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1. Introduction

Decidability and complexity of bisimilarity on various classes of processes is
a classical topic in process algebra and concurrency theory; see, e.g., [1, 2]
for surveys.

One long-standing open problem is the decidability question for the class
PA (process algebra), which comprises “context-free” rewrite systems using
both sequential and parallel composition. For the subcase of normed PA, a
procedure working in doubly-exponential nondeterministic time was shown
by Hirshfeld and Jerrum [3].

More is known about the “sequential” subclass called BPA (Basic Process
Algebra) and the “parallel” subclass called BPP (Basic Parallel Processes).
In the case of BPA, the best known algorithm for deciding bisimilarity seems
to have doubly-exponential upper bound [4, 1]; the problem is known to be
PSPACE-hard [5]. In the case of BPP, the problem is PSPACE-complete [6,
7]. A polynomial-time algorithm for normed BPA was shown in [8] (with
an upper bound O(n13)); more recently, an algorithm with running time
in O(n8polylog n) was shown in [9]. For normed BPP, a polynomial time
algorithm was presented in [10] (without a precise complexity analysis), based
on so called prime decompositions ; the upper bound O(n3) was shown in [11]
by another algorithm, based on so called dd-functions (distance-to-disabling
functions).

The most difficult part of the above mentioned algorithm for normed PA [3]
deals with the case when (a process expressed as) sequential composition
is bisimilar to (a process expressed as) parallel composition. A basic sub-
problem is to analyze when a BPA process is bisimilar to a BPP process.
Černá, Křet́ınský, Kučera [12] have shown that this subproblem is decidable
in the normed case; their suggested algorithm is exponential. Decidability
in the general (unnormed) case was shown in [13], without providing any
complexity bound.

In this paper, we revisit the normed case, and we present a polynomial al-
gorithm deciding whether a given normed BPA process α is bisimilar to a
given normed BPP process M . An important ingredient is a new algorithm,
based on dd -functions, which transforms the normed BPP process M into
“prime form” where bisimilarity coincides with equality; time complexity of
this transformation is O(n3). We note that such a transformation could be
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based on prime decompositions from [10] but with worse complexity (which
was, in fact, not analyzed in [10]). A further main idea is to derive a poly-
nomial bound on a “finite-state core” of the transition system generated by
the (transformed) BPP process M . If the size of the constructed finite-state
core exceeds the derived bound, our decision algorithm answers negatively;
otherwise it constructs a BPA process α′ which is bisimilar to M , and the
final step is to decide if the BPA processes α and α′ are bisimilar.

To derive polynomiality, the mentioned final step can be handled by referring
to [8] or [9]. To get a better complexity upper bound, namely O(n7), we
suggest a simple self-contained algorithm, which exploits the fact that α′ is
“almost” a finite-state process.

As a side result, our approach also shows a clear polynomial time algorithm,
with running time O(n3), testing if there exists a bisimilar BPA process
to a given BPP process; polynomiality was shown in [12], with no bound
on the polynomial degree. Another side result is an algorithm for deciding
bisimilarity between a given BPA process and a given finite-state process,
with running time O(n4). Polynomiality of this problem was already shown
by Kučera and Mayr [14]. In fact, they provided an O(n12) algorithm for the
more general case of weak bisimilarity; the complexity for the special case of
(strong) bisimilarity was not analyzed.

The paper is structured as follows. Section 2 contains basic definitions, and
Section 3 describes the transformation of a normed BPP system into prime
form. Section 4 provides a polynomial bound on the size of the finite-state
core. Section 5 finishes the main polynomiality proof, and in Section 6 we
develop a finer algorithm allowing to derive the upper bound O(n7).

A preliminary version of this paper (with no complexity analysis) appeared
at Concur’08 [15].

2. Definitions

We use N = {0, 1, 2, . . .} to denote the set of nonnegative integers, and we
put N−1 = N ∪ {−1}.

For a set X , |X| denotes the size of X , X+ denotes the set of nonempty
sequences of elements of X , and X∗ = X+ ∪ {ε} where ε is the empty
sequence. The length of a sequence x ∈ X∗ is denoted by |x| (|ε| = 0). We
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use xk (where x ∈ X∗, k ∈ N) to denote the sequence xx · · ·x where x is
repeated k times (in particular x0 = ε).

A labelled transition system (LTS) is a triple (S,A,−→), where S is a set of
states, A is a finite set of actions, and −→⊆ S×A×S is a transition relation.
We write s

a
−→ s′ instead of (s, a, s′) ∈−→ and we extend this notation to

elements of A∗ in the natural way. We write s −→ s′ if there is a ∈ A such
that s

a
−→ s′ and s −→∗ s′ if s

w
−→ s′ for some w ∈ A∗. By s

w
−→ we denote

that there is some s′ such that s
w

−→ s′.

Let (S,A,−→) be an LTS. A binary relation R ⊆ S × S is a bisimulation if
for each (s, t) ∈ R and each a ∈ A we have:

• ∀s′ ∈ S : s
a

−→ s′ ⇒ (∃t′ : t
a

−→ t′ ∧ (s′, t′) ∈ R), and

• ∀t′ ∈ S : t
a

−→ t′ ⇒ (∃s′ : s
a

−→ s′ ∧ (s′, t′) ∈ R).

Informally we say that transition s
a

−→ s′ can be matched by a transition
t

a
−→ t′ where (s′, t′) ∈ R, and vice versa.

States s and t are bisimulation equivalent (bisimilar), written s ∼ t, if they
are related by some bisimulation. We can also relate states of two different
LTSs, by considering the disjoint union of these LTSs.

A BPA system, or BPA for short, can be viewed as a context-free grammar
in Greibach normal form. Formally it is a triple Σ = (VΣ,AΣ,ΓΣ), where
VΣ is a finite set of variables (nonterminals), AΣ is a finite set of actions
(terminals) and ΓΣ ⊆ VΣ × AΣ × V ∗

Σ is a finite set of rewrite rules. We
often use V,A,Γ without subscripts when the underlying BPA is clear from
context. We also write X

a
−→ α instead of (X, a, α) ∈ Γ. A BPA process is a

pair (α,Σ) where Σ is a BPA system and α ∈ V ∗; we write just α when Σ is
clear from context. A BPA Σ gives rise to the LTS SΣ = (V ∗,A,−→) where
−→ is induced from the rewrite rules by the following (deduction) rule: if
X

a
−→ α then Xβ

a
−→ αβ for every β ∈ V ∗.

A BPP system, or BPP for short, is defined in a similar way, as a triple
∆ = (V∆,A∆,Γ∆). The only difference is the deduction rule for the asso-
ciated LTS S∆: if X

a
−→ α then γXδ

a
−→ γαδ for any γ, δ ∈ V ∗ (thus

any occurrence of a variable can be rewritten, not just the first one). It is
easy to observe that BPP processes α, β with the same Parikh image (i.e.,
containing the same number of occurrences of each variable) are bisimilar.
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Hence BPP processes can be read modulo commutativity of concatenation
and interpreted as multisets of variables; in the rest of the paper we inter-
pret BPP processes in this way whenever convenient. This also suggests to
identify a BPP system ∆ with a BPP net, a labelled Petri net in which each
place corresponds to a variable and each transition corresponds to a rewrite
rule (and thus has a unique input place); we will freely do this in our later
considerations.

Formally, a BPP net is a tuple ∆ = (P∆,Tr∆, pre∆, F∆,A∆, l∆) where P∆

is a finite set of places (variables), Tr∆ is a finite set of transitions, pre∆ :
Tr∆ → P∆ is a function assigning an input place to each transition, F∆ :
(Tr∆ × P∆) → N is a flow function, A∆ is a finite set of actions, and l∆ :
Tr∆ → A∆ is a labelling function. We will use P,Tr , pre, F,A, l if the
underlying BPP net is clear from context. We note that a transition t ∈ Tr
can be viewed as the rewrite rule p

a
−→ α where pre(t) = p and F (t, p′) is

the number of occurrences of p′ in α, for each p′ ∈ P .

A BPP process is thus, in fact, a marking, i.e. a function M : P → N which
associates a finite number of tokens to each place. Thus pk represents the
marking M where all k tokens are in one place p (M(p) = k and M(p′) = 0
for each p′ 6= p); p0 = ε represents the zero marking (M(p) = 0 for all p ∈ P ).

A transition t is enabled at marking M if M(pre(t)) ≥ 1. An enabled
transition t may fire from M , producing a marking M ′ defined by

M ′(p) =

{

M(p)− 1 + F (t, p) if p = pre(t)
M(p) + F (t, p) otherwise

.

This is denoted by M
t

−→ M ′; the notation is extended to M
σ

−→ M ′ for
sequences σ ∈ T ∗. We write M

σ
−→ if M

σ
−→ M ′ for some M ′.

In the above sense, a BPP ∆ gives rise to the LTS S∆ = (M∆,A,−→)
where M∆ = N

P is the set of all markings (of the respective BPP net), and

M
a

−→ M ′ iff there is some t ∈ Tr such that l(t) = a and M
t

−→ M ′.

In the rest of the paper we use symbols α, β, . . . for both BPA processes and
BPP processes, and M1,M2, . . . only for the latter.

We say that a BPA system Σ (a BPP net ∆) is normed iff α −→∗ ε for each
state α of SΣ (S∆). We use nBPA (nBPP) for normed BPA (normed BPP).

Our central problem, denoted nBPA-nBPP-BISIM, is defined as follows:
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Instance: A normed BPA-process (α0,Σ), a normed BPP-process
(M0,∆).

Question: Is α0 ∼ M0 (in the disjoint union of SΣ and S∆) ?

As the size n of an instance of nBPA-nBPP-BISIM we understand the
number of bits needed for its (natural) presentation; in particular we consider
the numbers F (t, p) in ∆ and the numbers in M0 to be written in binary.

In the rest of this section we assume a fixed nBPA Σ and a fixed nBPP ∆.
By a state we generally mean a state in the disjoint union of SΣ and S∆.

Let α be a state (of SΣ or S∆). The norm of α, denoted ‖α‖, is the length
of the shortest w ∈ A∗ such that α

w
−→ ε. Note that this also defines norm

‖X‖ for each variable (place) X . We now note some obvious properties of
norms.

• If α 6= ε then ‖α‖ > 0 for any state α.

• In each nBPA (or nBPP), there is at least one variable (place) with
norm 1.

• If a rule X
a

−→ α is used in a transition β
a

−→ β ′ then ‖β ′‖ − ‖β‖ =
‖α‖ − ‖X‖.

• ‖αβ‖ = ‖α‖ + ‖β‖ (for the BPP-net representation it means ‖M1 +
M2‖ = ‖M1‖+‖M2‖ where the sumM1+M2 is defined componentwise).

• If α ∼ β then ‖α‖ = ‖β‖.

Note also that if α1 ∼ α2, w ∈ A∗ and α1
w

−→ α′
1 then there must be a

matching sequence α2
w

−→ α′
2 such that α′

1 ∼ α′
2 (and thus also ‖α′

1‖ = ‖α′
2‖).

We will later use the following straightforward proposition.

Proposition 1. The norms ‖X‖, ‖p‖ for X ∈ VΣ, p ∈ P∆ can be written
in O(n) bits, thus all of them together in O(n2) bits. All these norms can be
computed in time O(n3).

For two states α1, α2 we write α1 −→R α2 if α1 −→ α2 and ‖α2‖ = ‖α1‖− 1.
Such a step is called a norm-reducing step and the respective rule (transition)
is also called norm reducing. We write α1 −→∗

R α2 if there is a sequence
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(called norm reducing sequence) of norm reducing steps leading from α1 to
α2. For each variable (place) X there is at least one norm-reducing rule
(transition) X −→R α.

We finish by a few notions concerning the BPP net ∆.

For a marking M and a set Q ⊆ P we define ‖M‖Q, the norm of M wrt Q,

as the length of the shortest w ∈ A∗ such that M
w

−→ M ′ where M ′(p) = 0
for all p ∈ Q. In fact, ‖M‖Q =

∑

p∈Q cp ·M(p) where cp = ‖p‖Q.

It is easy to derive the following useful fact.

Proposition 2. For every Q ⊆ P and t ∈ Tr there is δ ∈ N−1 such that

M
t

−→ M ′ implies ‖M ′‖Q = ‖M‖Q + δ (for all M,M ′).

A place p ∈ P is unbounded in (M0,∆) iff for each c ∈ N there is a marking
M ′ such that M0 −→

∗ M ′ and M ′(p) > c.

We define Tok(M) =
∑

p∈P M(p) and Car(M) = {p ∈ P | M(p) ≥ 1}.

A place p is called a single final place, an SF-place, if all transitions that take
a token from p are of the form p

a
−→ pk, k ≥ 0 (they can only put tokens

back to p). It is easy to see that ‖p‖ = 1 for every SF-place p (since ∆ is
normed). We say that p is a non-SF-place if it is not an SF-place.

3. Normed BPP systems in prime form

We say that a BPP net ∆ is in prime form if bisimilarity coincides with
identity on the generated LTS, i.e., M ∼ M ′ iff M = M ′. (In this case, each
place p is a “prime” since it is not equivalent to a composition of other places.)
Prime form is technically convenient for developing our main algorithm; this
section shows a relevant transformation (Theorem 9).

It follows from the unique decomposition results in [10] that for each normed
BPP system ∆ there is an equivalent normed BPP system ∆′ in prime form,
and that ∆′ can be constructed from ∆ in polynomial time using the al-
gorithm, described in [10], which computes certain prime decompositions of
BPP-variables (i.e., BPP-net places); it is a polynomial time algorithm but
its precise complexity has not been analyzed. We proceed in another way,
based on the dd -functions, which yields a transformation with time complex-
ity O(n3).
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The main idea can be sketched as follows. Given a normed BPP system
∆ = (P,Tr , pre, F,A, l), let Ta ⊆ Tr be the set of transitions with label
a ∈ A. It is clear that M ∼ M ′ implies that the distance to disabling Ta

is the same in both M and M ′; by this distance in M we mean the length
of the shortest w such that M

w
−→ M1 and all t ∈ Ta are disabled in M1.

In other words, we must have ‖M‖pre(Ta) = ‖M ′‖pre(Ta) when M ∼ M ′.
(pre(T ) = {pre(t) | t ∈ T}.) Now suppose, e.g., that T ⊆ Ta consists of all
transitions with label a such that performing any t ∈ T changes the norm wrt

pre(Ta) by +3 and the norm wrt pre(Tb) by −1, for some b ∈ A (M1
t

−→ M2

implies ‖M2‖pre(Ta) = ‖M1‖pre(Ta) + 3 and ‖M2‖pre(Tb) = ‖M1‖pre(Tb) − 1).
Then M ∼ M ′ necessarily implies ‖M‖Q = ‖M ′‖Q for Q = pre(T ). These
observations have been refined in [6] to devise an algorithm for general BPP,
which was then instantiated to normed BPP in [11].

Given a normed BPP system ∆ = (P,Tr , pre, F,A, l), of size n, the algo-
rithm from [11] finishes in time O(n3) and constructs a partition

T = {T1, T2, . . . , Tm}

of the set Tr of transitions; denoting di(M) = ‖M‖pre(Ti), it holds that

M ∼ M ′ iff di(M) = di(M
′) for all i = 1, 2, . . . , m .

Moreover, each class Ti is characterized by its unique pair (ai, δi) where ai is
the label of all t ∈ Ti and

δi = (δi1, δi2, . . . , δim)

is the vector in (N−1)
m capturing the following change, for any M,M ′:

if M
t

−→ M ′ for t ∈ Ti then d(M ′) = d(M) + δi

where d(M) denotes the vector (d1(M), d2(M), . . . , dm(M)). For conve-
nience, we say transition (of the type) ti when meaning any transition t ∈ Ti.

Similarly as Proposition 1, we can derive the following fact (proven in detail
in [11]).

Proposition 3. Each δij can be written in space O(n), and thus all pairs
(ai, δi) together in space O(n3).
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Due to the normedness, for every class Ti (i ∈ {1, 2, . . . , m}) there is at least
one transition tj (j ∈ {1, 2, . . . , m}) which decreases di (when tj is enabled
in M , which also entails di(M) > 0); this is concisely captured by the next
proposition.

Proposition 4. ∀i∃j : δji = −1.

We say that ti is a key transition if it decreases some component of d, i.e.
some dj. Formally we define

KEY = {i | δij = −1 for some j} .

Proposition 5. ∀i ∈ KEY : δii = −1.

Proof. If ti (an element of Ti) decreases some dj then for each M there is

the greatest ℓ such that M
(ti)ℓ

−→. The last firing of ti necessarily decreases di.
Hence δii = −1.

Thus for each i ∈ KEY, di(M) is the greatest ℓ such thatM
(ti)ℓ

−→. (A shortest
way to disable transitions in Ti is to fire them as long as possible.)

We say that ti reduces tj iff δij = −1. Formally we define the following
relation RED on KEY:

for i, j ∈ KEY we put i RED j iff δij = −1 .

Proposition 6. RED is an equivalence relation.

Proof. Reflexivity follows from Proposition 5.

To show symmetry, assume i, j ∈ KEY (so δii = δjj = −1) such that δij = −1
but δji ≥ 0 (for the sake of contradiction). Then firing tj from M with
di(M) > 0 as long as possible results in M ′ with dj(M

′) = 0 and di(M
′) > 0.

Thus M ′ ti−→, which is a contradiction since dj can not be decreased.

Transitivity follows similarly: Suppose i RED j and j RED k but
¬(i RED k). So all δii, δjj, δkk, δij, δji, δjk, δkj are −1 but δik ≥ 0. Start-
ing from M with dk(M) > 0, we fire ti as long as possible and thus get

M ′ with di(M
′) = dj(M

′) = 0 and dk(M
′) > 0. Thus M ′ tk−→, which is a

contradiction since dj can not be decreased.
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The following two propositions will help us later to show the size of the
constructed BPP in prime form equivalent to a given one. To simplify the
notation, we put Qi = pre(Ti) and note that di(M) = ‖M‖Qi

.

Proposition 7. There are at most |P | classes of equivalence RED.

Proof. Let TN ⊆ Tr be some set of norm reducing transitions such that for
each p ∈ P there is exactly one t ∈ TN with pre(t) = p (i.e. |TN | = |P |).
It is thus sufficient to show that for each class C of RED there exists i ∈ C

and t ∈ TN ∩ Ti. Since the net can be emptied by using only the transitions
from TN , for each i ∈ KEY there is t ∈ TN which decreases the norm wrt
Qi; thus t = tj for some j ∈ KEY. Hence j RED i, and therefore j belongs
to the class of i.

Proposition 8. Let Tz be a class of the partition T containing non-key tran-
sitions. The number of classes C of equivalence RED such that ti decreases
dz for some i ∈ C is at most |Tz|.

Proof. Let Tk1, Tk2 , . . . , Tkx be all classes of the partition T such that tki
decreases dz. Let TK = Tk1 ∪ . . . ∪ Tkx and QK = Qk1 ∪ . . . ∪Qkx . Since the
transitions from TK have to be able to decrease dz to 0 (to empty the set
Qz), it holds Qz ⊆ QK . Each transition from Tki reduces dz, and so its input
place is from Qz. It follows that Qki ⊆ Qz for each ki, and so QK ⊆ Qz.
Therefore QK = Qz and thus |QK | ≤ |Tz|.

To complete the proof, we need to show that the number of classes of RED

containing some ki is at most |QK |. The idea is similar as in the proof of
Proposition 7. We can take some set TN ⊆ TK such that for each p ∈ QK

there is exactly one transition t ∈ TN for which pre(t) = p. Note that
each t ∈ TN reduces dz and |TN | = |QK |. Using only the transitions from
TN , the set QK can be emptied and all dk1, dk2, . . . , dkx set to 0. For each
i ∈ {k1, k2, . . . , kx} there is t ∈ TN which decreases the norm wrt Qi. It
follows from the definition of TN that t = tj for some j ∈ {k1, k2, . . . , kx}.
Hence j RED i, and therefore j belongs to the class of i.

Theorem 9. There is an algorithm, with time complexity O(n3), which
transforms a given normed BPP system ∆ = (P,Tr , pre, F,A, l) into
∆′ = (P ′,Tr ′, pre′, F ′,A, l′) in prime form, and any given state (marking)
M of ∆ into M ′ of ∆′ such that M ∼ M ′. Moreover, |Tr ′| ≤ |Tr |, |P ′| ≤ |P |,
and ∆′ is represented in space O(n3).
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Proof. In the first phase we compute the partition T = {T1, T2, . . . , Tm} as
discussed above. We easily verify that Qi = Qj for i, j ∈ KEY iff i RED j

(and so j RED i).

The crucial idea is that ∆′ will have a place pC for each class C of the
equivalence RED. For any M of ∆, the number M ′(pC) will be equal to
‖M‖Qi

for each i ∈ C. Proposition 7 implies |P ′| ≤ |P |.

For every i ∈ KEY, we add a transition t′i in ∆′ such that pre(t′i) = pC
where i ∈ C; t′i is labelled with ai and it realizes the (nonnegative) change
on the other places pC′ according to δi (restricted to KEY). The number of
transitions of ∆′ added in this step is at most equal to the number of key
transitions of ∆.

A non-key transition ti (with δi ≥ (0, 0, . . . , 0)) is enabled precisely when
a (key) transition decreasing di is enabled (recall Proposition 4). Thus for
each pC where C contains j with δji = −1 we add a transition t with label ai
and pre(t) = pC which (gives a token back to pC and) realizes the change δi
(restricted to KEY). Proposition 8 implies that at most |Ti| transitions are
added to ∆′ for every class Ti of non-key transitions.

A transition t can possibly increase all di. Therefore, an equivalent transition
t′ can have |P ′| output edges. The multiplicity of each output edge can be
written in space O(n) (recall Proposition 3).

Summing up, ∆′ = (P ′,Tr ′, pre′, F ′,A, l′) can be constructed in time O(n3)
and represented in space O(n3). The correctness of the construction is obvi-
ous.

In the following text we only consider BPP systems in prime form, if not
stated otherwise.

4. A bound on the number of “not-all-in-one-SF” markings

In this section we prove the following theorem.

Theorem 10. Assume a normed BPA system Σ, with the set V of variables,
and a normed BPP system ∆ in prime form, with the set P of places. The
number of markings M of ∆ such that α ∼ M for some α ∈ V + and M does
not have all tokens in one SF-place is at most 4y2, where y = max{|V |, |P |}.
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We start with a simple observation and then we bound the total number of
tokens in the markings mentioned in the theorem.

Proposition 11. If Aα ∼ M where α ∈ V ∗ and |Car(M)| ≥ 2 then ‖A‖ ≥ 2.

Proof. From M with |Car(M)| ≥ 2 we can obviously perform two different
norm-reducing steps resulting in two different, and thus nonbisimilar, mark-
ings. On the other hand, any Aα with ‖A‖ = 1 has a single outcome (namely
α) of any norm-reducing step.

Proposition 12. If |Car(M)| ≥ 2 and α ∼ M for α ∈ V + then Tok(M) ≤
|V |.

Proof. In fact, we prove a stronger proposition. To this aim, we order the
variables from V into a sequence A1, A2, . . . , A|V | so that ‖Ai‖ ≤ ‖Aj‖ for
i ≤ j. We now show the following claim: if Aiα ∼ M , where |Car(M)| ≥ 2
(and α ∈ V ∗), then Tok(M) ≤ i.

For the sake of contradiction, suppose a counterexample Aiα ∼ M ,
Tok(M) ≥ i+1, for minimal i. Proposition 11 shows that ‖Ai‖ ≥ 2, hence
also i ≥ 2 (since necessarily ‖A1‖ = 1); therefore Tok(M) ≥ i+1 ≥ 3. There
are two possible cases — Car(M) = 2 or Car(M) ≥ 3. In the first case,
at least one of the two marked places contains at least two tokens and so
it can not be emptied in one step by a norm-reducing transition taking a
token from this place, and it is obvious that the other marked place also re-
mains marked after this step. In the second case, a norm-reducing step from
an arbitrary marked place leads to a marking where at least two originally
marked places remain marked. Hence there is at least one possible norm-
reducing step M −→R M ′ such that |Car(M ′)| ≥ 2, Tok(M ′) ≥ i. This step
is matched by Aiα −→R Ajβα, Ajβα ∼ M ′, where necessarily ‖Aj‖ < ‖Ai‖
and thus j < i. This contradicts the minimality of our counterexample.

From the definition of a non-SF-place follows that a token from any such
place may be moved (not necessarily by a norm-reducing step) to another
place in such a way that the total number of tokens is not decreased by this
step. From this fact and from the previous proposition, we get the following
corollary.

Corollary 13. If α ∼ M then M(p) ≤ |V | for every non-SF-place p.
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We now partition the markings in the theorem into four classes:

Class 1. Markings M with all tokens in one (non-SF) place (|Car(M)| = 1).

Class 2. Markings M with |Car(M)| ≥ 2 where at least two different places
with norm 1 are reachable; this necessarily means M −→∗ M ′ for
some M ′ satisfying M ′(p1) ≥ 1, M ′(p2) ≥ 1 for some p1 6= p2 and
‖p1‖ = ‖p2‖ = 1.

Class 3. Markings M with |Car(M)| ≥ 2 and with exactly one reachable
(“sink”) place p with norm 1, where p is a non-SF-place.

Class 4. Markings M with |Car(M)| ≥ 2 and with exactly one reachable
(“sink”) place p with norm 1, where p is an SF-place.

We will show that each class contains at most y2 markings by which we prove
the theorem. (In fact, our bound is a bit generous, allowing to avoid some
technicalities.)

Proposition 14. The number of markings in Class 1 is bounded by |V |·|P | ≤
y2.

Proof. According to Corollary 13 there can be at most |V | tokens in any
non-SF-place and there are at most |P | non-SF-places. It follows that Class 1
contains at most |V | · |P | ≤ y2 markings.

Proposition 15. If α ∼ M for M from Class 2 then α = A for some A ∈ V .
Thus the number of markings in Class 2 is at most |V | ≤ y.

Proof. For the sake of contradiction, suppose Aα ∼ M where α ∈ V + and
M is from Class 2. We take a counterexample with the minimal length ℓ of
a sequence v such that M

v
−→ M ′ where M ′(p1) ≥ 1, M ′(p2) ≥ 1 for two

different p1, p2 with norm 1. We note that ‖A‖ ≥ 2 by Proposition 11, and
first suppose ℓ > 0. It is easy to verify that there is a move M −→ M ′′,
matched by Aα −→ Bβα, Bβα ∼ M ′′, where |Car(M ′′)| ≥ 2 and the
respective length ℓ decreased; this would be a contradiction with the assumed
minimality. Thus ℓ = 0, which means M(p1) ≥ 1, M(p2) ≥ 1. But then M

certainly allows M −→∗
R M1, M −→∗

R M2 where ‖M1‖ = ‖M2‖ = ‖α‖ ≥ 1
and M1 6= M2, and thus M1 6∼ M2. On the other hand, Aα can offer only α

as the result of matching such sequences; hence Aα 6∼ M .
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Proposition 16. If Aα ∼ M for α ∈ V + and M from Class 3 or 4 then
M −→∗

R p‖α‖ where p is the sink place. Thus α ∼ p‖α‖.

Proof. We prove the claim by induction on the norm ‖A‖. Suppose Aα ∼ M

as in the statement. Proposition 11 implies ‖A‖ ≥ 2. Let p′ be a place
with the minimal norm from all places with norm greater than 1 marked in
M (from the definitions of classes 3 and 4 follows that there is such place).
Performing a norm-reducing transition with a token from p′ corresponds to
some M −→R M ′, and this must be matched by Aα −→R Bβα, Bβα ∼ M ′,
where ‖B‖ < ‖A‖. If Car(M) = {p, p′} and ‖p′‖ = 2 then Car(M ′) =
{p} and necessarily M ′ = p‖Bβα‖. In all other cases |Car(M ′)| ≥ 2 and
M ′ −→∗

R p‖βα‖ due to the induction hypothesis. Since obviously p‖Bβα‖ −→∗
R

p‖βα‖ −→∗
R p‖α‖, we are done.

Proposition 17. If Aα ∼ M where ‖α‖ ≥ 2 then M is not from Class 3.

Proof. For the sake of contradiction, suppose Aα ∼ M with minimal possible
‖A‖ such that ‖α‖ ≥ 2 and M is from Class 3, i.e. M has exactly one
reachable sink place p which is a non-SF-place. Note that ‖A‖ ≥ 2 by
Proposition 11.

If there was a step M −→R M ′ with |Car(M ′)| ≥ 2, the matching
Aα −→R Bβα would lead to a contradiction with minimality of ‖A‖. Since
|Car(M)| ≥ 2, the only remaining possibility is the following: Tok(M) = 2,
M(p) = 1 and M(p′) = 1 where p′ −→R pk for k = ‖A‖+ ‖α‖ − 2 ≥ 2.

Since the sink place p is a non-SF-place, it must be in a cycle C with at least
two places. Moving a token along C cannot generate new tokens, due to
Corollary 13, so p′ is not in C. On the other hand, C contains some p′′ with
‖p′′‖ = 2. Starting inM , we can move the token from p to p′′, the norm being
greater than ‖M‖ = ‖Aα‖ along the way. For the resulting M ′ we obviously
have M ′ −→∗

R M ′′ for M ′′ satisfying M ′′(p′′) = 1 and ‖M ′′‖ = ‖α‖. Aα can
match this only by reaching α but α ∼ p‖α‖ according to Proposition 16 and
thus α 6∼ M ′′.

We can thus have Aα ∼ M for M from Class 3 only when ‖α‖ ≤ 1, and it is
thus easy to derive the following corollary.

Corollary 18. The number of markings in Class 3 is at most |V |2 ≤ y2.
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Proposition 19. The number of markings in Class 4 is at most |V |·|P | ≤ y2.

Proof. Let Aα ∼ M for M from Class 4, p being the respective SF-sink place.
Using Proposition 16, we derive α ∼ Ik where k = ‖α‖ and I ∈ V , I ∼ p

(such I must exist since M −→∗ p). Thus AIk ∼ M but AIk 6∼ Im for any
m since Im ∼ pm and pm 6∼ M (note that pm 6= M and ∆ is in prime form).

Since M −→∗
R pm for some m, there must be a (shortest) norm-reducing

sequence A
w

−→ Bβ where β ∼ I‖β‖, B 6∼ I‖B‖ but all norm-reducing
transitions B

a
−→ γ satisfy γ ∼ I‖γ‖. The sequence Aα

w
−→ Bβα (where

Bβα ∼ BI‖βα‖) must be matched by some M
v

−→ M ′ where M ′ does not
have all tokens in p but every norm-reducing transition from M ′ results in
M ′′ with all tokens in p ; it follows that M ′ has a single token (so we have at
most |P | possibilities for M ′).

This easily implies that there are at most |V | · |P | ≤ y2 markings in Class 4.

5. Problem nBPA-nBPP-BISIM is in PTIME

In this section we describe a polynomial time algorithm for nBPA-nBPP-

BISIM.

In Subsection 5.1 we specify conditions, which a normed BPP process (M0,∆)
satisfies iff there exists some normed BPA process (α0,Σ) such that α0 ∼ M0.
The conditions can be easily checked in a time polynomial with respect to
the size of (M0,∆). If (M0,∆) satisfies them, such (α0,Σ) can be constructed
but its size can be exponential with respect to the size of (M0,∆).

A basic idea of an algorithm for nBPA-nBPP-BISIM is to construct an
nBPA process bisimilar to a given nBPP process (if it exists) and then to
use some (polynomial time) algorithm for deciding if this constructed nBPA
process is bisimilar to the nBPA process from the instance of nBPA-nBPP-

BISIM. The complexity of such algorithm would be exponential in general,
but in Subsection 5.2 we show how results from Section 4 can be applied to
obtain a polynomial time algorithm.
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5.1. Deciding if there exists an nBPA process bisimilar to a given nBPP
process

We start with some technical notions concerning unbounded places that will
be useful for the characterization of an nBPP process, for which a bisimilar
nBPA process exists.

We first note that if moving a token along a cycle C in a BPP system ∆
generates new tokens in a place p and C is reachable (markable) fromM0 then
p is primarily unbounded (in M0). Any place which is unbounded is either
primarily unbounded, or secondarily unbounded, which means reachable from
a primarily unbounded place. Thus any unbounded place has at least one
corresponding pumping cycle.

We say that an SF-place p is growing if there is a transition p
a

−→ pk for
k ≥ 2.

Lemma 20. For (M0,∆), ∆ being a normed BPP in prime form, there exists
a normed BPA process (α0,Σ) such that α0 ∼ M0, iff the following conditions
hold:

1. each non-SF-place is bounded,

2. there is no M such that M0 −→
∗ M , |Car(M)| ≥ 2 and M(p) ≥ 1 for

some growing SF-place p,

3. each non-growing SF-place p is bounded.

Proof. (⇒) If 1. is violated then we cannot have α0 ∼ M0 (for any Σ with
a finite variable set V ) due to Corollary 13. If 2. or 3. is violated then, for
any c ∈ N, M0 −→

∗ M with |Car(M)| ≥ 2 and Tok(M) > c. (Any pumping
cycle for p in 3. contains p′ 6= p.) Hence we cannot have α0 ∼ M0 due to
Proposition 12.

(⇐) Suppose we have an nBPP process (M0,∆) where the conditions 1.,2.,3.
are satisfied. We show how an appropriate (α0,Σ) can be constructed. Since
all three conditions hold, the only unbounded places in (M0,∆) are growing
SF-places. Moreover, if some growing SF-place p is reachable from M0 then
Tok(M0) = 1 and each transition sequence reaching p just moves the token
into p without creating new tokens on the way.
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We can construct the usual reachability graph for M0, with the exception
that the “all-in-one-SF” markings pk are taken as “frozen” – we construct no
successors for them. The thus arising basic LTS is necessarily finite, and we
can view its states as BPA-variables; each non-frozen marking M is viewed
as a variable AM , with the obvious rewriting rules.

To finish the construction, we introduce a variable Ip for each SF-place p

together with appropriate rewriting rules.

More formally, for (M0,∆) we could construct nBPA system Σ = (F∪I,A,Γ)
where F = {AM | M ∈ Mnf } (where Mnf = {M1,M2, . . . ,Mm} is the set
of non-frozen markings reachable from M0), I = {Ip | p ∈ PSF} (where
PSF = {p1, p2, . . . , pℓ} is the set of SF-places of ∆), and Γ contains the
corresponding rewriting rules.

Note that each rule in Γ is of one of the following three forms: AM
a

−→ AM ′ ,
AM

a
−→ (Ip)

k, or Ip
a

−→ (Ip)
k, where AM , AM ′ ∈ F , Ip ∈ I, and k ∈ N (this

includes also rules of the form AM
a

−→ ε and Ip
a

−→ ε). Configuration α0

corresponding to M0 will be AM0
(or (Ip0)

k when all k tokens in M0 are in
one SF-place p0). Note that each configuration α reachable from α0 is either
of the form AM or (Ip)

k, and we have (α0,Σ) ∼ (M0,∆).

We note that the conditions in Lemma 20 can be checked by straightforward
standard algorithms, linear in the size of ∆ in prime form (which means
O(n3) if ∆ is not in prime form). We thus have the following corollary.

Corollary 21. The problem to decide if a given normed BPP process (not
necessarily in prime form) is bisimilar to some (unspecified) normed BPA
process can be solved in time O(n3).

5.2. Polynomial algorithm for nBPA-nBPP-BISIM

Assume an instance of nBPA-nBPP-BISIM, i.e., nBPA process (α0,Σ) and
nBPP process (M0,∆). The polynomial algorithm for nBPA-nBPP-BISIM

works as follows.

It first transforms (M0,∆) to bisimilar (M ′
0,∆

′) where ∆′ is in prime form;
recall Theorem 9. Note that nothing special is assumed about (α0,Σ) and it
is not transformed to any special form. The algorithm then starts to build
nBPA Σ′ for (M ′

0,∆
′) as described in the proof of Lemma 20 by building the

set Mnf of non-frozen states. If it discovers that the number of elements of
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Mnf exceeds 4y
2, where y is the maximum of {|VΣ|, |P∆′|}, then the algorithm

stops with the answer α0 6∼ M0; this is correct due to Theorem 10. Note
that it is not necessary to test the conditions of Lemma 20 explicitly in
the algorithm because if any of these conditions is violated, the number of
non-frozen markings is infinite, which means that the number of constructed
elements of Mnf necessarily exceeds 4y2 and the algorithm stops with the
correct answer.

Remark. Generally the size of ∆′ is O(n3) in the size n of the nBPA-nBPP-

BISIM-instance. But since |P∆′| ≤ |P∆| (recall Theorem 9), the bound 4y2

is in O(n2).

If the number of elements of Mnf does not exceed 4y2, the algorithm finishes
the construction of Σ′. However, it does not construct Σ′ explicitly but rather
a succinct representation of it where the right hand sides of rules of the form
(Ip)

k are represented as pairs (Ip, k) where k is written in binary (note that
O(n) bits are sufficient for k).

Our aim is to apply the polynomial time algorithm from [8] or [9] to de-
cide if α0 ∼ α′

0. However, there is a small technical difficulty since this
algorithm expects “usual” nBPA, not nBPA in the succinct form described
above. This can be handled by adding special variables I1p , I

2
p , I

4
p , I

8
p , . . .

I2
m

p for each Ip ∈ I and sufficiently large m (in O(n)); the rules are adjusted
in a straightforward way (note that there will be at most O(m) variables on
the right hand side of each rewriting rule after this transformation).

The size of the constructed nBPA is clearly polynomial with respect to the
size of the original instance of the problem and the algorithm from [8] or [9]
can be applied.

So we obtained our main theorem:

Theorem 22. There is a polynomial-time algorithm deciding whether
(α0,Σ) ∼ (M0,∆) where Σ is a normed BPA and ∆ a normed BPP.

Since (α′
0,Σ

′) is in a very special form (it is a finite state system (FS) extended
with “SF-tails”), it is in fact not necessary to use the above mentioned general
algorithm. Instead we can use a specialized and more efficient algorithm
described in the next section.
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6. An algorithm deciding nBPA-nBPP-BISIM in O(n7)

The aim of this section is to provide a self-contained algorithm for nBPA-

nBPP-BISIM. It is inspired by the ideas used, e.g., in the proofs in
[14, 16, 9]; being tailored to our specific setting, the algorithm allows to
derive the upper bound O(n7). In Subsection 6.1 we fix some notation and
in Subsection 6.2 we deal with the simple subcase of the “single final” con-
figurations. Subsection 6.3 can be seen as an adaptation of the bisimulation
base construction from, e.g., [14, 16]. Subsection 6.4 recalls a useful fact on
boolean equation systems, which was also used in [9]; the respective applica-
tion to our case is described in Subsection 6.5. Subsection 6.6 then presents
the overall algorithm. We can note that the described algorithm does not
use the fact that nBPA processes have unique decomposition property.

6.1. Notation

Assume we have an nBPA process (α0,Σ) and an nBPP process (M0,∆)
(not necessarily in prime form) from the instance of nBPA-nBPP-BISIM,
and the nBPA process (α′

0,Σ
′) obtained from (M0,∆) as described in the

previous section (with VΣ′ = F ∪ I) stored using the succinct representation
described above (the right hand sides of the form (Ip)

i are stored as pairs
(Ip, i) with i represented in binary).

In the rest of the section, we assume the following:

• n is the size (in bits) of the original instance of nBPA-nBPP-BISIM,

• m is the size of Σ (note that m < n, |VΣ| < m, and m is greater than
the sum of lengths of the right hand sides of the rules of Σ),

• k = |VΣ′| = |F|+ |I|,

• ℓ is the total number of the rules of Σ′.

It is clear from the previous discussion that |F| ∈ O(n2), |I| < n, and
k ∈ O(n2). Since each reachable configuration α of (α′

0,Σ
′) is bisimilar to

some marking of ∆, the number of transitions enabled in α is bounded by
the number of transitions of ∆, and so it is less than n. This means that
ℓ ∈ O(n3).
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Recall that all reachable configurations of (α′
0,Σ

′) are either of the form AM

or (Ip)
i (AM ∈ F , Ip ∈ I). We denote the set of all such configurations by

Conf (Σ′), i.e.,

Conf (Σ′) = F ∪ {(Ip)
i | Ip ∈ I, i ≥ 0} .

Without loss of generality we assume I 6= ∅, which ensures that ε ∈
Conf (Σ′).

Let Vall = VΣ ∪ VΣ′. We easily note that the values ‖X‖, ‖α‖ for each
X ∈ Vall , and each α such that X −→ α can be written in O(n) bits.

6.2. Characterization of configurations bisimilar to (Ip)
i

The following proposition allows us to characterize the set of configurations
from V ∗

all bisimilar to (Ip)
i where Ip ∈ I and i ≥ 0.

Proposition 23. For each Ip ∈ I there is a set Class(Ip) ⊆ Vall such that
for each α ∈ V ∗

all we have α ∼ (Ip)
i iff α ∈ Class(Ip)

∗ and ‖α‖ = i.

Proof. We construct a set Class(Ip) as the maximal subset of Vall such that
each X ∈ Class(Ip) can perform exactly the same actions with the same
changes on norm as Ip, and can be rewritten only to variables from Class(Ip)

(i.e., X
a

−→ β implies β ∈ (Class(Ip))
∗, and Ip

a
−→ (Ip)

i iff X
a

−→ β for some
β ∈ (Class(Ip))

∗ such that ‖β‖ − ‖X‖ = i− 1).

Note that the classes Class(Ip) for Ip ∈ I can be easily computed in poly-
nomial time and can be precomputed at the beginning. This gives us a fast
(polynomial) test for checking if α ∼ (Ip)

i.

6.3. Bisimulation base

We start with some observations leading to the technical notions defined
below. Suppose we want to check if α ∼ AM for some α ∈ V ∗

all and AM ∈ F
where α = Xα′ for some X ∈ Vall . If Xα′ ∼ AM then any norm reducing
sequence Xα′ −→∗

R α′ must be matched by some norm reducing sequence
AM −→∗

R β such that α′ ∼ β. Obviously, β is either of the formAM ′ (for some
AM ′ ∈ F) or (Ip)

i (for some Ip ∈ I). Since α′ ∼ β and ∼ is a congruence,
we have Xβ ∼ AM . On the other hand, from Xβ ∼ AM and α′ ∼ β follows
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Xα′ ∼ AM . So we see that Xα′ ∼ AM iff there is some β ∈ Conf (Σ′) such
that Xβ ∼ AM and α′ ∼ β.

This allows us to construct a bisimulation base, i.e. a succinct representation
of ∼ on pairs of (reachable) configurations of (α0,Σ) and (α′

0,Σ
′). The base

is a finite set (of polynomial size) containing some bisimilar pairs from which
all other bisimilar pairs can be generated.

We start by defining (an overapproximation)

B0 = {(Xα,A) | X ∈ VΣ, α ∈ Conf (Σ′), A ∈ F , ‖Xα‖ = ‖A‖}
∪ {(α,A) | α ∈ Conf (Σ′), A ∈ F , ‖α‖ = ‖A‖} .

Note that B0 is finite since i in (XI i, A) ∈ B0 is determined by X, I, A and
the requirement ‖XI i‖ = ‖A‖ and i can be computed as i = ‖A‖−‖X‖ (and
similarly i in (I i, A) ∈ B0). So B0 contains at most (|VΣ|+1)·(|F|+|I|)·|F| =
O(mk2) elements.

For each B ⊆ B0 we define the set Closure(B) as the least subset of {(γα, α
′) |

γ ∈ VΣ, α, α
′ ∈ Conf (Σ′)} satisfying the following properties:

(1) B ⊆ Closure(B).

(2) Let X ∈ VΣ, γ ∈ V +
Σ , α ∈ Conf (Σ′), and A ∈ F . Then (Xγα,A) ∈

Closure(B) iff ∃α′ ∈ Conf (Σ′) : (Xα′, A) ∈ B ∧ (γα, α′) ∈ Closure(B).

(3) Let γ ∈ V ∗
Σ , α ∈ Conf (Σ′), I ∈ I, and i ≥ 0. Then (γα, I i) ∈ Closure(B)

iff γα ∼ I i.

The aim of the algorithm is to find the bisimulation base

B∼ = {(α,A) | (α,A) ∈ B0, α ∼ A}

which can be used as a finite representation of bisimilar pairs in the sense of
the following proposition.

Proposition 24. Closure(B∼) coincides with the set {(γα, β) | γ ∈
V ∗
Σ , α, β ∈ Conf (Σ′), γα ∼ β}.

Proof idea. Follows directly from the definition of Closure(B∼) using induc-
tion on |γ|.
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Remark. Note that for each γ ∈ V ∗
Σ and β ∈ Conf (Σ′) we have (γ, β) ∈

Closure(B∼) iff γ ∼ β.

Given a set B ⊆ B0 and a pair (α, α′) ∈ B, we say (α, α′) satisfies expansion
in B if the two following conditions are satisfied for each a ∈ A:

• ∀β : α
a

−→ β ⇒ (∃β ′ : α′ a
−→ β ′ ∧ (α′, β ′) ∈ Closure(B)), and

• ∀β ′ : α′ a
−→ β ′ ⇒ (∃β : α

a
−→ β ∧ (α′, β ′) ∈ Closure(B)).

By E(B) we denote the set of those pairs in B that satisfy expansion in B.
Notice that the mapping E is monotonic, i.e., B ⊆ B′ implies E(B) ⊆ E(B′).
Note also that B∼ = E(B∼). Consider now the sequence

B0 ⊇ B1 ⊇ B2 ⊇ · · ·

where Bi+1 = E(Bi) for i ≥ 0. Since B∼ ⊆ B0 and due to monotonicity of E
we obtain B∼ ⊆ Bi for each i ≥ 0.

Since B0 is finite, there must be a fixpoint Bi = E(Bi) for some i ≥ 0. As
follows from the following proposition (which can be easily checked), this
fixpoint coincides with B∼:

Proposition 25. If B = E(B) then Closure(B) is a bisimulation.

In fact, it is not necessary to compute the sequence B0,B1,B2, . . . as it was
done in [14, 16]. Instead, we can use the idea from [9] of a reduction to the
problem of finding a (unique) maximal solution of a certain set of boolean
equations, which was used there in the algorithm for deciding bisimilarity on
normed BPA. The idea considerably simplifies the complexity analysis and
gives a better complexity bound than would be obtained by a straightforward
analysis of the algorithm based on the computation of the fixpoint.

6.4. Boolean equation systems

Let V = {x1, x2, . . . , xr} be a (finite) set of boolean variables. A boolean
equation system is a set of equations of the form

xi = ϕi(x1, x2, . . . , xr)

where each ϕi is a monotonic boolean formula over V, i.e., a boolean formula
constructed using variables from V, and symbols ∧, ∨, ⊤, and ⊥ (symbols ⊤
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and ⊥ denote the formulas that are always true or always false, respectively).
In particular, the negation ¬ can not be used in ϕi. A valuation ν is a
mapping ν : V → {true, false}; it can be extended to formulas in the
obvious manner. A valuation ν is a solution of a given boolean equation
system if ν(xi) = ν(ϕi) for each i.

On valuations we can define the partial order ⊑ such that ν ⊑ ν ′ iff ν(x) =
true implies ν ′(x) = true (for each x ∈ V). A valuation ν is the maximal
solution of a boolean equation system if it is the solution of the equation
system and it is maximal wrt ⊑. It follows from the well-known Knaster-
Tarski fixpoint theorem [17] that every boolean equation system has a unique
maximal solution.

The following simple fact, also used in [9], is crucial for obtaining an efficient
algorithm for the computation of B∼:

Proposition 26. Given a boolean equation system, its maximal solution can
be found in time linear wrt the size of the system.

Proof idea. One possibility, how to get a linear time algorithm for finding
the maximal solution of a boolean equation system, is to construct a boolean
circuit whose inputs correspond to variables in V and outputs to values of
ϕi for each i, to assign true to all gates except those that correspond to ⊥,
and then propagate values false through the circuit. In particular, when the
output corresponding to some ϕi is set to false, the input gate corresponding
to xi is set to false.

6.5. Construction of the boolean equation system for finding B∼

We describe how to construct a boolean equation system BES such that the
maximal solution νmax of BES represents B∼. Variables of BES correspond to
pairs (α, β) of configurations; the variable corresponding to (α, β) is denoted
x(α,β). The system BES is constructed so that for each variable x(α,β) of
BES , νmax (x(α,β)) = true iff α ∼ β.

There are variables of two types in BES :

Type 1: For each (α, β) ∈ B0 there is a boolean variable x(α,β).

Type 2: For each γ ∈ V +
Σ , α ∈ Conf (Σ′) and A ∈ F such that ‖γα‖ = ‖A‖

and γ is a suffix of the right hand side of some rule of Σ (i.e.,
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(X
a

−→ δγ) ∈ ΓΣ for some X, a and δ) such that |γ| > 1, there is a
boolean variable x(γα,A)

Note that there are |B0| = O(mk2) variables of type 1, and since the number
of suffixes of the right-hand sides of rules of Σ′ is less than m, there can be
at most mk2 variables of type 2.

Before defining formulas for all variables in BES , we define auxiliary for-
mulas g(α, β) for each α, β where ‖α‖ = ‖β‖ (formulas g(α, β) are used as
subformulas in formulas in BES):

• If β is of the form I i for some I ∈ I: if α ∼ β then g(α, β) = ⊤ else
g(α, β) = ⊥. (Recall α ∼ I i iff α ∈ Class(I)∗ and ‖α‖ = i.)

• If β ∈ F then g(α, β) = x(α,β). (Assuming that the variable x(α,β) exists
in BES , which will be ensured in the following constructions.)

The system BES contains the following equation for each variable x(α,β) of
type 1:

x(α,β) =
∧

α
a

−→α′















∨

β
b

−→β′

where a=b
and ‖α′‖=‖β′‖

g(α′, β ′)















∧
∧

β
b

−→β′













∨

α
a

−→α′

where a=b
and ‖α′‖=‖β′‖

g(α′, β ′)













The equation expresses that every transition α
a

−→ α′ enabled in α must be
matched by some transition β

a
−→ β ′ enabled in β and vice versa, recall the

definition of E . (Note that all subformulas g(α, β) are defined correctly in
the above formula.)

For each variable x(Xα,A) of type 2 (where necessarily X ∈ VΣ and α starts
with a symbol from VΣ), the system BES contains the equation

x(Xα,A) =
∨

B∈F
s.t. ‖B‖=‖α‖

(g(XB,A) ∧ g(α,B)) ∨
∨

I∈I

(

g(XI‖α‖, A) ∧ g(α, I‖α‖)
)

.

This formula directly corresponds to point (2) of the definition of Closure(B).
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To estimate the sizes of the formulas in BES , it is obviously sufficient to
estimate the number of occurrences of subformulas g(α, β) in these formulas.
(Note that the size of each g(α, β) is O(1).)

Let us consider formulas for variables of type 1 of the form x(Xα,A) where
X ∈ VΣ. The rules that can be used for possible transitions in Xα depend
only on X . If we count the total number of pairs of rules X

a
−→ γ and

A
a

−→ β for all X ∈ VΣ, A ∈ F , we can see that there is at most mℓ such
pairs of rules. Each such pair is used in at most k formulas (there are at most
k possible values of α), and it is used at most twice in each formula. So the
total size of formulas for the variables of type 1 of the above mentioned form
is at most O(mℓk). Similarly, the total size of formulas for the variables of
type 1 of the form x(α,A) where α ∈ Conf (Σ′) is at most O(ℓ2).

It is clear that the size of each formula for a variable of type 2 is O(|F|+|I|) =
O(k). Since there are at most mk2 variables of type 2, the total size of their
formulas is O(mk3).

Summing the sizes of the formulas in BES we obtain:

Proposition 27. The size of BES is O(mk3 +mℓk + ℓ2) = O(n7).

6.6. The overall algorithm

Theorem 28. There is an algorithm solving nBPA-nBPP-BISIM in time
O(n7).

Proof. The algorithm works as described above. It transforms the given
nBPP (M0,∆) into prime form and generates (a succinct representation of)
nBPA (α′

0,Σ
′) from it. If the construction of (α′

0,Σ
′) is finished (i.e., the al-

gorithm does not stop with the negative answer), the corresponding boolean
equation system BES of size O(n7) (recall Proposition 27) is constructed and
the algorithm finds its maximal solution νmax in time O(n7) (recall Propo-
sition 26). The algorithm then checks if νmax (x(α0,α

′

0
)) = true (without loss

of generality we can assume that α0 ∈ VΣ, α
′
0 ∈ F and so BES contains the

variable x(α0,α
′

0
)) which gives the answer for the original instance of nBPA-

nBPP-BISIM.

Before the construction of BES , the rules of Σ and Σ′ can be partitioned
according to their labels and the changes on norms they cause. Norms for
all X ∈ Vall and for all suffixes of right hand sides of rules of Σ can be
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precomputed. Note that there are at most O(n5) different subformulas of
the form g(α, β) that occur in formulas for variables of type 2 and that for
every such pair the subformula g(α, β) can be precomputed in time O(n2).
Using all this precomputed information, the system BES can be constructed
in time O(n7).

All other steps of the algorithm (the transformation to prime form, the gen-
eration of Σ′, the precomputation of the sets Class(I) for all I ∈ I and the
precomputation of all other necessary information described above) can be
obviously done in time O(n7).

After νmax has been computed, it can be used for deciding efficiently if γ ∼ A

for all γ ∈ VΣ, A ∈ F . Just note that for each suffix γ′ of γ we can find all
β ∈ Conf (Σ′) such that γ′ ∼ β (in fact there is always at most one such β

due to the fact that all configurations in Conf (Σ′) are pairwise non-bisimilar)
assuming this information was already computed for all its proper suffixes.

Remark. The above algorithm can be used for deciding bisimilarity between
a given nBPA (of size m) and a finite state system (with k states and ℓ

transitions) and the running time of the algorithm is O(mk3 +mℓk + ℓ2) =
O(n4) in this case (where n is the size of the whole instance). In fact, the
algorithm can be easily adapted for the case when the BPA and the FS in
the instance are not required to be normed (as in [14, 16]) without affecting
its complexity. The more general problem of deciding weak bisimilarity on a
given BPA and FS process was considered in [14] and the algorithm presented
there has running time O(m5(k+ℓ)7) = O(n12). The special case of the strong
bisimilarity was not analyzed there and we are not aware of any tighter results
concerning its complexity.

7. Conclusions

By a detailed analysis and a combination of several simple ideas and obser-
vations we have managed to lower the exponential time complexity upper
bound to polynomial when deciding bisimilarity between normed BPA and
BPP processes. We think that a similar closer look should also allow to give
a more precise complexity bound for the general case of (unnormed) BPA
and BPP processes. This in turn might help to build a better understanding
of the so far open problem for the class PA.
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