
Complexity of Checking Bisimilarity between

Sequential and Parallel Processes

Wojciech Czerwiński1, Petr Jančar2, Martin Kot2, and Zdeněk Sawa2,⋆

1 Institute of Computer Science, University of Bayreuth
2 Dept. of Computer Science, FEI, Technical University of Ostrava

wczerwin@mimuw.edu.pl, petr.jancar@vsb.cz, martin.kot@vsb.cz,

zdenek.sawa@vsb.cz

Abstract. Decidability of bisimilarity for Process Algebra (PA) pro-
cesses, arising by mixing sequential and parallel composition, is a long-
standing open problem. The known results for subclasses contain the
decidability of bisimilarity between basic sequential (i.e. BPA) processes
and basic parallel processes (BPP). Here we revisit this subcase and
derive an exponential-time upper bound. Moreover, we show that the
problem if a given basic parallel process is inherently sequential, i.e.
bisimilar with an unspecified BPA process, is PSPACE-complete. We
also introduce a model of one-counter automata, with no zero tests but
with counter resets, that capture the behaviour of processes in the inter-
section of BPA and BPP.

1 Introduction

Bisimilarity (i.e. bisimulation equivalence) is a fundamental behavioral equiv-
alence in concurrency and process theory. Related decidability and complexity
questions on various classes of infinite-state processes are an established research
topic; see e.g. [2, 17] for surveys. One of long-standing open problems in this area
is the decidability question for process algebra (PA) processes where sequential
and parallel compositions are mixed. An involved procedure working in double-
exponential nondeterministic time is known for the normed subclass of PA [7].

More is known for the subclasses of PA where only one type of composition
is allowed. The class Basic Process Algebra (BPA) is the “sequential” subclass,
while Basic Parallel Processes (BPP) is the “parallel” subclass. Bisimilarity of
BPA processes is in 2-EXPTIME [3, 10], and EXPTIME-hard [14]. On BPP, bisim-
ilarity is PSPACE-complete [12, 16]. For normed subclasses of BPA and BPP, the
problem is polynomial [9, 8]. A unified polynomial algorithm [5] decides bisimi-
larity on a superclass of both normed BPP and normed BPA.

The most difficult part of the algorithm for normed PA [7] deals with the case
when (a process expressed as) sequential composition is bisimilar with (a process
expressed as) parallel composition. A proper analysis when a BPA process is

⋆ P. Jančar, M. Kot and Z. Sawa are supported by the Grant Agency of the Czech
Rep. (project GAČR: P202/11/0340).

2

bisimilar with a BPP seems to be a natural prerequisite for understanding this
difficult part. Comparing normed BPA and normed BPP was shown decidable
in exponential time [4], and later in polynomial time [11].

For comparing general (unnormed) BPA processes with BPP processes only
decidability has been known [13]. The algorithm in [13] checks if a BPP process
can be modelled by a (special) pushdown automaton. In the negative case this
BPP process cannot be bisimilar to any BPA process; in the positive case, a spe-
cial one-counter automaton with resets, bisimilar to the BPP process, can be con-
structed. The BPA-BPP decidability then follows from the decidability of bisim-
ilarity for pushdown processes, which is an involved result by Sénizergues [15];
the latter problem has been recently shown to be non-elementary [1].

Here we revisit the bisimilarity problem comparing BPA and BPP processes
and improve the decidability result [13] by showing an exponential-time upper
bound; the known lower bound is PTIME-hardness, inherited already from finite-
state processes. We also get a completeness result: we show that deciding if a
given BPP process is BPA-equivalent, i.e. equivalent to some (unspecified) BPA
process, is PSPACE-complete. PSPACE-hardness of this problem follows by a
straightforward use of the results in [16], more difficult has been to show the
upper bound; this is done in Sect. 3. (We have no upper bound for the opposite
problem, asking if a given BPA process is equivalent to some BPP process.)
When a BPP process is found to be BPA-equivalent then we can construct a
concrete equivalent BPA process, as is also shown in Sect. 3; the construction
yields a double exponential bound on its size. To achieve a single exponential
upper bound (in Sect. 4) when comparing a given BPP process with a given BPA
process, we need to go in more details, and substantially improve the previous
constructions. If a given BPP process is BPA-equivalent then we construct a
special exponentially bounded one-counter net with resets (OCNR) bisimilar
with this BPP process. The last step is deciding bisimilarity between the OCNR
and a given BPA process. The idea of the algorithm guaranteeing the overall
exponential upper bound is sketched in Sect. 4.

2 Notation, Definitions, and Results

Sect. 2.1 provides the definitions, and Sect. 2.2 summarizes the results. Sect. 2.3
recalls the notion of dd-functions and their properties, to be used in the proofs.

2.1 Basic Definitions and Notation

For a set A, by A∗ we denote the set of finite sequences of elements of A, i.e., of
words over A; ε denotes the empty word, and |w| denotes the length of w ∈ A∗.
We use N to denote the set of nonnegative integers {0, 1, 2, . . .}.

LTS. A labelled transition system (LTS) is a tuple L = (S,A, (
a

−→)a∈A)

where S is a set of states, A is a set of actions, and
a

−→⊆ S × S is a set of
transitions labelled with a; we put −→=

⋃
a∈A

a
−→. We write s

a
−→ s′ instead of

(s, s′) ∈
a

−→, and s −→ s′ instead of (s, s′) ∈−→. For w ∈ A∗, we define s
w

−→ s′

3

inductively: s
ε

−→ s; if s
a

−→ s′ and s′
u

−→ s′′ then s
au
−→ s′′. By s −→∗ s′ we

denote that s′ is reachable from s, i.e., s
w

−→ s′ for some w ∈ A∗.
Bisimilarity. Given an LTS L = (S,A, (

a
−→)a∈A), a symmetric relation

B ⊆ S × S is a bisimulation if for any (s, t) ∈ B and s
a

−→ s′ there is t′ such

that t
a

−→ t′ and (s′, t′) ∈ B. Two states s, t are bisimilar, i.e., bisimulation
equivalent, if there is a bisimulation containing (s, t); we write s ∼ t to denote
that s, t are bisimilar. The relation ∼ is indeed an equivalence on S; it is the
maximal bisimulation, i.e., the union of all bisimulations. When comparing the
states from different LTSs L1, L2, we implicitly refer to the disjoint union of L1

and L2.
BPA (Basic Process Algebra, or basic sequential processes). A BPA system

is a tuple Σ = (V,A,R), where V is a finite set of variables, A is a finite

set of actions, and R is a finite set of rules of the form A
a

−→ α where A ∈
V , a ∈ A, and α ∈ V ∗. A BPA system Σ = (V,A,R) gives rise to the LTS

LΣ = (V ∗,A, (
a

−→)a∈A) where the relations
a

−→ are induced by the following

(deduction) rule: if X
a

−→ α is in R then Xβ
a

−→ αβ for any β ∈ V ∗. A BPA
process is a pair (Σ,α) where Σ = (V,A,R) is a BPA system and α ∈ V ∗; we
often write just α when Σ is clear from context.

BPP (Basic Parallel Processes). A BPP system can be defined as arising
from a BPA system when the concatenation is viewed as commutative, thus
standing for a parallel composition instead of a sequential one. For later tech-
nical reasons we present BPP systems as communication-free Petri nets, called
BPP-nets here; these are classical place/transition nets with labelled transitions
where each transition has exactly one input place. A BPP net is thus a tuple
∆ = (P,Tr , pre, post,A, λ) where P is a finite set of places, Tr is a finite set
of transitions, pre : Tr → P is a function assigning an input place to each
transition, post : Tr × P → N is (equivalent to) a function assigning a multiset
of output places to each transition, A is a finite set of actions, and λ : Tr → A
is a function labelling each transition with an action. A marking M : P → N is
a multiset of places, also viewed as a function assigning a nonnegative number
of tokens to each place. (We could also view P as variables and Tr as rules.)

A BPP net∆ = (P,Tr , pre, post,A, λ) gives rise to the transition-based LTS

LTr
∆ = (NP ,Tr , (

t
−→)t∈Tr) where M

t
−→ M ′ iff M(pre(t)) ≥ 1, M ′(pre(t)) =

M(pre(t)) − 1 + post(t, pre(t)), and M ′(p) = M(p) + post(t, p) for each

p 6= pre(t). The action-based LTS L∆ = (NP ,A, (
a

−→)a∈A) arises from LTr
∆

by putting M
a

−→ M ′ iff M
t

−→ M ′ for some t where λ(t) = a.
A BPP process is a pair (∆,M) where ∆ is a BPP net and M is a state in

L∆ (i.e., a marking); we write just M when ∆ is clear from context.

2.2 Results

We assume some standard presentation of the inputs; it does not matter if the
numbers post(t, p) in the BPP definitions are presented in unary or in binary.
The first result clarifies the complexity question of deciding if a basic parallel
process is inherently sequential. The second result gives an upper bound on the

4

complexity of deciding bisimulation equivalence of a given pair of one sequential
and one parallel process. The known lower bound is PTIME-hardness in this case.
For the counterpart of the question in Theorem 1 we get only a lower bound.
The lower bounds in Theorem 1 and Proposition 3 can be derived routinely by
using the PSPACE-hardness of regularity shown in [16]. The result of clarifying
the intersection of BPA and BPP by using OCNR (one-counter nets with resets)
is not stated explicitly here.

Theorem 1. It is PSPACE-complete to decide for a given BPP process (∆,M)
if there is a BPA process (Σ,α) such that α ∼ M .

Theorem 2. The problem to decide, given a BPA process (Σ,α) and a BPP
process (∆,M), if α ∼ M is in EXPTIME.

Proposition 3. It is PSPACE-hard to decide for a given BPA process (Σ,α) if
there is a BPP process (∆,M) such that α ∼ M .

2.3 Distance-to-Disabling Functions (dd-functions)

We add further notation and recall the notion of dd-functions introduced in [12].
Let Nω = N ∪ {ω} where ω stands for an infinite number satisfying n < ω,

n+ ω = ω + n = ω − n = ω + ω = ω − ω = ω for all n ∈ N.
Distance. Let L = (S,A, (

a
−→)a∈A) be an LTS.We capture the (reachability)

distance of a state s ∈ S to a set of states U ⊆ S by the function dist : S×2S →
Nω given by the following definition, where we put min ∅ = ω :

dist(s, U) = min{ℓ ∈ N | there are w ∈ A∗, s′ ∈ U where |w| = ℓ, s
w

−→ s′}.
We note that s −→ s′ implies dist(s′, U) ≥ dist(s, U)− 1, i.e., the distance

can drop by at most 1 in one step; moreover, if dist(s, U) = ω then dist(s′, U) =
ω. On the other hand, a finite distance can increase even to ω in one step. A
one-step change thus belongs to Nω,−1 = Nω ∪ {−1}. By our definitions, if
dist(s, U) = dist(s′, U) = ω then dist(s, U) + x = dist(s′, U) for any x ∈
Nω,−1; formally any x ∈ Nω,−1 can be viewed as a respective change in this case.

DD-functions. Distance-to-disabling functions (related to the LTS L), or

dd-functions for short, are defined inductively. By s
a

−→ we denote that a ∈ A
is enabled in s, i.e., s

a
−→ s′ for some s′. By s 6

a
−→ we denote that a is disabled

in s, i.e., ¬(s
a

−→). We put disableda = {s ∈ S | s 6
a

−→}. For each a ∈ A,
the function dda : S → Nω defined by dda(s) = dist(s,disableda) is a (basic)
dd-function.

If F = (d1, d2, . . . , dk) is a tuple of dd-functions and δ = (x1, x2, . . . , xk) ∈

(Nω,−1)
k then disableda,F ,δ = {s ∈ S | for any s′ ∈ S, if s

a
−→ s′ then there

is i ∈ {1, 2, . . . , k} such that di(s) + xi 6= di(s
′)}. (Hence s ∈ disableda,F ,δ

has no outgoing a-transition which would cause the change δ of the values of
dd-functions in F .) The function dda,F ,δ : S → Nω defined by dda,F ,δ(s) =
dist(s,disableda,F ,δ) is also a dd-function.

A path s1
a1−→ s2

a2−→ · · · sm
am−→ sm+1 in L is d-reducing, for a dd-function

d, if d(si+1)− d(si) = −1 for all i ∈ {1, 2, . . . ,m}.

5

It is easy to verify (inductively) that s ∼ s′ implies d(s) = d(s′) for every

dd-function d. If the LTS L = (S,A, (
a

−→)a∈A) is image-finite, i.e., the set

{s′ | s
a

−→ s′} is finite for any s ∈ S and a ∈ A (which is the case of our LΣ ,
L∆) then we get a full characterization of bisimilarity on S:

Proposition 4. For any image-finite LTS L = (S,A, (
a

−→)a∈A), the set {(s, s
′) |

d(s) = d(s′) for every dd-function d} is the maximal bisimulation (i.e., the rela-
tion ∼ on S).

DD-functions on BPP. Let ∆ = (P,Tr , pre, post,A, λ) be a BPP net;

L∆ = (NP ,A, (
a

−→)a∈A) is the respective LTS. ForQ ⊆ P we put unmark(Q) =
{M ∈ N

P | M(p) = 0 for each p ∈ Q}, and normQ(M) = dist(M,unmark(Q)).
The next proposition is standard (by a use of dynamic programming); we stip-
ulate 0 · ω = ω · 0 = 0 and n · ω = ω · n = ω when n ≥ 1.

Proposition 5. There is a polynomial-time algorithm that, given a BPP net
∆ = (P,Tr , pre, post,A, λ) and Q ⊆ P , computes a function c : Q → Nω such
that for any M ∈ N

P we have normQ(M) =
∑

p∈Q c(p) ·M(p).

We note that the coefficient c(p) attached to p ∈ Q either is ω or is at most
exponential (in the size of ∆). The places p ∈ Q with cp = ω constitute a
trap, in fact the maximal trap in Q; we call R ⊆ P a trap if each t ∈ Tr with
pre(t) ∈ R satisfies post(t, p) ≥ 1 for at least one p ∈ R. We also note that each

transition t ∈ Tr has an associated δtQ ∈ Nω,−1 such that M
t

−→ M ′ implies

normQ(M
′) = normQ(M) + δtQ (which is trivial when normQ(M) = ω); we

have δtQ = ω if t puts a token in a trap in Q. The next lemma follows from [12].

Lemma 6.
1. Given a BPP net ∆ = (P,Tr , pre, post,A, λ), any dd-function d in L∆ has
the associated set Qd ⊆ P such that d(M) = normQd

(M).
2. The problem to decide if a given set Q ⊆ P is important, i.e., associated with
a dd-function, is PSPACE-complete.

Propositions 4, 5 and Lemma 6 imply that the question whether M 6∼ M ′ can
be decided by a nondeterministic polynomial-space algorithm, guessing a set Q
and verifying that Q is important and normQ(M) 6= normQ(M

′). Bisimilarity
of BPP processes is thus in PSPACE.

DD-functions on BPA. We now assume a BPA system Σ = (V,A,R) and
the respective LTS LΣ . For any α ∈ V ∗ we define the norm of α as ‖α‖ =
dist(α, {ε}). If ‖α‖ = ω then obviously α ∼ αβ for any β. For any considered
α we can thus assume that either α is normed, i.e., ‖α‖ < ω, or α = βU where
‖β‖ < ω and U ∈ V is an unnormed variable, i.e., ‖U‖ = ω; the pseudo-norm
pn(α) is equal to ‖α‖ in the first case, and to ‖β‖ in the second case. A transition

Xβ
a

−→ γβ is pn-reducing if ‖γ‖ = ‖X‖ − 1 < ω.
A dd-function d is prefix-encoded above C ∈ N if for any α ∈ V ∗ satisfying

C < d(α) < ω we have that each transition α
a

−→ α′ is d-reducing iff it is
pn-reducing; d is prefix-encoded if it is prefix-encoded above some C ∈ N.

6

The next lemma is shown in [13]; it is intuitively clear: a BPA process can
“remember” large values only by long strings.

Lemma 7. For any BPA system, every dd-function is prefix-encoded.

3 Sequentiality of Basic Parallel Processes is in PSPACE

In this section we prove the PSPACE upper bound stated in Theorem 1; this will
follow from Proposition 9 and Lemmas 10 and 11.

Given an LTS L = (S,A, (
a

−→)a∈A), by reach(s) we denote the set {s′ |
s −→∗ s′} of the states reachable from s. A state s ∈ S is BPA-equivalent if
there is some BPA process (Σ,α) such that s ∼ α; in this case all s′ ∈ reach(s)
are BPA-equivalent.

We say that a path s1
a1−→ s2

a2−→ · · · sm
am−→ sm+1 in L is a d-down path,

for a dd-function d, if d(sm+1) < d(si) for all i ∈ {1, 2, . . . ,m}. (Note that
a d-down path might contain steps which are not d-reducing.) The difference
d(s1)−d(sm+1) is called the d-drop of the path.

We now formulate a crucial condition that is necessary for a state to be BPA-
equivalent. It is motivated by this observation based on Lemma 7: If d(Xα) is
finite and large, for a dd-function d and a BPA process Xα, then any d-down
path from Xα with the d-drop ‖X‖ finishes in α. (By “large” we also mean larger
than d(γ) for all unnormed right-hand sides γ in the BPA rules.)
In the next definition it might be useful to imagine s ∼ Xα and k = ‖X‖.

Definition 8. Given an LTS, a state s0 is down-joining if for any dd-functions
d1, d2 (not necessarily different) there are B,C ∈ N such that for every s ∈
reach(s0) where ω > d1(s) > C and ω > d2(s) > C we have the following:

there is k such that 1 ≤ k ≤ B and for any d1-down path s
w1−→ s1 with the

d1-drop k and any d2-down path s
w2−→ s2 with the d2-drop k we have s1 ∼ s2.

Proposition 9. If s0 in an LTS is BPA-equivalent then s0 is down-joining.

Proof. Let (Σ,α0), where Σ = (V,A,R), be a BPA process such that s0 ∼ α0.
We put B = max{‖X‖;X ∈ V, ‖X‖ < ω} (where max ∅ = 0). For dd-functions
d1, d2 we choose some sufficiently large C so that we can apply the observation
before Def. 8 to both d1 and d2. The claim can be thus verified easily. ⊓⊔

In the case of BPP processes, the down-joining property will turn out to be
also sufficient for BPA-equivalence, and to be verifiable in polynomial space. The
next lemma is a crucial step to show this. It also says that if a BPP process M0

is down-joining then there is an exponential constant C such that for the LTS
restricted to reach(M0) we have: the values of dd-functions forM ∈ reach(M0)
that are finite and large, i.e. larger than C, are all equal; if a dd-function becomes
large (by performing a transition) then all previously large dd-function have been
already set to ω; if a large dd-function is sufficiently decreased (by a sequence of
transitions) then the values of small dd-functions are determined, independently
of the particular way and value of this decreasing.

7

Lemma 10. There is a polynomial-space algorithm deciding if a given BPP
process (∆,M0) is down-joining. Moreover, in the positive case the algorithm
returns exponentially bounded C ∈ N such that for any M ∈ reach(M0) and
any dd-functions d1, d2, d3, d, d

′ we have:

1. If C < d1(M) < ω and C < d2(M) < ω then d1(M
′) = d2(M

′) for all
M ′ ∈ reach(M); moreover, if d3(M) 6= d1(M) and M −→∗ M ′ −→ M ′′

where C < d3(M
′′) < ω then d1(M

′) = d2(M
′) = ω.

2. If M
w1−→ M1 is a d-down path with the d-drop C1 ≥ C and M

w2−→ M2 is
a d-down path with the d-drop C2 ≥ C, and d′(M) 6= d(M), then d′(M1) =
d′(M2).

Proof. (Sketch of the idea.) Let ∆ = (P,Tr , pre, post,A, λ) be a BPP net.
We recall that each dd-function d coincides with normQ for some important
set Q ⊆ P (and there thus exist at most exponentially many pairwise different
dd-functions). Each t ∈ Tr has an associated change δtQ as we have already
discussed; recall that t also has the associated label λ(t) ∈ A. We also recall that
it is PSPACE-complete to decide if a given Q is important.

We now assume a givenM0 and restrict ourselves to reach(M0). Our claimed
algorithm will be using a subprocedure for deciding if some sets are important,
and we can allow ourselves even the luxurious NPSPACE-upper bound for ques-
tions in our analysis (since PSPACE = NPSPACE).

The reachability relation on L∆ was studied in detail by Esparza [6], and
we could use deciding various questions which are reducible to Integer Linear
Programming by [6]. A crucial point is simple: In a BPP net, each token can
move freely between connected places, possibly generating other tokens; trav-
elling along a cycle can “pump” some places above any bound. We can de-
cide, e.g., if a concrete place p ∈ P can get arbitrarily large values M(p) for
M ∈ reach(M0) where we might also have some specified constraints, like that
some traps are not marked by M (have no tokens in M) and that some specific
transitions are enabled in M (or in some M ′ ∈ reach(M)).

We can thus check (in nondeterministic polynomial space) if there are two
important sets Q1, Q2 such that for any b ∈ N there is M ∈ reach(M0) such
that normQ1

(M), normQ2
(M) are finite, bigger than b, and different. If this

is the case (i.e., we have found some appropriate “pumping” cycles) then M0 is
surely not down-joining, as can be verified by a straightforward analysis.

A full technical proof would require a complete analysis of all possible viola-
tions of the down-joining property. In principle, it is a routine (omitted here due
to the limited space); some exponential C claimed for the case with no violations
can be also derived by a straightforward technical analysis. ⊓⊔

Lemma 11. Any down-joining BPP process (∆,M0) is BPA-equivalent.

Proof. Let ∆ = (P,Tr , pre, post,A, λ) be a BPP net, and let M0 be down-
joining. We will construct a BPA process (Σ,α) such that M0 ∼ α; the size
of (Σ,α) will be double exponential in the size of (∆,M0). We note that in
this proof the size plays no role, since just the existence of some such (Σ,α) is

8

sufficient; in Sect. 4 we will discuss the details of the one-counter net (OCNR)
that is single exponential.

Let d1 = normQ1
, . . . , dm = normQm

be all pairwise different dd-functions,
given by all important sets Qi ⊆ P . We put D(M) = (d1(M), . . . , dm(M)) ∈
(Nω)

m and recall that M ∼ M ′ iff D(M) = D(M ′). We also note that m ≤ 2|P |.

Let LD
∆ = ({D(M) | M ∈ N

P },A, (
a

−→)a∈A) be the LTS where M
a

−→ M ′

in L∆ induces D(M)
a

−→ D(M ′) in LD
∆. It is straightforward to verify that

M ∼ D(M). We also note that for deciding if a label-change (a, δ) ∈ A×(Nω,−1)
m

is enabled in D, i.e., if D
a

−→ (D+ δ), it suffices to know type(D) ∈ {0,+, ω}m

where type(D)(i) = 0,+, ω if D(i) = 0, 0 < D(i) < ω, D(i) = ω, respectively.
We define L as the restriction of LD

∆ to the state set S = {D(M) | M ∈
reach(M0)}; we note that D0 = D(M0) is down-joining in L. Let C ∈ N be the
constant guaranteed by Lemma 10; we assume, moreover, that D0(i) ≤ C for all
i ∈ {1, 2, . . . ,m} such that D0(i) < ω, and that C is bigger than any possible
finite increase of any di in one step. For any D ∈ S we say that D(i) is small if
D(i) ≤ C or D(i) = ω; otherwise D(i) is big.

We build a BPA system Σ = (V,A,R) where variables in V are tuples of the
form (vec,big,⊥) or (vec,big,det, 6⊥) where vec ∈ ({0, 1, . . . , C} ∪ {ω})m,
big ⊆ {1, 2, . . . ,m}, and det : ({1, 2, . . . ,m}rbig) → ({0, 1, . . . , C}∪{ω}). We
aim to achieve D0 ∼ (D0, ∅,⊥) (in the disjoint union of L and LΣ). In fact, we

will stepwise construct a bijection between the paths D0

a1−→ D1

a2−→ · · ·
ar−→ Dr

in L and α0

a1−→ α1

a2−→ · · ·
ar−→ αr in LΣ , where α0 = (D0, ∅,⊥); we will have

Dx ∼ αx. In general, αx ∈ V ∗ corresponding to Dx in two paths related by the
bijection will be either a variable (vec, ∅,⊥), in which case Dx = vec, or of the
form

(vec1,big,det, 6⊥), (vec2,big,det, 6⊥) . . . (vecℓ−1,big,det, 6⊥), (vecℓ,big,⊥),
(1)

for ℓ ≥ 1 and big 6= ∅, where the following will hold:

1. for any i1, i2 ∈ big we have vecj(i1) = vecj(i2) for all j ∈ {1, 2, . . . , ℓ};

2. for any i ∈ big, sum(i) =
∑ℓ

j=1
vecj(i) is finite, and equal to Dx(i);

3. for any i ∈ big, vecj(i) is positive for each j ∈ {1, 2, . . . , ℓ}, with the possible
exception in the case ℓ = 1 where we might have vec1(i) = 0;

4. for any i 6∈ big, vec1(i) = Dx(i);
5. for any i 6∈ big and j ∈ {2, 3, . . . , ℓ} we have vecj(i) = det(i).

We note that i ∈ big does not necessarily imply that sum(i) is big; this just
signals that Dy(i) was big for some y ≤ x. By Lemma 10(2), the values vecj(i)
in 5. are thus determined; this will be clarified below.

We now inductively define the sets V and R in Σ; we start with putting
(D0, ∅,⊥) in V . We leave implicit a verification of the soundness of our construc-
tion and of the above claimed conditions. Each (vec,big,⊥) will be unnormed,
and such a variable always finishes our considered strings αx.

Suppose (vec,big,det,bot) ∈ V is the first variable in some αx, corre-
sponding to some Dx, as given around (1); here bot ∈ {⊥, 6⊥} and det is

9

assumed to be missing if bot = ⊥. Suppose also some concrete (a, δ) which is

enabled by type(vec) (i.e., Dx
a

−→ (Dx + δ) in LD
∆; note that type(Dx) =

type(vec)). In this case we proceed as follows (using Lemma 10 implicitly):

1. If bot = 6⊥ and vec(i) + δ(i) = 0 for some i ∈ big (which implies vec(i) +

δ(i) = 0 for each i ∈ big), then we add the rule (vec,big, 6⊥)
a

−→ ε.
2. If vec(i) + δ(i) = ω for some i ∈ big (which implies vec(i) + δ(i) = ω for

each i ∈ big) then we add (vec,big,det,bot)
a

−→ ((vec + δ), ∅,⊥).
3. If none of 1.,2. applies and vec(i) + δ(i) ∈ {0, 1, . . . , C} ∪ {ω} for all i then

we add (vec,big,det,bot)
a

−→ ((vec+ δ),big,det,bot).
4. If C < vec(i) + δ(i) < ω for some i (in which case none of 1.,2.,3. applies):

Denote big′ = {i | C < vec(i) + δ(i) < ω}; our assumptions imply that
there is k, 1 ≤ k < C, such that vec(i)+ δ(i) = C+k for each i ∈ big′, and,
moreover, big′ = big if big 6= ∅. If bot = 6⊥ then we add
(vec,big,det, 6⊥)

a
−→ (vec′,big′,det, 6⊥)(vec′′,big′,det, 6⊥)

where we put vec′(i) = C and vec′′(i) = k for each i ∈ big′, and vec′(i) =
vec(i) + δ(i) and vec′′(i) = det(i) for each i 6∈ big′.
If bot = ⊥ then we add
(vec,big,⊥)

a
−→ (vec′,big′,det, 6⊥)(vec′′,big′,⊥)

where we put vec′(i) = C and vec′′(i) = k for each i ∈ big′, and vec′(i) =
vec(i) + δ(i) for each i 6∈ big

′; det is defined by using Lemma 10(2): for

some i′ ∈ big′ we take a di′ -down path (Dx + δ)
w

−→ D′ with the di′ -drop C

and put det(i) = vec
′′(i) = D′(i) for each i 6∈ big

′. ⊓⊔

4 Bisimilarity between BPA and BPP in EXPTIME

In this section we give the main ideas of the proof of Theorem 2. We assume
a fixed instance of the problem — a fixed BPA Σ = (V,A,R) with the initial
configuration α0 and a fixed BPP ∆ = (P,Tr , pre, post,A, λ) with the initial
marking M0, for which we have already checked (in polynomial space) that M0

is down-joining (otherwise obviously α0 6∼ M0).
We recall the exponential constant C discussed in and before Lemma 10.

The discussion and the construction of the BPA in Lemma 11 suggests that
(∆,M0) can be represented by a certain kind of one-counter process, called a
one-counter net with resets (OCNR). It stores the values of “small” dd-functions
(that are either ω or less than C) in the control unit and the value of big dd-
functions in the counter. The transitions that set the big dd-functions to ω will
be represented by special reset transitions that reset the value of the counter to
some fixed value, independent of the previous value of the counter.

On the high level, the algorithm works as follows. For a given BPP process
(∆,M0) it constructs a bisimilar OCNR Γ with an initial configuration c0 such
that M0 ∼ c0. The size of Γ is at most exponential w.r.t. the size of (∆,M0)
and Γ can be constructed in exponential time. The algorithm then decides in
exponential time if α0 ∼ c0.

OCNR. A one-counter net with resets is a tuple Γ = (F ,A, R=0, R>0),
where F is a finite set of control states, A is a (finite) set of actions, and

10

R=0, R>0 ⊆ F ×A× RuleTypes× (N ∪ {−1})×F are finite sets of rules, where
RuleTypes = {change, reset}. Informally, R=0 are the rules, which are enabled
when the value of the counter is zero, and R>0 are the rules, which are enabled
when the counter is non-zero. We require that (g, a, ξ, d, g′) ∈ R=0 implies d ≥ 0,
and that R=0 ⊆ R>0, as there is no test for zero.

Configurations of an OCNR Γ = (F ,A, R=0, R>0) are pairs (g, k), where
g ∈ F and k ∈ N is the value of the counter. To denote configurations, we will
write g(k) instead of (g, k). We also use c1, c2, . . . to denote configurations of Γ .
The OCNR Γ generates the LTS (S,A,−→) where S = F × N and where the
transitions are defined as follows:

– g(k)
a

−→ g′(k + d) iff (g, a, change, d, g′) ∈ R′

– g(k)
a

−→ g′(d) iff (g, a, reset, d, g′) ∈ R′,

where R′ = R=0 for k = 0, and R′ = R>0 for k > 0.
A transition performed due to some rule (g, a, t, reset, g) ∈ R=0 ∪ R>0 is

called a reset, and a transition performed due to some rule (g, a, t, change, g) ∈
R=0 ∪R>0 is called a change.

Note that OCNR can be easily encoded into a pushdown automaton, but not
in BPA, as, intuitively, we need states.

Construction of an OCNR bisimilar to (∆,M0). Let us start with some
technical definitions. A marking M is big, if there is some dd-function d such
that C ≤ d(M) < ω. A marking, which is not big, is small.

Let reach(M0) be the set of markings reachable from M0, and let Mbig be
the set of the big markings in reach(M0). We define a function cnt : Mbig → N,
where cnt(M) is the value d(M) for the dd-functions d that are big in M .

Let ≃C⊆ reach(M0) × reach(M0) be the equivalence where M ≃C M ′

iff M,M ′ differ only on values of big dd-functions (i.e., d(M) 6= d(M ′) implies
C ≤ d(M) < ω and C ≤ d(M ′) < ω). Let B be the partition of reach(M0)
according to ≃C , i.e., the elements of B are sets of markings, where M,M ′ are
in the same set B ∈ B iff M ≃C M ′. We will show later that the number of
classes in B is at most exponential.

A class B ∈ B is small if it contains only small markings, and big otherwise.
(Note that in a big class, all markings are big.)

For each class B ∈ B, Γ contains a corresponding control state fB. The
control states corresponding to small classes are called fs-states, and the control
states corresponding to big classes are called oc-states. The sets of fs-states and
oc-states are denoted Ffs and Foc, respectively.

The OCNR Γ is constructed in such a way that each configuration fB(0),
where B is small, is bisimilar to any marking M ∈ B, and each configura-
tion fB(k), where B is big and k ≥ C, is bisimilar to any marking M ∈ B with
cnt(M) = k. In each configuration fB(k) where B is big and k ≥ 0, the values of
dd-functions will be the same as the values of these functions in markings in B,
except the functions, which are big in markings in B, which will have value k.

The transitions of Γ are constructed in an obvious way to meet the above
requirement. In particular, the only resets in Γ are transitions in states from

11

Foc that correspond to setting big dd-functions to ω. The initial configuration
c0 is the configuration corresponding to M0.

By CΓ we denote the set of configurations {f(0) | f ∈ Ffs} ∪ {g(k) | g ∈
Foc, k ≥ 0}. Note that reach(c0) ⊆ CΓ .

Bounding the Size of Γ . Because the number of (different) dd-functions
on ∆ is exponential and each small dd-function has at most exponential value,
we can naively estimate the number of control states of Γ as double exponential.
A closer analysis reveals that this number is single exponential.

For this purpose, it is useful to introduce so called symbolic markings. A sym-
bolic marking M is obtained from a marking M by replacing the values M(p),
where M(p) ≥ C, with some special symbol ∗. Let symbC be the function that
assigns to each marking the corresponding symbolic marking, and let SC =
{symbC(M) | M ∈ reach(M0)}. It is clear that for given a symbolic marking
M we can check in polynomial space whetherM ∈ SC . Moreover, fromM we can
easily determine, which transitions (and so, which actions and changes on values
of dd-functions) are enabled in any marking M such that symbC(M) = M . It is
also clear that SC contains at most K = (C + 1)|P | symbolic markings.

Observation 12 For each M,M ′ ∈ reach(M0), symbC(M) = symbC(M
′)

implies M ≃C M ′.

From Observation 12 we see that ≃C has at most K equivalence classes,
which means that Γ has at most exponential number of control states. By using
sets of symbolic markings as a succinct representation of control states of Γ , Γ
can be constructed in exponential time.

The constructed OCNR Γ has some additional special properties that allow
us to decide bisimilarity between BPA processes (Σ,α0) and the OCNR process
(Γ, c0) in exponential time, w.r.t. the original BPA-BPP instance. The OCNR
with these additional properties is called a special OCNR (sOCNR). Due to lack
of space, the description of these properties together with the description of the
rest of the algorithm are omitted here.

Lemma 13. There is an exponential time algorithm that for a given BPP pro-
cess (∆,M0) constructs an sOCNR process (Γ, c0) such that M0 ∼ c0.

Lemma 14. There is an algorithm deciding for a given BPA process (Σ,α0) and
the constructed sOCNR process (Γ, c0), whether α0 ∼ c0. The running time of
the algorithm is exponential wrt the size of the original instance of the problem.

Intuitively, the basic idea, on which the algorithm from Lemma 14 is based,
is the following. When Aβ ∼ c, where A ∈ V is normed, β ∈ V ∗ and c ∈ CΓ ,
then there must exist some c′ ∈ CΓ such that β ∼ c′. This means that β can be
replaced with c′ in Aβ, by which we obtain the configuration Ac′ in a transition
system that can be viewed as a sequential composition of BPAΣ and sOCNR Γ .
We can then characterize the bisimulation equivalence in this combined system
by a bisimulation base consisting of pairs of configurations of the form (Ac′, c)
where Ac′ ∼ c, resp. (A, c) where A ∼ c.

12

This bisimulation base is still infinite but it can be represented succinctly
due to fact that there is some computable exponential constant B such that
if Af(k) ∼ g(ℓ), where A is normed, then if k or ℓ is greater than B, then
‖A‖+k = ℓ and it holds for each k ≥ B that Af(k) ∼ g(ℓ) iffAf(k+1) ∼ g(ℓ+1).

References

1. Benedikt, M., Göller, S., Kiefer, S., Murawski, A.: Bisimilarity of pushdown systems
is nonelementary. In: Proc. 28th LiCS. IEEE Computer Society (2013), to appear.

2. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Handbook of Process Algebra. pp. 545–623. Elsevier (2001)

3. Burkart, O., Caucal, D., Steffen, B.: An elementary decision procedure for arbitrary
context-free processes. In: Proc. 20th MFCS. LNCS, vol. 969, pp. 423–433. Springer
(1995)

4. Černá, I., Křet́ınský, M., Kučera, A.: Comparing expressibility of normed BPA and
normed BPP processes. Acta Informatica 36, 233–256 (1999)

5. Czerwinski, W., Fröschle, S.B., Lasota, S.: Partially-commutative context-free pro-
cesses: Expressibility and tractability. Information and Computation 209(5), 782–
798 (2011)

6. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel
processes. Fundamenta Informaticae 31(1), 13–25 (1997)

7. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process
algebra. In: Proc. 26th ICALP. LNCS, vol. 1644, pp. 412–421. Springer (1999)

8. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding
bisimulation equivalence of normed basic parallel processes. Mathematical Struc-
tures in Computer Science 6, 251–259 (1996)

9. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisim-
ilarity of normed context-free processes. Theor. Comput. Sci. 158, 143–159 (1996)

10. Jančar, P.: Bisimilarity on basic process algebra is in 2-ExpTime (an explicit proof).
Logical Methods in Computer Science 9(1) (2013)

11. Jančar, P., Kot, M., Sawa, Z.: Complexity of deciding bisimilarity between normed
BPA and normed BPP. Information and Computation 208(10), 1193–1205 (2010)

12. Jančar, P.: Strong bisimilarity on basic parallel processes is PSPACE-complete. In:
Proc. 18th LiCS. pp. 218–227. IEEE Computer Society (2003)

13. Jančar, P., Kučera, A., Moller, F.: Deciding bisimilarity between BPA and BPP
processes. In: Proc. CONCUR’03. LNCS, vol. 2761, pp. 159–173. Springer (2003)

14. Kiefer, S.: BPA bisimilarity is EXPTIME-hard. Information Processing Letters
113(4), 101–106 (2013)

15. Sénizergues, G.: The bisimulation problem for equational graphs of finite out-
degree. SIAM J. Comput. 34(5), 1025–1106 (2005)

16. Srba, J.: Strong bisimilarity of simple process algebras: Complexity lower bounds.
Acta Informatica 39, 469–499 (2003)

17. Srba, J.: Roadmap of infinite results. In: Current Trends In Theoretical Com-
puter Science, The Challenge of the New Century, vol. 2, pp. 337–350. World
Scientific Publishing Co. (2004), for an updated version see http://users-
cs.au.dk/srba/roadmap/

