck (i.e., there is no appropriate transition),
then the other player wins. If the play continues forever, then Defender wins.
The simulation game is the bisimulation game where Attacker is always obliged
to choose i = 1 (i.e., to play on the left-hand side).

Generally speaking, a strategy for a player P in a game is a (partial) function
that determines a concrete move of player P for each sequence m1,m2, . . . ,mk

of moves played so far after which it is P ’s turn. A strategy is a winning strategy
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of P if player P wins each play when he/she uses the strategy. A strategy is
memory-less (positional) if each prescribed move depends only on the current
position, not on the whole sequence of moves played so far.

Proposition 2.1 ([77]) In the bisimulation game starting from position (s1, s2):

1. Defender has a (memory-less) winning strategy iff s1, s2 are bisimilar,

2. Attacker has a (memory-less) winning strategy iff s1, s2 are not bisimilar.

Any bisimulation (simulation) containing (s1, s2) naturally provides a winning
strategy for Defender in the bisimulation (simulation) game starting from (s1, s2).

All above mentioned relations were defined only on pairs of states belonging to
the same LTS but they can be also used for relating states from different LTSs,
since the states of two different LTSs can be naturally viewed as the states of
their disjoint union.

There were many other behavioural equivalences and preorders defined in the
literature. The most prominent of them were organized by van Glabbeek [79]
into so called linear time – branching time spectrum, see Figure 1. An arrow
in this diagram going from relation X to relation Y means that X is a finer
relation than Y , i.e., (s1, s2) ∈ X implies (s1, s2) ∈ Y .

Note that in this spectrum, bisimilarity is the finest relation and trace preorder
is the coarsest, and all other relation are somewhere between them.

Some results that will be presented in the following sections hold for all rela-
tions between some pair of relations, for example between bisimilarity and trace
preorder. By saying that a relation Z on the states of LTSs is between relations
X and Y (which are also relations on the states of the LTSs), we mean that
(s1, s2) ∈ X implies (s1, s2) ∈ Z, and (s1, s2) ∈ Z implies (s1, s2) ∈ Y .

2.4 Composed Finite-State Systems

Systems are often presented as sets (parallel compositions) of communicating
agents; the global state space of such a composed system is usually exponential
in the size of the system presentation. This phenomenon is known as “state
explosion”, which is the main challenge in the design of efficient algorithms for
verification of such systems.

2.4.1 Operations on Labelled Transition Systems

There are several possible ways how to define systems composed of components
running in parallel and communicating with each other. Here, we describe
operations of parallel composition and hiding as defined for example in [43],
which were also used in [70].
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Bisimulation equivalence

2−nested simulation equivalence

Ready simulation equivalence

Ready trace equivalence

Readiness equivalence

Failures equivalence

Completed trace equivalence

Trace equivalence

Simulation equivalence

Possible−futures equivalence

Failure trace equivalence

Figure 1: The linear time – branching time spectrum

We reserve symbol τ for denoting a special action; it serves for renaming the
usual (visible) actions whose identity we want to hide.

Remark. For the above defined behavioural relations, this τ is taken as a normal
action (so “bisimilarity” means “strong bisimilarity”, etc.).

Given an LTS T = (S,Act ∪ {τ},−→), τ 6∈ Act , and B ⊆ Act , by

hide B in T

we denote the LTS T1 = (S, (Act − B) ∪ {τ},−→1) where s
a

−→1 s′ in T1 iff

• either a ∈ (Act − B) ∪ {τ} and s
a

−→ s′ in T ,

• or a = τ and s
b

−→ s′ in T for some b ∈ B.

The parallel composition of LTSs T1 = (S1,Act1 ∪ {τ},−→1), T2 = (S2,Act2 ∪
{τ},−→2) (where τ 6∈ (Act1 ∪ Act2)) is the LTS

T1 ‖ T2 = (S1 × S2,Act1 ∪ Act2 ∪ {τ},−→)

representing the product of T1 and T2 in which T1 and T2 synchronize on the
shared non-τ actions, i.e., where (s1, s2)

a
−→ (s′1, s

′
2) iff
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• either a ∈ Act1 ∪ Act2 and for each i ∈ {1, 2} we have: if a ∈ Act i then

si
a

−→i s
′
i and otherwise s′i = si,

• or a = τ and si
τ

−→i s
′
i and s3−i = s′3−i for some i ∈ {1, 2}.

Hence if a ∈ Act1 ∩ Act2 then both components perform a-transitions simulta-
neously; otherwise just one component does.

It is obvious that ‖ is associative and commutative with respect to isomorphism,
and we freely write

T = T1 ‖ T2 ‖ · · · ‖ Tn

for the parallel composition of T1, T2, . . . , Tn.

2.4.2 Models PC and PCH

In this subsection we consider only finite labelled transition systems, where
the sets of states and actions are finite. By an explicit finite-state system,
denoted FS, we mean a finite LTS together with its presentation which lists
all states, actions and transitions. The size |T | of FS T = (S,Act ,−→) is
|S| + |Act | + | −→ |.

By a system presented as parallel composition without hiding, denoted PC, we
mean a presentation (of an LTS) in the form

T = T1 ‖ T2 ‖ · · · ‖ Tn

where T1, T2, . . . , Tn are explicit finite-state systems, called components of PC T ;
we also assume that their action alphabets do not contain τ . The size of PC
T is |T | = |T1| + |T2| + . . . + |Tn|. A state of T , called a global state, is E =
(s1, s2, . . . , sn) where s1, s2, . . . , sn are states of the components T1, T2, . . . , Tn
respectively. We note that the number of (global) states of T can be exponential
in |T |.

Suppose that Act1,Act2, . . . ,Actn are action alphabets of T1, T2, . . . , Tn and
note that if E

a
−→ E′ then all components Ti such that a ∈ Act i must perform

an a-transition. We say that such components participate in the transition.

It can be easily shown (see [70]) that any system constructed from explicit
finite-state systems by a finite number of applications of parallel composition
and hiding can be transformed into an isomorphic system (of the same size) in
the form

hide B in (T1 ‖ T2 ‖ · · · ‖ Tn)

where T1, T2, . . . , Tn are explicit finite-state systems. (We can use the fact that
(hide B in T ) ‖ T ′ is isomorphic to hide B in (T ‖ T ′) provided that actions
of T ′ do not occur in B, which can be ensured by renaming of actions in B
with fresh names when necessary.) We call a system presented in the specified
form a parallel composition with hiding, denoted PCH, and we define its size as



10

|T1| + |T2| + · · · + |Tn| + |B|. PC is the special case of PCH where B = ∅ and
where components do not have τ actions.

A PCH T is acyclic iff (the graph of) every component of T is acyclic.

2.5 Process Rewrite Systems

Process Rewrite Systems (PRS) defined by Mayr in [64] provide a unified view
of many formalisms presented in the following sections.

Process rewrite systems are defined as follows. Let Act = {a, b, c, . . .} be a
countably infinite set of atomic actions and Var = {X,Y, Z, . . .} be a countably
infinite set of process variables. Process terms are defined by the following
abstract grammar

P ::= ε | X | P1.P2 | P1 ‖ P2

where ε is the empty term, X is a process variable, and where ‘.’ denotes se-
quential composition and ‘‖’ parallel composition. Sequential composition is
associative and parallel composition is associative and commutative. We always
work with equivalence classes of terms modulo associativity of sequential com-
position and modulo associativity and commutativity of parallel composition.
We also define that ε.P = P.ε = P and P ‖ ε = P .

Process rewrite system is a finite set of rules ∆ containing rules of the form
t1

a
−→ t2 where t1 and t2 are process terms and a ∈ Act is an atomic action.

Let Var(∆) be the set of process variables occurring in ∆ and let Act(∆) be
the set of atomic actions occurring in ∆.

Process rewrite system ∆ produces a corresponding labelled transition system
(S,Act ′,−→) where S is the set of process terms that contain only variables
from Var(∆), Act ′ = Act(∆), and the transition relation is the smallest relation
satisfying the following inference rules where t1, t2, t

′
1, t

′
2 are process terms:

(t1
a

−→ t2) ∈ ∆

t1
a

−→ t2

t1
a

−→ t′1

t1.t2
a

−→ t′1.t2

t1
a

−→ t′1

t1 ‖ t2
a

−→ t′1 ‖ t2

t2
a

−→ t′2

t1 ‖ t2
a

−→ t1 ‖ t′2

Note that Var(∆) and Act(∆) are finite. Since ∆ is finite, the generated labelled
transition system is finitely branching, which means that the branching-degree is
finite in every state, however, it can be be arbitrarily high, i.e., it is possible that
there is no finite constant depending only on ∆ bounding the branching-degree
in all states.

It is worth mentioning that process rewrite systems are not Turing powerful
because for example the reachability problem is decidable for them [64].
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Note also that there is no operator for non-deterministic choice (‘+’), because
nondeterminism can be encoded in the set of rules ∆ which can contain more
rules with the same term on the left side.

There can be defined different types of subclasses of process rewrite systems.
At first we distinguish four classes of process terms:

1 – terms consisting of a single process variable (e.g., X),

S – terms consisting of ε, a single variable, or a sequential composition of process
variables (e.g., X.Y.Z),

P – terms consisting of ε, a single variable, or a parallel composition of process
variables (e.g., X ‖ Y ‖ Z),

G – any process terms without any restriction (e.g., (X ‖ Y ).Z).

Obviously 1 ( S, 1 ( P , S ( G, and P ( G. Classes S and P are incomparable
and S ∩ P = 1 ∪ {ε}.

Let α, β ∈ {1,S,P ,G} be classes of process terms such that α ⊆ β. A system of
type (α, β)-PRS is defined as a finite set of rules ∆ where in every rewrite rule

(l
a

−→ r) ∈ ∆ the term l is from class α and l 6= ε and the term r is from class
β (and r can be ε).

The hierarchy of (α, β)-PRS models is depicted in Figure 2. Each model in the
hierarchy has a name shown also in the figure and many of these (α, β)-PRS
correspond to well-known classes of infinite state systems studied in the litera-
ture. A line from a higher model to a lower model means that the higher model
is more general than the lower one. It is known that the hierarchy is strict with
respect to bisimilarity [64].

The classes of process rewrite systems correspond to the following following
formalisms:

FS – finite-state systems,

BPA – Basic Process Algebra [17], also called context-free processes,

BPP – Basic Parallel Processes [24],

PDA – Pushdown Automata, also called pushdown processes or pushdown sys-
tems,

PA – Process Algebra [14],

PN – Petri nets,

PRS – Process Rewrite Systems.
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(1, 1)-PRS
FS

(1,S)-PRS
BPA

(1,P)-PRS
BPP

(S,S)-PRS
PDA

(1,G)-PRS
PA

(P,P)-PRS
PN

(S,G)-PRS
PAD

(P,G)-PRS
PAN

(G, G)-PRS
PRS

Figure 2: Hierarchy of process rewrite systems

Class PAD was introduced in [64] as the “smallest” common generalization
of classes PDA and PA. Similarly class PAN was introduced in [63] as the
“smallest” common generalization of classes PA and PN.

The following subsections describe classes BPA and BPP in more detail, and
describe alternative (and more standard) definitions of processes in these classes,
which are sometimes more appropriate when discussing some results.

2.5.1 Basic Process Algebra (BPA)

A BPA system, or BPA for short, can be viewed as a context-free grammar in
Greibach normal form. Formally it is a triple Σ = (VΣ,ActΣ,ΓΣ), where VΣ is a
finite set of variables (nonterminals), ActΣ is a finite set of actions (terminals)
and ΓΣ ⊆ VΣ ×ActΣ ×V ∗

Σ is a finite set of rewrite rules. We often use V,Act ,Γ
without subscripts when the underlying BPA is clear from context. We also
write X

a
−→ α instead of (X, a, α) ∈ Γ. A BPA process is a pair (α,Σ) where

Σ is a BPA system and α ∈ V ∗; we write just α when Σ is clear from context.
A BPA Σ gives rise to the LTS SΣ = (V ∗,Act ,−→) where −→ is induced from

the rewrite rules by the following (deduction) rule: if X
a

−→ α then Xβ
a

−→ αβ

for every β ∈ V ∗.

2.5.2 Basic Parallel Processes (BPP)

We recall the standard definition of the class Basic Parallel Processes (BPP).
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Given a set Act of atomic actions, usually denoted by a, b, . . ., and a set Var
of process variables, ranged over by X,Y, . . ., the class of BPP expressions over
Act and Var is defined by the following abstract grammar:

E ::= 0 | X | a.E | E + E | E ‖ E

where 0 denotes the empty process, X stands for a process variable, and a. ,
+ , ‖ denote the operations of action prefix (for each a ∈ Act), nondeter-

ministic choice, and parallel composition, respectively.

A BPP system ∆, also called a BPP definition, with a finite set of actions
Act(∆) and a finite set of variables Var(∆) = {X1, X2, . . . , Xk}, is a finite
family of (possibly recursive) equations:

∆ = {Xi
def
= Ei | 1 ≤ i ≤ k}

where each Ei is a BPP expression over Act(∆) and Var(∆). We stipulate that
each occurrence of a variable in Ei is guarded, i.e., within the scope of an action
prefix. (This guarantees that the transition system induced by the rules below
is finitely branching.)

A BPP process is a pair (E,∆) where ∆ is a BPP system and E is a BPP
expression over Act(∆) and Var(∆). When ∆ is clear from context, we often
write just E instead of (E,∆), and Act and Var instead of Act(∆) and Var(∆),
respectively.

Any BPP system ∆ can be viewed as representing the (possibly infinite) LTS
LTS (∆), where the processes (E,∆) are viewed as the states and where the
transition relation is induced by the following SOS (structural operational se-
mantics) rules:

a.E
a

−→ E

E
a

−→ E′

E + F
a

−→ E′

F
a

−→ F ′

E + F
a

−→ F ′

E
a

−→ E′

E ‖ F
a

−→ E′ ‖ F

F
a

−→ F ′

E ‖ F
a

−→ E ‖ F ′
(1)

E
a

−→ E′

X
a

−→ E′
((X

def
= E) ∈ ∆)

Sometimes, it is convenient to consider BPP systems in the normal form, similar
to the definition of BPA above. A BPP system in the normal form is a triple
∆ = (V∆,Act∆,Γ∆) defined almost the same way as BPA system above, ex-

cept that the deduction rule for the associated LTS S∆ is different: if X
a

−→ α

then γXδ
a

−→ γαδ for any γ, δ ∈ V ∗ (thus any occurrence of a variable can be
rewritten, not just the first one). It is easy to observe that BPP processes α, β

with the same Parikh image (i.e., containing the same number of occurrences
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of each variable) are bisimilar. Hence BPP processes can be read modulo com-
mutativity of concatenation and interpreted as multisets of variables. It is well
known folklore that a BPP system can be transformed to this normal form in
polynomial time.

This also suggests to identify a BPP system ∆ with a BPP net, a labelled Petri
net in which each place corresponds to a variable and each transition corresponds
to a rewrite rule (and thus has a unique input place).

Formally, a BPP net is a tuple ∆ = (P∆,Tr∆, pre∆, F∆,Act∆, l∆) where P∆ is
a finite set of places (variables), Tr∆ is a finite set of transitions, pre∆ : Tr∆ →
P∆ is a function assigning an input place to each transition, F∆ : (Tr∆×P∆) →
N is a flow function, Act∆ is a finite set of actions, and l∆ : Tr∆ → Act∆ is
a labelling function. We will use P,Tr , pre, F,Act , l if the underlying BPP net
is clear from context. We note that a transition t ∈ Tr can be viewed as the
rewrite rule p

a
−→ α where pre(t) = p and F (t, p′) is the number of occurrences

of p′ in α, for each p′ ∈ P .

A BPP process is thus, in fact, a marking, i.e. a function M : P → N which
associates a finite number of tokens to each place.

A transition t is enabled at marking M if M(pre(t)) ≥ 1. An enabled transition
t may fire from M , producing a marking M ′ defined by

M ′(p) =

{

M(p) − 1 + F (t, p) if p = pre(t)
M(p) + F (t, p) otherwise

.

This is denoted by M
t

−→ M ′; the notation is extended to M
σ

−→ M ′ for
sequences σ ∈ T ∗. We write M

σ
−→ if M

σ
−→ M ′ for some M ′.

In the above sense, a BPP ∆ gives rise to the LTS S∆ = (M∆,Act ,−→) where

M∆ = NP is the set of all markings (of the respective BPP net), and M
a

−→ M ′

iff there is some t ∈ Tr such that l(t) = a and M
t

−→ M ′.

We often use symbols α, β, . . . for both BPA processes and BPP processes, and
M1,M2, . . . only for the latter.

We say that a BPA system Σ (a BPP net ∆) is normed iff α −→∗ ε for each
state α of SΣ (S∆). We use nBPA (nBPP) for normed BPA (normed BPP).

2.6 Complexity Classes

Some standard definitions from complexity theory are recalled in this subsection.

Most of complexity classes discussed in this thesis are standard and well known
– LOGSPACE, PTIME, NP, PSPACE, EXPTIME, EXPSPACE. The class DP is
probably less known. It is defined as follows: a problem P is in DP iff there are
problems P1 ∈ NP and P2 ∈ coNP such the set of positive instances of P is the
intersection of the sets of positive instances of P1 and P2.
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When we talk about hardness or completeness of a problem, we mean hardness
or completeness under logspace reductions, unless stated otherwise, i.e., when C
is some arbitrary complexity class (e.g., PTIME, NP, PSPACE, EXPTIME, etc.),
a problem P is C-hard iff each problem from C can be reduced to P by a logspace
reduction. A problem P is C-complete iff P is C-hard and P ∈ C.

In particular, a problem P is PTIME-hard if for each problem P ′ ∈ PTIME

there is a logspace reduction from P ′ to P . Recall that if a problem P is
PTIME-hard then it is unlikely that there exists an efficient parallel algorithm
deciding P , unless PTIME = NC, where NC is the class of problems that can be
solved by a parallel algorithm in polylogarithmic time (i.e., with time complexity
O(logk n) where k is a constant) using a polynomial number of processors. It is
known that LOGSPACE ⊆ NC ⊆ PTIME. It is an open question if any of these
inclusions is proper, however, it holds for each PTIME-complete problem P that
P 6∈ NC unless NC = PTIME. (See e.g. [37] for further details.)

When proving some hardness results, some reductions described in these proofs
are in fact reductions to the complements of discussed problems. When de-
terministic complexity classes (such as PTIME, PSPACE, EXPTIME) are con-
sidered, this distinction is not important, as follows from the following simple
observation.

Observation 2.2 A problem P is PTIME-hard (PSPACE-hard, EXPTIME-hard)
iff the complement of P is PTIME-hard (PSPACE-hard, EXPTIME-hard).



16

3 Finite-State Systems

This section gives an overview of results concerning deciding of behavioural
equivalences on (explicitly given) finite-state state systems, which were pub-
lished in [5]:

• Zdeněk Sawa, Petr Jančar: Behavioural Equivalences on Finite-State
Systems are PTIME-hard, Computing and Informatics, Volume 24, Is-
sue 5, pp. 513–528, Slovak Academy of Sciences, Institute of Informatics,
2005.

3.1 Motivation and State of the Art

Finite labelled transition systems can be viewed as classical nondeterministic
finite automata (NFA) with all states defined as accepting. It is well known
in classical language theory that checking language inclusion or equivalence for
NFA is PSPACE-complete (cf., e.g., [45]), and this result can be easily applied
also to the case where all states of an automaton are accepting. This implies
PSPACE-hardness of deciding trace inclusion (trace preorder) and trace equiva-
lence on finite-state systems.

On the other hand, there are polynomial-time algorithms for finite-state systems
in the simulation-like part of the spectrum, for example there is an algorithm
for deciding bisimilarity with running time O(n log n) [68]; we can refer, e.g., to
[25] for a survey.

Balcázar, Gabarró and Sántha [15] showed that the problem of checking bisim-
ilarity is PTIME-hard. Their paper shows a logspace reduction from (a special
version of) the boolean circuit value problem, which is well-known to be PTIME-
complete. Their reduction handles just bisimilarity; in particular, it does not
show PTIME-hardness of other “simulation-like” equivalences (which are known
to be in PTIME as well).

3.2 Summary of the Results

Paper [5] shows that deciding an arbitrary relation which subsumes bisimulation
equivalence and is subsumed by trace preorder is PTIME-hard even for acyclic
finite state systems:

Theorem 3.1 For any relation R between bisimilarity and trace preorder, the
following problem is PTIME-hard:

Instance: A finite acyclic labelled transition system and two of its states, p
and q.

Question: Is pRq ?
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This result substantially extends the result of [15]. The value of this extension
is primarily relevant for the problems in PTIME, i.e., in the simulation-like part
of the spectrum, which can also comprise “not yet discovered” equivalences;
of course, PTIME-hardness trivially follows for problems which are known to
be PSPACE-hard (in the trace-like part). Notice also that problems considering
only acyclic systems are in general easier than general case; for example deciding
trace equivalence is still coNP-complete for acyclic finite state systems.

The proof in [5] proceeds by presenting a logspace reduction from the circuit
value problem (in fact, it uses a less constrained version of circuit value problem
than [15]).

Remark. A preliminary version of [5] appeared in [10].

3.3 Outline of the Proof

Theorem 3.1 is proved by a logspace reduction from the problem of monotone
boolean circuit value, mcvp for short.

To define mcvp, we need some definitions. A monotone boolean circuit is a di-
rected acyclic graph in which the nodes (also called gates) are either of in-degree
zero (input gates) or of in-degree 2; there is exactly one node of out-degree zero
(the output gate), otherwise the out-degree is not constrained. Each non-input
gate is labelled either by conjunction ∧ or by disjunction ∨. (No negation is
used; thus we have monotonicity.) An input of the circuit is an assignment of
boolean values (values from the set {0, 1}) to input gates. Given an input, the
circuit computes as expected: the (output) value of an input gate is given by the
input, the value of a gate labelled with ∧ (resp. ∨) is computed as conjunction
(resp. disjunction) of values of its predecessors. The output value of the circuit
is the value of the output gate.

See Figure 3 for an example of a monotone boolean circuit with an input; the
corresponding computed values are also depicted.

The mcvp problem is defined as follows:

Instance: A monotone boolean circuit with an input.

Question: Is the output value 1 ?

The problem is well-known to be PTIME-complete (cf. e.g. [37]). We also recall
that if P1 is PTIME-hard and P1 is logspace reducible to P2 then P2 is PTIME-
hard as well.

We sketch a logspace algorithm which, given an instance of mcvp, constructs
an LTS with two designated states p, q so that:

• if the output value of the circuit is 1 then p ∼ q, and
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Figure 3: A monotone boolean circuit with computed values on gates (the gates
are topologically ordered)

• if the output value is 0 then Traces(p) 6⊆ Traces(q).

So for any relation R between bisimilarity and trace preorder we have pRq iff
the output value is 1. This will immediately imply Theorem 3.1.

Let us fix an instance of mcvp where the set of gates is V = {1, 2, . . . , n}. For
technical reasons we assume that the gates are topologically ordered, i.e., for any
edge (i, j) we have i < j; hence n is the output gate. (This assumption does not
affect PTIME-completeness of mcvp, as can be seen from [37].) See Figure 3 for
an example of topologically ordered gates.

We use function t : V −→ {0, 1,∧,∨} for denoting the types of gates (in the
given instance of mcvp):

t(i) =















0 if i is an input gate with value 0
1 if i is an input gate with value 1
∧ if i is a gate labelled with ∧
∨ if i is a gate labelled with ∨

For every non-input gate i, we denote its (first and second) predecessors by
f(i), s(i) so that f(i) < s(i) (and s(i) < i due to the topological order). Let

vi ∈ {0, 1}

denote the actual (computed) value on gate i, i.e.,

• if i is an input gate then vi = t(i),

• if i is a non-input gate, then vi is computed from vf(i) and vs(i) using the
operation indicated by t(i).

For later use, we define inductively the words Wi ∈ {0, 1}∗, i = 0, 1, . . . , n:

W0 = ε,Wi+1 = vi+1Wi (2)
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Figure 4: The states of ∆ organized into levels

Thus Wn is the sequence of the actual (computed) values for all gates in the
reversed order wrt the given topological order; Wi is the suffix of Wn of length i.

For concreteness, we can assume that the given input instance of mcvp is of
the form

1 : d(1); 2 : d(2); . . . ; n : d(n)

where d(i) = t(i) if t(i) ∈ {0, 1} and d(i) stands for 〈t(i), f(i), s(i)〉 if t(i) ∈
{∧,∨}.

Given this instance of mcvp, we show a construction of LTS ∆ = (S,Act ,−→),
where Act = {0, 1} and S is the union of the following sets:

• {pi | 0 ≤ i ≤ n},

• {qji | 1 ≤ j ≤ i ≤ n},

• {rj,ki | 1 ≤ k < j ≤ i ≤ n}.

We organize states in S into levels. Level i (where 0 ≤ i ≤ n) contains all states
with the same lower index i, i.e.,

{pi} ∪Qi

where
Qi = {qji | 1 ≤ j ≤ i} ∪ {rj,ki | 1 ≤ k < j ≤ i}

as depicted in Figure 4 (already with some transitions).

For ease of presentation, we call q
j
i successful if vj = 1, and unsuccessful if

vj = 0; similarly, state r
j,k
i is successful if both vj = 1 and vk = 1, and is

unsuccessful otherwise. We denote the set of all successful (unsuccessful) states
on level i by Succi (Unsucci). Hence

Qi = Succi ∪ Unsucci
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Further, let I denote the identity relation I = {(s, s) | s ∈ S}.

The way we shall construct the transition relation of LTS ∆ will guarantee the
following property. (By Wi we refer to (2).)

crucial property:

• the set
I ∪ {(pi, q) | 0 ≤ i ≤ n, q ∈ Succi}

is a bisimulation (therefore pi ∼ q for each q ∈ Succi) ; and

• if q ∈ Unsucci then

Wi ∈ Traces(pi) \ Traces(q)

(therefore Traces(pi) 6⊆ Traces(q)) .

Hence pn and qnn can serve as the two announced distinguished states, with the
required property that

• pn ∼ qnn if vn = 1 (i.e., if qnn is successful), and

• Traces(pn) 6⊆ Traces(qnn) otherwise.

Transitions of ∆ are constructed in such a way that transitions going from states
on level i go only to states on level i − 1, which ensures that the constructed
LTS ∆ will be acyclic.

Level i naturally corresponds to gate i and the actual transitions going from
level i to level i − 1 depend just on t(i) and f(i), s(i) (when t(i) ∈ {∧,∨}).
See [5] for technical details of the construction of transitions and the proof of
correctness of the whole construction.

As an illustration of the construction, see Figure 5 for the LTS constructed for
the boolean circuit depicted in Figure 3. (For better clarity, only states that are
reachable from states p6 and q66 are depicted.)

We now sketch why the described reduction can be performed in logarithmic
space. The algorithm performing the reduction has an instance of mcvp as its
input, and outputs the states and transitions of LTS ∆ in a systematic stepwise
manner. The algorithm can be bound to use only a fixed number of variables
(such as i, j, k) with values no bigger than n (the number of gates); these values
can be stored in O(log n) bits (and the size of the input is clearly bigger than n).

Remark. LTS ∆ contains O(n3) states and also O(n3) transitions (the number
of possible transitions leaving a given state is bounded, independently on n). It

can be easily proved by induction that a state of the form r
j,k
i can be reachable

from pn or qnn only if there is i′ ∈ V , such that t(i′) = ∧, s(i′) = j and f(i′) = k.
There is at most O(n) pairs j, k, where such i′ exists, and it is possible to test
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for given j, k the existence of such i′ in a logarithmic space. So we could add
to ∆ only those states r

j,k
i , where such i′ exists. This way we can reduce the

number of states (and transitions) to O(n2).
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4 Composed Finite-State Systems

This section describes results concerning deciding behavioural equivalences on
systems that are composed of communicating finite-state components. These
results were published in [3]:

• Zdeněk Sawa, Petr Jančar: Hardness of equivalence checking for com-
posed finite-state systems, Acta Informatica, Volume 46, Issue 3, pp. 169–
191, Springer, 2009.

4.1 Motivation and State of the Art

When we consider composed finite-state systems, i.e., systems that are presented
as sets (parallel compositions) of communicating finite-state components, the
global state space of such composed systems is usually exponential in the size
of the system presentation. This phenomenon is known as the “state explosion”
and it is the main challenge in the design of efficient algorithms for verification of
such systems, since the straightforward approach, where the global state space
is explicitly constructed and the behavioural relation is decided on the resulting
system, requires exponential space.

It is natural to ask if some more efficient algorithms exist in special cases. For
example, Groote and Moller [39] have shown that if the components of the sys-
tem can perform actions independently and there is no communication between
them then the bisimulation equivalence (and some other equivalences that sat-
isfy certain axioms) can be decided in polynomial time. As one may expect, the
problem becomes harder when communication between components is allowed.
Rabinovich [70] considered a general model of composed systems which can be
called Parallel Composition with Hiding (PCH); the components (are forced to)
synchronize via shared actions, and the identity of some actions can be “hid-
den”, which refers to replacing with a special action τ . Rabinovich proved only
PSPACE-hardness in general, though he showed EXPSPACE-completeness for
trace equivalence and mentioned EXPTIME-completeness for bisimilarity. He
formulated the EXPTIME-hardness conjecture for PCH and any relation be-
tween bisimilarity and trace preorder.

Laroussinie and Schnoebelen [58] approved the EXPTIME-hardness conjecture
for all relations between bisimilarity and simulation preorder, even for composed
systems with no hiding, denoted PC. It is hardly possible to extend EXPTIME-
hardness for PC to all relations in the spectrum-range since trace equivalence
is in PSPACE for this model, as was proved in [73]; see also [78] for results for
other types of “trace-like” equivalences and composed systems. But it is also
not clear how the result of [58] could be extended using hiding.
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4.2 Overview of the Results

In [3], Rabinovich’s conjecture was approved in the whole, deriving EXPTIME-
hardness for PCH and any relation between bisimilarity and trace preorder.
(A preliminary version of this proof appeared in [9].)

Another results in [3] concern with acyclic PC and PCH, which were also con-
sidered in [70]. A new alternative (simpler) reduction is provided that has im-
proved the lower bound (of NP-hardness and coNP-hardness) to DP-hardness.
Also PSPACE-hardness for acyclic PC and any relation between bisimilarity and
simulation preorder has been derived. The paper [3] also provides an overview of
known relevant results concerning equivalence checking on composed finite-state
systems.

4.3 Outline of the Proof for (General) PCH

The EXPTIME-hardness proof is achieved by a reduction from the acceptance
problem of alternating LBAs (linear bounded automata), denoted Alba-accept.
An important ingredient of the proof is a new proof of PTIME-hardness for
explicit finite-state systems (given by listing the whole state space) and any
relation between bisimilarity and trace preorder; this is achieved by a reduction
from Agp, a problem on alternating graphs. The same result was already shown
in [5] even for acyclic finite-state systems, as described in Section 3; however it
is not clear, how the construction from [5] could be generalized to prove EXP-

TIME-hardness, and so the use of the new alternative construction was necessary
in [3].

For describing the behaviour of the composed system arising by the reduction
from an instance of Alba-accept in the EXPTIME-hardness proof, it was also
useful to introduce a “reactive” version of linear bounded automata as an inter-
mediate model.

These reactive LBAs can be easily modeled not only by PCH but also by other
models of composed systems, like, e.g., labelled 1-safe Petri nets; the EXPTIME-
hardness result is thus carried over to them as well.

Let C be a fixed type (class) of systems (such as FS, PC, or PCH) and R some
fixed binary relation between bisimilarity and trace preorder (i.e., ∼⊆ R ⊆⊑tr)
defined on states of LTSs. By C-RelR we denote the following problem:

Instance: Presentation of an LTS T of type C, with two distinguished states
s and s′.

Question: Is (s, s′) ∈ R ?

The problems considered in [3] are Fs-RelR, Pc-RelR, Pch-RelR, Apc-RelR,
Apch-RelR. In Apc-RelR and Apch-RelR (compared to Pc-RelR and
Pch-RelR) the instances are restricted to acyclic systems.
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Figure 6: Alternating graph

It is also worth to note that the systems constructed in the reductions are in
a special form: a PCH T is centralized iff it has a special control component
Tc such that at most two components participate in each transition and Tc is
always one of them.

Being inspired by the acceptance problem for ALBA (Alternating Linear Bounded
Automata), and the related (alternating) graphs with configurations as nodes,
we first define Alternating Graph Problem (Agp), a variant of the well known
alternating reachability problem [46], which is PTIME-complete. Then we show
a logspace reduction which, given an instance of Agp, constructs an FS T with
two distinguished states s, s′ so that:

• s ∼ s′ if the answer to the Agp instance is no,

• s 6⊑tr s′ if the answer to the Agp instance is yes.

This implies that Fs-RelR is PTIME-hard for any relation R such that ∼⊆
R ⊆⊑tr (Theorem 4.4). Note that we reduce Agp to the complement of
Fs-RelR and then use Observation 2.2.

To define Alternating Graph Problem (Agp) formally, we need some auxiliary
definitions.

An alternating graph is a finite directed graph where each node is labelled either
as conjunctive (universal) or as disjunctive (existential). Formally it is a struc-
ture G = (V,E, t) where V is a finite set of nodes, E ⊆ V × V is a set of edges,
and t : V → {∧,∨} is a node-labelling function partitioning V into the sets of
conjunctive and disjunctive nodes.

See Figure 6 for an example of an alternating graph.

We use σ(v) to denote the set of successors of a node v, i.e.,

σ(v) = {v′ ∈ V | (v, v′) ∈ E} .
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Each conjunctive node v (t(v) = ∧) with σ(v) = ∅ is called accepting, each
disjunctive node v (t(v) = ∨) with σ(v) = ∅ is called rejecting.

For example, v6 is accepting and v1 is rejecting in Figure 6.

We now define the set SuccG (or Succ when G is clear from context) of successful
nodes (i.e. those from which accepting nodes are “alternation-reachable”). Succ
is defined as the least subset of V satisfying (for each v ∈ V ):

• if t(v) = ∧ and σ(v) ⊆ Succ then v ∈ Succ,

• if t(v) = ∨ and σ(v) ∩ Succ 6= ∅ then v ∈ Succ.

We note that each accepting node is successful (belongs to Succ) and each
rejecting node is unsuccessful (i.e., not successful).

For example, for the alternating graph in Figure 6 we have Succ = {v2, v4, v5, v6}.

Now we define Alternating graph problem (Agp):

Instance: An alternating graph G = (V,E, t) and a node v ∈ V .

Question: Is v successful?

Remark. In the alternating reachability problem as defined in [46] it is required
that there is exactly one accepting node in G and also no loops are allowed.

Problem Agp is PTIME-hard since it is a generalization of the alternating reach-
ability problem which is known to be PTIME-hard (see for example [46] for
a proof). It is clear from the given inductive definition that Succ can be com-
puted in polynomial time (measured in the size of the given G), and Agp is
thus in PTIME. Hence we have the following fact.

Fact 4.1 Agp is PTIME-complete.

Given an alternating graph G = (V,E, t), with a rejecting node z, we aim at
constructing an LTS TG = (V,Act ,−→) (where the states correspond to the
nodes of G) so that z ∼ v for each v ∈ V − SuccG and z 6⊑tr v for each
v ∈ SuccG.

See [3] for a detailed description of the construction of TG. It is important that
this construction can be done in a logarithmic space and that transitions going
from a state corresponding to a gate v are fully determined only by t(v) and
σ(v), which is important for the generalization of this construction in the proof
of EXPTIME-hardness.

As an example, LTS TG constructed for the graph G in Figure 6 is depicted in
Figure 7.

The correctness of the construction is ensured by two following propositions
(see [3] for their proofs) and the fact that TG is constructed in such a way that
Traces(v) = Act∗ for each unsuccessful v.
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Figure 7: Example of TG (with some transitions omitted)

Proposition 4.2 If v1, v2 ∈ V are unsuccessful in G then v1 ∼ v2 in TG.

Proposition 4.3 For each G there is (a fixed) w ∈ Act∗ such that w 6∈ Traces(v)
in TG for any v ∈ SuccG.

Theorem 4.4 Fs-RelR is PTIME-hard for any R such that ∼⊆ R ⊆⊑tr.

Proof. Given an alternating graph G and a distinguished node x (i.e., an
instance of Agp), we can choose (or add) a rejecting node z and construct
TG (by the above logspace construction). Proposition 4.2 guarantees that if
x 6∈ SuccG then z ∼ x and thus (z, x) ∈ R. Proposition 4.3 guarantees that if
x ∈ SuccG then z 6⊑tr x and thus (z, x) 6∈ R. �

The proof of EXPTIME-hardness of Pch-RelR for all relations R, such that
∼⊆ R ⊆⊑tr, is based on a description of a logspace reduction from the prob-
lem Alba-accept, the problem whether a given alternating linear bounded
automaton accepts a given word, which is known to be EXPTIME-complete [23].
In fact, we also consider so called reactive linear bounded automata (RLBAs) as
a technically convenient intermediate step, and derive EXPTIME-completeness
for Rlba-RelR as well.

Let (A,w) be an instance of Alba-accept where A is an ALBA and w ∈ Σ∗

its input (where |w| = n). ALBA A and n ∈ N determine the alternating graph

G(A,n) = (V,E, t)

where V corresponds to the set of all configurations of A of size n, E represents
possible transitions, and t labels the nodes according to the types of the cor-
responding configurations. Accepting (resp. rejecting) configurations of A are
accepting (resp. rejecting) nodes in G(A,n).
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If we consider G(A,n) (of exponential size) and then apply the previously de-
scribed construction for explicitly given finite-state systems, we obtain an (ex-
plicit) FS, denoted TA. Both the set of nodes of G(A,n) and the set of states
of TA coincide with Conf (A,n), where Conf (A,n) denotes the set of all configu-
rations of A of length n. If αrej is a rejecting configuration in Conf (A,n) and
αini(w) is the initial configuration of A with input w, then we have (in TA):

• αrej 6⊑tr αini (w) when A accepts w;

• αrej ∼ αini (w) when A does not accept w.

The aim is, when given (A,w), to construct a PCH denoted M(A,n) which will
represent (“realize”) TA; moreover, we aim at a construction of M(A,n) that
can be done in logarithmic space. (Note that the logspace construction will
guarantee that the size of M(A,n) is polynomial in |(A,w)|.)

We know that a PCH can easily represent an LTS of exponential size; neverthe-
less a technical problem is that not only the number of states in TA (i.e., the
cardinality of Conf (A,n)) is exponential but it is the case also for the alphabet
Act(A,n) of TA.

To handle the alphabet-cardinality problem, we choose some straightforward
(injective) encoding

repr : Act(A,n) → {0, 1}m (3)

which encodes all elements of Act(A,n) by 0, 1-strings of the same length m

(∀a ∈ Act(A,n) : |repr(a)| = m) polynomial in |(A,w)|. The details of repr are
not important. It is sufficient to require that decoding, including checking if
x ∈ {0, 1}m is in the range of repr , can be computed easily, which means that
it is performable by the reactive LBA B(A,n) described later.

The LTS represented by M(A,n) will be finer than TA, having more states, but
its action alphabet will be just {0, 1, τ}. For each state α of TA there will be
a corresponding global state corresp(α) of M(A,n), and in the LTS represented
by M(A,n) the following will be ensured:

• corresp(α) ∼ corresp(α′) iff α ∼ α′ in TA;

• corresp(α) 6⊑tr corresp(α′) iff α 6⊑tr α′ in TA.

Each transition α
a

−→ α′ in TA will be “simulated” by a sequence of transi-
tions corresp(α)

u
−→ corresp(α′) performed by M(A,n) where u arises from the

sequence repr(a) ∈ {0, 1}m by a suitable “padding” with (occurrences of) ac-

tion τ ; moreover, for all transitions α
a

−→ α′, the corresponding sequences u

will have the same length, i.e. |u| = ℓ for a constant ℓ > m.

It is technically convenient to specify the intended behaviour of M(A,n) by means
of a special LBA, called a reactive LBA, and then show how reactive LBAs can
be naturally implemented by PCH.
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We can imagine that each step (α ⊢ α′) in computations of an LBA also com-
prises “emitting” action τ ; so each computation can be “observed” as a sequence
of τ -actions by an “external observer”. A reactive linear bounded automaton, an
RLBA, is an LBA which is moreover equipped with a set Act of non-τ actions
(τ 6∈ Act); each step now emits either τ or a ∈ Act . For technical convenience,
we require that the transitions emitting a non-τ action depend only on the cur-
rent control state and do not change the tape nor the head position. RLBAs
serve us for describing behaviours, not for accepting (rejecting) inputs; therefore
we do not need an input alphabet nor accepting/rejecting states in the following
formal definition.

An RLBA is a tuple B = (Qc , Qr ,Γ,Act , δ, R), where Qc and Qr are finite sets
of computational control states and reactive control states, respectively (Qc ∩
Qr = ∅), Γ is a tape alphabet, Act is a finite set of actions, τ 6∈ Act , δ ⊆
Qc × Γ ×Q× Γ × {−1, 0,+1}, where Q = Qc ∪Qr , is the set of computational
transitions, and R ⊆ Qr × (Act ∪ {τ}) × Q is the set of reactive transitions.
Configurations and the successor relation α⊢B α′ are defined as in the case of
LBAs (where (q, a, q′) ∈ R is understood as if (q, x, q′, x, 0) ∈ δ for all x ∈ Γ).

Given n ∈ N, RLBA B determines the LTS

T (B, n) = (Conf (B,n),Act ∪ {τ},−→)

where Conf (B,n) is the set of all configurations of B of size n, and −→ contains

a transition (q, w, i)
a

−→ (q′, w′, i′) iff

• either q ∈ Qc , (q, w, i)⊢B (q′, w′, i′) and a = τ ,

• or q ∈ Qr , (q, a, q′) ∈ R, w = w′ and i = i′.

See [3] for a detailed description of a construction of an RLBA B(A,n) for a given
ALBA A with an input word w.

The construction can be done in a logarithmic space and shows that for the
problem Rlba-RelR

Instance: An RLBA B and two configurations α, α′, |α| = |α′|.

Question: Is (α, α′) ∈ R in T (B, |α|) ?

we have the following theorem:

Theorem 4.5 Rlba-RelR is EXPTIME-hard for any R such that ∼⊆ R ⊆⊑tr.

An RLBA can be implemented by a PCH in a straightforward way, similarly
as, e.g., Rabinovich [70] did for LBA (one component models a control unit
together with position of a head and each tape cell is modelled by a separate
component that stores the content of the cell), see [3] for the details.
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Lemma 4.6 Given an RLBA B and n ∈ N, logarithmic workspace is sufficient
to construct a centralized PCH P(B,n) which represents an LTS isomorphic to
T (B, n).

From Theorem 4.5 we thus get the following theorem.

Theorem 4.7 The problem Pch-RelR is EXPTIME-hard for any R such that
∼⊆ R ⊆⊑tr even for centralized PCH.

Remark. The construction can be also used for similar proofs (of EXPTIME-
hardness) for other types of composed systems which use other means of syn-
chronization, as, e.g., labelled 1-safe Petri nets.
The lower bound of EXPTIME-hardness can not be improved in general; this
follows from the results surveyed in Subsection 4.5. (“Simulation-like” equiva-
lences are in EXPTIME.)
We also note that hiding is crucial. We can not hope for general EXPTIME-
hardness in the case of PC since the trace preorder and “trace-like” equivalences
are in PSPACE for them (see Subsection 4.5).

4.4 Outline of the Proofs for Acyclic PC and PCH

4.4.1 DP-hardness for Acyclic PCH

Problem Apch-RelR (for acyclic PCH) is stated in [70] as NP-hard and coNP-
hard for each R, ∼⊆ R ⊆⊑tr. There is a proof of coNP-hardness and it is
mentioned that showing NP-hardness is similar (though it is, in fact, a bit
more complicated); also a modification for coNP-hardness of Apc-RelR (with-
out hiding) is suggested. In [3], a different (simpler) construction was shown,
which allows us to derive all the mentioned cases as well as DP-hardness for
Apch-RelR.

Theorem 4.8 For any relation R such that ∼⊆ R ⊆⊑tr:

• Apch-RelR is DP-hard for acyclic and centralized PCH.

• Apc-RelR is coNP-hard for acyclic and centralized PC.

Proof idea. NP-hardness of Apch-RelR can be shown by a reduction from
an NP-complete problem called Shuffle, which is defined as follows. Given
words u, v ∈ Σ∗, by shuffle(u, v) we denote the result of merging, or interleav-
ing, i.e., the set of words of the form u1v1u2v2 · · ·unvn where ui, vi are (pos-
sibly empty) words from Σ∗ such that u = u1u2 · · ·un and v = v1v2 . . . vn.
The operation can be naturally generalized to languages, shuffle(L1, L2) =
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⋃

u∈L1,v∈L2
shuffle(u, v), and the use of shuffle(w1, w2, . . . , wk) with more ar-

guments has the obvious meaning. The following problem is known to be NP-
complete [62, 81]:

Problem: Shuffle

Instance: Words w1, w2, . . . , wk ∈ Σ∗ and w ∈ Σ∗ such that |w1| + |w2| +
· · · + |wk| = |w| (for some finite alphabet Σ).

Question: Is it true that w ∈ shuffle(w1, w2, . . . , wk) ?

Remark. The constructions using Shuffle in this proof are quite simple com-
pared to the constructions in [70], which use reductions from SAT.

Given an instance w1, w2, . . . , wk, w ∈ Σ∗ of Shuffle, a pair of acyclic central-
ized PCH T , T ′ with initial global states E0 and E′

0 can be constructed (in a
logarithmic space) so that:

• E0 ∼ E′
0 when w ∈ shuffle(w1, w2, . . . , wk) (the Shuffle-answer is yes),

• E0 6⊑tr E
′
0 otherwise (the Shuffle-answer is no).

A proof of coNP-hardness of Apc-RelR (using no hiding) is similar, as well
as the proof of DP-hardness of Apch-RelR, which uses reduction from the
following DP-complete problem:

Problem: Shuffle-Nonshuffle

Instance: Words u1, u2, . . . , uk, u ∈ Σ∗ and v1, v2, . . . , vk, v ∈ ∆∗, where
Σ ∩ ∆ = ∅.

Question: Is it true that u ∈ shuffle(u1, u2, . . . , uk) and v 6∈
shuffle(v1, v2, . . . , vk) ?

Again, see [3] for a detailed description of the constructions and proofs of their
correctness. �

Due to the following proposition Apc-RelR is not NP-hard in general unless
NP = coNP.

Proposition 4.9 Apc-Rel⊑tr
is in coNP.

Proof. Given two acyclic PC P1, P2 (and their initial states), for showing that
P1 6⊑tr P2 it is sufficient to guess a trace w (of size |P1| at most) and verify that
w is enabled in P1 but disabled in P2. To find out if a given w = a1a2 . . . an is
enabled in a given PC (with no τ -actions and no hiding), by applying the usual
subset construction for nondeterministic finite automata to the components we
can successively represent all global states reachable by a1, a1a2, a1a2a3, . . .

(as used, e.g., in [78]). �

It also seems unlikely that the lower bound of DP-hardness for Apch-RelR can
be much improved, as the next proposition shows.
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Proposition 4.10 Apch-Rel⊑tr
is in Πp

2 (in the polynomial hierarchy).

Proof. Given two acyclic PCH P1, P2 (and their initial states), P1 ⊑tr P2

means that for every trace w (of size |P1| at most), which is enabled in P1, there
is a sequence of global states in P2 which shows that w is enabled in P2. �

Nevertheless, at least for “simulation-like” relations we can derive PSPACE-
hardness, even with no hiding, as the next subsubsection shows.

4.4.2 PSPACE-hardness of Simulation-like Relations on Acyclic PC

Theorem 4.11 Problem Apc-RelR is PSPACE-hard for any R between bisim-
ulation equivalence and simulation preorder (i.e., ∼⊆ R ⊑sim), even when re-
stricted to (acyclic and) centralized PC.

Proof idea. A reduction from the well-known PSPACE-complete problem Qbf

(truth of quantified boolean formulas) is used:

Instance: ϕ = ∃x1∀x2 · · · ∃xn−1∀xnF (x1, x2, . . . , xn) (where n is even).

Question: Is ϕ true?

We assume that F is in CNF, i.e., in the form C1 ∧ C2 ∧ · · · ∧ Cm where each
clause Cj = ℓj,1 ∨ ℓj,2 ∨ ℓj,3 contains exactly three literals (a literal being xi or
¬xi).

Roughly speaking, the reduction implements the following game:

1. Attacker and Defender alternately assign boolean values to variables x1,
x2, . . . ,xn (in this order).

2. After the assignment, Defender chooses a clause Cj .

3. If some of literals ℓj,1, ℓj,2, ℓj,3 is true under the assignment, Attacker wins;
if not, Defender wins.

It is obvious that ϕ is true iff Attacker has a winning strategy. This is an
example of an application of so called “Defender’s Choice technique” which has
been used for similar results (see [47] for a recent use). �

The PSPACE-hardness lower bound in Theorem 4.11 cannot be improved in
general, as the following proposition shows.

Proposition 4.12 Apch-Rel∼ and Apch-Rel⊑sim
are in PSPACE.

Proof. All plays of the (bi)simulation game on APCH P1, P2 have length
(i.e., the number of rounds) at most |P1|. They can be naturally organized in
a tree which can be examined in polynomial space (by using the depth-first
search), by which the player who has a winning strategy is determined. �
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∼ ⊑sim ⊑tr

upper PTIME (a) PTIME (a) PSPACE (b)

FS PSPACE-hard (c)

lower PTIME-hard (d)

upper PSPACE (e) PSPACE (e) coNP(f)

APC PSPACE-hard (g)

lower coNP-hard (h)

upper PSPACE (e) PSPACE (e) Πp
2 (i)

APCH PSPACE-hard (g)

lower DP-hard (h)

upper EXPTIME (j) EXPTIME (j) PSPACE (k)

PC EXPTIME-hard (l)

lower PSPACE-hard (m)

upper EXPTIME (j) EXPTIME (j) EXPSPACE (n)

PCH EXPTIME-hard (l) EXPSPACE-hard (o)

lower EXPTIME-hard (p)

Table 1: Overview of complexity results

4.5 Summary of Results

Table 1 provides a summary of the known results for the equivalence-checking
problems considered in [3]. The “big” rows in the table contain results for dif-
ferent types of systems — FS, APC (acyclic PC), APCH (acyclic PCH), PC
(parallel compositions), and PCH (parallel compositions with hiding). For each
such type of systems, the known upper and lower complexity bounds are pre-
sented. The columns correspond to specific relations: bisimilarity ∼, simulation
preorder ⊑sim and trace preorder ⊑tr. The cells that span the columns for ∼
and ⊑sim contain hardness results holding for any R such that ∼⊆ R ⊆⊑sim .
The cells that span the columns from ∼ to ⊑tr contain hardness results holding
for any R such that ∼⊆ R ⊆⊑tr.
All hardness results in the table hold even for centralized systems.

Symbols (a)–(p) in the table refer to the following explanations.

a) Polynomiality easily follows by a greatest fixpoint construction; for more
efficient algorithms see e.g. [54, 68].

b) It is a special case of language inclusion for nondeterministic finite automata
(NFA), which is reducible to language equivalence — a well known PSPACE-
complete problem (see, e.g., [65]).
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c) This is easily derivable from the PSPACE-hardness of the above problem for
NFA.

d) Proved in [5]; Theorem 4.4 (proved in [3]) provides an alternative proof.

e) Proposition 4.12.

f) Proposition 4.9.

g) Theorem 4.11.

h) Theorem 4.8.

i) Proposition 4.10.

j) The global transition system (of exponential size) can be constructed explic-
itly, for which a polynomial time algorithm from (a) can be used.

k) We can use the idea from [78], mentioned in Proposition 4.9. (It is sufficient
to generate and verify a distinguishing trace of at most exponential length).

l) Proved in [58] (a reduction from Alba-accept using a variant of the De-
fender Choice technique).

m) Proved in [70] (by a “master reduction”).

n) The explicitly constructed global transition system is an NFA of exponential
size, to which we can apply a polynomial space algorithm (see (b)).

o) Proved in [70] by a reduction from RE2 (equivalence of regular expressions
with squaring).

p) Theorem 4.7.
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5 Bisimilarity between Normed BPA and Normed

BPP

This section describes the article [2]:

• Petr Jančar, Martin Kot, Zdeněk Sawa: Complexity of deciding
bisimilarity between normed BPA and normed BPP, Information and
Computation, Special Issue: 19th International Conference on Concur-
rency Theory (CONCUR 2008), Volume 208, Issue 10, pp. 1193–1205,
Elsevier, 2010.

A preliminary version of this article appeared (with no complexity analysis) at
Concur 2008 [7].

5.1 Motivation and State of the Art

There are three natural “context-free” subclasses of process rewrite systems:
BPA (Basic Process Algebra) that allows only sequential composition, BPP
(Basic Parallel Processes) that allows only parallel composition, and PA that
allows both.

When we consider the question of deciding bisimilarity of these types of systems,
the known results are as follows. The best known algorithm for deciding bisim-
ilarity on BPA was proposed by Burkart, Caucal and Steffen [19]. They claim
their algorithm can be implemented to have double-exponential time complexity
but this upper bound is not proved in the paper. The known lower bound is
PSPACE-hardness of the problem [75]. For normed BPA, the polynomial-time
algorithm was shown in [42] (with an upper bound O(n13)); the upper bound was
later improved in [61], where an algorithm with running time in O(n8polylog n)
was described, and in [27], where the running time was improved to O(n5).

Deciding of bisimilarity on BPP is known to be PSPACE-complete. The PSPACE-
hardness of the problem was shown by Srba [74], and the presence in PSPACE

by Jančar [48]. For normed BPP, a polynomial time algorithm was presented
in [41] (without a precise complexity analysis), based on so called prime de-
compositions ; the upper bound O(n3) was shown in [49] by another algorithm,
based on so called dd-functions (distance-to-disabling functions).

An algorithm for deciding bisimilarity on normed PA was shown by Hirshfeld
and Jerrum [40]. The algorithm runs in doubly-exponential nondeterministic
time. Decidability of bisimilarity on PA in the general (unnormed) case is
a long-standing open problem.

The most difficult part of the above mentioned algorithm for normed PA [40]
deals with the case when (a process expressed as) sequential composition is
bisimilar to (a process expressed as) parallel composition. A basic subproblem is
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to analyze when a BPA process is bisimilar to a BPP process. Černá, Křet́ınský,
Kučera [22] have shown that this subproblem is decidable in the normed case;
their suggested algorithm is exponential. Decidability in the general (unnormed)
case was shown in [50], without providing any complexity bound.

5.2 Main Results

The main result of [2] is a polynomial algorithm deciding whether a given normed
BPA process α is bisimilar to a given normed BPP process M . The running
time of the algorithm is O(n7).

An important ingredient of the algorithm is a new procedure, based on dd -
functions, which transforms the normed BPP process M into “prime form”
where bisimilarity coincides with equality; time complexity of this transforma-
tion is O(n3). Such transformation could be based on prime decompositions
from [41] but with worse complexity (which was, in fact, not analyzed in [41]).

As a side result, our approach also shows a clear polynomial time algorithm,
with running time O(n3), testing if there exists a bisimilar BPA process to
a given BPP process; polynomiality was shown in [22], with no bound on the
polynomial degree. Another side result is an algorithm for deciding bisimilarity
between a given BPA process and a given finite-state process, with running
time O(n4). Polynomiality of this problem was already shown by Kučera and
Mayr [56]. In fact, they provided an O(n12) algorithm for the more general case
of weak bisimilarity; the complexity for the special case of (strong) bisimilarity
was not analyzed in [56].

5.3 More Detailed Description of the Results

The central problem solved in [2] is problem nBPA-nBPP-BISIM, defined as
follows:

Instance: A normed BPA-process (α0,Σ), a normed BPP-process (M0,∆).

Question: Is α0 ∼ M0 (in the disjoint union of SΣ and S∆) ?

(Here, SΣ and S∆ denote the transition systems generated by Σ and ∆.)

As the size n of an instance of nBPA-nBPP-BISIM we understand the num-
ber of bits needed for its (natural) presentation; in particular we consider the
numbers F (t, p) in ∆ and the numbers in M0 to be written in binary.

In the rest of this section we assume a fixed nBPA Σ and a fixed nBPP ∆. By
a state we generally mean a state in the disjoint union of SΣ and S∆.

The algorithm for solving nBPA-nBPP-BISIM starts by a transformation of
nBPP ∆ into a prime form. We say that a BPP net ∆ is in prime form if
bisimilarity coincides with identity on the generated LTS, i.e., M ∼ M ′ iff
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M = M ′. (In this case, each place p is a “prime” since it is not equivalent to a
composition of other places.)

It follows from the unique decomposition results in [41] that for each normed
BPP system ∆ there is an equivalent normed BPP system ∆′ in prime form, and
that ∆′ can be constructed from ∆ in polynomial time using the algorithm, de-
scribed in [41], which computes certain prime decompositions of BPP-variables
(i.e., BPP-net places); it is a polynomial time algorithm but its precise com-
plexity has not been analyzed.

An alternative algorithm, based on the use of so called dd-functions, was pre-
sented in [2]. It transforms a given normed BPP system ∆ = (P,Tr , pre, F,Act , l)
into a normed BPP system ∆′ = (P ′,Tr ′, pre′, F ′,Act , l′) in prime form, and
any given state (marking) M of ∆ into M ′ of ∆′ such that M ∼ M ′. The
running time of the algorithm is O(n3). Moreover, |Tr ′| ≤ |Tr |, |P ′| ≤ |P |, and
∆′ is represented in space O(n3).

Given a BPP process (M0,∆) where ∆ is a normed BPP system in the prime
form, it can be easily checked if there exists a normed BPA process (α0,Σ) such
that α0 ∼ M0, by testing simple conditions described below. Before stating
these conditions, we need some additional definitions.

Let α be a state (of SΣ or S∆). The norm of α, denoted ‖α‖, is the length of

the shortest w ∈ Act∗ such that α
w

−→ ε. Note that this also defines norm ‖X‖
for each variable (place) X .

A place p ∈ P is unbounded in (M0,∆) iff for each c ∈ N there is a marking M ′

such that M0 −→∗ M ′ and M ′(p) > c.

We define Car(M) = {p ∈ P | M(p) ≥ 1}.

A place p is called a single final place, an SF-place, if all transitions that take
a token from p are of the form p

a
−→ pk, k ≥ 0 (they can only put tokens back

to p). It is easy to see that ‖p‖ = 1 for every SF-place p (since ∆ is normed).
We say that p is a non-SF-place if it is not an SF-place.

We say that an SF-place p is growing if there is a transition p
a

−→ pk for k ≥ 2.

Lemma 5.1 For (M0,∆), ∆ being a normed BPP in prime form, there exists
a normed BPA process (α0,Σ) such that α0 ∼ M0, iff the following conditions
hold:

1. each non-SF-place is bounded,

2. there is no M such that M0 −→∗ M , |Car (M)| ≥ 2 and M(p) ≥ 1 for
some growing SF-place p,

3. each non-growing SF-place p is bounded.

We note that the conditions in Lemma 5.1 can be checked by straightforward
standard algorithms, linear in the size of ∆ in prime form (which means O(n3)
if ∆ is not in prime form). We thus have the following corollary.
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Corollary 5.2 The problem to decide if a given normed BPP process (not nec-
essarily in prime form) is bisimilar to some (unspecified) normed BPA process
can be solved in time O(n3).

If (M0,∆) satisfies the conditions of Lemma 5.1, the corresponding BPA process
(α0,Σ) can be constructed but its size can be exponential with respect to the
size of (M0,∆).

A basic idea of an algorithm for nBPA-nBPP-BISIM is to construct an nBPA
process bisimilar to a given nBPP process (if it exists) and then to use some
(polynomial time) algorithm for deciding if this constructed nBPA process is
bisimilar to the nBPA process from the instance of nBPA-nBPP-BISIM. The
complexity of such algorithm would be exponential in general, but the following
theorem allows to obtain a polynomial time algorithm.

Theorem 5.3 Assume a normed BPA system Σ, with the set V of variables,
and a normed BPP system ∆ in prime form, with the set P of places. The
number of markings M of ∆ such that α ∼ M for some α ∈ V + and M does
not have all tokens in one SF-place is at most 4y2, where y = max{|V |, |P |}.

Theorem 5.3 is proved by partitioning the markings into four following classes
and showing that there are at most y2 markings in each class:

Class 1. Markings M with all tokens in one (non-SF) place (|Car (M)| = 1).

Class 2. Markings M with |Car(M)| ≥ 2 where at least two different places
with norm 1 are reachable; this necessarily means M −→∗ M ′ for
some M ′ satisfying M ′(p1) ≥ 1, M ′(p2) ≥ 1 for some p1 6= p2 and
‖p1‖ = ‖p2‖ = 1.

Class 3. Markings M with |Car (M)| ≥ 2 and with exactly one reachable (“sink”)
place p with norm 1, where p is a non-SF-place.

Class 4. Markings M with |Car (M)| ≥ 2 and with exactly one reachable (“sink”)
place p with norm 1, where p is an SF-place.

Assume an instance of nBPA-nBPP-BISIM, i.e., nBPA process (α0,Σ) and
nBPP process (M0,∆). The polynomial algorithm for nBPA-nBPP-BISIM

works as follows.

It first transforms (M0,∆) to bisimilar (M ′
0,∆

′) where ∆′ is in prime form.
The algorithm then starts to build nBPA Σ′ for (M ′

0,∆
′). The variables of Σ′

represent either tokens in SF-places or markings of ∆′ where not all tokens are in
one SF-place. Whenever the number of variables of the latter type exceeds 4y2,
where y is the maximum of {|VΣ|, |P∆′ |}, then the algorithm stops immediately
with the answer α0 6∼ M0; this is correct due to Theorem 5.3.
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It is not necessary for the algorithm to test the conditions of Lemma 5.1 explic-
itly because it is ensured that in this case it will stop with the correct answer
due to exceeding the number of variables.

If the number of variables does not exceed 4y2, the algorithm finishes the con-
struction of Σ′. In fact, the algorithm does not construct Σ′ explicitly but rather
a succinct representation of it, since a straightforwardly constructed nBPA could
be of exponential size. However, this succinct representation can be easily trans-
formed into a “usual” nBPA of polynomial size by adding some additional vari-
ables and rules.

Since the size of the constructed nBPA process (α′
0,Σ

′) is polynomial with
respect to the size of the original instance of the problem, we can use some
known polynomial time algorithm for deciding bisimilarity on nBPA, such the
algorithms from [42] or [27], to decide if (α0,Σ) ∼ (α′

0,Σ
′), and by this obtain

a polynomial time algorithm for nBPA-nBPP-BISIM.

The constructed nBPA process (α′
0,Σ

′) is in a very special form — it is a finite
state system (FS) extended with “SF-tails”. This allows us to avoid the use
of general algorithms for deciding bisimilarity on nBPA and to develop a more
efficient specialized algorithm.

The specialized algorithm has time complexity O(n7) and is inspired by several
ideas used, e.g., in the proofs in [56, 57, 61]. In particular, it uses the idea
from [61] of a reduction to the problem of finding a (unique) maximal solution
of a certain set of boolean equations, which was used there in the algorithm
for deciding bisimilarity on normed BPA. The idea considerably simplifies the
complexity analysis and gives a better complexity bound than would be obtained
by a straightforward analysis of the algorithm based on the computation of the
fixpoint.

Putting everything together, we obtain the main result:

Theorem 5.4 There is an algorithm solving nBPA-nBPP-BISIM in time
O(n7).

The described algorithm can be used for deciding bisimilarity between a given
nBPA (of size m) and a finite state system (with k states and ℓ transitions)
and the running time of the algorithm is O(mk3 + mℓk + ℓ2) = O(n4) in this
case (where n is the size of the whole instance). In fact, the algorithm can be
easily adapted for the case when the BPA and the FS in the instance are not
required to be normed (as in [56, 57]) without affecting its complexity. The
more general problem of deciding weak bisimilarity on a given BPA and FS
process was considered in [56] and the algorithm presented there has running
time O(m5(k + ℓ)7) = O(n12). (The special case of the strong bisimilarity was
not analyzed there and we are not aware of any tighter results concerning its
complexity.)
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6 Non-Interleaving Equivalences on BPP

This section gives an overview of the article [1]:

• Sibylle Fröschle, Petr Jančar, S lawomir Lasota,Zdeněk Sawa:

Non-Interleaving Bisimulation Equivalences on Basic Parallel Processes,
Information and Computation, Volume 208, Issue 1, pp. 42–62, Elsevier,
2010.

6.1 Motivation and State of the Art

The classical bisimilarity models components running in parallel by nondeter-
ministic interleaving of actions of these components, i.e., it does not distinguish
between actions that can be run in parallel and actions that can be run only
sequentially in an arbitrary order. There were proposed several variants of
bisimilarity that take the distinction between these two cases into account and
model concurrency in a more faithful way. Such equivalences are called non-
interleaving equivalences.

Most non-interleaving bisimulation equivalences coincide on BPP, and they are
equal to history preserving bisimilarity (hp-b) [80]. In [12] Aceto shows that dis-
tributed bisimilarity [20] and causal bisimilarity [28] coincide for a language that
is essentially BPP without recursion. In an unpublished draft [55] Kiehn has
extended these results by proving that location equivalence [21], causal bisimi-
larity, and distributed bisimilarity coincide over CPP, an extension of BPP that
allows for synchronization in CCS style but disallows explicit τ actions. Causal
bisimilarity is known to coincide with hp-b in general [11]. A direct proof of
the coincidence between hp-b and distributed bisimilarity on BPP is provided
in [30]. Finally, it has been shown in [60] that for BPP distributed bisimilar-
ity coincides with performance equivalence [38]. To sum up, on BPP all rele-
vant non-interleaving bisimulation equivalences coincide with history preserving
bisimilarity, with one exception, which is the finer hereditary history preserv-
ing bisimilarity (hhp-b). Hhp-b takes a special position among non-interleaving
equivalences: it is often considered to be the bisimulation equivalence for true-
concurrency [52, 34]. Unlike all the other equivalences it is undecidable for
finite-state systems, in particular, for 1-safe Petri nets [53]. Only a few positive
results could be achieved for restricted classes [33].

In [30, 31], Fröschle has shown a tableau-based decision procedure for deciding
hhp-b on BPP. Later, Fröschle and Lasota [35] have given a fixpoint characteri-
zation of hhp-b on BPP. The exact computational complexity of the procedure
was not analyzed in these papers.

For hp-b, a polynomial-time algorithm follows immediately from the general
scheme when we use the algorithm from [41] for deciding classical bisimilarity
on normed BPP as a subroutine. A technically more complicated version of this
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approach was used for deciding distributed bisimilarity (and thus hp-b) on BPP
by Lasota in [59]. (A generalized version of the algorithm from [41] was also used
in [36] to show a polynomial-time algorithm deciding distributed bisimilarity on
BPPτ , an extension of BPP with synchronization on complementary actions in
CCS style.) The degree of the polynomial has not been analyzed but it seems
relatively large even when the (apparently more efficient) algorithm [49] is used.

6.2 Main Results

The main results of [1] are polynomial-time algorithms deciding hhp-b and hp-b
on BPP. The running time of the former algorithm is O(n3 logn)) and of the
latter O(n6).

The algorithms build on the ideas presented in [8] and [35] and partly in [32]
but the presentation is substantially revised, unified, and given in a new self-
contained framework. In particular, a common base of polynomial time algo-
rithms for hhp-b and hp-b was clarified: speaking informally in game terminol-
ogy, the hhp-b game as well as the hp-b game may be split into a number of
“local” games played over BPP processes of causal depth 1. This insight forms
a core ingredient of both algorithms, providing a fixpoint characterization of
hhp-b and hp-b on tree-like labelled event structures.

Both polynomial time algorithms avoid a (time-consuming) transformation of
BPP systems into the Execution Normal Form from [35].

Note also that the existence of polynomial time algorithms for deciding hp-b and
hhp-b on BPP is in contrast with PSPACE-completeness of deciding classical
bisimilarity on BPP [74, 48].

The paper [1] also gives a short proof of the following result from [32]: hhp-b
and hp-b coincide for Simple BPP (SBPP) [29]. SBPP correspond to BPP in
normal form, which represent the entire BPP class when interleaving equiva-
lences are considered; when non-interleaving equivalences are considered, they
form a strictly smaller class. Since hhp-b and hp-b do not coincide for BPP in
general, the coincidence for SBPP underlines that SBPP and BPP do behave
differently with respect to non-interleaving equivalences.

6.3 Definitions of Hp-Bisimilarity and Hhp-Bisimilarity
on BPP

In this subsection, definitions of hp-bisimilarity and hhp-bisimilarity on BPP are
described. The definitions are based on definitions of these relations on event
structures. These definitions are carried to BPP processes where correspond-
ing event structures are obtained from syntax-tree unfoldings of expressions
representing BPP processes. (Another equivalent option would be to provide
semantics of BPP processes in terms of net unfoldings as, e.g., in [31].)
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6.3.1 Hp-Bisimilarity and Hhp-Bisimilarity on Labelled Event Struc-
tures

We recall the notions of history preserving bisimilarity (hp-bisimilarity) and
hereditary history preserving bisimilarity (hhp-bisimilarity) on labelled event
structures, presenting them by means of bisimulation games. It is a variation
of definitions given in [16], [80], [53], and elsewhere.

An event structure is a tuple (E , ⊳,#) where E is a set of events, ⊳ is a partial
order on E called the causal order, and # ⊆ E×E is an irreflexive and symmetric
relation called the conflict relation. We require that {e′ | e′ ⊳ e} is finite (the
number of causes is finite for each e ∈ E), and that e#e′ and e′ ⊳ e′′ implies
e#e′′. Events e, e′ are concurrent iff none of e ⊳ e′, e′ ⊳ e, e#e′ holds. A labelled
event structure, a LES in short, is a tuple S = (E , ⊳,#,Act , lab) where (E , ⊳,#)
is an event structure, Act is a set of actions, and lab : E → Act is a labelling
function.

By a configuration (i.e., a “computation state”) of an LES S = (E , ⊳,#,Act , lab)
we mean a finite set C ⊆ E which is conflict-free, i.e., ∀e, e′ ∈ C : ¬(e#e′),
and downwards closed wrt causality, i.e., ∀e, e′ : (e ∈ C ∧ e′ ⊳ e) ⇒ e′ ∈ C.
We implicitly view a configuration as a labelled partial order, i.e., a structure
(C, ⊳, lab) where ⊳ and lab are inherited from S. We refer to these structures
when saying that two configurations C1, C2 of possibly different LESs with the
same action set Act are isomorphic. (An isomorphism f : C1 → C2 is thus a
bijection which respects the causal order and the labelling.)
There is a natural transition relation between configurations: an event e is
enabled at C if e 6∈ C and C′ = C ∪ {e} is a configuration; we then write

C
e

−→ C′.

We now define the hp-game and the hhp-game simultaneously.
The (h)hp-game between Attacker and Defender on two LESs S1, S2 with the
same action set Act is played as follows. Positions are triples (C1, f, C2) where
C1 is a configuration of S1, C2 is a configuration of S2, and f is an isomorphism
between C1 and C2. The initial position is (∅, ∅, ∅). From the current position
(C1, f, C2), a play proceeds by the following rules.

1. Attacker chooses i ∈ {1, 2} and an event ei enabled at Ci. Defender has
to respond by choosing an event e3−i which is enabled at C3−i and for
which f ′ = f ∪ {(e1, e2)} is an isomorphism between C′

1 = C1 ∪ {e1} and
C′

2 = C2 ∪ {e2} (which also entails lab(e1) = lab(e2)). The play continues
from the new position (C′

1, f
′, C′

2).

2. In the hhp-game (but not in the hp-game), Attacker may alternatively
perform a backtracking move: he chooses e ∈ C1 such that e is maximal
in C1 (wrt the respective causal order ⊳), and removes e and f(e) (which
is necessarily maximal in C2) from C1 and C2, respectively. The new
position is thus (C1−{e}, f−{(e, f(e))}, C2−{f(e)}).
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3. The play continues like this either forever, in which case Defender wins,
or until either Attacker or Defender is unable to move, in which case the
other player wins.

Two LESs S1 and S2 are hp-bisimilar (hhp-bisimilar) iff Defender has a winning
strategy in the hp- (hhp-) game on S1, S2; we write S1 ∼hp S2 (S1 ∼hhp S2).
It is straightforward to show that if S1 6∼hp S2 (S1 6∼hhp S2) then Attacker has
a winning strategy.

Remark. It is more standard to define relations ∼hp and ∼hhp as the union of
hp-bisimulations and hhp-bisimulations, respectively. However, the definitions
by games are more appropriate for proofs in [1].

We can note that ∼hhp is finer than ∼hp , i.e., S1 ∼hhp S2 implies S1 ∼hp S2,
and, in fact, it can be shown to be strictly finer.

Convention. Many later notions and results are analogous for ∼hp and ∼hhp .
We thus let h range over {hp, hhp}, and we write ∼h and the h-game when
meaning that any of ‘hp’, ‘hhp’ can be substituted for ‘h’ in a given context.

6.3.2 Hp-Bisimilarity and Hhp-Bisimilarity on BPP

Each BPP expression E can be presented by its syntax tree, denoted by stree(E):
it is a rooted tree whose nodes are labelled with elements of {0,+, ‖}∪Act∪Var .
Each node labelled by + or ‖ has two children; each node labelled by an action
has one child; and each node labelled by 0 or by a variable is a leaf.

Example 6.1 Figure 8 shows stree(E) with nodes u0, u1, . . . , u7 for expression
E = ((a.X1) ‖ (b.(X1 + (a.X2))) .

‖

a b

X1 +

X1 a

X2

u0

u1 u2

u3 u4

u5 u6

u7

Figure 8: Syntax tree for expression ((a.X1) ‖ (b.(X1 + (a.X2)))
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Given a BPP system ∆ = {Xi
def
= Ei | 1 ≤ i ≤ k}, each BPP process (E,∆)

naturally corresponds to its unfolded syntax tree, denoted by unf (E), which is
defined as the limit of the following process:

1. Start by taking a copy of the syntax tree stree(E) as the current tree CT .

2. Whenever there is a leaf u in CT labelled with variable Xi, replace the
singleton subtree u with a copy of stree(Ei). Take the result to be the
new CT .

The trees unf (E) naturally give rise to labelled event structures of special kind,
from which they inherit (hereditary) history-preserving bisimilarity and other
concepts. For convenience we treat a broader class of trees and the correspond-
ing “tree-like event structures”.

A process tree T is a (possibly infinite) rooted tree equipped with a labelling
lab : V → {0,+, ‖} ∪ Act where V is the set of nodes of T ; we stipulate the
following conditions hold:

• each node of T labeled with 0 is a leaf (it has no children);

• each node labeled with an action (element of Act) has at most one child.

A node u is called an action node iff lab(u) ∈ Act ; we refer to the set of action
nodes of T by actnodes(T ); a node v with lab(v) = + is called a choice node.

Notation for trees : Given a rooted tree T , root(T ) denotes its root. We write
u ∈ T to say that u is a node of T . By tree(u), where u ∈ T , we denote the
(full) subtree of T rooted in the node u.

By ⊳ we denote the tree-order on the nodes: v ⊳ v′ iff v lies on the path from
root(T ) to v′ ; we assume v ⊳ v. If v ⊳ v′, v 6= v′, then v is a predecessor of v′ and
v′ is a successor of v. We note that for any two nodes u1, u2 such that u1 6⊳ u2,
u2 6⊳ u1 there is a unique node v such that u1 ∈ tree(v1), u2 ∈ tree(v2) for two
different children v1, v2 of v; such v is called the closest common predecessor of
u1, u2.

For a process tree T , labelled by actions from Act , the labelled event structure
associated to T is the tuple

LES(T ) = (actnodes(T ), ⊳,#,Act, lab)

where the events are the action nodes of T , the causal order ⊳ and the labelling
lab are induced by the tree-order and the labelling in T , respectively, and the
conflict relation # on actnodes(T ) is defined as follows:

u1#u2 iff u1 6 ⊳ u2, u2 6 ⊳ u1, and the closest common predecessor of
u1, u2 is a choice node (with label +).
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The LESs associated with process trees are called the tree-like labelled event
structures.

Remark. The axioms of event structures are easily seen to be satisfied. We also
note that if two action nodes u1, u2 are concurrent (they are causally unrelated
and non-conflicting) then their closest common predecessor is labelled with ‖.

(Hereditary) history-preserving bisimilarity is naturally carried over to process
trees and BPP processes:

T1 ∼h T2 iff LES(T1) ∼h LES(T2),
E1 ∼h E2 iff LES(unf (E1)) ∼h LES(unf (E2)).

There is an example in [16] (see also [1]) of two variable-free BPP processes
E,F , where each occurrence of action is followed by ‘.0’, such that E ∼hp F

but E 6∼hhp F , which demonstrates that hhp-bisimilarity is strictly finer than
hp-bisimilarity even on a very restricted class of BPP processes.

6.4 Formulation of Problems

The main aim is to obtain efficient polynomial-time algorithms for the problems
of deciding hp- and hhp-bisimilarity on BPP processes, i.e., for the problems
specified as follows (where ∼h stands for ∼hhp or ∼hp):

Instance: BPP processes (E,∆1) and (F,∆2).

Question: Is (E,∆1) ∼h (F,∆2) ?

It is useful to note the following trivial reduction: instead of BPP processes
(E,∆1) and (F,∆2) we can take a BPP system ∆ given by the disjoint union
of ∆1 and ∆2, extended with two fresh variables X,Y and with definitions

X
def
= a.E and Y

def
= a.F for some action a, and then ask if X ∼h Y . In fact,

the algorithms provide finer answers — they partition all subexpressions in the
BPP definition ∆ wrt ∼h.

So let ∆ = {Xi
def
= Ei | 1 ≤ i ≤ k} be a BPP definition; we use Act for Act(∆).

We assume that the defining expressions E1, E2, . . . , Ek are available as a forest,
denoted by forest(∆), of k disjoint syntax trees stree(E1), stree(E2), . . . , stree(Ek)
The nodes of (the trees in) forest(∆) which are labelled by non-variable symbols
are called the nodes of BPP definition ∆:

Nodes(∆) = {α | α is a node of forest(∆) with lab(α) ∈ Act ∪ {+, ‖,0}} .

Each α ∈ Nodes(∆) naturally represents a subexpression of some defining ex-
pression Ei in ∆ (which is not a single variable); we denote this subexpression
by Eα. Every Eα can be viewed as a BPP process, and we can thus carry over
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the notions for BPP processes to Nodes(∆). In particular, we write α ∼h β

whenever Eα ∼h Eβ .

The problems bpp-hhp-bisim (where h = hhp) and bpp-hp-bisim (where h =
hp) are defined as follows:

Input: A BPP system ∆ .

Output: The partition of Nodes(∆) into equivalence classes of ∼h, denoted
by Ph(∆).

Note that Xi ∼h α where α = root(stree(Ei)). Thus the original problems
are indeed subsumed by bpp-hp-bisim and bpp-hhp-bisim though we have not
included variable occurrences in Nodes(∆).

6.5 Efficient Algorithms

The main results of [1] are polynomial time algorithms for problems bpp-hhp-

bisim and bpp-hp-bisim:

Theorem 6.2 There is an algorithm solving bpp-hhp-bisim (i.e., computing
Phhp(∆) for a given BPP system ∆) in time O(n3 logn).

Theorem 6.3 There is an algorithm solving bpp-hp-bisim (i.e., computing
Php(∆) for a given BPP system ∆) in time O(n6).

A size of instance n in these theorems is defined as follows. For a BPP ex-
pression E we let size(E) be the number of occurrences of symbols (including

parentheses). The size of a definition X
def
= E is taken to be size(E) + 2, and

the size of a BPP system ∆, denoted by size(∆), is the sum of the sizes of the
definitions in ∆.

Remark. It might be more accurate to view the size of ∆ as the number of
bits needed for a natural description of ∆ but in the complexity analysis in [1]
we use the unit cost complexity model [13], i.e., it assumes that operations like
adding two numbers with O(log n) bits (where n = size(∆)) take constant time,
so the difference does not matter.

The resulting partition Ph(∆) can be described as a fixed-point of a certain
function that partitions elements of Nodes(∆) according to depth-1 h-games,
i.e., games where Attacker is restricted to use only depth-1 event, i.e., events
that were enabled already at the start of the game.

The algorithms then can find the required fixed-point by repeatedly solving ∼h

on depth-1 trees, which are defined as follows. The depth-1 action nodes of a
process tree T are the nodes corresponding to depth-1 events in LES(T ). (Thus
all predecessors of a depth-1 action node are labelled by + or ‖.) A process tree
T is a depth-1 tree iff all action nodes of T are leaves (which also means that
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all action nodes of T are depth-1 action nodes). Note that there is no causal
dependency between (different) events in LESs associated to depth-1 trees.

In principle, the only difference between algorithms for bpp-hhp-bisim and bpp-

hp-bisim is the subroutine for computing ∼h on depth-1 trees.

In the case of bpp-hhp-bisim, this subproblem is solved by transforming depth-
1 trees to a special form, called the trivial choice free form (TCF form), and
checking if the resulting trees are isomorphic. It is proved that for each depth-1
trees T, T ′ in the TCF form holds that T ∼hhp T ′ iff T and T ′ are isomorphic.

To obtain the running time O(n3 logn), some other optimizations are used to
avoid recomputations.

In the case of bpp-hp-bisim, the subproblem can be solved by reducing it to
deciding bisimilarity on normed BPP processes [41, 49], for which polynomial
time algorithms are known.

The algorithm for bpp-hp-bisim described in [1] uses (a variant of) the algorithm
from [49] to decide ∼hp on depth-1 trees. The algorithm is based on the use
of “distance-to-disabling” functions, which were introduced in [48]. In [1], the
algorithm is specialized to the special simpler case where given BPP nets are
acyclic.

Again, some optimizations of the algorithm are used to avoid recomputations
and to obtain the running time O(n6).

The next subsection shows that for so called simple BPP the relations ∼hhp

and ∼hp coincide, and so the more efficient algorithm for bpp-hhp-bisim (with
running time O(n3 log n)) can be used to solve bpp-hp-bisim on these systems.

6.6 Simple BPP

Simple BPP processes (SBPP) [29] are BPP processes in a “Greibach” normal
form, which is usually used when (interleaving) bisimilarity is considered. (They
have been also introduced in [24], under the name BPPg.) Following [29], we
define SBPP expressions by the grammar:

P ::= X | S | P1 ‖ P2

where S stands for an initially sequential expression given by the following
grammar:

S ::= 0 | a.P | S1 + S2 .

Thus SBPP restricts the mixture of choice and parallel composition: general
summation is replaced by guarded summation. In particular, this excludes pro-
cesses such as (P1 ‖ P2) + P3.

An SBPP system ∆ is a BPP system {Xi
def
= Pi | 1 ≤ i ≤ k} where all Pi

are SBPP expressions (over Act(∆) and Var(∆)). An SBPP process is a pair
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(P,∆) where ∆ is an SBPP system and P is an SBPP expression over Act(∆)
and Var(∆).

It is proved in [1] that hp-bisimilarity coincides with hhp-bisimilarity on SBPP:

Theorem 6.4 Two SBPP processes are hp-bisimilar iff they are hhp-bisimilar.

This implies that when non-interleaving equivalences are considered, SBPP pro-
cesses form a strictly smaller class than BPP processes, since on BPP, hhp-
bisimilarity is a strictly finer relation than hp-bisimilarity.
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7 Alternating finite automata

This section presents the article [4]:

• Petr Jančar, Zdeněk Sawa: A note on emptiness for alternating fi-
nite automata with a one-letter alphabet, Information Processing Letters,
Volume 104, Issue 5, pp. 164–167, Elsevier, 2007.

7.1 Motivation and the State of the Art

One of natural problems of automata theory is checking emptiness, i.e., checking
whether the language accepted by a given automaton is empty. It is well known
that the emptiness problem is PSPACE-complete for alternating finite automata
(AFA). The PSPACE-hardness of the problem follows from the PSPACE-comple-
teness of the universality problem for nondeterministic finite automata, i.e., the
problem of checking whether a given nondeterministic automaton accepts all
words.

Holzer has shown in [44] that the emptiness problem for AFA remains PSPACE-
hard even if we consider only alternating finite automata with a one-letter al-
phabet. Let us call this problem 1L-Afa-Emptiness.

The PSPACE-hardness of 1L-Afa-Emptiness can be used in proofs of PSPACE-
hardness of some other problems. Sometimes reductions from 1L-Afa-Emptiness

can be much simpler than reductions from some other well known PSPACE-
complete problems such as quantified boolean formula or acceptance of a word
by a linear bounded automaton.

In particular, 1L-Afa-Emptiness can be useful for proving some complexity
lower bounds for model checking and equivalence checking problems. Examples
of such problems are some problems dealing with one-counter automata. The
complexity lower bounds of [72] can be strengthened by using a simple reduction
from 1L-Afa-Emptiness as Markus Lohrey pointed out during the conference
presentation of [72]. Also most of results in [6], which deal with one-counter
automata and one-counter nets can be improved from DP-hardness to PSPACE-
hardness by using 1L-Afa-Emptiness as the starting point of the reductions.
Other example of use of PSPACE-hardness of 1L-Afa-Emptiness is [76], where
Jǐŕı Srba used it to prove PSPACE-hardness of some problems concerning visibly
pushdown automata.

If one is interested in the actual proof of PSPACE-hardness of 1L-Afa-Emptiness,
it is a bit unpleasant to find that Holzer uses the emptiness problem for so called
EP0L systems [71], which was shown to be PSPACE-complete in [67], where the
proof of PSPACE-hardness (solving a long-term open question) uses a series of
reductions among several problems, one of these reductions being handled by a
reference to [26].
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7.2 Main Result

The main result of [4] is a simple direct proof of PSPACE-hardness of the prob-
lem 1L-Afa-Emptiness, i.e., the question whether a given alternating finite
automaton with a one-letter alphabet accepts an empty language.

The proof proceeds by a “master reduction,” i.e., it shows how to reduce each
problem in PSPACE directly to 1L-Afa-Emptiness. In fact, the basic idea of
the reduction was implicitly present already in the seminal paper on alterna-
tion [23]. A little adjustment of the construction could also serve to show the
PSPACE-hardness of all problems in the above mentioned series in [67].

7.3 More Detailed Description of the Result

Let us start by recalling some basic definitions concerning alternating finite
automata.

For a set X we use Bool+(X) to denote the set of (positive) boolean formulas
that only use ∧ and ∨ as boolean connectives and elements of X as variables.
By [φ]ν we denote the truth value (0 or 1) of formula φ ∈ Bool+(X) under the
boolean assignment ν : X → {0, 1}.

An alternating finite automaton (AFA) is a structure A = (Q,Σ, δ, q0, F ) where
Q is the finite set of states, Σ is the finite alphabet, δ : Q × Σ → Bool+(Q) is
the transition function, q0 is the initial state, and F ⊆ Q is the set of accepting
states.

We define the predicate Acc ⊆ Q×Σ∗ by induction on the length of the second
component; Acc(q, w) is to be read as “A starting in q accepts w.”

• Acc(q, ε) iff q ∈ F .

• Acc(q, aw) iff [δ(q, a)]ν = 1 for the boolean assignment ν satisfying
( ν(q′) = 1 ⇔ Acc(q′, w) ) for all q′ ∈ Q.

AFA A accepts the language L(A) = {w ∈ Σ∗ | Acc(q0, w)}.

When |Σ| = 1, we say that A is a 1L-AFA (1L being read “one letter”).

We are interested in the problem 1L-Afa-Emptiness:

Instance: 1L-AFA A.

Question: Is L(A) = ∅ ?

The main result of [4] is:

Theorem 7.1 1L-Afa-Emptiness is PSPACE-complete.
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The membership of the emptiness problem in PSPACE is straightforward, even
in the case of general AFA; it was shown in [51].

The PSPACE-hardness of 1L-Afa-Emptiness is proved as follows. Assume an
arbitrary problem P in PSPACE. There must exist a deterministic Turing ma-
chine M and a polynomial p(n) such that M decides P and its space complexity
is bounded by p(n) (i.e., given an instance w of P as an input, M uses at most
p(n) cells on its tape during computation on w). To prove PSPACE-hardness
of 1L-Afa-Emptiness, it is sufficient to describe an algorithm that for a given
Turing machine M , polynomial p(n), and a word w constructs 1L-AFA Aw such
that

L(Aw) 6= ∅ iff M accepts w using at most p(|w|) cells on the tape.

To be a logspace reduction from P to the (complement of) 1L-Afa-Emptiness,
it is ensured that the space complexity of the algorithm is logarithmic wrt |n|.
The algorithm can assume a fixed M and p(n).

Remark. It is not important that the algorithm reduces P to the complement
of 1L-Afa-Emptiness, because the class PSPACE is closed wrt complement
and because the same algorithm reduces the complement of P to 1L-Afa-

Emptiness (recall Observation 2.2).
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[8] Petr Jančar and Zdeněk Sawa. On distributed bisimilarity over Basic Parallel
Processes. In Proc. AVIS’05, 2005.
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[56] Antońın Kučera and Richard Mayr. Weak bisimilarity between finite-state
systems and BPA or normed BPP is decidable in polynomial time. Theo-
retical Computer Science, 270:667–700, 2002.
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– Antońın Kučera, Petr Jančar: Equivalence-checking on infinite-
state systems: Techniques and results, Theory and Practice of Logic
Programming, Volume 6, Issue 3, pp. 227–264, Cambridge University
Press, 2006.
DOI: 10.1017/S1471068406002651
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– Zdeněk Sawa, Petr Jančar: Behavioural equivalences on finite-
state systems are PTIME-hard, Computing and Informatics, Vol-
ume 24, Issue 5, pp. 513–528, Slovak Academy Sciences Inst Infor-
matics, 2005.
citation recorded in: Web of Science
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– Antońın Kučera, Petr Jančar: Equivalence-Checking with Infinite-
State Systems: Techniques and Results, SOFSEM 2002: Theory
and Practice of Informatics, LNCS 2540, pp. 41–73, Springer-Verlag,
2002.
DOI: 10.1007/3-540-36137-5 3

citation recorded in: Web of Science
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