
Efficient Construction of Semilinear

Representations of Languages Accepted by
Unary NFA

Zdeněk Sawa⋆

Center for Applied Cybernetics, Department of Computer Science
Technical University of Ostrava

17. listopadu 15, Ostrava-Poruba, 708 33, Czech republic
zdenek.sawa@vsb.cz

Abstract. Chrobak (1986) proved that a language accepted by a given
nondeterministic finite automaton with one-letter alphabet, i.e., a unary
NFA, with n states can be represented as the union of O(n2) arithmetic
progressions, and Martinez (2002) has shown how to compute these pro-
gressions in polynomial time. To (2009) has pointed out recently that
Chrobak’s construction and Martinez’s algorithm, which is based on it,
contain a subtle error and has shown how they can be corrected. In this
paper, a new simpler and more efficient algorithm for the same problem is
presented. The running time of the presented algorithm is O(n2(n+m)),
where n is the number of states and m the number of transitions of
a given unary NFA.

1 Introduction

It is well known that Parikh images of regular (and even context-free) languages
are semilinear sets [7, 4]. In unary languages, i.e., languages over a one-letter
alphabet, words can be identified with their lengths (i.e., an can be identified
with n), so the Parikh image of a unary language is just the set of lengths of
words of the language, and it can be identified with the language itself. It can be
easily shown that each regular unary language can be represented as the union
of a finite number of arithmetic progressions of the form {c+ di | i ∈ N} where
c and d are constants specifying the offset and the period of a progression.

A unary nondeterministic finite automaton (a unary NFA) is an NFA with
a one-letter alphabet. Given a unary NFA A, a set of arithmetic progressions
representing the language accepted by A can be computed by determinization
ofA; however, this straightforward approach can produce an exponential number
of progressions. Chrobak [1] has shown that this exponential blowup is avoidable
and that a language accepted by a unary NFA with n states can be represented
as the union of O(n2) progressions of the form {c+ di | i ∈ N} where c < p(n)
for some p(n) ∈ O(n2) and 0 ≤ d ≤ n. The computational complexity of the

⋆ Supported by the Czech Ministry of Education, Grant No. 1M0567.

2

construction of these progressions was not analyzed in [1], but it can be eas-
ily seen that a naive straightforward implementation would require exponential
time. Later, Martinez [5, 6] has shown how the construction described in [1] can
be realized in polynomial time. The exact complexity of Martinez’s algorithm
is O(kn4) where n is the number of states of the automaton and k the number
of strongly connected components of its graph. The result was recently used
for example in [3, 2] to obtain more efficient algorithms for some problems in
automata theory and the verification of one-counter processes.

In [8], To pointed out that Chrobak’s construction and Martinez’s algorithm
(whose correctness relies on correctness of Chrobak’s construction) contain a sub-
tle error, and he has shown modifications that correct this error.

In this paper, we give a simpler and more efficient algorithm for the same
problem, i.e., for computing of a corresponding set of arithmetic progressions for
a given unary NFA. The time complexity of the algorithm is O(n2(n+m)) and
its space complexity O(n2), where n is the number of states and m number of
transitions of the unary NFA.

Section 2 gives basic definitions and formulates the main result, Section 3
describes the algorithm and proofs of its correctness, and Section 4 contains
a description of an efficient implementation of the algorithm and an analysis of
its complexity.

2 Definitions and Main Result

The set of natural numbers {0, 1, 2, . . .} is denoted by N. For i, j ∈ N such
that i ≤ j, [i, j] denotes the set {i, i+ 1, . . . , j}, and [i, j) denotes the (possibly
empty) set {i, i+ 1, . . . , j − 1}. Given c, d ∈ N, an arithmetic progression is the
set {c+d · i | i ∈ N}, denoted c+dN, where c is called the offset and d the period
of the progression.

The following definitions are standard (see e.g. [4]), except that they are
specialized to the case where a one-letter alphabet is used. In such an alphabet,
words can be identified with their lengths.

A unary nondeterministic finite automaton (a unary NFA) is a tuple A =
(Q, δ, I, F) where Q is a finite set of states, δ ⊆ Q × Q is a transition relation,
and I, F ⊆ Q are sets of initial and final states respectively. A path of length k

from q to q′, where q, q′ ∈ Q, is a sequence of states q0, q1, . . . , qk from Q where

q = q0, q
′ = qk, and (qi−1, qi) ∈ δ for each i ∈ [1, k]. We use q

k
−→ q′ to denote

that there exists a path of length k from q to q′. A word x ∈ N is accepted by
A if q0

x
−→ qf for some q0 ∈ I and qf ∈ F . The language L(A) accepted by

a unary NFA A is the set of all words accepted by A.

We consider the following problem:

Problem: UNFA-Arith-Progressions

Input: A unary NFA A.
Output: A set {(c1, d1), (c2, d2), . . . , (ck, dk)} of pairs of natural

numbers such that L(A) =
⋃k

i=1
(ci + diN).

3

The main result presented in this paper is:

Theorem 1. There is an algorithm solving UNFA-Arith-Progressions with time
complexity O(n2(n+m)) and space complexity O(n2) where n is the number of
states and m the number of transitions of a given unary NFA. The algorithm
constructs O(n2) pairs of numbers and each constructed pair (ci, di) satisfies
ci < 2n2 + n and di ≤ n.

3 L(A) as Union of Arithmetic Progressions

In this section, we describe the algorithm for UNFA-Arith-Progressions and prove
its correctness.

In the rest of the section, we assume a fixed unary NFA A = (Q, δ, I, F) with
|Q| = n.

3.1 The algorithm

The algorithm works as follows. It computes the resulting set R of pairs of
numbers that represent arithmetic progressions as the union of the following
sets R1 and R2 where:

– R1 is the set of all of pairs (x, 0) where x ∈ L(A) and x ∈ [0, 2n2 + n), and
– R2 is the set of all of pairs (c, d) where d ∈ [1, n], c ∈ [2n2 − d, 2n2), and

where for some q0 ∈ I, q ∈ Q, and qf ∈ F we have q0
n

−→ q, q
d

−→ q, and

q
c−n
−→ qf (note that c ≥ n).

To compute R1, it is sufficient to test for each x ∈ [0, 2n2+n) if x ∈ L(A), and to
compute R2, it is sufficient to test for each of O(n2) pairs (c, d), where d ∈ [1, n]
and c ∈ [2n2 − d, 2n2), if the required conditions are satisfied. All these tests
can be easily done in polynomial time and we can also see that |R| ∈ O(n2).
An efficient implementation of the algorithm, which avoids some recomputations
by precomputing certain sets of states, is described in Section 4 together with
a more detailed analysis of its complexity.

The correctness of the algorithm is ensured by the following crucial lemma
and its corollary; the proof of the lemma is postponed to the next subsection.

Lemma 2. Let x ≥ 2n2 + n. If x ∈ L(A) then x ∈ c+ dN for some (c, d) ∈ R2.

Corollary 3. Let x ∈ N. Then x ∈ L(A) iff x ∈ c+ dN for some (c, d) ∈ R.

Proof. (⇒) Assume x ∈ L(A). Either x < 2n2 + n and then (x, 0) ∈ R1 and
x ∈ (x + 0N) = {x}, or x ≥ 2n2 + n and then x ∈ c + dN for some (c, d) ∈ R2

by Lemma 2.
(⇐) It can be easily checked that c + dN ⊆ L(A) for each (c, d) ∈ R. For

(c, d) ∈ R1 this follows from the definition, and for (c, d) ∈ R2 from the obser-

vation that if q0
n

−→ q, q
d

−→ q, and q
c−n
−→ qf for some q0 ∈ I, q ∈ Q, and qf ∈ F

(where c ≥ n), then A accepts each word from c+ dN. ⊓⊔

4

3.2 Proof of Lemma 2

The rest of this section is devoted to the proof of Lemma 2, which is done by
the following sequence of simple propositions.

The basic idea of the proof is that there exists a polynomial p(n) ∈ O(n2)

such that if q1
x

−→ q2 for some q1, q2 ∈ Q and x ≥ p(n) then there is a path α of
length x from q1 to q2 of the following form: α goes from q1 to some state q by
c1 steps, then goes through a cycle of length d ∈ [1, n] several times, and then
goes from q to q2 by c2 steps. Obviously x = c1 + k · d+ c2 for some k ∈ N, and
it will be also ensured that c1 + c2 < p(n).

Every path α of length x from q1 to q2 can be transformed into the described
form by the following construction: we can decompose α into elementary cycles,
i.e., cycles where no state is repeated, and a simple path, i.e., a path where
no state is repeated, from q1 to q2. We can do this by repeatedly removing
elementary cycles from α. Using this decomposition, we can construct a path of
the required form by selecting one elementary cycle of some length, say d, and
by repeatedly “cutting-out” some subsets of the remaining elementary cycles,
such that the sums of lengths of cycles in these subsets are multiples of d, which
means that they can be replaced with iterations of the selected cycle of length d.

However, when we “cut-out” cycles, we must be careful, because by cutting-
out some cycles, some other cycles can become unreachable. An error of this
kind was made by Chrobak in [1] as pointed out by To in [8].

To ensure that none of the cycles becomes unreachable, we divide elementary
cycles into two categories — removable and unremovable. Only removable cycles
will be cut-out, and it will be ensured that it is safe to remove any subset of
removable cycles.

We say a sequence β0, β1, . . . , βr, where β0 is a simple path from q1 to q2
and where β1, β2, . . . , βr are elementary cycles, is good if for each i ∈ [1, r] there
is some j ∈ [0, i), such that βi and βj share at least one state q. Note that
from such good sequence we can construct a path from q1 to q2, whose length
is the sum of lengths of all βi, by starting with β0 and repeatedly “pasting-in”
β1, β2, . . . , βr (in this order). Each cycle βi can be “pasted-in” since it shares
some state q with some βj where j < i (βi can be pasted in by splitting it in q).

Note that a decomposition β0, β1, . . . , βr of an original path α, where β0 is
a simple path from q1 to q2 and where β1, β2, . . . , βr are elementary cycles in
the reverse order, in which they were removed from α (i.e., βr was removed first
and β1 last), is good. We say a cycle βi, where i ∈ [1, r], is removable if for each
state q of βi there is some j ∈ [0, i) such that βj contains q. Cycle βi that is
not removable is unremovable. It can be easily checked that a sequence obtained
from β0, β1, . . . , βr by removing some arbitrary subset of removable cycles is also
good.

The following proposition is the main “tool” that allows us to find a subset
of removable cycles such that the sum of lengths of cycles in this subset is a
multiple of d.

5

Proposition 4. Let d ≥ 1. Every sequence x1, x2, . . . , xr of natural numbers,
where r ≥ d, contains a non-empty subsequence xi, xi+1, . . . , xj (where 1 ≤ i ≤
j ≤ r) such that (xi + xi+1 + · · ·+ xj) ≡ 0 (mod d).

Proof. Consider a sequence s0, s1, . . . , sr where si = x1+x2+· · ·+xi for i ∈ [0, r].
There are at most d different values of si modulo d. Since r ≥ d, by the pigeonhole
principle we have si ≡ sj (mod d) for some i, j such that 0 ≤ i < j ≤ r. The
nonempty sequence xi+1, xi+2, . . . , xj has the required property (xi+1 + xi+2 +
· · ·+ xj) ≡ 0 (mod d), since sj − si ≡ 0 (mod d). ⊓⊔

Proposition 5. Let q1, q2 ∈ Q, x ∈ N, and d ∈ [1, n]. If q1
x

−→ q2 then q1
y

−→ q2
for some y ∈ [0, 2n2 − n) such that y ≤ x and y ≡ x (mod d).

Proof. Let us assume q1
x

−→ q2 and let y ∈ N be the smallest number such that

y ≡ x (mod d) and q1
y

−→ q2 (such y exists, since y = x satisfies these proper-
ties). Let β0, β1, . . . , βr be a good decomposition of a path of length y from q1 to
q2 (β0 is a simple path from q1 to q2 and βi for i ∈ [1, r] are elementary cycles).
Let us assume that there are at least d removable cycles in this decomposition.
Then, by Proposition 4, there is a nonempty subset of these removable cycles
such that the sum of lengths of the cycles in this subset is a multiple of d. By
removing the cycles in this subset we obtain a good sequence, from which we
can construct a path from q1 to q2 of length y′ < y where y′ ≡ y (mod d).

So q1
y′

−→ q2 and y′ ≡ x (mod d), which is a contradiction, since we have as-
sumed that y is the smallest such number. This implies that in the sequence
β0, β1, . . . , βr there are at most d− 1 removable cycles.

A cycle βi is unremovable iff it contains a state q that does not belong to
any βj with j < i, which implies that there are at most n−1 unremovable cycles
(note that there is at least one state in β0). The length of β0 is at most n − 1
and a length of each elementary cycle is at most n, which implies

y ≤ (n− 1) + (n− 1 + d− 1) · n < 2n2 − n,

since d ≤ n. ⊓⊔

Corollary 6. Let q1
x

−→ q2 for some q1, q2 ∈ Q and x ∈ N. If x ≥ n then there
exist q ∈ Q, c1 ∈ [0, n), d ∈ [1, n], and c2 ∈ [0, 2n2 − n) such that q1

c1−→ q,

q
d

−→ q, q
c2−→ q2, and x ∈ (c1 + c2) + dN.

Proof. By the pigeonhole principle, some q ∈ Q must be visited twice in the first
n steps of a path from q1 to q2 of length x ≥ n, and so for some c1 ∈ [0, n),

d ∈ [1, n], and c′2 ∈ N we have q1
c1−→ q, q

d
−→ q, q

c′
2−→ q2, and x = c1 + d + c′2.

By Proposition 5, there is some c2 ∈ [0, 2n2 − n) satisfying c2 ≤ c′2, q
c2−→ q2,

and c2 ≡ c′2 (mod d). So c′2 = c2 + k · d for some k ∈ N, and x = c1 + d + c′2 =
(c1 + c2) + (k + 1) · d, which means that x ∈ (c1 + c2) + dN. ⊓⊔

Proposition 7. Let q1
x

−→ q2 for some q1, q2 ∈ Q and x ∈ N. If x ≥ 2n2 + n

then there exist q ∈ Q, c ∈ [0, 2n2 − n), and d ∈ [1, n], such that q1
n

−→ q,

q
d

−→ q, q
c

−→ q2, and x ∈ (n+ c) + dN.

6

Proof. Assume q1
x

−→ q2 where x ≥ 2n2 + n. By Corollary 6, there are some
q′ ∈ Q, c1 ∈ [0, n), d ∈ [1, n], c2 ∈ [0, 2n2 − n), and k ∈ N such that q1

c1−→ q′,

q′
d

−→ q′, q′
c2−→ q2, and x = (c1+ c2)+k ·d. Let α be a path of length x from q1

to q2 that goes from q1 to q′ by c1 steps, then goes k times through a cycle β of
length d, and then goes from q′ to q2 by c2 steps, and let q be the state reached
after the first n steps of α. Note that since (c1 + c2) + k · d = x ≥ 2n2 + n and
c1+c2 < 2n2 (because c1 < n and c2 < 2n2−n), we have k ·d ≥ n. Together with

c1 < n this ensures that the state q is on the cycle β, which implies q1
n

−→ q,

q
d

−→ q, and q
x−n
−→ q2. By Proposition 5, there is some c ∈ [0, 2n2 −n) such that

c ≤ x−n, q
c

−→ q2, and c ≡ x−n (mod d). This means that n+ c ≡ x (mod d),
and since c ≤ x− n implies n+ c ≤ x, we have x ∈ (n+ c) + dN. ⊓⊔

Now we can prove Lemma 2.

Proof (of Lemma 2). Assume that x ≥ 2n2 + n and x ∈ L(A), so there are

some q0 ∈ I and qf ∈ F such that q0
x

−→ qf . By Lemma 7, there exist q ∈ Q,

c′ ∈ [0, 2n2 − n), and d ∈ [1, n], such that q0
n

−→ q q
d

−→ q, q
c′

−→ qf , and
x ∈ (n+c′)+dN. This means that for each c ∈ (n+c′)+dN, such that c ≤ x, we

have q
c−n
−→ qf and x ∈ c+ dN. In particular, there is one such c in the interval

[2n2 − d, 2n2), since n+ c′ ∈ [n, 2n2). ⊓⊔

4 Efficient Implementation

To avoid recomputations, the algorithm precomputes some sets. For i ∈ N we

define Si = {q ∈ Q | ∃q0 ∈ I : q0
i

−→ q} and Ti = {q ∈ Q | ∃qf ∈ F : q
i

−→ qf},

and for q ∈ Q we define Periods(q) = {d ∈ [1, n] | q
d

−→ q}. In particular, the
algorithm precomputes the sets Sn, Ti for i ∈ [2n2−2n, 2n2−n), and Periods(q)

for q ∈ Sn. To test for a given q if q0
n

−→ q for some q0 ∈ I, the algorithm tests

if q ∈ Sn, to test if q
c−n
−→ qf for some qf ∈ F , it tests if q ∈ Tc−n, and to test if

q
d

−→ q, it tests if d ∈ Periods(q).
All these sets can be implemented as bit arrays, so operations like adding

an element to a set, testing if an element is member of a set, and so on, can
be performed in a constant time. It is also obvious that for Q′ ⊆ Q, the sets
Succ(Q′) = {q ∈ Q | ∃q′ ∈ Q′ : (q′, q) ∈ δ} and Pre(Q′) = {q ∈ Q | ∃q′ ∈
Q′ : (q, q′) ∈ δ} can be computed in time O(n + m) where m is the number
of transitions (i.e., |δ| = m). Using subroutines for computing Pre and Succ,
the precomputation of all necessary sets can be done in time O(n2(n+m)). For
example, Sn can be precomputed by computing sequence S0, S1, . . . , Sn where
S0 = I, and Si+1 = Succ(Si) for i ≥ 0, Ti can be computed by T0 = F , and
Ti+1 = Pre(Ti) for i ≥ 0, etc. Also all x < 2n2 + n such that x ∈ L(A) can
be found in time O(n2(n+m)) by computing the sequence S0, S1, . . . , S2n2+n−1

and checking if Sx ∩ F 6= ∅ for x ∈ [0, 2n2 + n).
There are O(n2) pairs (c, d) such that d ∈ [1, n] and c ∈ [2n2 − d, 2n2), and

for each of them, at most n states are tested. Since the corresponding tests for

7

one triple c, d, q can be done in a constant time as described above, all triples can
be tested in time O(n3). We see that the overall running time of the algorithm
is O(n2(n+m)).

During the computation, only the values of Sn, Ti for i ∈ [2n2−n−d, 2n2−n),
and Periods(q) for q ∈ Sn need to be stored. Obviously, O(n2) bits are sufficient
to store these values. Other values are used only temporarily, can be discarded
after their use, and do not take more than O(n2) bits, so the overall space
complexity of the algorithm is O(n2).

References

1. Chrobak, M.: Finite automata and unary languages. Theoretical Computer Science
47(2), 149–158 (1986)

2. Göller, S., Mayr, R., To, A.W.: On the computational complexity of verifying
one-counter processes. In: LICS’09. pp. 235–244. IEEE Computer Society (2009),
http://dx.doi.org/10.1109/LICS.2009.37

3. Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite
and unary languages. In: LATA’08. Lecture Notes in Computer Science, vol. 5196,
pp. 261–272. Springer (2008)

4. Kozen, D.C.: Automata and Computability. Springer-Verlag (1997)
5. Martinez, A.: Efficient computation of regular expressions from unary nfas. In: De-

scriptional Complexity of Formal Systems (DFCS) (2002)
6. Martinez, A.: Topics in Formal Languages: String Enumeration, Unary NFAs and

State Complexity. Master’s thesis, University of Waterloo (2002)
7. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
8. To, A.W.: Unary finite automata vs. arithmetic progressions. Information Processing

Letterss 109(17), 1010–1014 (2009), http://dx.doi.org/10.1016/j.ipl.2009.06.005

