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Abstract

We present a general method for provingDP-hardness of problems related to formal verification of one-counter
automata. For this we show a reduction of the SAT–UNSAT problem to the truth problem for a fragment of (Pres-
burger) arithmetic. The fragment contains only special formulas with one free variable, and is particularly apt for
transforming to simulation-like equivalences on one-counter automata. In this way we show that the membership
problem for any relation subsuming bisimilarity and subsumed by simulation preorder isDP-hard (even) for one-
counternets(where the counter cannot be tested for zero). We also showDP-hardness for deciding simulation
between one-counter automata and finite-state systems (in both directions), and for the model-checking problem
with one-counter nets and the branching-time temporal logic EF.
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1. Introduction

In concurrency theory, aprocess is typically defined to be a state in atransition system, which is a
triple T = (S,�,→) whereS is a set ofstates, � is a set ofactions and→⊆ S × �× S is atransition
relation. We write s

a→ t instead of(s, a, t) ∈ →, and we extend this notation in the natural way to
elements of�∗. A statet is reachable from a states, writtens →∗ t , iff s

w→ t for somew ∈ �∗.
� This paper is based on results which previously appeared in [11,15].
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The study of transition systems has a long and illustrious history in the guise of automata theory. A
great many classes of automata have been studied extensively, particularly in terms of the languages
which they describe. However, automata have found greater importance recently as process generators
rather than as language generators; they are now more often used to describe the behaviour of computing
systems rather than for describing the syntactic structure of languages.

Still, the standard classes of automata are finding their place in the study of system behaviours. For
example, context-free grammars form the basis of the Basic Process Algebra BPA of Bergstra and Klop
[3] as well as the Basic Parallel Process algebra BPP of Christensen [5]; these are both well-studied sub-
languages of the full Process Algebra PA [3]. Although most analyses in practice are carried out on finite
state system models, these wider classes of automata have found various applications. In particular, BPA
and pushdown automata (state-extended BPA) have been used for dataflow analysis of recursive proce-
dures, with particular applications to optimizing compilers [7]. This study has recently been extended to
one-counter BPA [4].

In this paper we consider processes generated byone-counter automata, nondeterministic finite-
state automata operating on a single counter variable which takes values from the setN = {0, 1, 2, . . .}.
Formally this is a tupleA = (Q,�, δ=, δ>, q0) whereQ is a finite set ofcontrol states, � is a finite set
of actions,

δ= : Q× � → P(Q× {0, 1}) and
δ> : Q× � → P(Q× {−1, 0, 1})

are transition functions (whereP(M) denotes the power-set ofM), andq0 ∈ Q is a distinguished
initial control state.δ= represents the transitions which are enabled when the counter value is zero, and
δ> represents the transitions which are enabled when the counter value is positive.A is aone-counter
net if and only if for all pairs(q, a) ∈ Q× � we have thatδ=(q, a) ⊆ δ>(q, a).

To the one-counter automatonA we associate the transition systemTA = (S,�,→), whereS =
{p(n) : p ∈ Q,n ∈ N} and→ is defined as follows:

p(n)
a→ q(n+ i) iff

{
n = 0, (q, i) ∈ δ=(p, a);or
n > 0, (q, i) ∈ δ>(p, a).

Note that any transition increments, decrements, or leaves unchanged the counter value; and a decre-
menting transition is only possible if the counter value is positive. Also observe that whenn > 0 the
immediate transitions ofp(n) do not depend on the actual value ofn. Finally note that a one-counternet
can in a sense test if its counter is nonzero (that is, it can perform some transitions only on the proviso
that its counter is nonzero), but it cannot test in any sense if its counter is zero. For ease of presentation,
we understandfinite-statesystems (corresponding to transition systems with finitely many states) to be
one-counter nets whereδ= = δ> and the counter is never changed. Thus, the parts ofTA reachable from
p(i) andp(j) are isomorphic and finite for allp ∈ Q andi, j ∈ N.

Remark 1. The class of transition systems generated by one-counter nets is the same (up to isomor-
phism) as that generated by the class of labelled Petri nets with (at most) one unbounded place. The
class of transition systems generated by one-counter automata is the same (up to isomorphism) as that
generated by the class of realtime pushdown automata (i.e. pushdown automata withoutε-transitions)
with a single stack symbol (apart from a special bottom-of-stack marker).
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Theequivalence-checkingapproach to the formal verification of concurrent systems is based on the
following scheme: the specificationS (i.e., the intended behaviour) and the actual implementationI of a
system are defined as states in transition systems, and then it is shown thatS andI areequivalent. There
are many ways to capture the notion of process equivalence (see, e.g., [23]); however,simulationand
bisimulationequivalence [19,21] are of special importance, as their accompanying theory has found its
way into many practical applications.

Given a transition systemT = (S,�,→), asimulation is a binary relationR ⊆ S × S satisfying the
following property: whenever(s, t) ∈ R,

if s
a→ s′ thent

a→ t ′ for somet ′ with (s′, t ′) ∈ R.
s is simulated by t , written s � t , iff (s, t) ∈ R for some simulationR; and s and t are simulation
equivalent, written s � t , iff s � t and t � s. The union of a family of simulation relations is clearly
itself a simulation relation; hence, the relation�, being the union of all simulation relations, is in fact
the maximal simulation relation, and is referred to as thesimulation preorder. A characteristic property
is thats � t iff the following holds: if s

a→ s′ thent
a→ t ′ for somet ′ with s′ � t ′.

A bisimulation is a symmetric simulation relation, ands andt arebisimulation equivalent, or bisim-
ilar, writtens ∼ t , if they are related by a bisimulation.

Simulations and bisimulations can also be used to relate states ofdifferenttransition systems; formal-
ly, we can consider two transition systems to be a single one by taking the disjoint union of their state
sets.

Let P andQ be classes of processes. The problem of deciding whether a given processs of P is
simulated by a given processt of Q is denoted byP � Q; similarly, the problem of deciding ifs andt
are simulation equivalent (or bisimilar) is denoted byP � Q (orP ∼ Q, respectively). The classes of all
one-counter automata, one-counter nets, and finite-state systems are denotedA, N , andF , respectively.

In themodel-checkingapproach to formal verification, one defines the desired properties of the im-
plementation as a formula in a suitable temporal logic, and then it is shown that the implementation
satisfies the formula. There are many temporal logics which can be classified according to various aspects
(see, e.g., [6,22] for an overview). The simplest (branching-time and action-based) temporal logic is
Hennessy–Milner logic (HML) [19]. The syntax is given by

� ::= true | �1 ∧ �2 | ¬� | 〈a〉�
Herea ranges over a countable alphabet of actions. Given a transition systemT = (S,�,→) and an
HML formula �, we inductively define thedenotation of �, denoted[[�]], which is the set of all states
of T where the formulaholds:

[[true]] = S

[[�1 ∧ �2]] = [[�1]] ∩ [[�2]]
[[¬�]] = S − [[�]]
[[〈a〉�]] = {s ∈ S | ∃t ∈ S : s a→ t ∧ t ∈ [[�]]}

As usual, we writes |= � instead ofs ∈ [[�]]. The operator dual to〈a〉 is [a] defined by[a]� ≡ ¬〈a〉¬�.
The other propositional connectives are introduced in the standard way.

The logic EF is obtained by extending HML with the♦ (reachability) operator. Its semantics is defined
as follows:
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[[♦�]] = {s ∈ S | ∃t ∈ S : s →∗ t ∧ t ∈ [[�]]}

The formula♦� can be phrased “thereExists aFuture state such that� holds”; this justifies the “EF”
acronym. The dual operator to♦ is �, defined by�� ≡ ¬♦¬�. The logic EF can also be seen as a
natural fragment of CTL [6].

The state of the art.TheN � N problem was first considered in [1], where it was shown that if
two one-counter net processes are related bysomesimulation, then they are also related by a semilinear
simulation (i.e. a simulation definable in Presburger arithmetic), which suffices for semidecidability
of the positive subcase, and hence decidability (the negative subcase being semidecidable by standard
arguments.) A simpler proof was given later in [12] by employing certain “geometric” techniques which
allow you to conclude that the simulation preorder (over a given one-counter net) is itself semilinear.
Moreover, it was shown there that theA � A problem is undecidable. The decidability of theA ∼ A
problem was demonstrated in [8] by showing that the greatest bisimulation relation over the states of a
given one-counter automaton is also semilinear. The relationship between simulation and bisimulation
problems for processes of one-counter automata has been studied in [10] where it was shown that one
can effectively reduce certain simulation problems to their bisimulation counterparts by applying a tech-
nique proposed in [16]. The complexity of bisimilarity-checking with one-counter automata was studied
in [14], where the problemN ∼ N is shown to becoNP-hard and the problem ofweakbisimilarity [19]
betweenN andF processes evenDP-hard; moreover, the problemA ∼ F was shown to be solvable in
polynomial time. Complexity bounds for simulation-checking were given in [15], where it was shown
that the problemsN � F andF � N (and thus alsoN � F) are inP, while A � F andA � F are
coNP-hard (and solvable in exponential time). As for model-checking, we can transfer upper complexity
bounds from the results which were achieved forpushdown processes, becauseA can be seen as a
(proper) subclass of pushdown automata (cf. Remark 1). Hence, model-checking with logics like EF,
CTL, CTL∗ [6], or even the modal�-calculus [13], is decidable in exponential time for one-counter
automata processes [24]. However, the techniques for lower complexity bounds do not carry over toA.
Another simple observation is that model-checking for HML andA processes is inP. This is because
the (in)validity of a given HML formula� in a states depends only on those states which are reachable
from s along a path consisting of at mostd transitions, whered is the nesting depth of the〈a〉 operator
in �. Since the number of states which are reachable from a given one-counter automata processp(i)

is clearly polynomial ind and the size of the underlying one-counter automaton, we can easily design
a polynomial time model-checking algorithm. (It contrasts with other models like BPA or BPP where
model-checking HML isPSPACE-complete [17].)

Our contribution.We generalize the technique used in [14] for establishing lower complexity bounds
for certain equivalence-checking problems, and present a general method for showingDP-hardness of
equivalence-checking and model-checking problems for one-counter automata. (The classDP [20] con-
sists of those languages which are expressible as a difference of two languages fromNP, and is generally
conjectured to be larger than the union ofNP andcoNP. Section 2.2 contains further comments onDP.)
The “generic part” of the method is presented in Section 2, where we define a simple fragment of
Presburger arithmetic, denoted OCL (“One-Counter Logic”) which is
• sufficiently powerful so that satisfiability and unsatisfiability of boolean formulas are both polynomi-

ally reducible to the problem of deciding the truth of formulas of OCL, which implies that this latter
problem isDP-hard (Theorem 3); yet
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• sufficiently simple so that the problem of deciding the truth of OCL formulas is polynomially reduc-
ible to various equivalence-checking and model-checking problems (thus providing the “application
part” of the proposed method). The reduction is typically constructed inductively on the structure of
OCL formulas, thus making the proofs readable and easily verified.
In Section 3.1 we apply the method to theN ↔ N problem where↔ is any relation which subsumes

bisimilarity and is subsumed by simulation preorder (thus, besides bisimilarity and simulation equiva-
lence also, e.g., ready simulation equivalence or 2-nested simulation equivalence), showingDP-hardness
of these problems (Theorem 6). In particular, we improve thecoNP lower bound for theN ∼ N problem
established in [14]. In Section 3.2 we concentrate on simulation problems between one-counter and fi-
nite-state automata, and prove thatA � F ,F � A, andA � F are allDP-hard (Theorem 8). Section 3.3
is devoted to the complexity of model-checking with one-counter processes. As already mentioned, the
model-checking problem for HML and one-counter automata processes is inP. We show that model-
checking with the logic EF is already intractable: it isDP-hard even for processes of one-counter nets
and afixedEF formula (Theorem 11). In practice, temporal formulas are usually quite small; hence, the
fact that the EF formula can be fixed provides stronger evidence of computational intractability. Finally,
in Section 4 we draw some conclusions and present a detailed summary of known results.

2. The OCL fragment of arithmetic

In this section, we introduce a fragment of (Presburger) arithmetic, denoted OCL (“One-Counter
Logic”). We then show how to encode the problems of satisfiability and unsatisfiability of boolean
formulas in OCL, and thus deduceDP-hardness of the truth problem for (closed formulas of) OCL. (The
name of the language is motivated by a relationship to one-counter automata which will be explored in
the next section.)

2.1. Definition of OCL

OCL can be viewed as a certain set of first-order arithmetic formulas. We shall briefly give the syntax
of these formulas; the semantics will be obvious. Since we only consider the interpretation of OCL
formulas in the standard structure of natural numbersN, the problem of deciding the truth of a closed
OCL formula is well defined:

Problem. TRUTHOCL

INSTANCE: A closed formulaQ ∈ OCL.

QUESTION: IsQ true ?

Let x andy range over (first-order)variables. A formulaQ ∈ OCL can have at most one free variable
x (i.e., outside the scope of quantifiers); we shall writeQ(x) to indicate the free variable (if there is one)
of Q; that is,Q(x) either has the one free variablex, or no free variables at all.

For a numberk ∈ N, we let�k� stand for a special term denotingk which we can think of as a unary
representation ofk. In this way, we require that the size of the representation�k� of a numberk be on
the order ofk rather than lnk.
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The formulasQ of OCL are defined inductively as follows; at the same time we inductively define
their size (keeping in mind the unary representation of�k�):

Q size(Q)

(a) x = 0 1
(b) �k� | x (“k dividesx”; k>0) k+1
(c) �k� � x (“k does not dividex”; k>0) k+1
(d) Q1(x) ∧Q2(x) size(Q1)+ size(Q2)+ 1
(e) Q1(x) ∨Q2(x) size(Q1)+ size(Q2)+ 1
(f) ∃y � x : Q′(y) (x andy distinct) size(Q′)+ 1
(g) ∀x : Q′(x) size(Q′)+ 1

We shall need to consider the truth value of a formulaQ(x) in a valuation assigning a numbern ∈ N
to the (possibly) free variablex; this is given by the formulaQ[n/x] obtained by replacing each free
occurrence of the variablex inQ byn. Slightly abusing notation, we shall denote this byQ(n). (Symbols
like i, j, k, n range over natural numbers, not variables.) For example, ifQ(x) is the formula∃y � x :
((3 | y) ∧ (2 � y)), thenQ(5) is true whileQ(2) is false; and ifQ(x) is a closed formula, then the truth
value ofQ(n) is independent ofn.

2.2. DP-hardness of TRUTHOCL

Recall the following problem:

Problem. SAT–UNSAT

INSTANCE: A pair (ϕ, ψ) of boolean formulas in conjunctive normal form (CNF).

QUESTION: Is it the case thatϕ is satisfiable whileψ is unsatisfiable ?

This problem isDP-complete, which corresponds to an intermediate level in the polynomial hierarchy,
harder than both�p1 and�p

1 but still contained in�p2 and�P
2 (cf., e.g., [20]). Our aim here is to show that

SAT–UNSAT is polynomial-time reducible to TRUTHOCL . In particular, we show how, given a boolean
formulaϕ in CNF, we can in polynomial time construct a (closed) formula of OCL which claims thatϕ

is satisfiable, and also a formula of OCL which claims thatϕ is unsatisfiable (Theorem 3).
First we introduce some notation. LetVar(ϕ) = {x1, . . . , xm} denote the set of (boolean) variables in

ϕ. Furthermore, letπj (for j�1) denote thej th prime number. For everyn ∈ N define the assignment
νn : Var(ϕ)→ {true, false} by

νn(xj ) =
{

true, if πj | n,
false, otherwise.

Note that for an arbitrary assignmentν there exists ann ∈ N such thatνn = ν; it suffices to take
n = �{πj : 1�j�m andν(xj )=true}. By ‖ϕ‖ν we denote the truth value ofϕ under the assignmentν.

Lemma 2. There is a polynomial-time algorithm which, given a boolean formulaϕ in CNF, constructs
OCL-formulasQϕ(x) andQϕ(x) such that both size(Qϕ) and size(Qϕ) are inO(|ϕ|3), and such that
for everyn ∈ N

Qϕ(n) is true iffQϕ(n) is false iff‖ϕ‖νn = true.
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Proof. Let Var(ϕ) = {x1, . . . , xm}. Given a literal$ (that is, a variablexj or its negationxj ), define the
OCL-formulaQ$(x) as follows:

Qxj (x) = �πj� | x andQxj (x) = �πj� � x.

Clearly,Q$(n) is true iff Q$(n) is false iff ‖$‖νn = true.
• FormulaQϕ(x) is obtained fromϕ by replacing each literal$ with Q$(x).

It is clear thatQϕ(n) is true iff ‖ϕ‖νn = true.
• FormulaQϕ(x) is obtained fromϕ by replacing each∧, ∨, and$ with ∨, ∧, andQ$(x), respectively.

It is readily seen thatQϕ(n) is true iff ‖ϕ‖νn = false.
It remains to evaluate the size ofQϕ andQϕ . Here we use a well-known fact from number theory
(cf., e.g., [2]) which says thatπm is in O(m2). Hencesize(Q$) is in O(|ϕ|2) for every literal$ of ϕ. As
there areO(|ϕ|) literal occurrences andO(|ϕ|) boolean connectives inϕ, we can see thatsize(Qϕ) and
size(Qϕ) are indeed inO(|ϕ|3). �

We now come to the main result of the section.

Theorem 3. Problem SAT-UNSAT is reducible in polynomial time toTRUTHOCL. Therefore,
TRUTHOCL is DP-hard.

Proof. We give a polynomial-time algorithm which, given an instance(ϕ, ψ) of SAT–UNSAT, con-
structs a closed OCL-formulaQ, with size(Q) in O(|ϕ|3+ |ψ |3), such thatQ is true iff ϕ is satisfiable
andψ is unsatisfiable.

Expressing the unsatisfiability ofψ is straightforward: by Lemma 2,ψ is unsatisfiable iff the OCL-
formula

∀x : Qψ(x)

is true. Thus, letQ2 be this formula.
Expressing the satisfiability ofϕ is rather more involved. Letg = π1π2 · · ·πm, whereVar(ϕ) =

{x1, . . . , xm}. Clearly,ϕ is satisfiable iff there is somen � g such that‖ϕ‖νn = true. Henceϕ is sat-
isfiable iff the OCL-formula∃y � x : Qϕ(y) is true for any valuation assigning somei � g to x.

As it stands, it is unclear how this might be expressed; however, we can observe that the equivalence
still holds if we replace the condition “i � g” with “ i is a positive multiple ofg”. In other words,ϕ is
satisfiable iff for everyi ∈ N we have that eitheri = 0, org � i, or there is somen � i such thatQϕ(n)

is true. This can be written as

∀x : x = 0 ∨ (�π1� � x ∨ · · · ∨ �πm� � x) ∨ ∃y � x : Qϕ(y)

We thus letQ1 be this formula.
Hence,(ϕ, ψ) is a positive instance of the SAT–UNSAT problem iff the formula

Q = Q1 ∧Q2

is true. To finish the proof, we observe thatsize(Q) is indeed inO(|ϕ|3+ |ψ |3). �
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2.3. TRUTHOCL is in�p

2

The conclusions we draw for our verification problems are that they areDP-hard, as we reduce the
DP-hard problem TRUTHOCL to them. We cannot improve this lower bound by much using the reduc-
tion from TRUTHOCL , as TRUTHOCL is in �p

2 . In this section we sketch the ideas of a proof of this
fact.

Theorem 4. TRUTHOCL is in �p

2 .

Proof. We start by first proving that for every formulaQ(x) of OCL there is ad with 0< d �
2size(Q) such thatQ(i) = Q(i − d) for every i > 2size(Q). Hence,∀x : Q(x) holds iff ∀x � 2size(Q) :
Q(x) holds. (Note that∀x � 2size(Q) : Q(x) is not a formula of OCL.)

We prove the existence ofd for every formulaQ(x) by induction on the structure ofQ(x). If Q(x) is
x = 0 then we can taked = 1; and ifQ(x) is �k� | x or �k� � x then we can taked = k.

If Q(x) is Q1(x) ∧Q2(x) or Q1(x) ∨Q2(x), then we may assume by the induction hypothesis the
existence of the relevantd1 forQ1 andd2 forQ2. We can then taked = d1d2 to give the desired property
thatQ(i) = Q(i − d) for everyi > 2size(Q).

If Q(x) is ∃y � x : Q′(y) (x and y distinct) then by the induction hypothesis there is ad ′ with
0< d ′ � 2size(Q′) such thatQ′(i) = Q′(i − d ′) for everyi > 2size(Q′). It follows that ifQ′(i) is true for
somei, then it is true for somei � 2size(Q′) < 2size(Q) (recall thatsize(Q) = size(Q′)+ 1). Furthermore,
if Q′(i) is true for somei thenQ(j) is true for everyj � i; on the other hand, ifQ′(i) is false for every
i, thenQ(j) is false for everyj . Thus we can taked = 1.

If Q(x) is ∀y : Q′(y), thenx is not free inQ′(y), so the truth value ofQ(i) does not depend oni and
we can taked = 1.

Next we note that every OCL-formulaQ(x) can be transformed into a formulâQ(x) (which need not
be in OCL) in (pseudo-)prenex form

(∀x1 � 2size(Q1)) · · · (∀xk � 2size(Qk))

(∃y1 � z1) · · · (∃y$ � z$)F(x1, . . . , xk, y1, . . . , y$)

where
• ∀xi : Qi(xi) is a subformula ofQ(x);
• eachzi ∈ {x1, . . . , xk, y1, . . . , yi−1}; and
• F(x1, . . . , xk, y1, . . . , y$) is a∧,∨-combination of atomic subformulas ofQ(x).

This can be proved by induction on the structure ofQ(x). The only case requiring some care is
the case whenQ(x) is of the form∃y � x : Q′(y), because∃y∀z : P(y, z) and∀z∃y : P(y, z) are not
equivalent in general, but they are in our case, asz never depends ony due to restrictions in OCL.
Note that the size of̂Q(x) is polynomial insize(Q) (assuming that 2size(Q1), . . . ,2size(Qk) are encoded
in binary).

We can construct an alternating Turing machine which first uses its universal states to assign all possi-
ble values (bounded as mentioned above) tox1, . . . , xk, then uses its existential states to assign all possi-
ble values toy1, . . . , y$, and finally evaluates (deterministically) the formulaF(x1, . . . , xk, y1, . . . , y$).
It is clear that this alternating Turing machine can be constructed so that it works in time which is
polynomial insize(Q). This implies the membership of TRUTHOCL in �p

2 . �
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3. Application to one-counter automata problems

As we mentioned above, the language OCL was designed with one-counter automata in mind. The
problem TRUTHOCL can be relatively smoothly reduced to various verification problems for such auto-
mata, by providing relevant constructions (“implementations”) for the various cases (a)-(g) of the OCL
definition, and thus it constitutes a useful tool for proving lower complexity bounds (DP-hardness) for
these problems. We shall demonstrate this for theN ↔ N problem, where↔ is any relation satisfy-
ing that∼ ⊆ ↔ ⊆ �, and then also for theA � F , F � A, andA � F problems, and finally for the
problem of model checking for the logic EF overN processes.

For the purposes of our proofs, we adopt a “graphical” representation of one-counter automata as
finite graphs with two kinds of edges (solid and dashed ones) which are labelled by pairs of the form
(a, i) ∈ �× {−1, 0, 1}; instead of(a,−1), (a, 1), and(a, 0) we write simply−a, +a, anda, respec-
tively. A solid edge fromp to q labelled by(a, i) indicates that the represented one-counter automaton
can make a transitionp(n)

a→ q(n+ i) wheneveri � 0 or n > 0. A dashededge fromp to q labelled
by (a, i) (wherei must not be−1) represents a zero-transitionp(0)

a→ q(i). Hence, graphs representing
one-counter nets do not contain any dashed edges, and graphs corresponding to finite-state systems use
only labels of the form(a, 0) (remember that finite-state systems are formally understood as special
one-counter nets). Also observe that the graphs cannot represent non-decrementing transitions which
are enabledonly for positive counter values; this does not matter since we do not need such transitions
in our proofs. The distinguished initial control states are indicated by black circles.

3.1. Results for one-counter nets

In this section we show that, for any relation↔ satisfying∼ ⊆ ↔ ⊆ �, the problem of deciding
whether two (states of) one-counter nets are in↔ is DP-hard. We first state an important technical
result, but defer its proof until after we derive the desired theorem as a corollary.

Proposition 5. There is an algorithm which, given a formulaQ = Q(x) ∈ OCL as input, halts after
O(size(Q)) steps and outputs a one-counter net with two distinguished control statesp andp′ such that
for everyn ∈ N we have:
• if Q(n) is true thenp(n) ∼ p′(n);
• if Q(n) is false thenp(n) $� p′(n).
(Note that ifQ is a closed formula, then this implies thatp(0) ∼ p′(0) if Q is true, andp(0) $� p′(0)

if Q is false.)

Theorem 6. For any relation↔ such that∼ ⊆ ↔ ⊆ �, the following problem isDP-hard:
INSTANCE: A one-counter net with two distinguished control statesp andp′.
QUESTION: Is p(0) ↔ p′(0) ?

Proof. Given an instance of TRUTHOCL , i.e., aclosedformulaQ ∈ OCL, we use the (polynomial-
time) algorithm of Proposition 5 to construct a one-counter net with the two distinguished control states
p andp′. If Q is true, thenp(0) ∼ p′(0), and hencep(0)↔ p′(0); and ifQ is false, thenp(0) $� p′(0),
and hencep(0) $↔ p′(0). �
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Proof of Proposition 5. We proceed by induction on the structure ofQ. For each case, we construct an
implementation, i.e., a corresponding one-counter netNQ with two distinguished control statesp and
p′. In each case we demonstrate that the two bi-implications

p(n) � p′(n) ⇐⇒ Q(n) ⇐⇒ p(n) ∼ p′(n)
hold for eachn ∈ N. (We are only required to prove implications for Proposition 5; however, the stronger
bi-implications arise with no added difficulty.)

Constructions are sketched by figures which use our notational conventions; the distinguished control
states are denoted by black dots (the left onep, the right onep′). It is worth noting that we only use two
actions,a andb, in our constructions.

(a) Q(x) = (x = 0): The following provides a suitable construction:

That this construction suffices is readily verified:
p(n) � p′(n) ⇐⇒ n = 0 ⇐⇒ p(n) ∼ p′(n).

(b,c) Q(x) = �k� | x or Q(x) = �k� � x, wherek>0: Given J ⊆ {0, 1, 2, . . . , k−1}, let RJ (x) =
((xmodk) ∈ J ). We shall show that the formulaRJ (x) has an associated implementation in our
sense; takingJ = {0} then gives us the construction for case (b), and takingJ = {1, . . . , k−1}
gives us the construction for case (c).
An implementation forRJ (x), where for the point of illustration we have 1, 2 ∈ J but 0, 3, k−1 $∈
J , looks as follows:

In this picture, each nodeqi has an outgoing edge leading to a “dead” state; this edge is labelledb

if i ∈ J and labelled−b if i $∈ J . It is straightforward to check that the proposed implementation
for RJ (x) is indeed correct:

p(n) � p′(n) ⇐⇒ (nmodk) ∈ J ⇐⇒ p(n) ∼ p′(n).
(d) Q(x) = Q1(x) ∧Q2(x): We can assume by induction that implementationsNQ1 andNQ2 for

Q1(x) andQ2(x), respectively, have been constructed.NQ is then constructed fromNQ1 andNQ2

as follows:
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The dotted rectangles represent the graphs associated toNQ1 andNQ2 (only the distinguished
control states are depicted). Verifying the correctness of this construction is straightforward:

p(n) � p′(n) ⇐⇒ pQ1(n) � p′Q1
(n) ∧ pQ2(n) � p′Q2

(n)
induction⇐⇒ Q1(n) ∧Q2(n) = Q(n)
induction⇐⇒ pQ1(n) ∼ p′Q1

(n) ∧ pQ2(n) ∼ p′Q2
(n)

⇐⇒ p(n) ∼ p′(n)
(e) Q(x) = Q1(x) ∨Q2(x): As in case (d), the construction uses the inductively assumed implemen-

tations forQ1(x) andQ2(x); but the situation is slightly more involved in this case:

In this construction,p andp′ are identical apart from the transitionp
a→ p0. Thus, to show either

p(n) � p′(n) or p(n) ∼ p′(n) it is necessary and sufficient to show that the transitionp(n)
a→

p0(n) can be matched either byp′(n) a→ p1(n) (which in turn is true iff the transitionp0(n)
a→

pQ1(n) can be matched by the transitionp1(n)
a→ p′Q1

(n)), or byp′(n) a→ p2(n) (which in turn

is true iff the transitionp0(n)
b→ pQ2(n) can be matched by the transitionp2(n)

b→ p′Q2
(n)). If

Q1(n) is true then the transitionp′(n) a→ p1(n) works, and ifQ2(n) is true then the transition
p′(n) a→ p2(n) works; if neither is true (that is,Q(n) is false) then neither transition works.
This reasoning underlies the following argument.

p(n) � p′(n) ⇐⇒ p0(n) � p1(n) ∨ p0(n) � p2(n)

⇐⇒ pQ1(n) � p′Q1
(n) ∨ pQ2(n) � p′Q2

(n)
induction⇐⇒ Q1(n) ∨Q2(n) = Q(n)
induction⇐⇒ pQ1(n) ∼ p′Q1

(n) ∨ pQ2(n) ∼ p′Q2
(n)

⇐⇒ p0(n) ∼ p1(n) ∨ p0(n) ∼ p2(n)

⇐⇒ p(n) ∼ p′(n)
(f) Q(x) = ∃y � x : Q1(y) (wherex, y are distinct): We use the following construction involving

the inductively assumed implementation forQ1(x):
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In this construction,p andp′ are identical apart from the transitionp
a→ p0. Thus, to show either

p(n) � p′(n) or p(n) ∼ p′(n) it is necessary and sufficient to show that the transitionp(n)
a→

p0(n) can be matched either byp′(n) a→ p1(n−1) (which in turn is true iff the transitionp0(n)
a→

p(n−1) can be matched by the transitionp1(n−1)
a→ p′(n−1)), or byp′(n) a→ p2(n) (which in

turn is true iff the transitionp0(n)
b→ pQ1(n) can be matched by the transitionp2(n)

b→ p′Q1
(n)).

If Q1(n) is true then the transitionp′(n) a→ p2(n) works, and ifQ1(i) is true for somei < n

then the transitionp′(n) a→ p1(n−1) works; if neither is true (that is,Q(n) is false) then neither
transition works.
This reasoning underlies the following argument, which is carried out by a further induction on
n ∈ N; that is, in the case wheren > 0 we assume thatp(n−1) � p′(n−1) ⇐⇒ Q(n−1) ⇐⇒
p(n−1) ∼ p′(n−1).

p(n) � p′(n) ⇐⇒
(
n>0 ∧ p0(n) � p1(n−1)

)
∨ p0(n) � p2(n)

⇐⇒
(
n>0 ∧ p(n−1) � p′(n−1)

)
∨ pQ1(n) � p′Q1

(n)

induction⇐⇒
(
n>0 ∧ ∃y � n−1 : Q1(y)

)
∨Q1(n) = Q(n)

induction⇐⇒
(
n>0 ∧ p(n−1) ∼ p′(n−1)

)
∨ pQ1(n) ∼ p′Q1

(n)

⇐⇒
(
n>0 ∧ p0(n) ∼ p1(n−1)

)
∨ p0(n) ∼ p2(n)

⇐⇒ p(n) ∼ p′(n)

(g) Q = ∀x : Q1(x): The following provides a suitable construction involving the inductively
assumed implementation forQ1(x):

That this construction suffices is readily verified:

p(n) � p′(n) ⇐⇒ ∀x : pQ1(x) � p′Q1
(x)

induction⇐⇒ ∀x : Q1(x) = Q(n)
induction⇐⇒ ∀x : pQ1(x) ∼ p′Q1

(x)

⇐⇒ p(n) ∼ p′(n)

For anyQ ∈ OCL, the described construction terminates afterO(size(Q)) steps, because we add only
a constant number of new nodes in each subcase except for (b) and (c), where we addO(k) new nodes
(recall that the size of�k� is k + 1). �
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3.2. Simulation problems for one-counter automata and finite-state systems

Now we establishDP-hardness of theA � F , F � A, andA � F problems. Again, we use the
(inductively defined) reduction from TRUTHOCL ; only the particular constructions are now slightly
different.

By an implementationwe now mean a 4-tuple(A, F, F ′, A′) whereA,A′ are one-counter automata,
andF,F ′ are finite-state systems; the role of distinguished states is now played by the initial states,
denotedq for A, f for F , f ′ for F ′, andq ′ for A′. We again first state an important technical result, and
again defer its proof until after we derive the desired theorem as a corollary.

Proposition 7. There is an algorithm which, givenQ = Q(x) ∈ OCL as input, halts afterO(size(Q))
steps and outputs an implementation(A, F, F ′, A′) (whereq, f , f ′, andq ′ are the initial control states
ofA, F , F ′, andA′, respectively) such that for everyn ∈ N we have:

Q(n) is true iffq(n) � f iff f ′ � q ′(n).

(Note that ifQ is a closed formula, then this implies thatQ is true iff q(0) � f iff f ′ � q ′(0).)

Theorem 8. ProblemsA � F, F � A, andA � F are DP-hard.

Proof. Recalling that TRUTHOCL is DP-hard,DP-hardness of the first two problems readily follows
from Proposition 7.

DP-hardness of the third problem follows from a simple (general) reduction ofA � F to A � F :
given a one-counter automatonA with initial stateq, and a finite-state systemF with initial statef , we
first transformF to F1 by adding a new statef1 and transitionf1

a→ f , and then createA1 by taking
(disjoint) union ofA, F1 and addingf1

a→ q, wheref1 is the copy off1 in A1. Clearlyq(n) � f iff
f1(n) � f1. �

Proof of Proposition 7. We proceed by induction on the structure ofQ. For each case, we construct an
implementation(A, F, F ′, A′) with distinguished statesq, f , f ′ andq ′, respectively. In each case we
demonstrate that the two bi-implications

q(n) � f ⇐⇒ Q(n) ⇐⇒ f ′ � q ′(n)
hold for eachn ∈ N. In the constructions we use only two actions,a andb; this means that a state with
non-decreasinga andb loops isuniversal, i.e., it can simulate every state.

(a) Q = (x = 0): A straightforward implementation looks as follows:

The validity of this implementation is readily verified:

q(n) � f ⇐⇒ n = 0 ⇐⇒ f ′ � q ′(n)
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(b,c) Q = �k� | x or Q = �k� � x, wherek>0: GivenJ ⊆ {0, 1, 2, . . . , k−1}, let RJ (x) = ((xmod
k) ∈ J ). We shall show that the formulaRJ (x) has an associated implementation in our sense;
takingJ = {0} then gives us the construction for case (b), and takingJ = {1, . . . , k−1} gives us
the construction for case (c).
An implementation forRJ (x), where for the point of illustration we have 1, 2 ∈ J but 0, 3, k−1
$∈ J , looks as follows:

In this picture, nodefi has ab-loop in F , and nodeqi has an outgoing dasheda-edge inA′, iff
i ∈ J . It is straightforward to check that the proposed implementation forRJ (x) is indeed correct:

q(n) � f ⇐⇒ (nmodk) ∈ J ⇐⇒ f ′ � q ′(n)
(d) Q(x) = Q1(x) ∧Q2(x): The elements of the implementation(AQ, FQ, F ′Q,A′Q) for Q can be

constructed from the respective elements of the implementations forQ1, Q2 (assumed by induc-
tion):AQ fromAQ1 andAQ2; FQ from FQ1 andFQ2; F ′Q from F ′Q1

andF ′Q2
; andA′Q fromA′Q1

andA′Q2
. All these cases follow the schema depicted in the following figure:

Verifying the correctness of this construction is straightforward:

q(n) � f ⇐⇒ qQ1(n) � fQ1 ∧ qQ2(n) � fQ2
induction⇐⇒ Q1(n) ∧Q2(n) = Q(n)
induction⇐⇒ f ′Q1

� q ′Q1
(n) ∧ f ′Q2

� q ′Q2
(n)

⇐⇒ f ′ � q ′(n)
(e) Q(x) = Q1(x) ∨Q2(x): As in case (d), the constructions use the inductively assumed implemen-

tations forQ1(x) andQ2(x); they are as follows:
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Verifying the correctness of this construction is straightforward:

q(n) � f ⇐⇒ q1(n) � f1 ∨ q1(n) � f2
⇐⇒ qQ1(n) � fQ1 ∨ qQ2(n) � fQ2
induction⇐⇒ Q1(n) ∨Q2(n) = Q(n)
induction⇐⇒ f ′Q1

� q ′Q1
(n) ∨ f ′Q2

� q ′Q2
(n)

⇐⇒ f ′1 � q ′1(n) ∨ f ′1 � q ′2(n)⇐⇒ f ′ � q ′(n)

(f) Q(x) = ∃y � x : Q1(y) (wherex, y are distinct): We use the following constructions involving
the inductively assumed implementations forQ1(x):

We demonstrate the validity of this construction using a further induction onn ∈ N; that is, in the
case wheren > 0 we assume thatq(n−1) � f ⇐⇒ Q(n−1) ⇐⇒ f ′ � q ′(n−1).

q(n) � f ⇐⇒ q0(n) � f1 ∨ q0(n) � f2

⇐⇒
(
n>0 ∧ q(n−1) � f

)
∨ qQ1(n) � fQ1

induction⇐⇒
(
n>0 ∧ ∃y � n−1 : Q1(y)

)
∨Q1(n) = Q(n)

induction⇐⇒
(
n>0 ∧ f ′ � q ′(n−1)

)
∨ f ′Q1

� q ′Q1
(n)

⇐⇒
(
n>0 ∧ f ′1 � q ′1(n−1)

)
∨ f ′1 � q ′2(n)

⇐⇒ f ′ � q ′(n)

(g) Q = ∀x : Q1(x): The following provides a suitable construction involving the inductively
assumed implementations forQ1(x):
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That this construction suffices is readily verified:

q(n) � f ⇐⇒ ∀x : qQ1(x) � fQ1
induction⇐⇒ ∀x : Q1(x) = Q(n)
induction⇐⇒ ∀x : f ′Q1

� q ′Q1
(x)

⇐⇒ f ′ � q ′(n)
For anyQ ∈ OCL, the described construction terminates afterO(size(Q)) steps, because we add
only a constant number of new nodes in each subcase except for (b) and (c), where we addO(k)
new nodes. �

3.3. Model-checking the logic EF for one-counter nets

We prove that the model-checking problem for the logic EF andN processes isDP-hard, even for a
fixed EF formula. We start with the following proposition:

Proposition 9. There is an algorithm which, givenQ = Q(x) ∈ OCL as input, halts afterO(size(Q))
steps and outputs a one-counter net with a distinguished stateq and an EF formula�Q such that for
everyk ∈ N we have:

Q(k) is true iffq(k) |= �Q.

The constructed EF formula�Q is not yet fixed; actually, it is not clear if the proof of Proposition 9 can
be modified so that it returns the same EF formula for everyQ ∈ OCL. However, it is quite straightfor-
ward to modify the construction so that it produces the same EF formula for all thoseQ ∈ OCL which
can be obtained by applying the construction of (the proof of) Theorem 3 to some instance(ϕ, ψ) of
SAT–UNSAT . Thus we obtain

Proposition 10. Let Q be an OCL formula which can be obtained by applying the construction of
Theorem3. There is a(fixed) EF formula� and an algorithm which, givenQ on input, halts after
O(size(Q)) steps and outputs a one-counter net with a distinguished stateq such that for everyn ∈ N
we have:

Q(n) is true iffq(n) |= �.

Theorem 11. The model-checking problem for the logic EF andN processes isDP-hard, even for a
fixed EF formula.

Proof of Proposition 9. We proceed by induction on the structure ofQ. All steps are easy to verify and
do not require detailed comments.

(a) Q = (x = 0):
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(b,c) Q = �k� | x or Q = �k� � x, wherek>0:

(d,e) Q(x) = Q1(x) ∧Q2(x) or Q(x) = Q1(x) ∨Q2(x)

(f) Q(x) = ∃y � x : Q1(y) (wherex, y are distinct):

Herec is a fresh (i.e., previously unused) action.
(g) Q = ∀x : Q1(x):

Again,c is a fresh action. �

Proof of Proposition 10. Note that the algorithm of Theorem 3 produces OCL formulas with an “almost
fixed”structure: foragiven instance(ϕ, ψ)ofSAT–UNSAT, itbasicallyplugstheϕandψ (inaslightlymod-
ified form) into a fixed template. Therefore, we just need to modify the steps (d,e) of the previous algorithm.
(d,e) (i) Q(x) = ∨u

i=1Pi(x) ∨
∨v
j=1Nj(x) whereu+ v � 2, and everyPi andNj is of the form

�ki� | x and�k′j� � x, respectively.
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Here�P = ♦[b]falseand�N = �〈b〉true are the (fixed) formulas constructed forPi(x) and
Nj(x), respectively. Also note that if, e.g.,u = 0, then the nodeq in the above graph has no
a-successors, but the formula�Q keeps its form.

(ii) Q(x) = ∧u
i=1Pi(x) ∧

∧v
j=1Nj(x) whereu+ v � 2, and everyPi andNj is of the form

�ki� | x and�k′j� � x, respectively. We construct the same net as in (i) and put�Q = [a]�P ∧
[b]�N .

(iii) Q(x) = R1(x) ∨ · · · ∨ Rm(x) wherem � 2 and everyRi(x) is a conjunction of the form
discussed in (ii).

Here�R = [a]�P ∧ [b]�N is the (fixed) formula constructed forRi(x).
(iv) Q(x) = R1(x) ∧ · · · ∧ Rm(x) wherem � 2 and everyRi(x) is a disjunction of the form dis-

cussed in (i). We construct the same net as in (iii) and put�Q = [a]�R where�R = 〈a〉�P ∨
〈b〉�N is the (fixed) formula constructed forRi(x).

4. Conclusions

Intuitively, the reason why we could not lift theDP lower bound to some higher complexity class (e.g.,
PSPACE) is that there is no apparent way to implement a “step-wise guessing” of assignments which
would allow us to encode, e.g., the QBF problem. The difficulty is that if we modify the counter value,
we were not able to find a way to check that the old and new values encode “compatible” assignments
which agree on a certain subset of propositional constants. Each such attempt resulted in an exponential
blow-up in the number of control states.

Known results about equivalence-checking with one-counter automata are summarized in the fol-
lowing table where rows correspond to different equivalences, respectively, preorders, (≈ denotes weak
bisimilarity) and columns correspond to different pairs of checked systems.

A↔ A N ↔ N A↔ F N ↔ F
∼ decidable [8] decidable [8] inP [14] in P [14]

DP-hard DP-hard
≈ undecidable [18] undecidable [18] inEXPTIME in EXPTIME

DP-hard [14] DP-hard [14]
� undecidable [12] decidable [1,12] inEXPTIME in P [15]

DP-hard DP-hard
� undecidable [12] decidable [1,12] inEXPTIME in P [15]

DP-hard DP-hard
( undecidable [12] decidable [1,12] inEXPTIME in P [15]

DP-hard DP-hard
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The EXPTIME upper bound of problemsA ≈ F , N ≈ F , A � F , F � A, andA � F is due to
the fact that all of the mentioned problems can be easily reduced to the model-checking problem with
pushdown systems (see, e.g., [9,16]) and the modal�-calculus which isEXPTIME-complete [24].

Known results for model-checking of one-counter automata can be summarized as follows:
• The model-checking problem for HML andA processes is inP.
• Model-checking with any logic which subsumes the logic EF and which is subsumed by the modal

�-calculus (it applies to, e.g., EF, CTL, CTL∗, �-calculus) isDP-hard and inEXPTIME. The lower
complexity bound holds even for a fixed formula.

References
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