
A Note on Emptiness for Alternating Finite

Automata with a One-Letter Alphabet ⋆

Petr Jančar Zdeněk Sawa

Center of Applied Cybernetics, Dept. of Computer Science,
Technical University of Ostrava (FEI VŠB-TUO)

17. listopadu 15, CZ-70833 Ostrava, Czech Republic
{Petr.Jancar,Zdenek.Sawa}@vsb.cz

Abstract

We present a new proof of PSPACE-hardness of the emptiness problem for alter-
nating finite automata with a singleton alphabet. This result was shown by Holzer
(1995) who used a proof relying on a series of reductions from several papers. The
new proof is simple, direct and self-contained.

Key words: computational complexity, alternating finite automaton, emptiness

1 Introduction

Checking emptiness, i.e. checking whether the language accepted by a given
automaton is (non-)empty, is a natural problem studied in automata theory.
It is well known that the emptiness problem is PSPACE-complete for alter-
nating finite automata (AFA), the hardness being implied by the PSPACE-
completeness of the universality problem for nondeterministic finite automata.
It is probably less well known that the problem 1L-Afa-Emptiness, the
emptiness problem for AFA with a singleton alphabet, is also PSPACE-hard;
this was shown by Holzer in [3], who thus completed the results of [5].
During the conference presentation of [8], Markus Lohrey noted that Holzer’s
result can help strengthen some presented complexity lower bounds. In fact,
it also helps strengthen some results in [4], and Jǐŕı Srba was inspired to use
the result in [9].
If one is interested in the actual proof of PSPACE-hardness of

⋆ The authors acknowledge the support by the Czech Ministry of Education, Grant
No. 1M0567.

Preprint submitted to Elsevier 14 June 2007

1L-Afa-Emptiness, it is a bit unpleasant to find that Holzer uses the empti-
ness problem for so called EP0L systems [7] which was shown to be PSPACE-
complete in [6], where the proof of PSPACE-hardness (solving a long-term open
question) uses a series of reductions among several problems, one of these re-
ductions being handled by a reference to [2].
In this note we observe that the PSPACE-hardness of 1L-Afa-Emptiness can
be shown directly by a “master reduction,” and we note that the idea was im-
plicitly present already in the seminal paper on alternation [1]. In fact, a little
adjustment of the construction could also serve to show the PSPACE-hardness
of all problems in the above mentioned series in [6].

2 The main observation

Let us consider a fixed deterministic Turing machine M with space bounded
by f(n). For any input w for M we will show how to construct a one-letter-
alphabet AFA (1L-AFA) Aw with O(f(|w|)) states so that M accepts w iff
L(Aw) 6= ∅; by |w| we denote the length of w.
We start by recalling the basic definitions.

For a set X we use Bool+(X) to denote the set of (positive) boolean formulas
that only use ∧ and ∨ as boolean connectives and elements of X as variables.
By [φ]ν we denote the truth value (0 or 1) of formula φ ∈ Bool+(X) under the
boolean assignment ν : X → {0, 1}.

An alternating finite automaton (AFA) is a structure A = (Q, Σ, δ, q0, F)
where Q is the finite set of states, Σ is the finite alphabet, δ : Q×Σ → Bool+(Q)
is the transition function, q0 is the initial state, and F ⊆ Q is the set of
accepting states.
We define the predicate Acc ⊆ Q×Σ∗ by induction on the length of the second
component; Acc(q, w) is to be read as “A starting in q accepts w.”

• Acc(q, ε) iff q ∈ F .
• Acc(q, aw) iff [δ(q, a)]ν = 1 for the boolean assignment ν satisfying

(ν(q′) = 1 ⇔ Acc(q′, w)) for all q′ ∈ Q.

AFA A accepts the language L(A) = {w ∈ Σ∗ | Acc(q0, w)}.
When |Σ| = 1, we say that A is a 1L-AFA (1L being read “one letter”).
We are interested in the problem 1L-Afa-Emptiness:

Instance: 1L-AFA A.
Question: Is L(A) = ∅ ?

A deterministic Turing machine (deciding a problem, or accepting a language)

2

is a structure M = (Q, Σ, Γ, δ, q0, qacc , qrej) where Q is the finite set of (control)
states, Σ is the finite input alphabet, Γ is the finite tape alphabet where Σ ⊆ Γ,
δ : (Q−{qacc , qrej})×Γ → Q×Γ×{−1, 0, +1} is the transition function, and
q0, qacc , qrej ∈ Q are the initial state, the accepting final state and the rejecting

final state, respectively. The tape alphabet Γ contains a special blank symbol
2 6∈ Σ. We assume that M starts with scanning the tape cell with the leftmost
symbol of an input word w ∈ Σ+ and never moves left from that cell. W.l.o.g.
we only consider nonempty input words.
Technically we view the tape cells as numbered by nonnegative integers, i.e. by
elements of N = {0, 1, 2, . . .}. A configuration C is then a function C : N → ∆
where ∆ = Γ ∪ (Q × Γ); the state and the head position are determined by
the pair C(j) ∈ (Q×Γ). Given a (nonempty) input w = a1a2 . . . an, the initial

configuration Cw
0 is defined as Cw

0 (1) = (q0, a1), Cw
0 (j) = aj for 2 ≤ j ≤ n,

and Cw
0 (j) = 2 elsewhere.

The computation of M on w is the (finite or infinite) sequence of configurations
Cw

0 , Cw
1 , Cw

2 , . . . determined by the input w and the transition function δ in
the usual manner. We use the cell 0 for technical convenience; necessarily,
Cw

i (0) = 2 for all i. It is important that Cw
i+1(j), for j ≥ 1, is determined

by the triple (Cw
i (j−1), Cw

i (j), Cw
i (j+1)), not depending on the actual i, j, w.

For any z ∈ ∆ we can thus define the following easily constructible set:

Preds(z) = {(z1, z2, z3) ∈ ∆3 : (∀i, j, w)((Cw
i (j−1), Cw

i (j), Cw
i (j+1)) =

(z1, z2, z3) implies Cw
i+1(j) = z)} .

For technical convenience we also assume that if M enters qacc then the head
scans cell 1 which currently contains 2. Thus we can define that M accepts w

iff there is i ∈ N such that Cw
i (1) = (qacc , 2).

Now we come to the crucial construction. We assume a fixed deterministic
Turing machine M = (Q, Σ, Γ, δ, q0, qacc , qrej) with space bounded by a func-
tion f ; this means that M can only visit the cells numbered 1, 2, . . . , f(n) in
the computation starting on an input w with |w| = n. The function f : N → N

is supposed to satisfy f(n)≥n for all n, which also means that Cw
i (j)=2 for

j>f(n) in the computation of M on w with |w| = n.
For any w = a1a2 . . . an we define the following 1L-AFA Aw =
(Q′, {♦}, δ′, q′0, F

′):

• Q′ = {0, 1, 2, . . . , f(n)+1} × ∆ (where ∆ = Γ ∪ (Q × Γ)) ,
• q′0 = (1, (qacc, 2)) ,
• F ′ = { (j, z) ∈ Q′ | Cw

0 (j) = z } ,
• for j ∈ {0, f(n)+1} we put δ′((j, 2),♦) = 1 (constantly true)

and δ′((j, z),♦) = 0 (constantly false) for z 6= 2 ,
• for 1 ≤ j ≤ f(n) we define:

δ′((j, z),♦) =
∨

(z1,z2,z3)∈Preds(z)

(j−1, z1) ∧ (j, z2) ∧ (j+1, z3) .

3

The next proposition can be easily shown by induction on i. It relates the
computation Cw

0 , Cw
1 , Cw

2 , . . . of the deterministic Turing machine M on w

and the predicate Acc corresponding to the AFA Aw = (Q′, {♦}, δ′, q′0, F
′).

Proposition 1 For all i ∈ N and (j, z) ∈ Q′ we have:

Cw
i (j) = z ⇔ Acc((j, z),♦i) .

Corollary 2 M accepts w iff ∃i : Cw
i (1) = (qacc , 2) iff ∃i : Acc(q′0,♦

i) iff

L(Aw) 6= ∅.

Theorem 3 1L-Afa-Emptiness is PSPACE-complete.

PROOF. Any problem P in PSPACE is decided by a deterministic Turing
machine M with space bounded by a polynomial p(n). Given such M , our
(algorithmic) construction of Aw can be obviously done in polynomial time,
and logarithmic space, wrt |w|. Hence every problem in PSPACE is logspace-
reducible to 1L-Afa-Emptiness.
The membership of the emptiness problem in PSPACE is straightforward, even
in the case of general AFA; it was shown in [5]. 2

For deriving other PSPACE-hardness results, it is useful to have special simple
forms of 1L-AFA for which the emptiness problem is still PSPACE-hard. We
present one such form.
We call a 1L-AFA A = (Q, {♦}, δ, q0, F) simple if each formula δ(q,♦) is
either a variable q′ or is in the form q1 ∧ q2 or in the form q1 ∨ q2.

Proposition 4 The emptiness problem for simple 1L-AFA is PSPACE-hard.

PROOF. We reduce 1L-Afa-Emptiness to the emptiness problem for sim-
ple 1L-AFA.
Let us consider a 1L-AFA A = (Q, {♦}, δ, q0, F). By fq we denote a “fully-
parenthesized form” of the formula δ(q,♦); any subformula f of fq is either
a variable q′ or is in the form (f1 ∧ f2) or in the form (f1 ∨ f2). By depth(f)
we denote the depth of nesting in f : depth(q) = 1 and depth(f1 ∧ f2) =
depth(f1 ∨ f2) = 1 + max{depth(f1), depth(f2)}.
Let m = max{depth(fq) : q ∈ Q}.
The above 1L-AFA A can be transformed to a simple 1L-AFA A′ =
(Q′, {♦}, δ′, q′0, F

′) defined as follows:
Q′ = {(1, q0)}∪{(i, f) : f is a subformula of some fq and m ≥ i ≥ depth(f)},
q′0 = (1, q0),
F ′ = {(1, q) : q ∈ F},
δ′((1, q),♦) = (m, fq),
if i > depth(f) then δ′((i, f),♦) = (i−1, f),

4

if i = depth(f) and f = (f1 op f2) then δ′((i, f),♦) = (i−1, f1) op (i−1, f2) for
op ∈ {∧,∨}.
It is obvious that the length of every word in L(A′) is divisible by m, and that
♦j ∈ L(A) iff ♦jm ∈ L(A′). Thus L(A) = ∅ iff L(A′) = ∅. 2

3 Additional remarks

We note that the idea of the above construction showing PSPACE-hardness
of 1L-Afa-Emptiness is implicitly present in the seminal paper [1]. The
proof of Theorem 3.4. in [1] shows that, given a deterministic Turing machine
M with time (and thus also space) bounded by f(n), we can construct an
equivalent alternating Turing machine M ′ with space O(log f(n)). The work
of M ′ can be interpreted in our terms as follows: given w, M ′ checks if there is
i ≤ f(|w|) such that Aw (defined wrt M) accepts ♦i. M ′ cannot construct Aw

explicitly; it just generates the binary description of a guessed i ≤ f(n) and
then simulates i steps of Aw. M ′ has to be able to remember the current state
(j, z) of Aw but this is no problem since it can use the tape for storing (the
binary description of) j. The ability of M ′ to simulate Aw is obvious since the
corresponding instructions of M ′ depend only on M , not on w.

It is also worth to note that 1L-Afa-Emptiness can be easily reduced to
the emptiness problem for EP0L (as was also observed in [3]), for which the
question of PSPACE-hardness had been an open problem until the solution
in [6]. The other problems which were shown PSPACE-hard in [6], the empti-
ness (and other problems) for binary systolic tree automata (BSTA) and for
the auxiliary model of “set systems,” could be directly derived by using a
simple adjustment of the idea used in the construction of Aw; we now sketch
this adjustment.
In the computation Cw

0 , Cw
1 , Cw

2 , . . . of a deterministic Turing machine M on
w, the values Cw

i (j−1), Cw
i (j), Cw

i (j+1) can be seen as a substantiation of
Cw

i+1(j); we can think of substantiation rules of the form

(j, z) ⇐ ((j−1, z1), (j, z2), (j+1, z3))

where (z1, z2, z3) ∈ Preds(z). Looking more closely, we note that each
Cw

i+1(j) can be substantiated by just two elements of Cw
i , namely by the pair

(Cw
i (j), Cw

i (j′)) where Cw
i (j′) ∈ Q × Γ; in the case Cw

i (j) ∈ Q × Γ we have
j = j′, a substantiation by one element of Cw

i – but this can still be viewed
as a substantiation by the pair (Cw

i (j), Cw
i (j)) when needed for uniformity.

Assuming M has space bounded by f(n), for any input w with |w| = n we
can obviously construct O((f(n))2) substantiation rules

(j, z) ⇐ ((j, z1), (j
′, z2))

5

(where j, j′ ∈ {1, 2, . . . , f(n)}). We also note the following determinism (im-
portant for BSTA): for every pair ((j, z1), (j

′, z2)) there is at most one (j, z)
such that (j, z) ⇐ ((j, z1), (j

′, z2)) is a rule.

References

[1] A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, Alternation, J. ACM 28 (1)
(1981) 114–133.

[2] K. Culik, J. Gruska, A. Salomaa, On a family of L languages resulting from
systolic tree automata, Theoretical Comput. Sci. 23 (3) (1983) 231–242.

[3] M. Holzer, On emptiness and counting for alternating finite automata, in:
J. Dassow, G. Rozenberg, A. Salomaa (eds.), Proceedings of Developments in
Language Theory II (Magdeburg, Germany, 17-21 July 1995), World Scientific,
1996.

[4] P. Jančar, A. Kučera, F. Moller, Z. Sawa, DP lower bounds for equivalence-
checking and model-checking of one-counter automata, Information and
Computation 188 (2004) 1–19.

[5] T. Jiang, B. Ravikumar, A note on the space complexity of some decision
problems for finite automata, Inf. Process. Lett. 40 (1) (1991) 25–31.

[6] A. Monti, A. Roncato, Completeness results concerning systolic tree automata
and E0L languages, Inf. Process. Lett. 53 (1) (1995) 11–16.

[7] G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, vol. 90 of
Pure and Applied Mathematics, Academic Press, 1980.

[8] O. Serre, Parity games played on transition graphs of one-counter processes, in:
L. Aceto, A. Ingólfsdóttir (eds.), Proceedings of FOSSACS 2006, vol. 3921 of
Lecture Notes in Computer Science, Springer, 2006.

[9] J. Srba, Visibly pushdown automata: From language equivalence to simulation
and bisimulation, in: Z. Ésik (ed.), Proceedings of CSL 2006, vol. 4207 of Lecture
Notes in Computer Science, Springer-Verlag, 2006.

6

