
Complexity and Decidability of

Some Equivalence-Checking

Problems

Zdeněk Sawa

Ph.D. Thesis

Faculty of Electrical Engineering and Computer Science

Technical University of Ostrava

2005

ii

Acknowledgements

I would like to thank my supervisor Petr Jančar for guidance, comments
and fruitful discussions. I owe much to him.

I would also like to thank all co-authors that worked with me on papers for
their cooperation: Antońın Kučera, Faron Moller, and Martin Kot.

I would also like to thank Philippe Schnoebelen for drawing my attention
to the complexity of equivalence checking on finite-state systems composed
from communicating subsystems and to Rabinovich’s conjecture.

Last but not least I would like to thank my wife Silvie for her love and
support.

iii

iv

Declaration

I declare that this thesis was composed by myself, and all presented results
are my own, unless otherwise stated.

Some of the material has been previously published in [32], [53], [30], [52],
[31], and [35].

Zdeněk Sawa

v

vi

Abstract

The thesis presents results obtained by the author in the area of verifica-
tion of finite-state and infinite-state systems. It concentrates on questions
of complexity and decidability of equivalence checking, i.e., of deciding be-
havioural equivalences and preorders on transition systems.

It is shown that deciding of any relation between bisimulation equivalence
and trace preorder is a PTIME-hard problem for finite-state systems that
are given explicitly as a list of states and transitions. The problem becomes
EXPTIME-hard for any such relation in the case of finite-state systems that
are created as a composition of communicating finite-state components.

The other type of systems studied in the thesis are one-counter automata. It
is shown that deciding simulation equivalence is an undecidable problem on
one-counter automata. A general method for proving DP-hardness of some
problems concerning one-counter automata is presented. Using this method
is shown that deciding any relation between bisimulation equivalence and
simulation preorder is DP-hard for one-counter nets (i.e., one-counter au-
tomata that cannot test for zero), and that deciding simulation equivalence
and simulation preorder between a one-counter automaton and a finite-state
system is DP-hard.

The last type of systems studied in the thesis are Basic Parallel Processes
(BPP). Two polynomial time algorithms for BPP are presented. The first
of these algorithms decides bisimulation equivalence between a BPP and a
finite-state system, and the other decides distributed bisimilarity on BPP.

vii

viii

Abstrakt

Tato disertačńı práce prezentuje výsledky dosažené autorem v oblasti ve-
rifikace konečně stavových a nekonečně stavových systémů. Zaměřuje se
na otázky výpočetńı složitosti a rozhodnutelnosti equivalence checking, to
jest problémů rozhodováńı behaviorálńıch ekvivalenćı a kvaziuspořádáńı na
přechodových systémech.

Je ukázáno, že rozhodováńı libovolné relace, která lež́ı mezi bisimulačńı ekvi-
valenćı a trace preorder je PTIME-těžký problém pro systémy, které jsou
dány explicitně jako seznam stav̊u a přechod̊u. Tento problém se pro libo-
volnou z těchto relaćı stává EXPTIME-těžkým v př́ıpadě konečně stavových
systémů, které jsou vytvořeny z komunikuj́ıćıch konečně stavových kompo-
nent.

Daľśım typem systémů zkoumaným v této práci jsou automaty s jedńım
č́ıtačem. Je ukázáno, že rozhodováńı simulačńı ekvivalence pro automaty
s jedńım č́ıtačem je nerozhodnutelné. Dále je prezentována obecná metoda
pro dokazováńı DP-obt́ıžnosti problémů týkaj́ıćıch se automat̊u s jedńım
č́ıtačem. Použit́ım této metody je ukázáno, že rozhodováńı libovolné relace,
která lež́ı mezi bisimulačńı ekvivalenćı a simulačńım kvaziuspořádáńım je
DP-těžké pro one-counter nets (tj. pro automaty s jedńım č́ıtačem, které
nemohou testovat nulu), a dále, že rozhodováńı simulačńı ekvivalence a si-
mulačńıho kvaziuspořádáńı mezi automatem s jedńım č́ıtačem a konečně
stavovým systémem je DP-těžké.

Posledńım typem systémů zkoumaným v této práci jsou Basic Parallel Pro-
cesses (BPP). Jsou ukázány dva polynomiálńı algoritmy pro BPP. Prvńı
z těchto algoritmů rozhoduje bisimulačńı ekvivalenci mezi BPP a konečně
stavovým systémem a druhý rozhoduje distribuovanou bisimilaritu na BPP.

ix

x

Contents

1 Introduction 1

1.1 Goals of the Thesis . 4

1.2 Overview of the Results . 4

1.2.1 Finite-State Systems 4

1.2.2 One-Counter Automata 5

1.2.3 Basic Parallel Processes 6

1.3 Layout of the Thesis . 7

2 Definitions 9

2.1 Notation Conventions . 9

2.2 Labelled Transition Systems 10

2.3 Process Rewrite Systems . 12

2.4 Process Algebra, BPA, and BPP 14

2.5 Petri Nets . 17

2.6 One-Counter Automata . 19

2.7 Explicit and Composed Finite-State Systems 21

2.8 Behavioural Equivalences . 22

2.9 Distributed Bisimilarity and BPP 25

3 Finite-State Processes 29

3.1 State of the Art . 30

3.2 Own Contribution . 31

xi

xii Contents

3.3 Explicit Finite-State Systems 32

3.3.1 Alternating Graphs . 32

3.3.2 Reduction . 34

3.4 Composed Finite-State Systems 37

3.4.1 Linear Bounded Automata 38

3.4.2 Reactive Linear Bounded Automata 39

3.4.3 Reduction . 42

3.4.4 Decomposition of Transitions 46

3.4.5 Correctness of the Construction of the RLBA 47

3.5 Summary of the Results . 48

4 One-Counter Automata 49

4.1 State of the Art . 50

4.2 Undecidability Result . 51

4.3 The OCL Fragment of Arithmetic 54

4.3.1 Definition of OCL . 56

4.3.2 DP-hardness of TruthOCL 57

4.3.3 TruthOCL is in Πp
2 . 59

4.4 Application to One-Counter Automata Problems 61

4.4.1 Results for One-Counter Nets 61

4.4.2 Simulation Problems for One-Counter Automata and
Finite-State Systems 66

4.5 Summary of the Results . 70

5 Basic Parallel Processes 73

5.1 State of the Art . 74

5.2 Bisimilarity with a Finite-State System 74

5.2.1 Basic Definitions . 74

5.2.2 The Algorithm . 75

5.2.3 Time Complexity of the Algorithm 80

Contents xiii

5.3 Distributed Bisimilarity . 84

5.4 Summary of the Results . 90

6 Conclusion 91

6.1 Summary of the Results . 91

6.2 Open Problems . 92

A List of Publications 95

xiv Contents

Chapter 1

Introduction

We can find many examples of complicated software and hardware systems
where bugs can have serious or even catastrophic consequences. Examples
of such systems are operating systems, network communication protocols,
microprocessors, and traffic control systems.

One of the main problems in the design of such complicated systems is to
ensure the correctness of this design. Correctness means that the system
fulfills the task for which it was designed. We usually have some specifica-
tion of the desired behavior of the system and we want to ensure that the
implementation of the system is correct with respect to this specification.
The process of checking whether the given implementation satisfies the given
specification is called verification.

Standard techniques used for verification are testing and simulation. In
testing we run the system in different situations and with different inputs
and observe the behavior of the system. Simulation is similar to testing
but we do not test the actual system, but some model of it. It is used in
situations when running the actual system is not possible or practical, for
example due to enormous costs.

While testing and simulation are very useful in the early stages of develop-
ment and allow to discover many bugs in the system, they have the impor-
tant disadvantage that one can never be sure that there are not some other
more subtle bugs in the system. Testing and simulation can never guarantee
the correctness of the system due to their inherent limitations because they
can explore only some of possible behaviors of the system, but the number
of all possible behaviors is usually very large and often infinite.

1

2 Chapter 1. Introduction

The limitations of testing and simulation become even more severe in the
design of systems composed of many components running concurrently that
can interact with each other. The behavior of such systems is usually non-
deterministic, and it can be difficult even to reproduce bugs in these systems
since they can occur only under some rare circumstances.

It becomes obvious that some formal methods that ensure correctness of all
possible behaviors should be used for verification.

The formal methods provide us with the necessary mathematical tools that
can be used in the construction of rigorous mathematical proofs of the cor-
rectness of the system. The construction of such proofs can be done either
by hand or may be automated, at least partially, by use of some sort of
verification software tools. The latter approach is very attractive since the
construction of proofs by hand is usually very tedious and error prone. The
approach using automated tools is usually called computer aided verification.

Unfortunately this task can not be fully automated in full generality because
many problems concerning behavior of computer programs are undecidable.
For example, it is well known that Halting problem, i.e., the problem whether
a program halts for a given input after some finite number of steps, is un-
decidable.

In general, there are two main approaches to verification that allow to ensure
correctness for all possible behaviors of the system – theorem proving and
techniques based on model checking and equivalence checking.

In theorem proving, we try to construct formal proofs of correctness of the
system. Computer programs called theorem provers can assist the user in
this task and do some simple steps automatically. However, the user has
to guide the program and do the crucial steps of the proofs. The main
disadvantage of this technique is that it requires a lot of knowledge, skill
and practice from the user. This severely limits the practical applicability
of theorem proving.

Other approaches are model checking and equivalence checking. These tech-
niques are fully automatic and do not require any interaction from the user,
however they can not be applied to arbitrary programs due to undecidabil-
ity of Halting problem. Instead, some properties of models that do not
have the expressive power of Turing machines are verified. These techniques
have their origins in the automata and formal language theory where infinite
languages are described finitely and some properties of these languages are
decidable, for example, it is decidable whether two finite automata recognize

3

the same language.

In model checking we have given a system (resp. description of the system)
and some desired property of the system expressed as a formula of some
temporal logic, and the question is whether the system satisfies the given
property. See [15, 17, 57, 6] for more information about model checking and
temporal logic.

Equivalence checking is type of problems where we have given (descriptions
of) two systems and the question is whether these systems are equivalent
with respect to some notion of equivalence. Usually one of these systems is
a specification and the other is an implementation and we want to ensure
that their behavior is identical. Equivalence checking problems are the main
topic of this thesis.

There are many variants of model checking and equivalence checking prob-
lems that differ in the way how the systems and their properties are ex-
pressed. Models with a great expressive power cannot be verified automati-
cally, and models that are too restrictive do not allow to model many aspects
of real systems. This motivates the research that concentrates on decidabil-
ity and complexity of verification problems. One active area of research
concentrates on the question which model checking and equivalence check-
ing problems are decidable, and where exactly lies the dividing line between
decidable and undecidable problems. Another important question is what
is the exact computational complexity of decidable verification problems,
because many verification problems can be solved by some algorithm theo-
retically, but the algorithm can be used in practice only for small instances
due to its computational complexity.

One of the most serious obstacles in the design of efficient verification algo-
rithms is the phenomenon known as ‘state explosion’. This problem appears
when we have a system composed of many components. These components
can have reasonably small state spaces, but the state space of the whole
system can be exponentially larger with respect to the size of descriptions
of its components. Unfortunately it shows up that the state explosion is un-
avoidable in many cases and that algorithms solving such problems require
exponential time.

This thesis concentrates on complexity and decidability of some equivalence
checking problems, and presents some results obtained by the author in this
area. Some of the results presented here are joint work with other authors
– Petr Jančar, Antońın Kučera, Faron Moller, and Martin Kot.

4 Chapter 1. Introduction

It is assumed that the reader is familiar with formal languages and the basics
of complexity theory.

1.1 Goals of the Thesis

The main goal of the thesis was to contribute with some new results in
the area of equivalence checking. The main focus was on the decidability
and computational complexity of equivalence-checking problems. The thesis
presents results obtained by the author in this area.

The solved problems are more or less independent of each other and can be
divided into three main groups:

• problems concerning finite-state systems – either given explicitly or as
a parallel composition of communicating components

• problems concerning one-counter automata and a variant of them
called one-counter nets

• problems concerning Basic Parallel Processes (BPP)

The next section gives an overview of the results presented in this theses.
See Chapter 2 for formal definitions of terms used in this section.

1.2 Overview of the Results

The following subsections describe shortly the main results presented in this
thesis.

1.2.1 Finite-State Systems

Finite-State Systems are one of the simplest type of systems. They can be
given either explicitly (as an explicit list of states and transitions), or they
can be described as a composition of explicitly given communicating finite-
state systems. The systems of the former type are called explicit finite-state
system in the thesis, and the latter are called composed finite-state systems.
An example of a composed finite-state system is a parallel composition of ex-
plicit finite-state systems that synchronize on common actions and that use

1.2 Overview of the Results 5

hiding of actions (they are called Parallel Composition with Hiding (PCH)
in this thesis), or 1-safe Petri nets.

Chapter 3 contains proofs of lower bounds of the complexity of equivalence-
checking on explicit and composed systems. These lower bounds are not
specific for one type of equivalence, but apply to whole spectrum of rela-
tions between bisimulation equivalence and trace preorder. This spectrum
includes almost all types of equivalences considered in the literature that
are useful in practice.

It is shown at first that deciding any relation between bisimulation equiva-
lence and trace preorder on explicit systems is PTIME-hard. This result was
proved in [53], however the proof presented in this thesis uses a different and
simpler construction that was published in [52]. This construction was used
in [52] as one part of the proof concerning composed systems. It was shown
there that deciding any relation between bisimulation equivalence and trace
preorder is EXPTIME-hard for many types of composed systems including
PCH and 1-safe Petri nets. This result was conjectured for PCH by A. Rabi-
novich in [51], and the result from [52] approves his conjecture. To simplify
the proof, new model of computation called Reactive Linear Bounded Au-
tomata (RLBA) was introduced. It was shown that deciding any relation
between bisimulation equivalence and trace preorder is EXPTIME-hard for
RLBA. Since RLBA can be “implemented” (i.e., its behavior can be easily
simulated) by different types of composed systems, the EXPTIME-hardness
result extends to all such types of systems. (However there is one notable
exception, parallel composition of finite-state systems that synchronize on
common actions where hiding of actions is not allowed. Such systems are
not powerful enough to simulate RLBA, and deciding for example trace
equivalence is PSPACE-complete for them. [54])

1.2.2 One-Counter Automata

One-Counter Automata (OCA) are like finite-state systems extended with a
counter containing a non-negative integer value. This counter can be incre-
mented and decremented by one. This kind of machines can test whether
the value of the counter is zero or non-zero and perform actions depending
on that. There is a variant of one-counter automata called One-Counter
Nets (OCN). One-counter nets can not test for zero value of the counter,
they can only test for non-zero value. One-counter nets are equivalent (up
to isomorphism) with Petri nets with (at most) one unbounded place.

6 Chapter 1. Introduction

It is shown in Chapter 4 that deciding simulation equivalence and simula-
tion preorder is undecidable problem for one-counter automata. This result
was proved in [32]. The rest of the chapter is devoted to presentation of
a general method for proving DP-hardness of different problems concern-
ing one-counter automata published in [30] and [31]. This method uses a
fragment of Presburger arithmetic called One Counter Logic (OCL). This
fragment is chosen in such a way that it is possible to reduce the problem
of deciding the truth of a formula of OCL to some problems concerning
one-counter automata. The constructions in these reductions proceed by
induction on the structure of a formula. It is proved that the problem of de-
ciding truth of an OCL formula is DP-hard. This implies that the problems
to which this problem can be reduced are also DP-hard.

This technique was used to show DP-hardness of deciding any relation be-
tween bisimulation equivalence and simulation preorder on one-counter nets,
and to show DP-hardness of deciding simulation preorder and simulation
equivalence of a one-counter automaton and a finite-state system. (The
same technique was also used in [31] by A. Kučera to show DP-hardness of
model checking the logic EF (fragment of CTL) on one-counter nets, however
this result is not presented in this thesis, see [31] for more information.)

1.2.3 Basic Parallel Processes

Basic Parallel Processes (BPP) are a very natural subclass of infinite state
systems. It was proved by P. Jančar in [25] that deciding bisimulation
equivalence on BPP is PSPACE-complete. The technique used in this paper
was used to show two results concerning BPP presented in this thesis in
Chapter 5.

The first of these results is a polynomial time algorithm for deciding bisimu-
lation equivalence between a BPP and a finite-state system with time com-
plexity O(n4) where n is the size of the instance. This result was presented
in [35].

The second of these results is a polynomial time algorithm for deciding
distributed bisimilarity on BPP with time complexity O(n3). A polynomial
time algorithm for this problem was already presented by Lasota in [40],
however the algorithm presented here is simpler, more efficient and provides
an explicit upper bound on the complexity of the problem. (No degree of
the polynomial was specified in the proof in [40].) The new algorithm for
this problem presented in this thesis was not published yet.

1.3 Layout of the Thesis 7

1.3 Layout of the Thesis

Chapter 2 provides necessary basic definitions. Problems concerning finite-
state systems (both explicit and composed) are studied in Chapter 3. Chap-
ter 4 concentrates on problems concerning one-counter automata, and Chap-
ter 5 on problems concerning Basic Parallel Processes. Chapter 6 contains
conclusion and an overview of results presented in this thesis. Appendix A
contains a list of publications of the author.

Because the types of problems solved in Chapters 3, 4, and 5 are more
or less independent, each of these chapters contains its own section called
‘State of the Art’ which describes known results that are relevant for the
given chapter.

8 Chapter 1. Introduction

Chapter 2

Definitions

This chapter contains some basic definitions that are used in the remain-
ing chapters. Section 2.1 presents notation conventions used in the thesis.
Section 2.2 describes the notion of labelled transition systems, a formalism
that underlies different types of models described in the following sections –
process rewrite systems (Section 2.3), process algebra, BPA and BPP (Sec-
tion 2.4), Petri nets (Section 2.5), one-counter automata (Section 2.6), and
explicit and composed finite state systems (Section 2.7). The remaining
two sections describe different types of behavioural equivalences on labelled
transition systems. Section 2.8 describes equivalences from linear time –
branching time spectrum, and Section 2.9 describes distributed bisimilarity
– one of non-interleaving equivalences.

2.1 Notation Conventions

The following notation conventions are used in the rest of the thesis.

N denotes the set of non-negative integers, i.e., the set {0, 1, 2, . . .}. The
symbol ω denotes infinity. We define Nω = N ∪ {ω}.

[x, y], where x, y ∈ N, denotes the set of integers between (and including) x
and y, i.e., the set {z | x ≤ z ≤ y}.

Let X be a set. |X| denotes the cardinality of X.

X (Y denotes that X is a proper subset of Y , while X ⊆ Y allows equality.
P(X) denotes the power-set of X, i.e., the set {Y | Y ⊆ X}.

9

10 Chapter 2. Definitions

s1

s2

s3

s4

s5

a

a

a

a

b

b

b a, b

Figure 2.1: Example of an LTS

X∗ denotes the set of finite sequences of elements from X. Let x ∈ X∗ be
a sequence. The length of x is the number of its elements denoted |x|. We
use x(i) to denote i-th element of x, i.e., x(i) = xi for x = x1x2x3 · · ·.

Let X be a set. Partition X of X is a set X = {X1,X2, . . . ,Xl} of disjoint
non-empty classes whose union is X.

2.2 Labelled Transition Systems

There are many possible ways how systems can be described, for example
different types of automata, process rewriting systems, process algebras,
or Petri nets. However there is one common concept underlying all these
formalisms. It is the concept of a labelled transition system (LTS).

Formally, a labelled transition system is a triple (S,Act ,−→) where:

• S is a set of states,

• Act is a finite set of actions, and

• −→⊆ S × Act × S is a transition relation.

Informally, S is the set of all possible states of the system, Act is a set of
names of externally observable actions which can be performed by the sys-
tem, and the transition relation represents behaviour of the system. Instead
of (s, a, s′) ∈−→ we usually write s

a
−→ s′, and this can be interpreted as

that the system in the state s can perform the action a and go to the state s′.

2.2 Labelled Transition Systems 11

See Figure 2.1 for an example of an LTS where S = {s1, s2, s3, s4, s5}, Act =
{a, b}, and the transition relation contains the following transitions:

s1
a

−→ s3 s3
a

−→ s5 s4
b

−→ s5

s1
b

−→ s2 s4
a

−→ s4 s5
b

−→ s2

s2
a

−→ s4 s4
a

−→ s5 s5
b

−→ s3

The set of states S in a labelled transition system can be finite or infinite.
Labelled transition systems where S is finite are called finite-state labelled
transition systems, and labelled transition systems where S is infinite are
called infinite-state labelled transition systems. Finite-state systems are the
simplest type of systems. The sets of states and transitions in such systems
are finite and can be given explicitly. On the other hand, it is not possible
to work directly with infinite-state systems. Instead we must work with
some finite representations of them. Examples of such representations are
different kinds of automata, Petri nets, process algebras, and process rewrite
systems.

The notation s
a

−→ s′ can be extended in a natural way to sequences of
actions. Let w ∈ Act∗. We write s

w
−→ s′ iff there is a sequence of states

s0, s1, . . . , sn such that s = s0, s
′ = sn, and si−1

w(i)
−→ si for each i such that

1 ≤ i ≤ n. Recall that w(i) denotes i-the symbol of w.

A state s′ is reachable from a state s, written s −→∗ s′, iff there is some
w ∈ Act∗ such that s

w
−→ s′.

A labelled transition system is deterministic if for every s ∈ S and every
a ∈ Act there is at most one s′ such that s

a
−→ s′. System that is not

deterministic is nondeterministic.

A labelled transition systems is image-finite iff for every s ∈ S and every
a ∈ Act the set {s′ | s

a
−→ s′} is finite.

Sometimes a labelled transition system has a distinguished initial state or
more generally a set of initial states.

Besides observable actions in Act , there can be a invisible action denoted τ
with a special semantics. We define τ 6∈ Act for any set of actions Act . In
labelled transition systems where τ actions occur, the transition relation is
defined as a subset of S× (Act ∪{τ})×S where S is the set of states. Again
we use the notation s

τ
−→ s′ instead of (s, τ, s′) ∈−→.

12 Chapter 2. Definitions

2.3 Process Rewrite Systems

Process Rewrite Systems (PRS) defined by Mayr in [43] provide a unified
view of many formalisms presented in the following sections.

Process rewrite systems are defined as follows. Let Act = {a, b, c, . . .} be
a countably infinite set of atomic actions and Var = {X,Y,Z, . . .} be a
countably infinite set of process variables. Process terms are defined by the
following abstract grammar

P ::= ε | X | P1.P2 | P1 ‖ P2

where ε is the empty term, X is a process variable, and where ‘.’ denotes
sequential composition and ‘‖’ parallel composition. Sequential composi-
tion is associative and parallel composition is associative and commutative.
We always work with equivalence classes of terms modulo associativity of
sequential composition and modulo associativity and commutativity of par-
allel composition. We also define that ε.P = P.ε = P and P ‖ ε = P .

Process rewrite system is a finite set of rules ∆ containing rules of the form
t1

a
−→ t2 where t1 and t2 are process terms and a ∈ Act is an atomic action.

Let Var(∆) be the set of process variables occurring in ∆ and let Act(∆)
be the set of atomic actions occurring in ∆.

Process rewrite system ∆ produces a corresponding labelled transition sys-
tem (S,Act ′,−→) where S is the set of process terms that contain only
variables from Var (∆), Act ′ = Act(∆), and the transition relation is the
smallest relation satisfying the following inference rules where t1, t2, t

′
1, t

′
2

are process terms:

(t1
a

−→ t2) ∈ ∆

t1
a

−→ t2

t1
a

−→ t′1

t1.t2
a

−→ t′1.t2

t1
a

−→ t′1

t1 ‖ t2
a

−→ t′1 ‖ t2

t2
a

−→ t′2

t1 ‖ t2
a

−→ t1 ‖ t′2

Note that Var(∆) and Act(∆) are finite. Since ∆ is finite, the gener-
ated labelled transition system is finitely branching, which means that the
branching-degree is finite in every state, however it can be be arbitrarily
high, i.e., it is possible that there is no finite constant depending only on ∆
bounding the branching-degree in all states.

It is worth mentioning that process rewrite systems are not Turing powerful
because for example the reachability problem is decidable for them [43].

2.3 Process Rewrite Systems 13

Note also that there is no operator for non-deterministic choice (‘+’), be-
cause nondeterminism can be encoded in the set of rules ∆ which can contain
more rules with the same term on the left side.

There can be defined different types of subclasses of process rewrite systems.
At first we distinguish four classes of process terms:

1 – terms consisting of a single process variable (e.g., X),

S – terms consisting of ε, a single variable, or a sequential composition of
process variables (e.g., X.Y.Z),

P – terms consisting of ε, a single variable, or a parallel composition of
process variables (e.g., X ‖ Y ‖ Z),

G – any process terms without any restriction (e.g., (X ‖ Y).Z).

Obviously 1 (S, 1 (P, S (G, and P (G. Classes S and P are
incomparable and S ∩ P = 1 ∪ {ε}.

Let α, β ∈ {1,S,P,G} be classes of process terms such that α ⊆ β. We define
(α, β)-PRS as a finite set of rules ∆ where in every rewrite rule (l

a
−→ r) ∈ ∆

the term l is from class α and l 6= ε and the term r is from class β (and r
can be ε).

The hierarchy of (α, β)-PRS models is depicted in Figure 2.2. Each model
in the hierarchy has a name shown also in the figure and many of these
(α, β)-PRS correspond to well-known classes of infinite state systems studied
in the literature. A line from a higher model to a lower model means that
the higher model is more general than the lower one. It is known that the
hierarchy is strict with respect to bisimilarity [43].

The classes of process rewrite systems correspond to the following following
formalisms:

FS – finite-state systems,

BPA – Basic Process Algebra [7], also called context-free processes,

BPP – Basic Parallel Processes [13],

PDA – Pushdown Automata, also called pushdown processes or pushdown
systems,

PA – Process Algebra [4],

14 Chapter 2. Definitions

(1, 1)-PRS
FS

(1,S)-PRS
BPA

(1,P)-PRS
BPP

(S,S)-PRS
PDA

(1,G)-PRS
PA

(P,P)-PRS
PN

(S,G)-PRS
PAD

(P,G)-PRS
PAN

(G,G)-PRS
PRS

Figure 2.2: Hierarchy of process rewrite systems

PN – Petri nets

PRS – Process Rewrite Systems

Class PAD was introduced in [42] as the ‘smallest’ common generalization
of classes PDA and PA. Similarly class PAN was introduced in [41] as the
‘smallest’ common generalization of classes PA and PN.

2.4 Process Algebra, BPA, and BPP

Process Algebra (PA) was introduced in [4]. It is defined as follows. Let
Act = {a, b, c, . . .} be a countably infinite set of atomic actions and let
Var = {X,Y,Z, . . .} be a countably infinite set of process variables. The
class of PA expressions is defined by the following abstract syntax:

P ::= 0 | X | a.P | P1 + P2 | P1.P2 | P1 ‖ P2

where 0 denotes the empty process, X is a process variable, a.P is an action
prefix, ‘+’ denotes non-deterministic choice, ‘.’ sequential composition, and
‘‖’ parallel composition.

2.4 Process Algebra, BPA, and BPP 15

We work with expressions modulo associativity and commutativity of non-
deterministic choice and parallel composition, and modulo associativity of
sequential composition. We also define P.0 = 0.P = P and P ‖ 0 = P .

A PA-process is defined by a finite family of recursive equations

∆ = {Xi := Pi | 1 ≤ i ≤ n}

where all Xi are distinct and all Pi are PA expressions containing variables
only from Var(∆), where Var(∆) denotes the set {X1,X2, . . . ,Xn}. The
set of actions occurring in ∆ is denoted Act(∆). It assumed that every
occurrence of a variable in the Pi is guarded, i.e., that it is within the scope
of an action prefix.

The set of equations ∆ produces a labelled transition system (S,Act ′,−→)
where S is the set of PA expressions, Act ′ = Act(∆), and transition relation
is the least relation satisfying the following inference rules:

a.P
a

−→ P
P

a
−→ P ′

P +Q
a

−→ P ′

Q
a

−→ Q′

P +Q
a

−→ Q′

P
a

−→ P ′

P.Q
a

−→ P ′.Q

P
a

−→ P ′

P ‖ Q
a

−→ P ′ ‖ Q

Q
a

−→ Q′

P ‖ Q
a

−→ P ‖ Q′

P
a

−→ P ′

X
a

−→ P ′
(where (X := P) ∈ ∆)

Sometimes also the ‘left merge’ operator T is included in the definition
with the following semantics:

P
a

−→ P ′

P T Q
a

−→ P ′ ‖ Q

It resembles parallel composition but only the ‘left’ of the processes can
proceed by performing an action.

A PA-process is in normal form if all its equations are of the form

Xi =

ni∑

j=1

aijPij

where 1 ≤ i ≤ n, ni ∈ N, aij ∈ Act , and Pi are PA expression not containing
any non-deterministic choice (‘+’) or action prefix. Any PA-process can be
effectively transformed to the normal form as was proved in [8].

16 Chapter 2. Definitions

Remark. The term ‘Process Algebra’ is nowadays also used in a much wider
sense denoting also other formalisms such as for example CCS [44].

There are two natural subclasses of PA-processes – Basic Process Algebra
(BPA) [7] and Basic Parallel Processes (BPP) [13].

BPA is a subclass of PA where no parallel composition (‘‖’) is allowed. Such
systems are also called context-free processes since the equations of a BPA
in the normal form can viewed as a set of rules of a context-free grammar
in Greibach normal form (GNF) where each rule is of the form

X
a

−→ Y1Y2 . . . Yk

and where only left derivations are allowed. Note that states of the produced
labelled transition system are sequences of variables from Var , i.e., elements
of Var ∗.

BPP is a subclass of PA where no sequential composition (‘.’) is allowed.
Processes of the form X1 ‖ X2 ‖ · · · ‖ Xn where each Xi ∈ Var and n ≥ 0
are called basic processes. We identify the basic process where n = 0 with
0.

It is known that every BPP process ∆ can be transformed to normal form
where if all its equations are of the form

Xi =

ni∑

j=1

aijPij

where 1 ≤ i ≤ n, aij ∈ Act , and every Pi is a basic process.

The order of variables in a basic process is not important due to associativity
and commutativity of ‘‖’, so we can identify a basic process with a multiset
of variables. We use Var⊕ to denote the set of all multisets of Var . For
P ∈ Var⊕ and X ∈ Var we use P (X) to denote number of occurrences of
X in P . The relation ≤ on Var⊕ is defined as P ≤ Q iff P (X) ≤ Q(X) for
every X ∈ Var . Other relations such as ≥, < and > and defined analogously.
We use P ⊕ Q to denote the union of P,Q ∈ Var⊕, i.e., (P ⊕ Q)(X) =
P (X) +Q(X) for each X ∈ Var . We use P 	Q to denote the difference of
P,Q ∈ Var⊕ such that P ≥ Q, i.e., (P 	 Q)(X) = P (X) − Q(X) for each
X ∈ Var .

Equivalently we can represent ∆ as a finite set of rules of the form

X
a

−→ P

2.5 Petri Nets 17

where X ∈ Var , a ∈ Act , and P ∈ Var⊕. For each t = (X
a

−→ P) ∈ ∆, we
define pre(t) = X, λ(t) = a, and we use F (t,X) to denote P (X). We write

P
t

−→ P ′.

Remark. Note that the rules representing BPP in the normal form can be
viewed as a set of rules of a context-free grammar in Greibach normal form
(GNF) where i any derivation is allowed, not only the left-most.

2.5 Petri Nets

A net is a triple N = (P,Tr, F), where P is a finite set of places, Tr is a
finite set of transitions, and

F : (P × Tr) ∪ (Tr × P) → N

is the flow function.

Let X = P ∪ Tr. For a place or transition x ∈ X we define sets pre(x) =
{y ∈ X | F (y, x) > 0} and succ(x) = {y ∈ X | F (x, y) > 0}. This notation
can be extended to sets of places and transitions in the natural way, and so
for X ⊆ P ∪ Tr

pre(X) =
⋃

x∈X

pre(x) succ(X) =
⋃

x∈X

succ(x)

For a transition t ∈ Tr, the sets pre(t) and succ(t) are called its input
places and output places, respectively.

A marking is a mapping M : P → N. If P = {s1, s2, . . . , sk}, the marking
M can be identified with a vector (x1, x2, . . . , xk) where xi = M(si) for
each i ∈ [1, k].

A (Place/Transition) Petri net is a pair N = (N ,M0) where N is a net and
M0 is the initial marking.

A transition t is enabled at a marking M if M(p) ≥ F (p, t) for every p ∈
pre(t). A transition t that is not enabled is disabled. If t is enabled at M ,
then it can fire or occur, and its firing leads to the successor marking M ′

such that
M ′(p) = M(p) − F (p, t) + F (t, p)

for every p ∈ P . The expression M
t

−→M ′ denotes that t is enabled in M ,
and M ′ is reached from M after firing of t.

18 Chapter 2. Definitions

For a sequence σ = t1t2 . . . tn of transitions, M
σ

−→ M ′ denotes that there
is a sequence of markings M0,M1, . . . ,Mn such that M0 = M , Mn = M ′,

and Mi−1
ti−→ Mi for every i ∈ [1, n]. A marking M ′ reachable from a

marking M , written M −→ M ′, iff there is some sequence of transitions σ
such that M

σ
−→M ′. A marking M is reachable iff it is reachable from the

initial marking, i.e., when M0 −→ M . We use M(N) to denote the set of
reachable markings of a Petri net N .

A labelled net is a fourtuple (P,Tr, F, λ), where (P,Tr, F) is a net and

λ : P → Act

is a mapping that associates to each t ∈ Tr a label λ(t) from a set of
actions Act . A labelled Petri net is a pair (N ,M0), where N is a labelled
net and M0 is the initial marking.

To a labelled Petri net N we associate a labelled transition system

(S,Act ,−→)

where S = M(N), and M
a

−→ M ′ iff there is some transition t such that

λ(t) = a and M
t

−→M ′.

A Petri net is 1-safe iff M(p) ≤ 1 for every reachable marking M and every
place p.

A Petri net is communication-free if for each transition t there is exactly
one place p such that F (p, t) = 1 and F (p′, t) = 0 for each p′ 6= p. Labelled
transition systems produced by labelled communication-free Petri nets are
isomorphic to labelled transition systems produced by BPP processes.

Let us have a BPP ∆ in normal form. Let V = Var (∆). We can construct
the communication-free Petri net with the set of places V , where for each
equation

Xi =

ni∑

j=1

aijαij

from ∆ where αij ∈ V ∗ we add for each j ∈ [1, ni] a new transition t such
that λ(t) = aij, F (Xi, t) = 1, F (X ′, t) = 0 for each X ′ 6= Xi, and F (t,X)
is set to number of occurrences of X in αij for each X ∈ V ∗. It is obvious
that the labelled transition system produced by the constructed Petri net
is isomorphic to the labelled transition system produced by the BPP. The
construction of the corresponding BPP for a given communication-free Petri
net is similar.

See [50] for more information about Petri nets.

2.6 One-Counter Automata 19

2.6 One-Counter Automata

One-counter automata are nondeterministic finite-state automata operating
on a single counter variable which takes values from N. Formally this is a
tuple

A = (Q,Act , δ=, δ>, q0)

where Q is a finite set of control states, Act is a finite set of actions,

δ= : Q× Act → P(Q× {0, 1}) and
δ> : Q× Act → P(Q× {−1, 0, 1})

are transition functions, and q0 ∈ Q is a distinguished initial control state.
The function δ= represents the transitions which are enabled when the
counter value is zero, and the function δ> represents the transitions which
are enabled when the counter value is positive.

A one-counter automaton A is a one-counter net if and only if for all pairs
(q, a) ∈ Q× Act we have that δ=(q, a) ⊆ δ>(q, a).

The set of (global) states of A is the set Q × N. States from Q × N are
written as p(n) instead of (p, n).

To the one-counter automaton A we associate the labelled transition system
(S,Act ,−→), where S = {p(n) | p ∈ Q, n ∈ N}, and −→ is defined as
follows:

p(n)
a

−→ q(n+ i) iff

{
n = 0, and (q, i) ∈ δ=(p, a); or

n > 0, and (q, i) ∈ δ>(p, a).

Note that any transition increments, decrements, or leaves unchanged the
counter value, and a decrementing transition is only possible if the counter
value is strictly positive. Also observe that when n > 0 the immediate
transitions of p(n) do not depend on the actual value of n. Finally note that
a one-counter net can in a sense test if its counter is nonzero (that is, it can
perform some transitions only on the proviso that its counter is nonzero),
but it cannot test in any sense if its counter is zero.

Finite-state systems can be viewed as one-counter nets where δ= = δ>

and where the counter is never changed. Thus, the parts of the labelled
transition system produced by the automaton reachable from p(i) and p(j)
are isomorphic and finite for all p ∈ Q and i, j ∈ N.

Remark. The class of transition systems generated by one-counter automata
is the same (up to isomorphism) as that generated by the class of realtime

20 Chapter 2. Definitions

−b

+a

a

ab

b

a
b

a

a,b

Figure 2.3: An example of a one-counter automaton

pushdown automata (i.e., pushdown automata without ε-transitions) with
a single stack symbol (apart from a special bottom-of-stack marker). The
class of transition systems generated by one-counter nets is the same (up to
isomorphism) as that generated by the class of labelled Petri nets with (at
most) one unbounded place.

One-counter automata can be depicted ‘graphically’ as finite graphs with
two kinds of edges (solid and dashed ones) which are labelled by pairs of
the form (a, i) ∈ Act × {−1, 0, 1}. Instead of (a,−1), (a, 1), and (a, 0) we
write simply −a, +a, and a, respectively. A solid edge from p to q labelled
by (a, i) indicates that the represented one-counter automaton can make
a transition p(k)

a
−→ q(k + i) whenever i ≥ 0 or k > 0. A dashed edge

from p to q labelled by (a, i) (where i must not be −1) represents a zero-
transition p(0)

a
−→ q(i). Hence, graphs representing one-counter nets do not

contain any dashed edges, and graphs corresponding to finite-state systems
use only labels of the form (a, 0) (remember that finite-state systems can be
viewed as special one-counter nets). Also observe that the graphs cannot
represent non-decrementing transitions which are enabled only for positive
counter values. This does not matter since we do not need such transitions
in our proofs. The distinguished initial control states are indicated by black
circles. See Figure 2.3 for an example of a graph representing an one-counter
automaton.

2.7 Explicit and Composed Finite-State Systems 21

2.7 Explicit and Composed Finite-State Systems

We call a finite-state transition system that is given explicitly a explicit
transition system. A composed system is a system given as a composition of
interacting explicit systems. The set of global states of a composed system
can be exponentially larger than the sum of sizes of its parts. This phe-
nomenon is known as a state explosion and presents the main challenge in
the design of efficient algorithms for verification of composed systems.

There are several different types of parallel composition. One of these types
is the parallel composition where systems synchronize on common actions
and where actions can be ‘hidden’. Synchronization on common actions
means that a visible action a is executed iff every LTS that has a in its
alphabet executes it. Invisible actions are not synchronized, that is, when
an LTS executes the invisible action τ , other LTSs do nothing.

Formally, the parallel composition

T1 ‖ T2 ‖ · · · ‖ Tn

of LTSs T1, . . . ,Tn where Ti = (Si,Act i,−→i) for each i ∈ I where I =
{1, 2, . . . , n}, produces the LTS (S,Act ,−→) where:

• S = S1 × S2 × · · · × Sn,

• Act = Act1 ∪ Act2 ∪ · · · ∪ Actn,

• −→ contains a transition (s1, . . . , sn)
a

−→ (s′1, . . . , s
′
n) iff either

– a ∈ Act and for every i ∈ I: if a ∈ Act i, then si
a

−→ s′i, and if
a 6∈ Act i, then si = s′i, or

– a = τ and si
τ

−→ s′i for some i ∈ I, and sj = s′j for each j 6= i.

Tuples from S1 × S2 × · · · × Sn are called global states.

Hiding of actions removes a set of visible actions from the alphabet of an LTS
and relabels corresponding transitions with the invisible action τ . Formally,
hide B in T1, where T1 is an LTS (S1,Act1,−→1) and B ⊆ Act1, denotes
the LTS (S,Act ,−→) where S = S1, Act = Act1 − B, and s

a
−→ s′ iff there

is some a′ ∈ (Act1 ∪ {τ}) such that s
a′
−→ s′ and either a 6∈ B and a = a′, or

a′ ∈ B and a = τ .

22 Chapter 2. Definitions

A parallel composition with hiding (PCH) is an LTS T given in the form

hide B in (T1 ‖ · · · ‖ Tn)

where T1, . . . ,Tn are explicit finite-state systems. The size |T | of PCH T is
|T1| + · · · + |Tn| + |B|.

There are also other types of parallel composition defined in the literature,
see, e.g., [59], however, most of them are more general than parallel com-
position with hiding described in this section. An example is a parallel
composition where renaming of actions is allowed.

Another formalism that can be included in composed systems are 1-safe
Petri nets, as individual places of a 1-safe Petri net can be viewed as finite-
state systems (with 2 states) that communicate through the transitions of
the Petri net.

2.8 Behavioural Equivalences

The equivalence-checking approach to the formal verification of systems is
based on the following scheme: the specification S (i.e., the intended be-
haviour) and the actual implementation I of a system are defined as states
in transition systems, and then it is shown that S and I are equivalent.

There are many possible ways how equivalence of processes can be defined.
The most prominent of equivalences defined in the literature were organized
by van Glabbeek into the hierarchy called linear time – branching time
spectrum [60]. The hierarchy is shown in Figure 2.4. Arrows in the diagram
represent strict inclusion of equivalences, i.e., an arrow from a relation R to
a relation R′ means that states related by R must be related by R′, but the
converse is not true in general. As can be seen in the diagram, bisimulation
equivalence is the finest of these equivalences and trace equivalence is the
coarsest.

As all equivalences except bisimilarity are defined as a symmetric closure of
a preorder, there is also a similar hierarchy of preorders, see e.g. [21].

Bisimulation equivalence and simulation equivalence [44, 49] are of special
importance, as their accompanying theory has found its way into many
practical applications. Another important equivalence is trace equivalence
due to its direct correspondence to language equivalence in formal language
theory.

2.8 Behavioural Equivalences 23

Bisimulation equivalence

2−nested simulation equivalence

Ready simulation equivalence

Ready trace equivalence

Readiness equivalence

Failures equivalence

Completed trace equivalence

Trace equivalence

Simulation equivalence

Possible−futures equivalence

Failure trace equivalence

Figure 2.4: Linear time – branching time spectrum

24 Chapter 2. Definitions

Let (S,Act ,−→) be a labelled transition system. A binary relation R ⊆
S×S is a bisimulation iff for every pair of states (s, t) ∈ R and every action
a ∈ Act the following conditions hold:

• If there is some s′ ∈ S such that s
a

−→ s′, then there is some t′ ∈ S
such that t

a
−→ t′ and (s′, t′) ∈ R.

• If there is some t′ ∈ S such that t
a

−→ t′, then there is some s′ ∈ S
such that s

a
−→ s′ and (s′, t′) ∈ R.

(It is said that s
a

−→ s′ is matched by t
a

−→ t′, resp. t
a

−→ t′ is matched
by s

a
−→ s′.) States s, t are bisimilar, written s ∼ t, iff there exists some

bisimulation R such that (s, t) ∈ R. The relation ∼ is called bisimulation
equivalence or bisimilarity.

It is not difficult to show that ∼ is reflexive, symmetric and transitive.
Notice that a union of a family of bisimulation relations is also a bisimulation
relation. This implies that ∼ which is the union of all bisimulations is the
maximal bisimulation.

A binary relation R ⊆ S × S is a simulation iff for every pair of states
(s, t) ∈ R and every action a ∈ Act the following condition holds:

• If there is some s′ ∈ S such that s
a

−→ s′, then there is some t′ ∈ S
such that t

a
−→ t′ and (s′, t′) ∈ R.

State s is simulated by state t, written s v t, iff (s, t) ∈ R for some simula-
tion R. States s and t are simulation equivalent, written s ' t, iff s v t and
t v s. The relation v is called simulation preorder and the the relation '
is called simulation equivalence.

Note that the union of a family of simulation relations is itself a simula-
tion relation, hence, simulation preorder, being the union of all simulation
relations, is in fact the maximal simulation relation.

A trace from s ∈ S is any w ∈ Act∗ such that there is a sequence of states

s0, s1, . . . , sn where s0 = s and si−1
w(i)
−→ si for every 1 ≤ i ≤ n. The set

of all traces from s is denoted Traces(s). States s, t are in trace preorder,
written s vtr t, iff Traces(s) ⊆ Traces(t). States s, t are trace equivalent iff
s vtr t and t vtr s.

Let R1,R2 be binary relations over S such that R1 ⊆ R2. We say the
relation R is between R1 and R2 iff R1 ⊆ R ⊆ R2.

2.9 Distributed Bisimilarity and BPP 25

Any relation relating states of a labelled transition system can also relate
states of different transition systems, because we can consider two transition
systems to be a single one by taking the disjoint of them.

Let ∆1,∆2 be (descriptions of) labelled transition systems with distin-
guished initial states s and t, and let let ↔ be a binary relation relating
states of these systems. Systems ∆1,∆2 are related by ↔ iff their initial
states are related by ↔, formally ∆1 ↔ ∆2 iff s↔ t.

Let P and Q be classes of labelled transition systems and let ↔ be a binary
relation relating states of these systems. The problem of deciding whether
given systems ∆1 ∈ P and ∆2 ∈ Q with distinguished initial states are
related by ↔ is denoted by P ↔ Q. For example the problem whether a
two systems from class P are bisimilar is denoted by P ∼ P. Similarly the
problem whether a given process from class P is simulated by a process from
class Q is denoted by P v Q.

Equivalence checking problem is any problem of the form P ↔ Q where
P, Q, and ↔ are fixed. We abuse the terminology a little bit, since the
term “equivalence checking” is used even for problems where ↔ is not an
equivalence relation.

See [46, 9, 55] for an overview of known results about decidability and com-
plexity of equivalence-checking problems for different types of systems and
different types of equivalences.

2.9 Distributed Bisimilarity and BPP

Distributed bisimilarity is one of non-interleaving equivalences also called
true concurrency equivalences. It was introduced in [10]. Examples of other
non-interleaving equivalences are location equivalence [11], causal equiva-
lence [16], history preserving bisimilarity [61], or performance equivalence [19].

In this thesis we concentrate on deciding distributed bisimilarity on BPP and
we use the definition from [13]. However, it is known that distributed bisim-
ilarity coincides on BPP with many other non-interleaving equivalences,
see [40] for details. This means that an algorithm that decides distributed
bisimilarity on BPP can be used also for deciding any such equivalence on
BPP.

When considering distributed bisimilarity we use the following definition of
BPP. Let Act = {a, b, c, . . .} be a countably infinite set of atomic actions

26 Chapter 2. Definitions

and let Var = {X,Y,Z, . . .} be a countably infinite set of process variables.
The class of BPP expressions over Act and Var is defined by the following
abstract syntax:

P ::= 0 | X | a.P | P1 + P2 | P1 ‖ P2 | P1 T P2

where 0 denotes the empty process, X is a process variable, a. is an action
prefix, + denotes non-deterministic choice, ‖ parallel composition, and
T left merge.

Remark. The left merge operator T is similar to parallel composition
‖ , but in T an action must be performed first in the first argument.

A BPP process definition is a finite family of recursive equations

∆ = {Xi := Pi | 1 ≤ i ≤ n}

where all Xi are distinct and all Pi are BPP expressions where every occur-
rence of a variable in Pi is guarded, i.e., it is within the scope of an action
prefix. The sets of actions and variables occurring in ∆ are denoted Act(∆)
and Var(∆), respectively.

A BPP process is a pair (P,∆) where ∆ is a BPP process definition and P
is a process expression containing only actions and variables from Act(∆)
and Var(∆). We usually write just P instead of (P,∆) when ∆ is obvious
from the context.

Distributed bisimilarity is a binary relation defined over BPP expressions.
Informally, for each BPP expression there is a set of possible transitions
going out of this expression to a pair of expressions called local derivative and
concurrent derivative. The intuition behind this definition is that processes
are distributed in space, and local and concurrent derivatives are two parts
of the whole process. Local derivative records a location at which the action
is observed, and concurrent derivative records the rest of the process. We
write transitions as P

a
−→ [P ′, P ′′] where P is the original process, P ′ and

P ′′ are its local and concurrent derivatives, and a is the performed action.

Let us assume we have a fixed BPP process definition ∆. Then the possible
transitions are defined by the following set of rules:

a.P
a

−→ [P,0]

Pj
a

−→ [P ′, P ′′] for some j ∈ I
∑

i∈I Pi
a

−→ [P ′, P ′′]

P
a

−→ [P ′, P ′′]

P ‖ Q
a

−→ [P ′, P ′′ ‖ Q]

Q
a

−→ [Q′, Q′′]

P ‖ Q
a

−→ [Q′, P ‖ Q′′]

2.9 Distributed Bisimilarity and BPP 27

P
a

−→ [P ′, P ′′]

P T Q
a

−→ [P ′, P ′′ ‖ Q]

P
a

−→ [P ′, P ′′]

X
a

−→ [P ′, P ′′]
((X

def
= P) ∈ ∆)

A relation R is a distributed bisimulation iff for each (P,Q) ∈ R and each
a ∈ Act two following conditions hold:

• if P
a

−→ [P ′, P ′′] then Q
a

−→ [Q′, Q′′] for some Q′, Q′′ such that
(P ′, Q′) ∈ R and (P ′′, Q′′) ∈ R, and

• if Q
a

−→ [Q′, Q′′] then P
a

−→ [P ′, P ′′] for some P ′, P ′′ such that
(P ′, Q′) ∈ R and (P ′′, Q′′) ∈ R.

Processes P and Q are distributed bisimilar, denoted P ∼ Q, iff there is a
distributed bisimulation R such that (P,Q) ∈ R. The relation ∼ is called
distributed bisimulation equivalence or distributed bisimilarity.

Remark. Distributed bisimilarity and (normal) bisimilarity are both denoted
by the symbol ∼ in this thesis. The convention is that ∼ represents (normal)
bisimilarity unless otherwise stated, the only exception is Section 5.3 that
concentrates on distributed bisimilarity and where ∼ represents distributed
bisimilarity.

It is not difficult to show that non-deterministic choice (+) and parallel
composition (‖) are associative and commutative with respect to ∼, so
we can work with them modulo associativity and commutativity.

Processes of the form X1 ‖ X2 ‖ · · · ‖ Xn, where n ≥ 0 and each Xi ∈ Var ,
are called basic processes. We identify the basic process where n = 0 with 0.

Every BPP process definition ∆ can be transformed to equivalent normal
form where all equations are of the form

X
def
=

∑

i∈I

((a.Pi) T Qi)

where each Pi and Qi are basic processes and where the relation ≺ defined
below is irreflexive. The relation ≺⊆ Var(∆)×Var (∆) is defined such that

Y ≺ X holds iff X
def
=

∑
i∈I((a.Pi) T Qi) and there is some Qi such that Y

occurs in Qi. It is an easy task to verify if some such relation ≺ exists and
to find it.

Since ≺ is irreflexive, it can be easily extended to some (arbitrary) linear
order. In the thesis we use ≺ to denote this linear order.

28 Chapter 2. Definitions

Remark. Note that some variables in the normal form are not guarded,
and so in this sense the normal form is not correct BPP process definition.
However, note that although these variables are not guarded in syntactical
sense, they are guarded in semantic sense – it is not possible to rewrite a
variable X to some expression without going through some action prefix.

See [40] for a polynomial time algorithm that transforms BPP process defi-
nition to normal form.

Due to associativity and commutativity of parallel composition ‖ , the
order of variables in a basic process is not important, and so we can identify
a basic process with a multiset of variables.

We use Var⊕ to denote the set of all multisets of Var(∆). For P ∈ Var⊕

and X ∈ Var we use P (X) to denote the number of occurrences of X in
P . The relation ≥ on Var⊕ is defined as P ≥ Q iff P (X) ≥ Q(X) for
every X ∈ Var(∆). We use P ⊕ Q to denote the union of P,Q ∈ Var⊕,
i.e., (P ⊕ Q)(X) = P (X) +Q(X) for each X ∈ Var(∆). We use P 	 Q to
denote the difference of P,Q ∈ Var⊕ such that P ≥ Q, i.e., (P 	 Q)(X) =
P (X) −Q(X) for each X ∈ Var(∆).

For technical convenience we use a little bit different notation for BPP pro-
cess definitions in the thesis. We represent a BPP process definition ∆ as a
finite set of rules of the form

X
a

−→ (P,Q)

where X ∈ Var(∆), a ∈ Act , and P,Q ∈ Var⊕. Note that there can be
more than one rule with the same variable X on the left hand side.

For each t = (X
a

−→ (P,Q)) ∈ ∆, we define pre(t) = X, λ(t) = a, and we
use F (t,X) and G(t,X) to denote P (X) and Q(X), respectively. We write

P
t

−→ [P ′, P ′′] iff a process P goes to a pair of processes [P ′, P ′′] (denoted
P

a
−→ [P ′, P ′′]) using a rule t ∈ ∆, i.e., iff t is of the form X

a
−→ (P ′, Q′)

where P ′′ = (P 	 {X}) ⊕Q′.

Chapter 3

Finite-State Processes

In this chapter we consider the lower bounds of the complexity of equivalence
checking problems for finite-state systems. At first we will discuss finite-state
systems where states and transitions are explicitly given – explicit systems,
and then composed finite-state systems produced by a parallel composition
of explicit systems.

The main results presented in this chapter are that the equivalence check-
ing is PTIME-hard for explicit systems and EXPTIME-hard for composed
systems. These results hold for any relation between bisimilarity and trace
preorder.

At first we define families of problems fs-eqR, pch-eqR, and pn-eqR. Let
R be a binary relation between ∼ and vtr defined over states of labelled
transition systems (i.e., such that s ∼ s′ implies sRs′, and sRs′ implies
s vtr s

′). The problems fs-eqR, pch-eqR, pn-eqR are defined as follows:

Problem: fs-eqR

Instance: An FS T and its two states s and s′.

Question: Is sR s′ ?

Problem: pch-eqR

Instance: A PCH T and its two global states s and s′.

Question: Is sR s′ ?

29

30 Chapter 3. Finite-State Processes

Problem: pn-eqR

Instance: A labelled net N with two markings M,M ′, such that (N ,M)
and (N ,M ′) are 1-safe Petri nets.

Question: Is M RM ′?

We show that fs-eqR is PTIME-hard, and pch-eqR and pn-eqR are EXP-

TIME-hard for any R satisfying ∼⊆ R ⊆vtr.

3.1 State of the Art

In the case of explicit finite-state systems we can easily derive PSPACE-
hardness of deciding trace equivalence from standard language theory re-
sults. On the other hand, there is a polynomial time algorithm for deciding
bisimilarity [47, 34]. The paper [21] is a survey of results in this area. Loosely
speaking, ‘trace-like’ equivalences on the bottom part of the spectrum turn
out to be PSPACE-complete, and the ‘simulation-like’ equivalences on the
top of the spectrum are in PTIME. Balcázar, Gabarró and Sántha [5] have
considered the question of an efficient parallelization of the algorithm for
bisimilarity, and they have shown that the problem is PTIME-complete.

We recall that a problem P is PTIME-hard if any problem in PTIME can
be reduced to P by a logspace reduction. Recall that a Turing machine
performing such a reduction uses work space of size at most O(log n), where
n denotes the size of the input on a read-only input tape, and writes the
output on a write-only output tape. A problem P is PTIME-complete if P is
PTIME-hard and P ∈ PTIME.

From the practical point of view, PTIME-hardness of a problem P means
that the problem is hardly parallelisable, that there exist no efficient parallel
algorithm for P unless PTIME = NC. The complexity class NC is the class of
problems solvable by an efficient parallel algorithm, i.e., a parallel algorithm
with time complexity in O(logk n) for some constant k, while the number of
used processors must be bounded by a polynomial in the size n of the input
instance. It is known that NC ⊆ PTIME, and it is generally conjectured
that the inclusion is proper, however it was not proved. See [18] for more
detailed discussion of PTIME-hardness and the NC complexity class.

A. Rabinovich [51] considered a composition of finite-state systems that
synchronize on identical actions and where some actions may be ‘hidden’
in the sense that they are replaced with invisible τ actions, i.e., the model

3.2 Own Contribution 31

called parallel composition with hiding (PCH) in this thesis. He proved
that equivalence checking is PSPACE-hard for such systems for any relation
between bisimilarity and trace equivalence, and that the problem is EX-

PSPACE-complete for trace equivalence. He also mentioned that the prob-
lem is EXPTIME-complete for bisimilarity and conjectured that the problem
is in fact EXPTIME-hard for any relation between bisimilarity and trace
equivalence.

Laroussinie and Schnoebelen [39] approved the Rabinovich’s conjecture for
all relations that lie between bisimilarity and simulation preorder. The com-
posed systems, used in their proof, synchronize on identical actions and do
not use hiding. It is not possible to extend their result to all equivalences
between bisimilarity and trace equivalence, because for example trace equiv-
alence can be decided in PSPACE for this model, as was proved in [54]. See
also [59] for results for other types of ‘trace-like’ equivalences and composed
systems. Other type of composed systems are 1-safe Petri nets. See [33]
for some results concerning them, in particular, deciding of bisimilarity is
EXPTIME-complete for 1-safe Petri nets.

3.2 Own Contribution

The result of Balcázar, Gabarró and Sántha [5] was extended in [53] to whole
linear time – branching time spectrum, i.e., to all relations between bisim-
ilarity and trace preorder. This means that deciding any such relation is a
PTIME-hard problem on explicit finite-state systems. The proof presented
in this thesis comes from [52] and uses a different (simpler) construction.

The Rabinovich’s conjecture from [51] was approved in [52] for all rela-
tions between bisimilarity and trace preorder, not only for relations between
bisimilarity and simulation preorder. It was shown that equivalence check-
ing is EXPTIME-hard for any such relation for parallel composition with
hiding (PCH), the model for which Rabinovich formulated his conjecture.

To simplify the proof, a new auxiliary model called reactive linear bounded
automaton (RLBA) was introduced. Reactive linear bounded automata can
be easily modeled by different types of composed systems, for example by
parallel compositions of finite-state systems with hiding, or by 1-safe Petri
nets. The EXPTIME-hardness result is shown for RLBA first, and then it is
extended to other types of composed systems that are able to model RLBA,
such as PCH and 1-safe Petri nets.

32 Chapter 3. Finite-State Processes

∧

∧

∧∧

∨

∨

Figure 3.1: Alternating graph

3.3 Explicit Finite-State Systems

In the proof of PTIME-hardness of the problem fs-eqR we show a logspace
reduction from the Alternating Graph Problem (agp) that is defined in Sub-
section 3.3.1 to problem fs-eqR.

Note that fs-eqR is in fact a whole family of problems. The reduction
described in Subsection 3.3.2 is the same for any problem in this family.
The basic idea is to construct an explicit finite-state system with two distin-
guished states s, s′, such that s 6vtr s

′ if the answer to the original problem
(agp) is yes, and s ∼ s′ otherwise. The same construction can be used
for every R, because s 6vtr s

′ implies that not sRs′, and s ∼ s′ implies
sRs′. The same idea was also used for example in [24] and [51]. We can
conclude that the complement of fs-eqR is PTIME-hard for any R, and so
also fs-eqR is PTIME-hard because PTIME is closed under complement.

3.3.1 Alternating Graphs

Before definition of agp we need some definitions.

An alternating graph is a directed graph G = (V,E, t) where V is a finite
set of nodes, E ⊆ V × V is a set of edges, and t : V → {∧,∨} is a labelling
function that partitions V into sets

V∧ = {v ∈ V | t(v) = ∧} V∨ = {v ∈ V | t(v) = ∨}

of conjunctive and disjunctive nodes. We use succ(v) to denote the set of
successors of a node v, i.e., succ(v) = {v′ ∈ V | (v, v′) ∈ E}. See Figure 3.1
for an example of an alternating graph.

3.3 Explicit Finite-State Systems 33

The set of successful nodesW is the least subset of V such that two following
properties hold for each v ∈ V :

• if v ∈ V∧ and succ(v) ⊆ W , then v ∈ W , (i.e., if all successors of
a conjunctive node v are successful, then v is successful),

• if v ∈ V∨ and succ(v) ∩ W 6= ∅, then v ∈ W , (i.e., if there exists
a successful successor of a disjunctive node v, then v is successful).

The agp is the problem whether a given node is successful in a given alter-
nating graph:

Problem: agp

Instance: An alternating graph G = (V,E, t) and a node v ∈ V .

Question: Is v successful?

Intuitively, an alternating graph can be viewed as a game played by two
players – Player 1 and Player 2. The game starts in some node v. If v ∈ V∨
then Player 1 chooses the next move, otherwise (when v ∈ V∧) Player 2
chooses the next move. The player who chooses the move must select some
node v′ ∈ succ(v). The game then continues in v′. The game stops when
one of players is stuck, i.e., when a node v such that succ(v) = ∅ is reached.
The player who is stuck loses. The successful nodes in alternating graph are
nodes where Player 1 has a (history-free) winning strategy in this game.

Let us have a node v with no successors. The node v is called accepting node
if v ∈ V∧, and it is called rejecting node if v ∈ V∨. Notice that accepting
nodes are always successful and that rejecting nodes are never successful and
the game ends in these nodes. Also notice that the set of successful nodes is
nonempty iff G contains at least one accepting node, because otherwise the
empty set is the least set satisfying the given conditions.

The set of successful nodes W can be computed as the least fixed point of
a function f : P(V) → P(V) such that for U ⊆ V we define f(U) as the set
of all nodes v such that either:

• v ∈ V∧ and succ(v) ⊆ U , or

• v ∈ V∨ and succ(v) ∩ U 6= ∅.

The function f is monotone in the sense that U ⊆ U ′ implies f(U) ⊆ f(U ′).
As follows from Knaster-Tarski Theorem [58], the least fixed point of f can

34 Chapter 3. Finite-State Processes

MCVP AGP

01 1 ∧ ∧

∧

∧

∧

∧

∨

∨

∨

Figure 3.2: Reduction from mcvp to agp

be computed as

W =

∞⋃

i=0

Wi

where W0 = ∅ and Wi+1 = f(Wi) for i ≥ 0. Note that Wi ⊆ Wi+1 for
each i, and because V is finite there must be some i ≤ |V | such that Wi =
Wi+1 = Wi+2 = · · ·. This implies that W can be computed in polynomial
time since every Wi can be obviously computed in polynomial time and we
need to compute at most |V | of them.

Remark. In fact the algorithm can be implemented in such a way that its
running time is O(n) where n is the size of the instance.

The problem agp is PTIME-hard, see for example [22], because the well-
known PTIME-complete problem Monotone Circuit Value Problem (mcvp)
[18] can be easily reduced to it using the construction illustrated in Fig-
ure 3.2. Recall that in mcvp we have given a boolean circuit with input
values and the question is what value is on its output. Boolean circuit is an
acyclic graph whose inner nodes represent gates computing boolean func-
tions from their inputs. Only gates computing disjunction and conjunction
are allowed in mcvp, in particular gates computing negation are not allowed.
See [18] for more information about mcvp.

Because agp is in PTIME, it follows that agp is PTIME-complete.

3.3.2 Reduction

In the proof of PTIME-hardness of fs-eqR for any R between bisimilar-
ity and trace preorder we show a logspace reduction from agp that works

3.3 Explicit Finite-State Systems 35

for any such R. In fact we show a logspace reduction from agp to the
complement of fs-eqR, but this is not important since the class PTIME is
closed under complement. For a given alternating graph G = (V,E, t) with
a distinguished node x the reduction constructs a corresponding finite-state
system TG = (S,Act ,−→) with two distinguished states s, s′ ∈ S such that
if x is successful, then s 6vtr s

′ which implies (s, s′) 6∈ R for any R between
bisimilarity and trace preorder, and if x is not successful, then s ∼ s′ which
implies (s, s′) ∈ R.

The set of states S is V . For each v ∈ V we define a set of corresponding
actions Act(v). If v ∈ V∧, then Act(v) = {〈v〉}, and if v ∈ V∨, then Act(v) =
{〈v, i〉 | 1 ≤ i ≤ |succ(v)|}. The set of actions Act is

⋃
v∈V Act(v). We can

assume without loss of generality that successors of each node are ordered
in some fixed order. The i-th successor of v where 1 ≤ i ≤ |succ(v)| is
denoted succi(v).

The transition relation contains transitions of three types:

1. v
〈a〉
−→ v for each v ∈ V and a ∈ Act such that a 6∈ Act(v).

2. v
〈v,i〉
−→ v′ for each v ∈ V∨ and 1 ≤ i ≤ |succ(v)| where v′ = succi(v).

3. v
〈u〉
−→ u′ for each v ∈ V , u ∈ V∧ and u′ ∈ V such that u′ ∈ succ(u).

We may assume without loss of generality that G contains at least one
rejecting node z, because we can add such node (and no edges) without
affecting the set of successful nodes, if this is not the case. The instance of
fs-eqR then consists of TG and states z and x, where x is the distinguished
node from the instance of agp.

Proposition 3.1 If v ∈ V is not successful then z ∼ v.

Proof. It is sufficient to show that {(z, v) | v ∈ (V − W)} ∪ Id is a
bisimulation (Id denotes the identity relation {(v, v) | v ∈ V }). Let us
consider some pair (z, v) where v ∈ (V −W), and a transition v

a
−→ v′.

This transitions is either of:

• type 1, and then it is matched by z
a

−→ z of type 1, because Act(z) = ∅
and so z

a
−→ z for every a ∈ Act ,

• type 2, and then v ∈ V∨ and because v is unsuccessful, each v′ ∈
succ(v) is also unsuccessful, and so v

a
−→ v′ is matched by z

a
−→ z,

36 Chapter 3. Finite-State Processes

• type 3, and then it can be matched by z
a

−→ v′ of type 3.

Now consider a transition of the form z
a

−→ z′. It is of:

• type 1 and then z′ = z and either a 6∈ Act(v), and z
a

−→ z is matched
by v

a
−→ v of type 1, or a ∈ Act(v) and then there are two possibilities:

– if v ∈ V∨ then each v′ ∈ succ(v) is unsuccessful since v is unsuc-
cessful, and so z

a
−→ z can be matched by v

a
−→ v′ of type 2,

– if v ∈ V∧ then there is at least one unsuccessful v′ ∈ succ(v),
and so z

a
−→ z can be matched by v

a
−→ v′ of type 3,

• type 2, but this is not possible as Act(z) = ∅,

• type 3 and it can be matched by v
a

−→ z′ of type 3.

�

Proposition 3.2 There is w ∈ Act∗ such that w 6∈ Traces(v) for any suc-
cessful v ∈ V .

Proof. As W can be computed as the least fixed point of the function f
defined in Subsection 3.3.1, we can define a sequence W0 ⊆ W1 ⊆ W2 ⊆ · · ·
of subsets of W where W0 = ∅ and Wi+1 = f(Wi) for i > 0. For each v ∈W
there is some least i such that v ∈ Wi. This i is denoted rank (v). Let
m = |W |, and let v1, v2, . . . , vm be the nodes in W ordered by their rank,
i.e., if i < j then rank(vi) ≤ rank(vj).

Let us consider a word wm = amam−1 · · · a1 where ai = 〈vi〉 if vi ∈ V∧, and
if vi ∈ V∨ then ai = 〈vi, k〉 where we choose k such that v′ = succk(vi) is
successful and rank (v′) < rank(vi) (obviously there always exists at least
one such v′). We show that wm 6∈ Traces(v) for any successful node v. In
particular, for each i ≤ m we show that wi = aiai−1 · · · a1 6∈ Traces(vj) if
j ≤ i. We proceed by induction on i and in the proof we use the following
simple observation: wi 6∈ Traces(v) iff for each v′ such that v

ai−→ v′ is
wi−1 6∈ Traces(v′).

The base case (i = 0) is trivial. In the induction step we consider i > 0 and
show that the proposition holds for every vj where 1 ≤ j ≤ i.

If vi ∈ V∨ then ai = 〈vi, k〉. Any transition of the form vj
ai−→ v′ is either

of type 1, and then v′ = vj and j < i, and by induction hypothesis wi−1 6∈

3.4 Composed Finite-State Systems 37

Traces(v′), or of type 2, and then v′ = succk(vi), so v′ is successful and
rank (v′) < rank (v), and by induction hypothesis wi−1 6∈ Traces(v′).

If vi ∈ V∧ then ai = 〈vi〉. Any transition of the form vj
ai−→ v′ is either of

type 1, and then v′ = vj and j < i, and by induction hypothesis wi−1 6∈
Traces(v′), or of type 3, and then v′ ∈ succ(vi) and so v′ is successful and
rank (v′) < rank (vi), so by induction hypothesis wi−1 6∈ Traces(v′). �

Theorem 3.3 fs-eqR is PTIME-hard for any R such that ∼⊆ R ⊆vtr.

Proof. Notice that z
a

−→ z for each a ∈ Act , because Act(z) = ∅, and so
Traces(z) = Act∗. From this and Proposition 3.2 we have that z 6vtr x if x
is successful. On the other hand, from Proposition 3.1 we have that z ∼ x
if x is not successful, and so the described reduction is correct.

The reduction can be obviously performed in a logarithmic space. Since the
problem agp is PTIME-complete and PTIME is closed under complement,
we obtain the result. �

3.4 Composed Finite-State Systems

To simplify the proof, a new model called reactive linear bounded automata
(RLBA) was introduced in [52]. It was shown there that deciding any rela-
tion between bisimulation equivalence and trace preorder is an EXPTIME-
hard problem for RLBA. Because RLBA can be “modeled” by different
types of composed systems, in particular by PCH and by 1-safe Petri nets,
we obtain the similar EXPTIME-hardness result for all such systems.

To show EXPTIME-hardness for RLBA we describe a logspace reduction
from a well known EXPTIME-complete problem called alba-accept. This
is a problem whether a given alternating linear bounded automaton ac-
cepts a given word. Linear bounded automata (LBA) and alternating linear
bounded automata (ALBA) are described in Subsection 3.4.1. Reactive lin-
ear bounded automata are introduced in Subsection 3.4.2 and it is shown
there how that they can be modeled by different types of composed systems
such as PCH and 1-safe Petri nets.

An RLBA is similar to a usual LBA, but is intended to generate a labelled
transition system instead of accepting or rejecting an input. The equiv-
alence checking problem where the instance is an RLBA and two of its

38 Chapter 3. Finite-State Processes

configurations and the question is, whether they are in relation R, is de-
noted rlba-eqR.

The main technical result of this section presented in Subsections 3.4.3,
3.4.4 and 3.4.5 shows that rlba-eqR is EXPTIME-hard for any relation R
satisfying ∼⊆ R ⊆vtr.

The construction in the reduction from alba-accept to rlba-eqR is based
on the construction that was used in Section 3.3 to show PTIME-hardness
of fs-eqR, but is more involved. The main idea is that a computation of
an alternating linear bounded automaton can be viewed as an alternating
graph, where successful nodes correspond to successful configurations, and
this allows us to “shift” the previous result “higher” in the complexity hi-
erarchy. We will construct an RLBA that will model the labelled transition
system which we would obtain when we would apply the above mentioned
reduction to the alternating graph corresponding to the computation of the
ALBA. Moreover, logarithmic space will be sufficient for the construction of
this RLBA from the instance of alba-accept.

3.4.1 Linear Bounded Automata

In the proof we use the reduction from the problem alba-accept, which
is known to be EXPTIME-complete [12]. The instance of this problem is
an alternating linear bounded automaton with its input. Alternating linear
bounded automata are a generalization of linear bounded automata. Also
reactive linear bounded automata defined in the following subsection are a
generalization of linear bounded automata, so we start with definition of
linear bounded automata.

A linear bounded automaton (LBA) is a tuple A = (Q,Σ,Γ, δ, q0, qacc , qrej),
where Q is a set of control states, Σ is an input alphabet, Γ is a tape
alphabet, δ ⊆ (Q−{qacc, qrej })×Γ×Q×Γ×{−1, 0,+1} is a set of transitions,
q0, qacc , qrej ∈ Q are an initial, accepting and rejecting state, respectively.
The alphabet Γ contains left and right endmarkers ` and a.

A configuration of A is a triple α = (q, w, i) where q is the current control
state, w = a1a2 · · · an is the tape content, and 1 ≤ i ≤ |w| is the head
position. Only configurations where w = `w′a and endmarkers do not occur
in w′ are allowed. The size |α| of α is |w|. A configuration α′ = (q′, w′, i′)
is a successor of α = (q, w, i), written α`A α

′ (or just α ` α′ when A is
obvious), iff (q, a, q′, a′, d) ∈ δ, w contains a on i-th position, i′ = i+ d, and
w′ is obtained from w by writing a′ on position i. Endmarkers may not

3.4 Composed Finite-State Systems 39

be overwritten, and the machine is constrained never to move left of the `
nor right of the a. Notice that when α ` α′, then |α| = |α′|. The initial
configuration for an input w ∈ Σ∗ is αini(w) = (q0,`wa, 1). A configuration
is accepting iff q = qacc , and rejecting iff q = qrej .

An alternating LBA (ALBA) is an LBA extended with a function

l : Q→ {∧,∨}

that labels each control state as either conjunctive or disjunctive. We extend
l to configurations in an obvious manner and so also configurations are
labeled as conjunctive and disjunctive. A configuration is successful iff it is
either

• accepting, or

• disjunctive with at least one successful successor, or

• conjunctive with all successors successful.

An ALBA A accepts an input w ∈ Σ∗ iff αini (w) is successful.

The problem alba-accept is defined as:

Instance: An ALBA A and a word w ∈ Σ∗.

Question: Does A accept w?

Notice that there is a close relationship between agp and alba-accept.
A computation of an ALBA can be viewed as an alternating graph where
successful nodes correspond to successful configurations. The size of this
graph can be exponentially larger than the size of the corresponding instance
of alba-accept.

3.4.2 Reactive Linear Bounded Automata

Reactive linearly bounded automata are introduced in this section. A re-
active linear bounded automaton (RLBA) is like a usual LBA, but it has
special control states, called reactive states, where it can perform actions
from some given set of actions Act . Only the control state is changed after
performing such actions, neither the tape content nor the head position is
modified. The other control states are called computational and RLBA per-
forms steps as a usual LBA in them. Each such step is represented as the
invisible action τ .

40 Chapter 3. Finite-State Processes

Formally, an RLBA is a tuple B = {Q,Γ, δ,Act , l,−→}, where the meaning
of Q, Γ and δ is the same as in a usual LBA, Act is the finite set of actions,
the function l : Q → {r , c} partitions Q into sets Qr and Qc of reactive
and computational states, and −→⊆ Qr × (Act ∪ {τ}) ×Q is the transition
relation (we write q

a
−→ q′ instead of (q, a, q′) ∈−→). It is also required that

if (q, b, q′, b′, d) ∈ δ then q ∈ Qc. The definition of a configuration and a
successor relation is the same as for a usual LBA.

An RLBA B generates a labelled transition system T (B) = (S,Act ,−→),
where S is the set of configurations of B, and where −→ contains a transition
(q, w, i)

a
−→ (q′, w′, i′) iff either

• q ∈ Qc , (q, w, i) ` (q′, w′, i′) and a = τ , or

• q ∈ Qr , q
a

−→ q′, w = w′ and i = i′.

For each R, such that ∼⊆ R ⊆vtr, we can define the problem rlba-eqR:

Instance: An RLBA B and its two configurations α,α′ of size n.

Question: Is αRα′?

An RLBA with configurations of size n can be easily modeled by various
composed systems, as two following lemmas show.

Lemma 3.4 There is a logspace reduction from rlba-eqR to pch-eqR.

Proof. Let us have an RLBA B and two its configurations of size n. We
construct a PCH T of the form hide B in (Tc ‖ T1 ‖ · · · ‖ Tn) which models
the LTS generated by B. In particular, Tc models the control unit, and
T1, . . . ,Tn model the tape cells of B. A state of Tc represents the current
control state and head position, and a state of Ti represents the symbol on
the i-th position of the tape.

Let I = {1, . . . , n} be the set of all possible positions of the head. For each
i ∈ I is Ti = (Si,Act i,−→i) where Si = Γ, Act i = {〈b, b′, i〉 | b, b′ ∈ Γ}, and

−→i contains transitions b
〈b,b′,i〉
−→ b′ for each b, b′ ∈ Γ.

In Tc = (Sc,Actc,−→c) is Sc = {〈q, i〉 | q ∈ Q, i ∈ I} and Actc = Act∪Act0∪
· · · ∪Actn (without loss of generality we can assume that Act ∩Act i = ∅ for
each i ∈ I). To −→c we add for each (q, b, q′, b′, d) ∈ δ and i ∈ I, such that

i + d ∈ I, a transition 〈q, i〉
〈b,b′,i〉
−→ 〈q′, i + d〉, and for each q ∈ Qr , q

′ ∈ Q,
a ∈ (Act∪{τ}) and i ∈ I where q

a
−→ q′ we add a transition 〈q, i〉

a
−→ 〈q′, i〉.

3.4 Composed Finite-State Systems 41

The set B in T is defined as Act1 ∪ · · · ∪ Actn. Each configuration

α = (q, a1a2 · · · an, i)

has a corresponding global state

g(α) = (〈q, i〉, a1, a2, . . . , an).

As can be easily checked, α
a

−→ α′ in B iff g(α)
a

−→ g(α′) in T , and so

αRα′ in B iff g(α)R g(α′) in T

for any R such that ∼⊆ R ⊆vtr. It is obvious that T can be constructed
from B in a logarithmic space. �

Lemma 3.5 There is a logspace reduction from rlba-eqR to pn-eqR.

Proof. Let us have an instance of rlba-eqR, i.e., an RLBA B and two of
its configurations of size n. We construct corresponding labelled Petri net
as follows. Let I = {1, . . . , n}. The set of places will be Q ∪ {〈a, i〉 | a ∈
Γ, i ∈ I} ∪ I.

For each (q, b, q′, b′, d) ∈ δ and i ∈ I where q ∈ Qc and i + d ∈ I we add a
transition t = 〈q, b, q′, b′, i, i+d〉 labelled with τ together with incoming arcs
(q, t), (〈b, i〉, t), and (i, t), and outgoing arcs (t, q′), (t, 〈s′, i〉), and (t, i+ d).

For each q, q′ ∈ Q and a ∈ (Act ∪ {τ}) where q ∈ Qr and q
a

−→ q′ we add
a new transition t = 〈q, a, q′〉 labelled with a together with an incoming arc
〈q, t〉 and an outgoing arc 〈t, q′〉.

For a configuration α = {q, a1a2 · · · an, i} we define a corresponding marking
Mα where Mα(p) = 1 if p is q, i, or 〈aj , j〉 where j ∈ I, and Mα(p) = 0

otherwise. It is easy to check that α
a

−→ α′ iff Mα
a

−→Mα′ . �

Similar proofs can be used for other types of composed systems as they are
usually more general than PCH. However parallel composition of finite-state
systems that synchronize on common actions and where hiding of actions
is not possible (nor other similar mechanism) is not powerful enough to
simulate RLBA. It is known that problems of deciding some equivalences,
such as trace equivalence and other ‘trace-like’ equivalences, are in PSPACE

for this kind of systems [54, 59].

42 Chapter 3. Finite-State Processes

3.4.3 Reduction

The description of the reduction from alba-accept to the complement of
rlba-eqR consists of several steps that are summarized in Figure 3.3 where
fs-eqR and rlba-eqR denote the complements of fs-eqR and rlba-eqR.

LOGSPACE red.

TRANSF.LOGSPACE red.

(3)

(4)

(2) (5)

(1)

alba-accept

agp fs-eqR fs-eqR

rlba-eqR

∼

(A,w0)

(GA) (TA) (T ′

A
)

(B)

Figure 3.3: Outline of the reduction from alba-accept to fs-eqR

The reduction (1) from agp to fs-eqR can be applied to the alternating
graph GA that corresponds (2) to the ALBA A in the instance of alba-

accept. We obtain an LTS TA. From the instance of alba-accept we
construct (3) a RLBA B that models TA in the sense, that after we apply
a certain kind of transformation (4) to TA, we obtain an LTS T ′

A bisimilar
(5) with B. It will be proved that the transformation (4) preserves some
important properties, in particular, states that were bisimilar are bisimilar
after the transformation, and states that were not in trace preorder are not
in trace preorder after the transformation. Bisimilarity (5) implies that the
same is true for corresponding configurations of B, from which the correct-
ness of the construction (3) follows. The EXPTIME-hardness of rlba-eqR

implies the EXPTIME-hardness of rlba-eqR since EXPTIME is closed under
complement.

The rest of the section is devoted to the description of a logspace reduction
from alba-accept to rlba-eqR.

Let an ALBA A = (Q,Σ,Γ, δ, q0, qacc , qrej) with a word w0 ∈ Σ∗ be an in-
stance of alba-accept. We can assume that transitions in δ are ordered
and that this ordering determines the order of successors of a configuration.
For simplicity we can assume without loss of generality that each configura-
tion of A, which is not accepting nor rejecting, has exactly two successors,
and that l(qacc) = ∧ and l(qrej) = ∨. Let Conf be the set of all configu-
rations of A of size n = |w0| + 2, and let Conf ∧, Conf ∨, and Confrej be
the sets of conjunctive, disjunctive, and rejecting configurations of size n,

3.4 Composed Finite-State Systems 43

a
a b b b

d

a
b c

d
0 101

10

τ
ττ τ τ τ

τ

τ

τ τ τ τ τ

τ τ

ττ
τ
τττ

ττ τ

Figure 3.4: The transformation performed on TA

respectively. Notice that any configuration reachable from α0 = αini (w0) is
of size n.

The ALBA A has a corresponding alternating graph GA = (V,E, t), where
V = Conf , (α,α′) ∈ E iff α ` α′, and t(α) = l(α) for each α ∈ Conf . Notice
that a configuration α is successful in A iff the node α is successful in GA,
and that A accepts w iff the node α0 is successful.

When we apply the logspace reduction described in Section 3.3 to GA with
a node α0, we obtain the LTS TA = (SA,ActA,−→A), where SA = Conf ,
Act(α) = {〈α〉} for each α ∈ Conf ∧, Act(α) = {〈α, i〉 | i ∈ {1, 2}} for
each α ∈ Conf ∨ − Confrej , Act(α) = ∅ for each α ∈ Confrej , ActA =⋃
α∈Conf Act(α), and −→A contains the following transitions for each α ∈

Conf :

1. α
x

−→A α for each x ∈ (ActA − Act(α)),

2. α
〈α,i〉
−→A α

′ if α ∈ Conf ∨, and α′ is the i-th successor of α,

3. α
〈β〉
−→A β

′ for each β ∈ Conf ∧ and β′ ∈ Conf such that β ` β′.

Let αrej ∈ Confrej be some rejecting configuration. The states αrej and α0

are the two distinguished states with the property, that if A accepts w0,
then αrej 6vtr α0, and αrej ∼ α0 otherwise.

An RLBA B = (QB ,ΓB , δB ,ActB , lB ,−→B) that in some sense ‘models’ TA
will be constructed. The RLBA B will be described only informally, but it
should be clear from this description how to construct it. In fact B models
an LTS that we obtain from TA by a transformation illustrated in Figure 3.4.

Figure 3.4 shows only transitions going from one state, but the same trans-
formation is performed for all states and transitions. In this simplified exam-
ple is ActA = {a, b, c, d}. At first, the non-deterministic choice is postponed.

44 Chapter 3. Finite-State Processes

b
q3

a

b
q8

a

Q

b a b a b

baa

. . . .

. . . .

b

b b a

Figure 3.5: An example of a configuration of the RLBA B

Notice that that a new state is added for each action in ActA. Next, each
action from ActA is replaced by sequence of actions from some ‘small’ alpha-
bet ActB. In our example is ActB = {0, 1} and a, b, c, d are replaced with 00,
01, 10 and 11, respectively. Invisible actions representing non-deterministic
choice are replaced with sequences of τ actions of some fixed length m (in
this example m = 3). This kind of transformation is described more formally
in the next subsection.

Configurations of A can be written as words in an alphabet ∆ = (Q×Γ)∪Γ,
where occurrence of the symbol from Q × Γ denotes the position of the
head (there must be exactly one such symbol in the word). A word from
∆∗ corresponding to a configuration α is denoted by desc(α). Actions from
Act(α) are replaced with sequences of actions corresponding to desc(α) in B.
In particular, ActB = ∆Act ∪ {1, 2} where ∆Act = ∆ − {(qrej , a) | a ∈
Γ}. Actions from {1, 2} are used to identify a successor of a disjunctive
configuration.

B has a tape with two tracks, denoted track 1 and track 2, respectively. A
current state α of TA is is stored as a word desc(α) on track 1. B also needs
to store information about the label of a transition that TA performs. The
configuration from the label of the transition is stored on track 2. Formally
this means that ΓB = (∆ × ∆) ∪ {`,a}. See Figure 3.5 for an example.

As mentioned above, a transition of TA labelled with an action from Act(β)
is represented in B as a sequence of transitions. Each such sequence starts
and ends in a configuration where track 1 contains the current state α of TA
and where the head of B points to the first symbol of desc(α), i.e., it is on
position 2. The contents of track 2 is not important, since it will be over-
written. The sequence of transitions of B corresponding to one transition
of TA has two phases (denoted as phase 1 and phase 2):

1. Actions representing symbols of desc(β) are performed one by one and
the corresponding symbols are stored on track 2. The head of B goes
from left to right.

3.4 Composed Finite-State Systems 45

2. Depending on some some properties of α and β that will be described
below, there can be some number of possible transitions. (Informa-
tion about the properties of α and β needed in this step can be kept
in the control unit of B.) One of the possibilities is chosen non-
deterministically. The possibilities are always of one of the following
types:

(a) The head of B moves back to the left endmarker without changing
anything.

(b) A chosen successor of β is stored on track 1 while the head returns
back to the left endmarker. This involves copying of track 2 to
track 1 with the necessary modifications on positions where β and
its successor differ.

The three following steps are performed for each symbol a of desc(β) during
phase 1:

• the symbol from track 1 is read into the control unit,

• an action a is performed, and remembered in the control unit,

• a is written on track 2 and the head moves to the next cell.

This means that actions τaτ are performed for each symbol a. Phase 1 ends
when the right endmarker a is reached. If β ∈ Conf ∨, then phase 1 includes
also an action a ∈ {1, 2} identifying a successor of β. This number is stored
in the control unit of B.

The possible choices at the start of phase 2 depend only on whether α = β,
and on the type of β (if it is accepting, conjunctive or disjunctive). This
information can be stored in the control unit of B. To find out if α = β,
notice that we can compare symbols on tracks 1 and 2 during phase 1. The
possible non-deterministic choices are the following: if β is disjunctive, the
successor of β that was chosen at the end of phase 1 can be stored on track 1,
and if β is conjunctive, the non-deterministically chosen successor of β can
be stored on track 1. The choice (a), i.e., to keep track 1 intact, is possible
only when α 6= β. Notice that when β is accepting, there are no successors
of β and so there are no transitions possible when α = β.

B can be constructed in such a way that only valid configurations can be
written on track 2 during phase 1, and that the number of steps performed
during phase 2 is some fixed value m such that m ∈ O(n). In particular, we

46 Chapter 3. Finite-State Processes

can put m = 2n+ 4, because two steps are needed to copy one symbol from
track 2 to track 1, and we need two additional steps to modify track 1 to
reflect one step of A. We also need additional steps at the beginning and at
the end of phase 2.

3.4.4 Decomposition of Transitions

In this subsection we describe the transformation performed on TA more
formally and we show that it preserves some important properties of the
original LTS.

Let us have an LTS T = (S,Act ,−→), a set of actions Act ′, some positive
integer m and a mapping h : Act → Act ′∗ such that h(a) is not a prefix of
h(a′) if a 6= a′. Let H = {h(a) | a ∈ Act} and let Pref (H) be the set of all
prefixes of words from H.

We can construct a new LTS T ′ = (S′,Act ′,−→′) where

S′ = {〈s,w〉 | s ∈ S, w ∈ Pref (H)} ∪ {〈s, i〉 | s ∈ S, 0 ≤ i < m}

where we identify the the states 〈s, 0〉 and 〈s, ε〉 (i.e., 〈s, 0〉 and 〈s, ε〉 are the
same state), and where −→′ contains transitions:

• 〈s,w〉
a

−→ 〈s,wa〉 for each s ∈ S, w ∈ Act ′∗ and a ∈ Act ′ such that
wa ∈ Pref (H),

• 〈s,w〉
τ

−→ 〈s′,m− 1〉 for each s, s′ ∈ S and a ∈ Act such that s
a

−→ s′

and h(a) = w,

• 〈s, i〉
τ

−→ 〈s, i− 1〉 for each s ∈ S and 0 < i < m.

For each state s ∈ S in T there is a corresponding state 〈s, ε〉 ∈ S′ in T ′.

Lemma 3.6 For each s, s′ ∈ S: if s ∼ s′, then 〈s, ε〉 ∼ 〈s′, ε〉, and if
s 6vtr s

′, then 〈s, ε〉 6vtr 〈s
′, ε〉.

Proof (sketch). To prove the first part of the lemma, it is sufficient to show
that

R = {(〈s,w〉, 〈t, w〉) | s ∼ t, w ∈ Pref (H)} ∪
{(〈s, i〉, 〈t, i〉) | s ∼ t, 0 < i < m}

is a bisimulation.

3.4 Composed Finite-State Systems 47

To prove the second part, let us define a mapping ĥ : Act∗ → Act ′∗ such
that ĥ(ε) = ε, and ĥ(aw) = h(a)τmĥ(w). By induction on |w| we can show
that for every s ∈ S and w ∈ Act∗ is w ∈ Traces(s) iff ĥ(w) ∈ Traces(〈s, ε〉).

If s 6vtr s′ then there is some w ∈ Act∗ such that w ∈ Traces(s) and
w 6∈ Traces(s′). This implies that

ĥ(w) ∈ Traces(〈s, ε〉) and ĥ(w) 6∈ Traces(〈s′, ε〉).

�

3.4.5 Correctness of the Construction of the RLBA

Theorem 3.7 The problem rlba-eqR is EXPTIME-hard for any R such
that ∼⊆ R ⊆vtr.

Proof. Let us return to the construction of B and consider the corre-
sponding TA. We define a mapping h : ActA → Act∗B such that h(〈α〉) =
τa1ττa2τ · · · τanτ for α ∈ Conf ∧, and h(〈α, i〉) = τa1ττa2τ . . . τanτi for
α ∈ Conf ∨ − Confrej , where desc(α) = a1a2 · · · an. We apply the transfor-
mation described in the previous subsection with h and m = 2n+ 4 to TA,
and we obtain T ′

A. It is straightforward to construct a bisimulation that
relates configurations of B and states of T ′

A.

States αrej and α0 from TA correspond to a rejecting, respectively ini-
tial, configuration of A. If A accepts w, then αrej 6vtr α0 in TA, and so
〈αrej , ε〉 6vtr 〈α0, ε〉 in T ′

A, and if A does not accept w, then αrej ∼ α0 in TA
and 〈αrej , ε〉 ∼ 〈α0, ε〉 in T ′

A by Lemma 3.6. The same holds for the corre-
sponding configurations of B. This shows that the described construction
is correct.

RLBA B with two configurations can be constructed from an instance of
alba-accept in a logarithmic space, since it is obvious that some fixed
number of pointers pointing to symbols in the instance would be sufficient
for the construction. The problem alba-accept is EXPTIME-complete and
EXPTIME is closed under complement. �

So from Theorem 3.7 and Lemmas 3.4 and 3.5 we obtain the following result:

Theorem 3.8 The problems pch-eqR and pn-eqR are EXPTIME-hard for
any R such that ∼⊆ R ⊆vtr.

48 Chapter 3. Finite-State Processes

3.5 Summary of the Results

Summary of known results for equivalence-checking problems is given for
explicit finite-state systems, for parallel composition of finite-state systems
that synchronize on common action but do not use hiding, and for other
types of composed systems (PCH, 1-safe Petri nets, . . .).

Explicit finite-state systems:

• ‘Simulation-like’ equivalences are PTIME-complete.

• ‘Trace-like’ equivalences are PSPACE-complete.

• Any relation between bisimulation equivalence and trace preorder is
(at least) PTIME-hard.

Parallel composition where systems synchronize on common actions but
without hiding:

• ‘Simulation-like’ equivalences are EXPTIME-complete.

• ‘Trace-like’ equivalences are PSPACE-complete.

• Any relation between bisimulation equivalence and simulation preorder
is EXPTIME-hard.

Parallel composition with hiding, 1-safe Petri nets, and other composed
systems:

• ‘Simulation-like’ equivalences are EXPTIME-complete.

• ‘Trace-like’ equivalences are in EXPSPACE.

• Any relation between bisimulation equivalence and trace preorder is
(at least) EXPTIME-hard.

Chapter 4

One-Counter Automata

One-Counter Automata (OCA) and One-Counter Nets (OCN) were defined
in Section 2.6. This chapter presents after a short overview of known results
in Section 4.1 two results. Section 4.2 contains a proof of undecidability of
simulation equivalence (and simulation preorder) for OCA. This result was
published in [32]. The Sections 4.3 and 4.4 then present a general method for
proving DP-hardness of equivalence-checking and model-checking problems
concerning one-counter automata and one-counter nets, published in [31].

(Recall that the class DP [48] consists of those languages which are express-
ible as a difference of two languages from NP, and is generally conjectured
to be larger than the union of NP and coNP. Section 4.3.2 contains further
comments on DP.)

The ‘generic part’ of the method is presented in Section 4.3, where we define
a simple fragment of Presburger arithmetic, denoted OCL (“One-Counter
Logic”) which has two important properties:

• It is sufficiently powerful so that satisfiability and unsatisfiability of
boolean formulas are both polynomially reducible to the problem of
deciding the truth of formulas of OCL, which implies that this latter
problem is DP-hard (Theorem 4.5).

• It is sufficiently simple so that the problem of deciding the truth
of OCL formulas is polynomially reducible to various equivalence-
checking and model-checking problems (thus providing the “applica-
tion part” of the proposed method). The reduction is typically con-
structed inductively on the structure of OCL formulas, thus making

49

50 Chapter 4. One-Counter Automata

the proofs readable and easily verified.

The method is applied in Section 4.4 to several problems. Subsection 4.4.1
describes application to the OCN ↔ OCN problem where ↔ is any relation
which subsumes bisimilarity and is subsumed by simulation preorder (thus,
besides bisimilarity and simulation equivalence also, e.g., ready simulation
equivalence or 2-nested simulation equivalence), showing DP-hardness of
these problems (Theorem 4.8). This results improves the coNP lower bound
for the OCN ∼ OCN problem established in [36]. In Subsection 4.4.2 we
concentrate on simulation problems between one-counter and finite-state
automata, and prove that OCA v FS, FS v OCA, and OCA ' FS are all
DP-hard (Theorem 4.12). Finally, in Section 4.5 we draw some conclusions
and present a detailed summary of known results.

4.1 State of the Art

The OCN v OCN problem was first considered in [1], where it was shown
that if two one-counter net processes are related by some simulation, then
they are also related by a semilinear simulation (i.e. a simulation definable
in Presburger arithmetic), which suffices for semidecidability (and thus de-
cidability) of the positive subcase. (The negative subcase is semidecidable
by standard arguments.) A simpler proof was given later in [32] by em-
ploying certain ‘geometric’ techniques which allow us to conclude that the
simulation preorder over a given one-counter net is itself semilinear. More-
over, it was shown there that the OCA v OCA problem is undecidable. The
proof of this undecidability is presented in Section 4.2.

The decidability of the OCA ∼ OCA problem was demonstrated in [23] by
showing that the greatest bisimulation relation over the states of a given
one-counter automaton is also semilinear. The relationship between sim-
ulation and bisimulation problems for processes of one-counter automata
has been studied in [29] where it was shown that one can effectively reduce
certain simulation problems to their bisimulation counterparts by applying
a technique proposed in [38]. The complexity of bisimilarity-checking with
one-counter automata was studied in [36], where the problem OCN ∼ OCN

is shown to be coNP-hard and the problem of weak bisimilarity between
OCN and FS processes even DP-hard; moreover, the problem OCA ∼ FS was
shown to be solvable in polynomial time. Complexity bounds for simulation-
checking were given in [37], where it was shown that the problems OCN v FS

4.2 Undecidability Result 51

and FS v OCN (and thus also OCN ' FS) are in PTIME, while OCA v FS

and OCA ' FS are coNP-hard (and solvable in exponential time).

4.2 Undecidability Result

To show undecidability of OCA v OCA we use a reduction from the halting
problem for Minsky machines with 2 counters, which is well-known to be
undecidable [45]. We use the following definition:

Definition 4.1 A Minsky machine C with two nonnegative counters c1, c2
is a program

1 : COMM 1; 2 : COMM 2; . . . ; n : COMM n

where COMM n is a halt -command and COMM i (i = 1, 2, . . . , n − 1) are
commands of the following two types (assuming 1 ≤ k, k1, k2 ≤ n, 1 ≤ j ≤ 2)

(1) cj := cj + 1; goto k

(2) if cj = 0 then goto k1 else (cj := cj − 1; goto k2)

Note that the computation of the machine C (starting with COMM 1, the
counters initialized to 0) is deterministic.

Theorem 4.2 The problem OCA v OCA is undecidable even for determin-
istic one-counter automata. (This holds even in restricted cases, where one
of these one-counter automata is fixed.)

Proof. Given a Minsky machine C with 2 counters c1, c2, we describe the
construction of two deterministic one-counter automata A1 and A2, with
specified control states p, q respectively, such that p(0) v q(0) iff C does not
halt. We define the set of actions Act ofA1 andA2 as {i1, i2, z1, z2,d1,d2,h}.
The action ij , where j ∈ {1, 2}, represents the execution of a command of
type (1) on the counter cj . Similarly the actions zj and dj represent the
execution of a command of type (2) on the counter cj when cj is zero (ac-
tion zj) or non-zero (action dj), respectively. The action h represents the
execution of the halt -command. A computation of C can be described with
a sequence of symbols from Act , where different symbols correspond to the
different actions of C.

52 Chapter 4. One-Counter Automata

p

+i1

z1

−d1

a2

Figure 4.1: Construction of A1 when A1 is fixed

In an obvious way, C can be transformed to a deterministic one-counter
automaton A1 with n control states (n being the number of commands
of C), with the set of actions Act , and such that its counter ‘behaves’ like c1
(actions i1, z1, d1 depend on c1 and change it) while the actions i2, z2, d2

ignore the counter (c2 is ‘missing’). Thus a computation of A1 can digress
from that of C by performing an action d2 instead of z2 or vice versa.
The one-counter automaton A2 can be constructed similarly, now with the
counter corresponding to c2 while c1 is ignored. Moreover, for each control
state of A2 with ‘outgoing arcs’ labelled with z2 (enabled when c2 is zero) and
d2 (enabled when c2 is positive) we add new ‘complementary’ arcs labelled
z2 (for positive) and d2 (for zero) which lead to a special control state q∗
which has a loop for any action (ignoring the counter). Note that A2 remains
deterministic. Finally we add a new outgoing arc to the halting control state
of A1 labelled with the action h and we do not add any outgoing arcs to
the halting control state of A2. Let p, q be the initial states of A1 and A2

respectively. Obviously we have p(0) v q(0) iff C does not halt.

Below we briefly describe two modifications of this construction which show
that A1 or A2 can be fixed (not depending on C), even with just one or two
control states respectively.

A1 fixed: A1 has only one state, Q1 = {p}, and A2 has control states
Q2 = {q1, q2, . . . , qn, q∗}. The common set of actions is Act = {i1, z1,d1,a2}
(i2, z2, and d2 are merged into one symbol a2). See Figure 4.1 for a con-
struction of A1. The outgoing transitions in qi in A2 depend on the type of
the i-th command of C, see Figure 4.2.

A2 fixed: A1 has control states Q1 = {p1, p2, . . . , pn}, andA2 has control
states Q2 = {q0, q∗}. The common set of actions is Act = {a1, i2, z2,d2,h}
(i1, z1, and d1 are merged into one symbol a1). See Figure 4.3 for a con-

4.2 Undecidability Result 53

i : c1 := c1 + 1; goto j

qi

qj

q∗

i1
Act

z1,d1, a2

i : if c1 = 0 then goto j
else (c1 := c1 − 1; goto k)

qi

qj qk

q∗

z1 d1

Act

i1, a2

i : c2 := c2 + 1; goto j

qi

qj

q∗

+a2

Act

i1, z1,d1

i : if c2 = 0 then goto j
else (c2 := c2 − 1; goto k)

qi

qj qk

q∗

a2 −a2

Act

i1, z1,d1

i : halt
qi

Figure 4.2: Construction of A2 when A1 is fixed

54 Chapter 4. One-Counter Automata

q∗
q0

+i2

z2

−z2

d2

−d2

a1

Act

Figure 4.3: Construction of A2 when A2 is fixed

struction of A2. Outgoing transitions in pi depend again on the type of i-th
command in C, see Figure 4.4. �

Corollary 4.3 The problem OCA ' OCA is undecidable for nondetermin-
istic one-counter automata.

Proof. For initial control states p and q, taken from A1 and A2 respectively,
we give a construction of A′

1 with initial control state r1 and A′
2 with initial

control state r2 so that p(0) v q(0) iff r1(0) ' r2(0). The result then follows
directly from Theorem 4.2.

We take A′
1 to be the disjoint union of A1 and A2, adding a new control

state r1 and putting δ′1(r, a) = {(p, 0), (q, 0)} (a is an arbitrary action; here is
the only use of nondeterminism whenA1 andA2 are deterministic). A′

2 arises
from A2 by adding a new control state r2 and putting δ′2(r2, a) = {(q, 0)}.
Figure 4.5 illustrates this construction. It is easily seen that r2(0) v r1(0),
and that r1(0) v r2(0) iff p(0) v q(0). �

4.3 The OCL Fragment of Arithmetic

In this section, we introduce a fragment of (Presburger) arithmetic, denoted
OCL (“One-Counter Logic”). We then show how to encode the problems
of satisfiability and unsatisfiability of boolean formulas in OCL, and thus
deduce DP-hardness of the truth problem for (closed formulas of) OCL.
The name of the language is motivated by a relationship to one-counter
automata which will be explored in the next section.

4.3 The OCL Fragment of Arithmetic 55

i : c1 := c1 + 1; goto j

pi

pj

+a1

i : if c1 = 0 then goto j
else (c1 := c1 − 1; goto k)

pi

pj pk

a1 −a1

i : c2 := c2 + 1; goto j

pi

pj

i2

i : if c2 = 0 then goto j
else (c2 := c2 − 1; goto k)

pi

pj pk

z2 d2

i : halt

pi

h

Figure 4.4: Construction of A1 when A2 is fixed

aa a

p q q

r1 r2

A1 A2 A2

Figure 4.5: Reduction from OCA v OCA to OCA ' OCA

56 Chapter 4. One-Counter Automata

4.3.1 Definition of OCL

OCL can be viewed as a certain set of first-order arithmetic formulas. We
shall briefly give the syntax of these formulas; the semantics will be obvious.
Since we only consider the interpretation of OCL formulas in the standard
structure of natural numbers N, the problem of deciding the truth of a closed
OCL formula is well defined:

Problem: TruthOCL

Instance: A closed formula Q ∈ OCL.

Question: Is Q true ?

Let x and y range over (first-order) variables. A formula Q ∈ OCL can have
at most one free variable x (i.e., outside the scope of quantifiers). We shall
write Q(x) to indicate the free variable (if there is one) of Q; that is, Q(x)
either has the one free variable x, or no free variables at all.

For a number k ∈ N, dke stands for a special term denoting k. We can think
of dke as

SS . . . S0

i.e., the successor function S applied k times to 0.

We use size(Q) to denote size of the formula Q. Recall that constants are
represented in unary.

The formulas Q of OCL and their sizes are defined inductively as follows:

Q size(Q)

(a) x = 0 1

(b) dke | x (‘k divides x’; k>0) k+1

(c) dke - x (‘k does not divide x’; k>0) k+1

(d) Q1(x) ∧Q2(x) size(Q1) + size(Q2) + 1

(e) Q1(x) ∨Q2(x) size(Q1) + size(Q2) + 1

(f) ∃y ≤ x : Q′(y) (x and y distinct) size(Q′) + 1

(g) ∀x : Q′(x) size(Q′) + 1

The size of an instance Q of TruthOCL is stipulated to be size(Q).

We shall need to consider the truth value of a formula Q(x) in a valuation
assigning a number n ∈ N to the (possibly) free variable x. This is given
by the formula Q[n/x] obtained by replacing each free occurrence of the

4.3 The OCL Fragment of Arithmetic 57

variable x in Q by n. Slightly abusing notation, we shall denote this by
Q(n). (Symbols like i, j, k, n range over natural numbers, not variables.)
For example, if Q(x) is the formula ∃y ≤ x : ((3 | y) ∧ (2 - y)), then Q(5)
is true while Q(2) is false; and if Q(x) is a closed formula, then the truth
value of Q(n) is independent of n.

4.3.2 DP-hardness of TruthOCL

Recall the following problem:

Problem: Sat-Unsat

Instance: A pair (ϕ,ψ) of boolean formulas in conjunctive normal form
(CNF).

Question: Is it the case that ϕ is satisfiable while ψ is unsatisfiable ?

This problem is DP-complete, which corresponds to an intermediate level in
the polynomial hierarchy, harder than both Σp

1 and Πp
1 but still contained

in Σp
2 and ΠP

2 (cf., e.g., [48]). Our aim here is to show that Sat-Unsat

is polynomial-time reducible to TruthOCL. In particular, we show how,
given a boolean formula ϕ in CNF, we can in polynomial time construct
a (closed) formula of OCL which claims that ϕ is satisfiable, and also a
formula of OCL which claims that ϕ is unsatisfiable (Theorem 4.5).

First we introduce some notation. Let Var(ϕ) = {x1, x2, . . . , xm} denote
the set of (boolean) variables in ϕ. Furthermore, let πj (for j≥1) denote the
jth prime number. For every n ∈ N we define the assignment

νn : Var (ϕ) → {true , false}

by

νn(xj) =

{
true, if πj | n,
false, otherwise.

Note that for an arbitrary assignment ν there exists an n ∈ N such that
νn = ν; it suffices to take

n =
m∏

j=1

hj

where hj = πj if ν(xj) = true, and hj = 1 otherwise.

By ‖ϕ‖ν we denote the truth value of ϕ under the assignment ν.

58 Chapter 4. One-Counter Automata

Lemma 4.4 There is a polynomial-time algorithm which, given a boolean
formula ϕ in CNF, constructs OCL-formulas Qϕ(x) and Qϕ(x) such that

both size(Qϕ) and size(Qϕ) are in O(|ϕ|3), and such that for every n ∈ N

Qϕ(n) is true iff Qϕ(n) is false iff ‖ϕ‖νn = true.

Proof. Let Var(ϕ) = {x1, . . . , xm}. Given a literal ` (that is, a variable xj
or its negation xj), define the OCL-formula Q`(x) as follows:

Qxj
(x) = dπje | x and Qxj

(x) = dπje - x.

Clearly, Q`(n) is true iff Q`(n) is false iff ‖`‖νn = true.

• Formula Qϕ(x) is obtained from ϕ by replacing each literal ` with
Q`(x). It is clear that Qϕ(n) is true iff ‖ϕ‖νn = true.

• Formula Qϕ(x) is obtained from ϕ by replacing each ∧, ∨, and ` with

∨, ∧, and Q`(x), respectively. It is readily seen that Qϕ(n) is true iff
‖ϕ‖νn = false .

It remains to evaluate the size of Qϕ and Qϕ. Here we use a well-known fact
from number theory (cf., e.g., [3]) which says that πm is in O(m2). Hence
size(Q`) is in O(|ϕ|2) for every literal ` of ϕ. As there are O(|ϕ|) literal
occurrences and O(|ϕ|) boolean connectives in ϕ, we can see that size(Qϕ)
and size(Qϕ) are indeed in O(|ϕ|3). �

We now come to the main result of the section.

Theorem 4.5 Problem Sat-Unsat is reducible in polynomial time to prob-
lem TruthOCL. Therefore, TruthOCL is DP-hard.

Proof. We give a polynomial-time algorithm which, given an instance
(ϕ,ψ) of Sat-Unsat, constructs a closed OCL-formula Q, with size(Q) in
O(|ϕ|3 + |ψ|3), such that Q is true iff ϕ is satisfiable and ψ is unsatisfiable.

The formula Q will be of the form Q1∧Q2 where Q1 is true iff ϕ is satisfiable
and Q2 is true iff ψ is unsatisfiable.

Expressing the unsatisfiability of ψ is straightforward: by Lemma 4.4, ψ is
unsatisfiable iff the OCL-formula

∀x : Qψ(x)

4.3 The OCL Fragment of Arithmetic 59

is true. Thus, let Q2 be this formula.

Expressing the satisfiability of ϕ is more involved. Let g = π1π2 . . . πm,
where Var(ϕ) = {x1, . . . , xm}. Clearly ϕ is satisfiable iff there is some
n ≤ g such that ‖ϕ‖νn = true. Hence ϕ is satisfiable iff the OCL-formula
∃y ≤ x : Qϕ(y) is true for any valuation assigning some i ≥ g to x.

As it stands, it is unclear how this might be expressed. However, note that
the equivalence still holds if we replace the condition “i ≥ g” with “i is a
non-zero multiple of g”. In other words, ϕ is satisfiable iff for every i ∈ N
we have that either i = 0, or g - i, or there is some n ≤ i such that Qϕ(n)
is true. This can be written as

∀x : x = 0 ∨ (dπ1e - x ∨ · · · ∨ dπme - x) ∨ ∃y ≤ x : Qϕ(y)

We thus let Q1 be this formula.

Hence, (ϕ,ψ) is a positive instance of the Sat-Unsat problem iff the formula

Q = Q1 ∧Q2

is true. To finish the proof, we observe that size(Q) is indeed in O(|ϕ|3 +
|ψ|3). �

4.3.3 TruthOCL is in Π
p
2

The conclusions we draw for our verification problems are that they are DP-
hard, as we reduce the DP-hard problem TruthOCL to them. We cannot
improve this lower bound by much using the reduction from TruthOCL,
as TruthOCL is in Πp

2. In this section we sketch the ideas of a proof of
this fact.

Theorem 4.6 TruthOCL is in Πp
2

Proof. We start by first proving that for every formula Q(x) of OCL

there is a d such that 0 < d ≤ 2size(Q) and Q(i) = Q(i − d) for every
i > 2size(Q). Hence, ∀x : Q(x) holds iff ∀x ≤ 2size(Q) : Q(x) holds. (Note
that ∀x ≤ 2size(Q) : Q(x) is not a formula of OCL.)

We prove the existence of d for every formula Q(x) by induction on the
structure of Q(x). If Q(x) is x = 0 then we can take d = 1, and if Q(x) is
dke | x or dke - x then we can take d = k.

60 Chapter 4. One-Counter Automata

If Q(x) is Q1(x) ∧ Q2(x) or Q1(x) ∨ Q2(x), then we may assume by the
induction hypothesis the existence of the relevant d1 for Q1 and d2 for Q2.
We can then take d = d1d2 to give the desired property that Q(i) = Q(i−d)
for every i > 2size(Q).

If Q(x) is ∃y ≤ x : Q′(y) where x and y distinct then by the induction
hypothesis there is a d′ such that 0 < d′ ≤ 2size(Q′) and Q′(i) = Q′(i − d′)
for every i > 2size(Q′). It follows that if Q′(i) is true for some i, then it is
true for some i ≤ 2size(Q′) < 2size(Q). Furthermore, if Q′(i) is true for some
i then Q(j) is true for every j ≥ i; on the other hand, if Q′(i) is false for
every i, then Q(j) is false for every j. Thus we can take d = 1.

If Q(x) is ∀y : Q′(y), then x is not free in Q′(y), so the truth value of Q(i)
does not depend on i and we can take d = 1.

Next we note that every OCL-formula Q(x) can be transformed into a
formula Q̂(x) (which need not be in OCL) in (pseudo-)prenex form

(∀x1 ≤ 2size(Q1)) · · · (∀xk ≤ 2size(Qk))

(∃y1 ≤ z1) · · · (∃y` ≤ z`)F(x1, . . . , xk, y1, . . . , y`)

where

• ∀xi : Qi(xi) is a subformula of Q(x);

• each zi ∈ {x1, . . . , xk, y1, . . . , yi−1}; and

• F(x1, . . . , xk, y1, . . . , y`) is a ∧,∨-combination of atomic subformulas
of Q(x).

This can be proved by induction on the structure of Q(x). The only case
requiring some care is the case when Q(x) is of the form ∃y ≤ x : Q′(y),
because ∃y∀z : P (y, z) and ∀z∃y : P (y, z) are not equivalent in general,
but they are in our case, as z never depends on y due to restrictions in
OCL. Note that the size of Q̂(x) is polynomial in size(Q) (assuming that
2size(Q1), . . . , 2size(Qk) are encoded in binary).

We can construct an alternating Turing machine which first uses its uni-
versal states to assign all possible values (bounded as mentioned above) to
x1, . . . , xk, then uses its existential states to assign all possible values to
y1, . . . , y`, and finally evaluates (deterministically) the formula

F(x1, . . . , xk, y1, . . . , y`)

4.4 Application to One-Counter Automata Problems 61

It is clear that this alternating Turing machine can be constructed so that it
works in time which is polynomial in size(Q). This implies the membership
of TruthOCL in Πp

2. �

4.4 Application to One-Counter Automata Prob-

lems

As we mentioned above, the language OCL was designed with one-counter
automata in mind. The problem TruthOCL can be relatively smoothly
reduced to various verification problems for such automata, by providing
relevant constructions (“implementations”) for the various cases (a)-(g) of
the OCL definition, and thus it constitutes a useful tool for proving lower
complexity bounds (DP-hardness) for these problems. We shall demonstrate
this for the OCN ↔ OCN problem, where ↔ is any relation satisfying that
∼ ⊆ ↔ ⊆ v, and then also for the OCA v FS, FS v OCA, and OCA ' FS

problems.

The method was also used in [31] by A. Kučera for showing DP-hardness of
model-checking with the logic EF and one-counter nets. However this result
is not presented in this thesis.

4.4.1 Results for One-Counter Nets

In this section we show that, for any relation ↔ satisfying ∼ ⊆ ↔ ⊆ v,
the problem of deciding whether two (states of) one-counter nets are in ↔
is DP-hard. We first state an important technical result, but defer its proof
until after we derive the desired theorem as a corollary.

Proposition 4.7 There is an algorithm which, given a formula Q = Q(x) ∈
OCL as input, halts after O(size(Q)) steps and outputs a one-counter net
with two distinguished control states p and p′ such that for every k ∈ N we
have:

• if Q(k) is true then p(k) ∼ p′(k);

• if Q(k) is false then p(k) 6v p′(k).

Note that if Q is a closed formula, then this implies that p(0) ∼ p′(0) if Q
is true, and p(0) 6v p′(0) if Q is false.

62 Chapter 4. One-Counter Automata

Theorem 4.8 For any relation ↔ such that ∼ ⊆ ↔ ⊆ v, the following
problem is DP-hard:

Instance: A one-counter net with two distinguished control states p
and p′.

Question: Is p(0) ↔ p′(0) ?

Proof. We recall that problem TruthOCL is DP-hard (Theorem 4.5), and
we shall reduce it to our problem. Given an instance of TruthOCL, i.e.,
a closed formula Q ∈ OCL, we use the (polynomial) algorithm of Proposi-
tion 4.7 to construct a one-counter net with the two distinguished control
states p and p′. If Q is true, then p(0) ∼ p′(0), and hence p(0) ↔ p′(0), and
if Q is false, then p(0) 6v p′(0), and hence p(0) 6↔ p′(0). �

Proof of Proposition 4.7: We proceed by induction on the structure of Q.
For each case, we show an implementation, i.e., the corresponding one-
counter netNQ with two distinguished control states p and p′. Constructions
are sketched by figures which use our notational conventions; the distin-
guished control states are denoted by black dots (the left one p, the right
one p′). It is worth noting that we only use two actions, a and b.

(a) Q(x) = (x = 0): A suitable (and easily verifiable) implementation
looks as depicted in Figure 4.6.

−a

p p′

Figure 4.6: Construction for Q(x) = (x = 0)

(b,c) Q(x) = dke | x or Q(x) = dke - x, where k>0: Given J ⊆
{ 0, 1, 2, . . . , k−1 }, let RJ(x) = ((xmod k) ∈ J). We shall show
that the formula RJ(x) can be implemented in our sense; taking
J = {0} then gives us the construction for case (b), and taking
J = {1, . . . , k−1} gives us the construction for case (c).

An implementation of RJ(x), where for the point of illustration we
have 1, 2 ∈ J but 0, 3, k−1 6∈ J , looks as shown in Figure 4.7. In this
picture, each node qi has an outgoing edge going to a “dead” state; this
edge is labelled b if i ∈ J and labelled −b if i 6∈ J . It is straightforward
to check that the proposed implementation of RJ(x) is indeed correct.

4.4 Application to One-Counter Automata Problems 63

b

−a p

−b
b

−b

−b

−a

−a−a

−a −a

b

q0 = p′

q1

q2

q3

qk−1

Figure 4.7: Construction for RJ(x)

(d) Q(x) = Q1(x)∧Q2(x): We can assume (by induction) that implemen-
tations NQ1

of Q1(x) and NQ2
of Q2(x) have been constructed. NQ is

constructed, using NQ1
and NQ2

, as shown in Figure 4.8. The dotted

a bab

p p′

pQ1
pQ2

p′Q1
p′Q2

NQ1
NQ2

Figure 4.8: Construction for Q(x) = Q1(x) ∧Q2(x)

rectangles represent the graphs associated to NQ1
and NQ2

(only the
distinguished control states are depicted). Verifying the correctness of
this construction is straightforward.

(e) Q(x) = Q1(x) ∨ Q2(x): As in case (d), the construction uses the
implementations of Q1(x) and Q2(x); but the situation is slightly more
involved in this case, see Figure 4.9. To verify correctness, we first
consider the case when Q(k) is true. By induction, either pQ1

(k) ∼
p′Q1

(k) or pQ2
(k) ∼ p′Q2

(k). In the first case, pQ1
(k) ∼ p′Q1

(k) implies
that p1(k) ∼ p2(k), which in turn implies that p(k) ∼ p′(k); similarly,
in the second case, pQ2

(k) ∼ p′Q2
(k) implies that p1(k) ∼ p3(k), which

also implies that p(k) ∼ p′(k). Hence in either case p(k) ∼ p′(k).

Now consider the case when Q(k) is false. By induction, pQ1
(k) 6v

p′Q1
(k) and pQ2

(k) 6v p′Q2
(k). Obviously, pQ1

(k) 6v p′Q1
(k) implies that

64 Chapter 4. One-Counter Automata

a

a

b

b

a

a

aa
a

a b

p p′

p1 p2
p3

pQ1
pQ2

p′Q1
p′Q2

Figure 4.9: Construction for Q(x) = Q1(x) ∨Q2(x)

p1(k) 6v p2(k), and pQ2
(k) 6v p′Q2

(k) implies that p1(k) 6v p3(k). From
this we have p(k) 6v p′(k).

(f) Q(x) = ∃y ≤ x : Q1(y) (where x, y are distinct): We use the construc-
tion from Figure 4.10. To verify correctness, we first consider the case

a a a

b+bb

−a
−a

−a

a

−a

p p′

p1 p2
p3

pQ1
p′Q1

Figure 4.10: Construction for Q(x) = ∃y ≤ x : Q1(y)

when Q(k) is true. This means that Q1(i) is true for some i≤k, which
by induction implies that pQ1

(i) ∼ p′Q1
(i) for this i≤k. Our result,

that p(k) ∼ p′(k), follows immediately from the following:

Claim 4.9 For all k, if pQ1
(i) ∼ p′Q1

(i) for some i≤k, then p(k) ∼
p′(k).

Proof. By induction on k. For the base case (k=0), if pQ1
(i) ∼

p′Q1
(i) for some i≤0, then pQ1

(0) ∼ p′Q1
(0), which implies that p1(0) ∼

p3(0), and hence that p(0) ∼ p′(0). For the induction step (k>0), if

4.4 Application to One-Counter Automata Problems 65

pQ1
(i) ∼ p′Q1

(i) for some i≤k, then either pQ1
(k) ∼ p′Q1

(k), which
implies that p1(k) ∼ p3(k) which in turn implies that p(k) ∼ p′(k);
or pQ1

(i) ∼ p′Q1
(i) for some i≤k−1, which by induction implies that

p(k−1) ∼ p′(k−1), which implies that p1(k) ∼ p2(k−1), which in turn
implies that p(k) ∼ p′(k). �

Next, we consider that case when Q(k) is false. This means that Q1(i)
is false for all i≤k, which by induction implies that pQ1

(i) 6v p′Q1
(i) for

all i≤k. Our result, that p(k) 6v p′(k), follows immediately from the
following:

Claim 4.10 For all k, if p(k) v p′(k) then pQ1
(i) v p′Q1

(i) for some
i≤k.

Proof. By induction on k. For the base case (k=0), if p(0) v p′(0)
then p1(0) v p3(0), which in turn implies that pQ1

(0) v p′Q1
(0). For

the induction step (k>0), if p(k) v p′(k) then either p1(k) v p2(k−1)
or p1(k) v p3(k). In the first case, p1(k) v p2(k−1) implies that
p(k−1) v p′(k−1), which by induction implies that pQ1

(i) v p′Q1
(i)

for some i≤k−1 and hence for some i≤k; and in the second case,
p1(k) v p3(k) implies that pQ1

(k) v p′Q1
(k). �

(g) Q = ∀x : Q1(x): The implementation in Figure 4.11 can be easily
verified.

−a −a

b b

b b

+a +ap p′

pQ1
p′Q1

Figure 4.11: Construction for Q = ∀x : Q1(x)

For any Q ∈ OCL, the described construction terminates after O(size(Q))
steps, because we add only a constant number of new nodes in each subcase
except for (b) and (c), where we add O(k) new nodes (recall that the size
of dke is k + 1). �

66 Chapter 4. One-Counter Automata

4.4.2 Simulation Problems for One-Counter Automata and

Finite-State Systems

Now we establish DP-hardness of the OCA v FS, FS v OCA, and OCA ' FS

problems. Again, we use the inductively defined reduction from the problem
TruthOCL, only the particular constructions are now slightly different.

By an implementation we now mean a tuple

(A,F, F ′, A′)

where A,A′ are one-counter automata, and F,F ′ are finite-state systems;
the role of distinguished states is now played by the initial states, denoted
q for A, f for F , f ′ for F ′, and q′ for A′. We again first state an important
technical result, and again defer its proof until after we derive the desired
theorem as a corollary.

Proposition 4.11 There is an algorithm which, given Q = Q(x) ∈ OCL

as input, halts after O(size(Q)) steps and outputs an implementation

(A,F, F ′, A′)

where q, f , f ′ and q′ are the initial control states of A, F , F ′ and A′,
respectively, such that for every k ∈ N we have:

Q(k) is true iff q(k) v f iff f ′ v q′(k).

Note that if Q is a closed formula, then this implies that

Q is true iff q(0) v f iff f ′ v q′(0).

Theorem 4.12 Problems OCA v FS, FS v OCA, and OCA ' FS are DP-
hard.

Proof. Recalling that TruthOCL is DP-hard, DP-hardness of the first
two problems readily follows from Proposition 4.11.

DP-hardness of the third problem follows from a simple (general) reduction
of OCA v FS to OCA ' FS: given a one-counter automaton A with initial
state q, and a finite-state system F with initial state f , we first transform
F to F1 by adding a new state f1 and transition f1

a
−→ f , and then create

A1 by taking (disjoint) union of A, F1 and adding f1
a

−→ q, where f1 is the
copy of f1 in A1. Clearly q(k) v f iff f1(k) ' f1. �

4.4 Application to One-Counter Automata Problems 67

Proof of Proposition 4.11: We proceed by induction on the structure of Q.
In the constructions we use only two actions, a and b; this also means that
a state with non-decreasing a and b loops is universal, i.e, it can simulate
“everything”.

(a) Q(x) = (x = 0): A straightforward implementation is depicted in
Figure 4.12.

−a

q f

aa

f ′

a

q′

A F F ′ A′

Figure 4.12: Construction for Q(x) = (x = 0)

(b,c) Q = dke | x or Q = dke - x, where k > 0: Given J ⊆ [0, k − 1],
let RJ(x) = ((xmod k) ∈ J). We shall show that the formula RJ(x)
can be implemented in our sense; taking J = {0} then gives us the
construction for case (b), and taking J = {1, . . . , k−1} gives us the
construction for case (c).

An implementation of RJ(x), where 1, 2 ∈ J but 0, 3, k−1 6∈ J , looks
as depicted in Figures 4.13 and 4.14. In this pictures, node fi has

b

−a

q
b

b

a

a

a a

a

f0 = f

f1

f2

f3

fk−1

A F

Figure 4.13: Construction of A and F for RJ(x)

a b-loop in F , and node qi has an outgoing dashed a-edge in A′, iff

68 Chapter 4. One-Counter Automata

a
f ′

−a

−a−a

−a −a

a

a

a

q0 = q′

q1

q2

q3

qk−1

F ′ A′

Figure 4.14: Construction of F ′ and A′ for RJ(x)

i ∈ J . It is straightforward to check that the proposed implementation
of RJ(x) is indeed correct.

(d) Q(x) = Q1(x) ∧Q2(x): The elements of the implementation

(AQ, FQ, F
′
Q, A

′
Q)

for Q can be constructed from the respective elements of the imple-
mentations for Q1, Q2 (assumed by induction): AQ from AQ1

and
AQ2

; FQ from FQ1
and FQ2

; F ′
Q from F ′

Q1
and F ′

Q2
; and A′

Q from A′
Q1

and A′
Q2

. All these cases follow the schema depicted in Figure 4.15.
Correctness is easily verifiable.

a b

Q1 Q2

Figure 4.15: Construction for Q(x) = Q1(x) ∧Q2(x)

(e) Q(x) = Q1(x) ∨ Q2(x): We give constructions just for A and F (the
constructions for F ′ and A′ are almost identical) in Figure 4.16. For
any k, Q(k) is true iff Q1(k) is true or Q2(k) is true, which by
induction is true iff qQ1

(k) v fQ1
or qQ2

(k) v fQ2
, which is true

iff q1(k) v f1 or q1(k) v f2, which in turn is true iff q(k) v f .

(f) Q(x) = ∃y ≤ x : Q1(y) (where x, y are distinct): We use the con-
structions depicted in Figures 4.17 and 4.18. We prove that the

4.4 Application to One-Counter Automata Problems 69

ba

a

Q1 Q2

q

q1

qQ1
qQ2

b

a a

a ba

a,bQ1 Q2

f

f1 f2

fQ1
fQ2

u

Figure 4.16: Construction for Q(x) = Q1(x) ∨Q2(x)

−a

b

a a b

Q1

q
a

b b

a

a

a,b

a

Q1

f

A F

Figure 4.17: Construction of A and F when Q(x) = ∃y ≤ x : Q1(y)

construction is correct for F ′ and A′ (the other case being similar).
Q(k) is true iff Q1(i) is true for some i≤k, which by induction is true
iff f ′Q1

v q′Q1
(i) for some i≤k, which in turn is true iff f ′1 v q′2(i)

for some i≤k. Our result, that this is true iff f ′ v q′(k), follows
immediately from the following:

Claim 4.13 For all k, f ′ v q′(k) iff f ′1 v q′2(i) for some i≤k.

Proof. By induction on k. For the base case (k=0), the result is
immediate. For the induction step (k>0), first note that f ′1 v q′1(k−1)
iff f ′ v q′(k−1), which by induction is true iff f ′1 v q′2(i) for some
i≤k−1. Thus f ′ v q′(k) iff f ′1 v q′2(k) or f ′1 v q′1(k−1), which is
true iff f ′1 v q′2(k) or f ′1 v q′2(i) for some i≤k−1, which in turn is
true iff f ′1 v q′2(i) for some i≤k. �

(g) Q = ∀x : Q1(x): It is easy to show the correctness of the implementa-
tion in Figure 4.19.

70 Chapter 4. One-Counter Automata

a

b

a

Q1

f ′

f ′1

f ′Q1

a

b b

a

a

a,b

−a

Q1

q′

q′1 q′2

q′Q1

u

F ′ A′

Figure 4.18: Construction of F ′ and A′ when Q(x) = ∃y ≤ x : Q1(y)

−a

b

b

+a

q

qQ1

b

b

a

a

f

fQ1

b

b

a

a

f ′

f ′Q1

−a

b

b

+a

a

a,b

q′

u

q′Q1

A F F’ A’

Figure 4.19: Construction for Q = ∀x : Q1(x)

For any Q ∈ OCL, the described construction terminates after O(size(Q))
steps, because we add only a constant number of new nodes in each subcase
except for (b) and (c), where we add O(k) new nodes. �

4.5 Summary of the Results

Intuitively, the reason why we could not lift the DP lower bound to some
higher complexity class (e.g., PSPACE) is that there is no apparent way
to implement a “step-wise guessing” of assignments which would allow us
to encode, e.g., the Qbf problem. The difficulty is that if we modify the
counter value, we were not able to find a way to check that the old and new
values encode “compatible” assignments which agree on a certain subset
of propositional constants. Each such attempt resulted in an exponential
blow-up in the number of control states.

4.5 Summary of the Results 71

A summary of known results about equivalence-checking with one-counter
automata is given below (where ≈ denotes weak bisimilarity).

• OCN ≈ OCN and OCA ≈ OCA remain open.

• OCA v OCA and OCA ' OCA are undecidable.

• OCA ∼ OCA, OCN ∼ OCN, OCN v OCN and OCN ' OCN are decid-
able and DP-hard, but without any known upper bound.

• OCA ≈ FS, OCN ≈ FS, OCA v FS, FS v OCA and OCA ' FS are
decidable, DP-hard, and in EXPTIME. The EXPTIME upper bound is
due to the fact that all of the mentioned problems can be easily reduced
to the model-checking problem with pushdown systems (see, e.g., [28,
38]) and the modal µ-calculus which is EXPTIME-complete [62].

• OCA ∼ FS, OCN ∼ FS, OCN v FS, FS v OCN and OCN ' FS are in
PTIME.

72 Chapter 4. One-Counter Automata

Chapter 5

Basic Parallel Processes

In this chapter we show two applications of the technique of Jančar that
was used in [25] to show that the problem of deciding bisimilarity for BPP
systems, bpp-bisim, is in PSPACE.

The problem bpp-bisim is formulated as follows:

Instance: Two BPPs ∆1 and ∆2 with distinguished initial states.

Question: Is ∆1 ∼ ∆2?

The special case when one of ∆1 and ∆2 is a finite-state system is denoted
bpp-fs-bisim. It is shown in this chapter that bpp-fs-bisim can be decided
in polynomial time, the result that was published in [35].

The other application of the technique of Jančar presented in this chapter
is a polynomial time algorithm for deciding distributed bisimilarity on BPP.
This algorithm was not published yet. A polynomial time algorithm for
the problem was already published in [40], however the algorithm presented
here is more efficient and simpler, and provides an explicit degree of the
polynomial bounding the complexity of the algorithm, something that was
missing in [40].

The chapter starts with an overview of known results in Section 5.1. The
polynomial time algorithm for bpp-fs-bisim is presented in Section 5.2,
and the polynomial time algorithm for deciding distributed bisimilarity in
Section 5.3.

73

74 Chapter 5. Basic Parallel Processes

5.1 State of the Art

The problem bpp-bisim was shown to be decidable in [14], but no complex-
ity bounds were presented there. It was proven in [56] that the problem
is PSPACE-hard and P. Jančar has shown in [25] that the problem is in
PSPACE, and hence the problem is PSPACE-complete. The problem can be
decided in polynomial time for normed BPP [20, 27].

It was shown in [35] that bpp-fs-bisim can be solved in polynomial time.

It was shown in [40] that distributed bisimilarity can be decided in poly-
nomial time, however the algorithm in this paper uses the algorithm for
normed BPP from [20] as a subroutine, and no explicit degree of the poly-
nomial bounding the complexity of the algorithm is provided there.

5.2 Bisimilarity with a Finite-State System

This section contains description of the algorithm presented in [35]. The
running time of the algorithm is O(n4) where n is the size of the instance.
The result implies that it is possible to verify in polynomial time whether a
system implemented as a finite-state automaton is equivalent to a ‘specifi-
cation’ given as a BPP. The algorithm also generates for each state of the
finite-state system a ‘symbolic’ semilinear representation of bisimilar BPP
states.

5.2.1 Basic Definitions

In this section we assume that BPPs are represented as (communication-free)
Petri nets, and for technical convenience we suppose that also a finite-state
systems are represented as Petri nets where for each t ∈ Tr there is exactly
one p ∈ P such that F (t, p) = 1 and F (t, p′) = 0 if p′ 6= p. For p ∈ P we
define a marking Mp such that Mp(p) = 1 and Mp(p

′) = 0 for p′ 6= p. We
call such marking an FS marking.

Let ∆1 and ∆2 be the BPP and the finite-state system from the instance of
bpp-fs-bisim. We can define their disjoint union ∆ in an obvious manner.
Let

∆ = (P,Tr,pre, F, λ)

be this disjoint union. Markings of ∆1 and ∆2 can be extended to markings

5.2 Bisimilarity with a Finite-State System 75

of ∆ by setting all remaining elements to 0. Let M be the set of markings
of ∆. All markings considered in this section are from M.

We assume that ∆1 and ∆2 in the instance of bpp-fs-bisim are represented
succinctly, i.e., in such a way that values of F (t, p) are stored in binary. Let
n be the size of the instance in this compact representation. We show that
the problem bpp-fs-bisim can be solved in time O(n4).

In the rest of this section PFS and TrFS denote the sets of places and tran-
sitions of the finite-state system from this instance (PFS ⊆ P , TrFS ⊆ Tr),
and Mp where p ∈ PFS denotes the marking such that Mp ∈ M, Mp(p) = 1
and Mp(p

′) = 0 for p′ 6= p. We define MFS = {Mp | p ∈ PFS}.

Symbol ω denotes infinity. We stipulate that for each x ∈ N, x < ω, ω+x =
x+ω = ω+ ω = ω−ω = −ω+ω = ω, ω · 0 = 0 · ω = 0, and for each x ≥ 1,
ω · x = x · ω = ω.

5.2.2 The Algorithm

The algorithm is based on ideas that were used by Jančar in [25] to show
that bpp-bisim is in PSPACE. The algorithm constructs a series of norm
functions that are used for approximation of the bisimulation equivalence.
The construction stops when no other functions can be added, and at this
point the approximation is exact.

At first we recall some ideas from [25]. Let (S,Act ,−→) be an LTS, and let
C : S → D be a mapping assigning to each state a value from some domain D.
We say the mapping C is a bisimulation invariant if for each s, s′ ∈ S, s ∼ s′

implies C(s) = C(s′). If we have a set of functions {C1, C2, . . . Cl} where
Ci : S → Di, we say the set is a bisimulation invariant iff every Ci is a
bisimulation invariant. A predicate P on S can be viewed as a mapping
P : S → {0, 1}, and so P is a bisimulation invariant iff for each s, s′ ∈ S,
s ∼ s′ implies (P(s) iff P(s′)). Note that if P is a bisimulation invariant,
then ¬P is also a bisimulation invariant.

Let P be a predicate on S. We define the mapping dist(P) : S → Nω where
dist(P)(s) is the length of the shortest w such that s

w
−→ s′ and P(s′),

and if there is no such w, dist(P)(s) = ω. Intuitively, dist(P) represents
“distance” to P.

Claim 5.1 If P is a bisimulation invariant then dist(P) is a bisimulation
invariant.

76 Chapter 5. Basic Parallel Processes

Proof. Let us assume without loss of generality that there are states s1, s2
such that s1 ∼ s2 and dist(P)(s1) < dist(P)(s2). Then there is some
shortest w ∈ Act∗ such that s1

w
−→ s′1 and P(s′1). Because s1 ∼ s2, there

must be some s′2 such that s2
w

−→ s′2 and s′1 ∼ s′2. But |w| < dist(P)(s′2),
and so ¬P(s′2), which means that P is not a bisimulation invariant. �

Let us now consider the BPP ∆ from the instance of bpp-fs-bisim. Let
T ⊆ Tr. We say T is disabled in M iff every t ∈ T is disabled in M .
Notice that if T is the set of all transitions t such that λ(t) = a for some
a ∈ Act , then ‘T is disabled’ is a bisimulation invariant. Notice also that T
is disabled iff each place in pre(T) is empty. These leads to the following
formal definitions. Let Q ⊆ P be a set of places. We define the predicate
zero(Q) on M such that zero(Q)(M) iff ∀p ∈ Q : M(p) = 0. We define
norm of Q as the function norm(Q) = dist(zero(Q)).

Every norm can be expressed as a linear function L : M → Nω of the form

L(x1, x2, . . . , xk) = c1x1 + c2x2 + · · · + ckxk

where ci ∈ Nω and k is the number of places, see [25] for details. Coefficients
c1, c2, . . . , ck of L for the given Q can be computed by the algorithm in
Figure 5.1. Intuitively, ci is the minimal number of transitions that remove
one token in pi from Q. In the algorithm, Q′ is the set of unprocessed
places and T is the set of unprocessed transitions. We write cp instead of ci
where p = pi. Places that are not in Q′ are places for which cp was already
determined. The algorithm computes for each unprocessed transition t that
stores tokens only to places out of Q′ the value dt, a possible candidate for
cp where p = pre(t), and chooses between these candidates the one with
the minimal value.

We define Ω-carr(L) = {pi ∈ P | ci = ω}. Note that L(M) = ω iff
M(p) > 0 for some p ∈ Ω-carr(L). It is not hard to show that Ω-carr(L)
is a trap. Recall that a set of places R ⊆ P is a trap iff

∀t : pre(t) ∈ R⇒ (R ∩ succ(t) 6= ∅)

Intuitively this means that every t removing tokens from a trap also adds
some tokens to it, so ‘marked’ trap, i.e., a trap with at least one token, can
not get unmarked. From this follows the following claim:

Claim 5.2 If L = norm(Q) for some Q ⊆ P and L(M) = ω, then L(M ′) =
ω for every M ′ such that ∃w ∈ Act∗ : M

w
−→M ′.

5.2 Bisimilarity with a Finite-State System 77

for each p ∈ P do

if p ∈ Q then cp := ω else cp := 0
Q′ := Q
T := {t ∈ Tr | pre(t) ∈ Q′}
while Q′ 6= ∅ do

let pmin refer to some p ∈ Q′ with minimal cp
for each t ∈ T such that succ(t) ∩Q′ = ∅ do

remove t from T
p := pre(t); R := succ(t)
dt := 1 +

∑
q∈R cq · F (t, q)

if dt < cp then cp := dt
if cp < cpmin

then pmin := p
end for

if cpmin
= ω then break;

Q′ := Q′ − {pmin}
remove from T every t such that pre(t) = pmin

end while

Figure 5.1: Computing coefficients of norm(Q) function

For a linear function L we can compute for each t ∈ Tr the value

δLt = −ci +
k∑

j=1

cj · F (t, pj) (5.1)

where pre(t) = pi. The value δLt represents the “change” on the value of L
when the transition t is performed.

Claim 5.3 If M
t

−→ M ′ then L(M) + δLt = L(M ′). If L(M) < ω and
δ 6= δLt then L(M) + δ 6= L(M ′).

Now we come to the description of the algorithm. The algorithm constructs
a set of linear functions L = {L1, L2, . . .} such that each Li represents norm
of some set of places and where each Li is a bisimulation invariant. The
algorithm starts with L = ∅, successively adds linear functions to L and stops
when no new linear function can be added. For L we define the equivalence
≡L on M such that M ≡L M ′ iff ∀L ∈ L : L(M) = L(M ′). Since each
L ∈ L is a bisimulation invariant, L is also a bisimulation invariant, and

78 Chapter 5. Basic Parallel Processes

M 6≡L M
′ implies M 6∼M ′. On the other hand, we show that if M ∈ MFS

and M ′ ∈ M then M ≡L M
′ implies M ∼M ′.

The main algorithm looks as follows:

1. Set L = ∅.

2. For each p ∈ PFS perform the procedure Step described below.

3. If L has changed in the previous step, go to 2.

The procedure Step looks as follows: For the given p we define the set
F ⊆ L such that L ∈ F iff L(Mp) < ω. For F we define the equivalence ∼=F

on Tr such that t ∼=F t′ iff λ(t) = λ(t′) and ∀L ∈ F : δLt = δLt′ . Let [t] denote
the equivalence class of ∼=F containing t. Let T1 = {[t] | t ∈ succ(p)}, and
let T0 = Tr−

⋃
T∈T1

T . We define the set T as T1 ∪{T0} (or just as T1 when
T0 is empty). Note that T is a partition of Tr. We extend the definition of
Ω-carr to sets of linear functions and define

Ω-carr(F) =
⋃

L∈F

Ω-carr(L)

The algorithm now computes for each T ∈ T the function

L = norm(pre(T) ∪ Ω-carr(F))

and adds it to L.

We show now that the algorithm is correct.

Lemma 5.4 Every L added to L by the algorithm is a bisimulation invari-
ant.

Proof. We proceed by induction on the number of steps. The proposition is
trivially true at the start. Assume now the algorithm performs the procedure
Step for some p ∈ PFS and adds norm(Q) to L for some T ∈ T where Q =
pre(T)∪Ω-carr(F). Due to Claim 5.1 it is sufficient to show that zero(Q)
is a bisimulation invariant. Let us assume without loss of generality that
M1 ∼ M2, ¬zero(Q)(M1), and zero(Q)(M2). By induction hypothesis,
∀L ∈ L : L(M1) = L(M2). Let R = Ω-carr(F). Since zero(R)(M2), we
have ∀L ∈ F : L(M2) < ω, and zero(R)(M1), since otherwise there is some
L ∈ F such that L(M1) = ω 6= L(M2). From this and ¬zero(Q)(M1) we
have ¬zero(pre(T))(M1). This means there is some transition t ∈ T such

5.2 Bisimilarity with a Finite-State System 79

that M1
t

−→ M ′
1. Because M1 ∼ M2 there is some t′ such that M2

t′
−→ M ′

2

whereM2 ∼M ′
2 and λ(t) = λ(t′), but necessarily t′ 6∈ T . This means there is

some L ∈ F such that δLt 6= δLt′ . By Claim 5.3 this implies L(M ′
1) 6= L(M ′

2),
a contradiction. �

Since every L added to L is norm(Q) for some Q ⊆ P , and P is finite,
it is obvious that the algorithm stops after some finite number of steps.
The following lemma shows that ≡L corresponding to L computed by the
algorithm coincides with ∼ on pairs of markings where one of markings is
from MFS .

Lemma 5.5 Let L be the set computed by the algorithm. Then for every
M1 ∈ MFS and M2 ∈ M, M1 ≡L M2 implies M1 ∼M2.

Proof. We show that ≡L ∩(MFS ×M) is a bisimulation. Let us consider
M1 ∈ MFS and M2 ∈ M such that M1 ≡L M2. Let F = {L ∈ L | L(M1) <
ω} and let R = Ω-carr(F). Note that M1 = Mp for some p ∈ PFS and the
same F would be produced when the algorithm would perform the procedure
Step for p. Notice that zero(R)(M1) holds since otherwise there is some
L ∈ F such that L(M1) = ω. Also zero(R)(M2) is true, because otherwise
there is some L ∈ F such that L(M2) = ω which means L(M1) 6= L(M2).
Let T be defined for F correspondingly as in the procedure Step.

Let us consider a transition M1
t

−→ M ′
1 first. Let T be the class from T

such that t ∈ T . Obviously T ∈ T1. Consider now the function L1 =
norm(R ∪ pre(T)). It must be the case that L1 ∈ L, otherwise L1 could
be added to L and the algorithm has not finished yet. So L1(M1) =
L1(M2). From this, from ¬zero(pre(T))(M1), and from zero(R)(M2) we

have ¬zero(pre(T))(M2) and there is some t′ ∈ T such that M2
t′

−→ M ′
2,

λ(t) = λ(t′), and ∀L ∈ F : δLt = δLt′ . From this and Claim 5.3 we obtain
∀L ∈ F : L(M ′

1) = L(M ′
2). For each L ∈ L − F is L(M1) = L(M2) = ω,

and, by Claim 5.2, L(M ′
1) = L(M ′

2) = ω. This means M ′
1 ≡L M

′
2.

Now consider a transition M2
t′

−→ M ′
2. This case similar to the previous

case, but we must also consider the possibility t′ ∈ T0. Let L0 = norm(R ∪
pre(T0)). Since L0 ∈ L (otherwise the algorithm has not finished yet),
L0(M1) = L0(M2). Because L0(M1) = 0, we obtain L0(M2) = 0, and
zero(pre(T0))(M2), so t′ is not enabled in M2, a contradiction. �

80 Chapter 5. Basic Parallel Processes

5.2.3 Time Complexity of the Algorithm

In this section we show that the running time of the algorithm is O(n4). In
the rest of the section n denotes the size of the input instance.

The running time of the algorithm depends on implementation details of
the procedure Step. In Subsection 5.2.2 we described how to, for the given
p ∈ PFS , compute in the procedure Step sets F , Ω-carr(F), and T . It
is more efficient not to recompute these sets every time, but instead to
store their values and perform necessary changes on them when new L is
added to L. So for each p ∈ PFS the algorithm maintains the correspond-
ing values of Ω-carr(F) and T . Note that T always contains at most
|succ(p)| + 1 equivalence classes. The algorithm also maintains for each
T ∈ T and for Ω-carr(F) a boolean flag indicating whether it has changed
since the last invocation of the procedure Step and adds a new function
L = norm(Ω-carr(F) ∪ T) to L only when Ω-carr(F) or T has actually
changed.

Addition of L to L includes the following steps:

1. Compute coefficients c1, c2, . . . , ck of L.

2. Compute δLt for each t ∈ Tr.

3. Partition Tr according to values of δLt and λ(t).

4. For each p ∈ PFS such that L(Mp) < ω:

• Add Ω-carr(L) to the corresponding Ω-carr(F).

• Modify the corresponding T using the partition computed in step 3.

In the proof we need the following well-known fact:

Fact 5.6 Let U be a non-empty finite set, and let U1,U2, . . . be a sequence
of partitions of U such that each Ui+1 is a refinement of Ui. Then the total
number of different classes in all these partitions is less then 2 · |U |.

Proof idea. Use induction on |U |. �

Lemma 5.7 The number of functions added to L is in O(n2).

Proof. Let us consider all invocations of the procedure Step for one
p ∈ PFS . In invocations where Ω-carr(F) has changed, the algorithm adds

5.2 Bisimilarity with a Finite-State System 81

a new function to L for each T ∈ T . If Ω-carr(F) has not changed, a new
function is added for each T ∈ T that has changed.

Notice that Ω-carr(F) can only grow, so the number of invocations of the
procedure Step when Ω-carr(F) has changed is O(|P |). Because |T | is
at most h + 1 where h = succ(p), the number of functions added in such
invocations is at most (h+ 1) ·O(|P |).

Consider now the possible changes of T . Either some t was added to T0,
or some T ∈ T1 was split, or some combination of these possibilities has
occurred. Since T0 can only grow, the first possibility can occur only O(|Tr|)
times. It remains to estimate the total number of classes from T1. It is in
O(|Tr|) as follows from Fact 5.6, since sequence of values of T1 in subsequent
invocations of the procedure Step can be extended to a sequence of refined
partitions by adding some classes to each T1.

Let us now sum the numbers of functions added to L for all p ∈ PFS . In
invocations where Ω-carr(F) has changed it is at most

∑

p∈PFS

(|succ(p)| + 1) ·O(|P |) = O(|P | · |TrFS |)

The number of functions added in the remaining invocations is in O(|PFS | ·
|Tr|), so we obtain that the total number of functions is in O(|P | · |Tr|).

�

Now we consider the complexity of computation of coefficients of L =
norm(Q) for some Q ⊆ P . For x ∈ Nω, size(x) denotes the number
of bits of x when encoded in binary. We suppose that size(x + y) =
1+max{size(x), size(y)}, size(x ·y) = size(x)+size(y), and size(ω) = O(1).

Proposition 5.8 For each p ∈ P , size(cp) is in O(n).

Proof. Let p1, p2, . . . , pl be the sequence of places from Q ordered by
the order in which the algorithm determines their coefficients, let ci be the
coefficient of pi, and let ti be the transition used for computation of ci, i.e.,
the transition such that pre(ti) = pi and ci = di, where we write di instead
of dti . Let size(t) be the number of bits of representation of t ∈ T , i.e.,

size(t) = O((1 + |R|) · size(|P |)) +
∑

p∈R

size(F (t, p))

where R = succ(t).

82 Chapter 5. Basic Parallel Processes

By induction on i we prove the following proposition from which the result
directly follows: For each i, 1 ≤ i ≤ l, size(ci) ≤

∑
1≤j≤i size(tj). This

holds trivially for i = 1 because c1 is always 1 or ω, so suppose i > 1. Let
R = succ(ti). Note that

di = 1 +
∑

q∈R

cq · F (ti, q) ≤ 1 +

i−1∑

j=1

cj · F (ti, pj)

because when di is computed, each cq is known and finite, and so it is either 0
or one from c1 to ci−1.

size(cj · F (ti, pj)) = size(cj) + size(F (ti, pj)). The sum of all such products
can be written in the size of maximal of them plus some number less then
their count (overflow caused by addition). This size is less then

size(max{cj | 1 ≤ j < i}) +

i−1∑

j=1

size(F (ti, pj)).

The second summand (the sum) is less then size(ti). By induction hypoth-
esis maximal cj can be written in the count of bits needed for first i − 1
transitions. Therefore di (and hence ci too) can be written in the space
needed for representations of transitions t1, . . . , ti. �

Proposition 5.9 All coefficients of L = norm(Q) are computed in O(n2).

Proof. The most time-consuming step is computation of all di. In com-
putation of this, multiplications are more time-consuming than additions.
Hence it suffices to show that aggregated complexity of all multiplications
is in O(n2).

In our algorithm, each di is computed only once. During computation of di
we need to determine all products F (ti, pj) · cj where pj ∈ succ(ti). From
Proposition 5.8 we know that size(cj) is in O(n) for every cj . Hence one
product is computed in O(n ·size(F (ti, pj))). If we sum complexities of such
products for all transitions and places to which transitions give tokens, we
get the aggregated complexity of all multiplications

O(
∑

i,j

(n · size(F (ti, pj)))) = O(n ·
∑

i,j

size(F (ti, pj))) = O(n2)

. �

5.2 Bisimilarity with a Finite-State System 83

Proposition 5.10 For given L = norm(Q), changes δLt caused by all tran-
sitions can be computed in time O(n2).

Proof. For each transition t, the value δLt is computed using expression 5.1
from Subsection 5.2.2. If some cj is infinite then δLt is infinite too. Hence we
do computation of the sum only for finite values. The complexity of additions
is dominated by the complexity of multiplications cj · F (t, pj). Each such
product is computed only once. From Proposition 5.8 we know that each cj
is in O(n). Each F (t, pj) is used only once and is part of our representation
of BPP. Hence we can similarly as in Proposition 5.9 for coefficients deduce
that aggregated complexity of all multiplications is in O(n2), from which
the result follows. �

Lemma 5.11 The algorithm adds one L to L in time O(n2).

Proof. As follows from Propositions 5.9 and 5.10, the running time of
steps 1 and 2 is O(n2). The running time of step 3 is also O(n2) using
one of standard algorithms for lexicographic sorting of strings (see [2, 47]),
because values of δLt can be represented as binary numbers, i.e., as strings
of 0 and 1. Also the running time of step 4 is O(n2) if it is implemented
carefully. �

Theorem 5.12 There is an algorithm solving bpp-fs-bisim with running
time O(n4).

Proof. The algorithm was described above. Lemmas 5.4 and 5.5 ensure
the correctness of the algorithm. Since the addition of new L to L is the
most time consuming operation of the algorithm, it follows from Lemmas 5.7
and 5.11 that the running time of the algorithm is O(n4). �

Remark. In fact, the algorithm can be improved so that its time complexity
is O(n3 log n) using the fact that if the finite-state system in the instance
of bpp-fs-bisim has m states, then if a norm of some state is finite, then
its value is at most m − 1. This implies that we do not need to consider
finite norms greater or equal to m, and we can replace each such value with
some special symbol requiring only O(1) space. Values smaller than m can
be represented in O(log n) bits.

84 Chapter 5. Basic Parallel Processes

5.3 Distributed Bisimilarity

In this section we show a polynomial time algorithm for deciding distributed
bisimilarity on BPP, i.e., the algorithm that solves the following problem
called bpp-dbisim:

Instance: A BPP process definition ∆ in normal form and two variables
X,Y ∈ Var (∆).

Question: Is X ∼ Y ?

This algorithm is a joint work with Petr Jančar and was not published yet.

Remark. In this section the symbol ∼ always denotes distributed bisimilarity.

In bpp-dbisim we ask whether processes consisting of single variable are
distributed bisimilar. A more general problem where we consider distributed
bisimilarity of arbitrary expressions can be easily reduced to bpp-dbisim.

Let us have an input instance of bpp-dbisim consisting of some BPP process
description ∆ in normal form and two variables X,Y ∈ Var(∆). We assume
that ∆ is given a set of rules of the form

X
a

−→ (P,Q)

where numbers of occurrences of variables in P and Q are encoded in binary.
Without loss of generality we can assume that Var(∆) = {X1,X2, . . . ,Xk}
and that there is a linear order ≺ such that X1 ≺ X2 ≺ · · · ≺ Xk.

The main idea of the algorithm is to construct a sequence of approximations
of distributed bisimilarity ∼ from above.

Before going into details we need some technical definitions. Let D be some
(non-empty) set and let f : Var⊕ → D be a function. We say that f is
a bisimulation invariant iff for every P,Q ∈ Var⊕ P ∼ Q implies f(P) =
f(Q). The notion of bisimulation invariant can be used also for predicates
over processes from Var⊕, because a predicate can be viewed as a function
f : Var⊕ → D where D = {0, 1}.

Rule t ∈ ∆ is disabled in P ∈ Var⊕ iff P (pre(t)) = 0, and it is enabled
in P iff P (pre(t)) > 0. For T ⊆ ∆ we define predicates disabled(T) and
enabled(T) on elements of Var⊕ such that disabled(T)(P) holds iff every
t ∈ T is disabled in P , and enabled(T)(P) iff ¬disabled(T)(P).

Let a ∈ Act be an action and let Ta = {t ∈ ∆ | λ(t) = a}. Note that
disabled(Ta) is a bisimulation invariant for every a ∈ Act .

5.3 Distributed Bisimilarity 85

Given a set T ⊆ ∆, the norm of T , denoted norm(T), is a function
norm(T) : Var⊕ → N defined for P ∈ Var⊕ such that the value of
norm(T)(P) is the length of the shortest sequence Q0, Q1, . . . , Qm of ba-
sic processes (the length of the sequence is m) where Q0 = P , and for

1 ≤ i ≤ m there are some ai and Pi such that Qi−1
ai−→ [Pi, Qi], and where

disabled(T)(Qm) holds.

It will be shown that if disabled(T) is a bisimulation invariant then also
norm(T) is a bisimulation invariant. Moreover, it will be shown that for
any T ⊆ ∆, the function norm(T) can be expressed as a linear function,
i.e., as a function L : Var⊕ → N of the form

L(P) =
k∑

i=1

ci · P (Xi)

for P ∈ Var⊕, where each coefficient ci ∈ N can be computed efficiently.

The algorithm creates a set of linear functions L such that each linear
function L from L will be a norm of some set of rules T ⊆ ∆ such that
disabled(T) is a bisimulation invariant. Because of this, each L from L
will be also a bisimulation invariant, and if there will be some L such that
L(P) 6= L(Q) this would immediately imply that P 6∼ Q. Moreover, L will
be constructed in such a way that if L(P) = L(Q) for every L ∈ L, this
would imply P ∼ Q. More formally we define for L an equivalence ≡L on
Var⊕ such that P ≡L Q iff ∀L ∈ L : L(P) = L(Q), and we show that P ∼ Q
iff P ≡L Q.

The algorithm starts with L = ∅ and successively adds functions to L until
no more function can be added.

For each linear function L =
∑k

i=1 ci ·xi and rule t ∈ ∆ we can compute the
value δLt representing the ‘change’ on value of L caused by t as

δLt = −c` +

k∑

j=1

cj ·G(t,Xj)

where X` = pre(t). Note that δLt can be easily computed if we know values

of coefficients ci, and that L(P ′′) = L(P) + δLt when P
t

−→ [P ′, P ′′].

For each L we can define the equivalence =L on rules from ∆. Let us have

rules t = (X
a

−→ (P,P ′)) and t′ = (Y
a′
−→ (Q,Q′)). We define t =L t′ iff

a = a′, L(P) = L(Q), and δLt = δLt′ . For a set of linear functions L we define
relation =L such that t =L t

′ iff t =L t
′ for each L ∈ L.

86 Chapter 5. Basic Parallel Processes

The algorithm maintains a partition of ∆ denoted T , and successively refines
it. For each class T of T the algorithm adds to L a function L = norm(T).
The algorithm also maintains a ‘queue’ Q of unprocessed classes of T .

The algorithm starts with Q = T = {Ta | a ∈ Act} where Ta = {t ∈ ∆ |
λ(t) = a}, and proceeds as follows.

While Q 6= ∅:

1. Take some T ∈ Q and remove T from Q.

2. Compute coefficients of L = norm(T) and add L to L.

3. For each t ∈ ∆ where t is of the form (X
a

−→ (P,Q)) compute val-
ues L(P), and δLt , and refine T according to the relation =L. (Put
transitions t, t′ such that t 6=L t

′ to different classes of T .)

4. Add to Q each new class of T created in the previous step.

Now we prove the correctness of the algorithm.

Claim 5.13 Let T ⊆ ∆ be a set of rules such that disabled(T) is a bisim-
ulation invariant. Then norm(T) is a bisimulation invariant.

Proof. Let L = norm(T). We show that if P ∼ Q and L(P) = m, then
L(Q) = m, which proves the result. We proceed by induction on m. If
m = 0, the L(Q) = 0 follows from the assumption that T is a bisimulation
invariant. Consider m > 0 and let us assume L(Q) = m′ where m′ 6= m.
Without loss of generality we can assume that m < m′. There must be a
transition P

a
−→ [P ′, P ′′] such that L(P ′′) = m−1. Since P ∼ Q, there must

be a matching transition Q
a

−→ [Q′, Q′′] such that P ′ ∼ Q′ and P ′′ ∼ Q′′,
but obviously L(Q′′) ≥ m′ − 1 > m − 1, but on the other hand P ′′ ∼ Q′′

and L(P ′′) = m − 1 imply L(Q′′) = m − 1 by induction hypothesis, a
contradiction. �

Lemma 5.14 If P ∼ Q then P ≡L Q.

Proof. It is sufficient to show that each L added to L in step 2 of the algo-
rithm is a bisimulation invariant. Because L is computed as norm(T) from
some T ⊆ ∆, due to Claim 5.13 it is sufficient to show that disabled(T) is a
bisimulation invariant. We show that that following invariant holds in every
step of the algorithm: For every class T of T , disabled(T) is a bisimulation
invariant. To show it, we proceed by induction of the number of steps of

5.3 Distributed Bisimilarity 87

the algorithm. The invariant obviously holds at the start of the algorithm
when T contains classes Ta for each a ∈ Act .

Now consider T created in step 3 of the algorithm. Let us assume P ∼ Q
where enabled(T)(P) and disabled(T)(Q), so there is some t ∈ T such

that P
t

−→ [P ′, P ′′] and there must be some t′ such that Q
t′

−→ [Q′, Q′′] such
that λ(t) = λ(t′) and P ′ ∼ Q′ and P ′′ ∼ Q′′. Obviously t′ 6∈ T , and so t 6=L t

′

for some L ∈ L which is a bisimulation invariant by induction hypothesis
and Claim 5.13. From P ∼ Q we have L(P) = L(Q), L(P ′) = L(Q′)
and L(P ′′) = L(Q′′), but t 6=L t′ implies that L(P ′) 6= L(Q′) or δLt 6= δLt′ .
Because L(P ′′) = L(P) + δLt and L(Q′′) = L(Q) + δLt′ , we obtain that either
L(P ′) 6= L(Q′) or L(P ′′) 6= L(Q)′′, so P ′ 6∼ Q′ or P ′′ 6∼ Q′′, a contradiction.

�

Lemma 5.15 If P ≡L Q then P ∼ Q.

Proof. We just need to show that ≡L is distributed bisimulation. Let us

have P,Q ∈ Var⊕ such that P ≡L Q and a rule t such that P
t

−→ [P ′, P ′′].
Let T be the set of all rules t′ such that t′ =L t. Obviously enabled(T)(P)
and enabled(T)(Q). So let t′ be a rule from T enabled in Q, such that

Q
t′

−→ [Q′, Q′′] From t =L t
′ we obtain L(P ′) = L(Q′) for every L ∈ L, and

so P ′ ≡L Q′. t =L t′ also implies δLt = δLt′ for every L ∈ L, and because
L(P) = L(Q) for every L, and L(P ′′) = L(P) + δLt and L(Q′′) = L(Q) + δLt′ ,
we obtain L(P ′′) = L(Q′′) for every L, and so P ′′ ≡L Q

′′. �

Now we show that norm(T) for T ⊆ ∆ can be expressed as a linear function

L(P) =

k∑

i=1

ci · P (Xi)

and that coefficients ci in L can be computed efficiently.

Recall we assume X1 ≺ X2 ≺ · · · ≺ Xk. The subroutine that computes
coefficients c1, c2, . . . , ck, computes them in this order. Each coefficient ci
can be computed as norm(T)({Xi}). If disabled(T)({Xi}) then ci = 0.
Otherwise consider the set Ti of all rules t from T such that pre(t) = Xi.
For each t ∈ Ti where t = (Xi

a
−→ (P,Q)) we can compute the value

dt = norm(T)(Q) as

dt =

i−1∑

j=1

cj ·Q(Xj)

88 Chapter 5. Basic Parallel Processes

since variables Xj where j ≥ i do not occur in Q, and coefficients cj where
j < i were already computed. We compute ci as 1 + min{dt | t ∈ Ti}.
Obviously ci = norm(T)({Xi}).

To analyze the complexity we need the following definitions. For x ∈ N,
size(x) denotes the number of bits of x when encoded in binary. We suppose
that size(x+y) = 1+max{size(x), size(y)}, and size(x·y) = size(x)+size(y).
For t ∈ ∆, size(t) denotes the number of bits in the representation of t
where numbers of occurrences of variables on right-hand sides are encoded
in binary.

We use n to denote the size of ∆, i.e., n =
∑

t∈∆ size(t).

Proposition 5.16 size(ci) ∈ O(n) for every coefficient ci of L.

Proof. Let X ′
1,X

′
2, . . . ,X

′
k′ be a subset of variables where ci > 0, and

let ti be the rule (with X ′
i is on the left-hand side) that was used in the

computation of ci. We show by induction on i the following proposition
from which the result directly follows:

size(ci) ≤
i∑

j=1

size(ti)

This holds trivially for i = 1 because c1 is always 1, so suppose i > 1. Let
ti = (X

a
−→ (P,Q)). Note that

ci = 1 +

i−1∑

j=1

cj ·G(ti,Xj)

and size(cj · G(ti,Xj)) = size(cj) + size(G(ti,Xj)). The sum of all such
products can be written in the size of maximal of them plus some number
less then their count (overflow caused by addition). This size is less then

size(max{cj | 1 ≤ j < i}) +
i−1∑

j=1

size(G(ti,Xj)).

The second summand (the sum) is less then size(ti). By induction hypothe-
sis maximal cj can be written in the count of bits needed for t1, t2, . . . , ti−1.
Therefore ci can be written in the space needed for representations of t1, t2,
. . . , ti. �

5.3 Distributed Bisimilarity 89

Proposition 5.17 Coefficients of a linear function L can be computed in
time O(n2).

Proof. The most time-consuming step is computation of all dt. In com-
putation of this, multiplications are more time-consuming than additions.
Hence it suffices to show that aggregated complexity of all multiplications
is in O(n2).

In our algorithm, each dt is computed only once. During computation of dt
we need to determine all products cj · G(t,Xj) where G(t,Xj) > 0. From
Proposition 5.16 we know that size(cj) is in O(n) for every cj . Hence one
product is computed in O(n ·size(G(t,Xj))). If we sum complexities of such
products for all rules and variables, we get the aggregated complexity of all
multiplications

O(
∑

i,j

(n · size(G(ti,Xj)))) = O(n ·
∑

i,j

size(G(ti,Xj))) = O(n2).

�

Proposition 5.18 Values of δLt for a linear function L and all rules t ∈ ∆
can be computed in time O(n2).

Proof. Again the complexity of additions is dominated by the complexity
of multiplications cj · G(t,Xj). Each such product is computed only once.
From Proposition 5.16 we know that each cj is in O(n). Each G(t,Xj) is
used only once and is part of ∆. Hence we can similarly as the previous case
for coefficients deduce that aggregated complexity of all multiplications is
in O(n2), from which the result follows. �

Theorem 5.19 There is an algorithm deciding distributed bisimilarity on
BPP with running time O(n3).

Proof. We can use the algorithm described above to compute L and then
check whether {X} ≡L {Y } where X and Y are variables from the instance
of bpp-dbisim. The correctness of the algorithm follows from Lemmas 5.14
and 5.15. The number of subsets of ∆ inserted into Q (and so the the
number of functions in L) is O(n) as follows from Fact 5.6. As follows from
Propositions 5.17 and 5.18, each such subset can be processed in time O(n2),
and hence the overall time complexity of the algorithm is O(n3). �

90 Chapter 5. Basic Parallel Processes

5.4 Summary of the Results

The algorithm for deciding bpp-fs-bisim with time complexity O(n4) was
presented. However, the algorithm is not optimal and can be further im-
proved. We plan to do it in the future.

Other problem, where the technique from [25] can be used, is the problem
of deciding regularity of a BPP system, i.e., the problem whether for a given
BPP process there exists a bisimilar finite-state process. This problem is
known to be decidable [26] and PSPACE-hard [56], but no upper bound is
known for the problem.

Distributed bisimilarity can be decided in polynomial time (O(n3)) on BPP.
As distributed bisimilarity coincides with other non-interleaving equiva-
lences on BPP, that result holds also for all such equivalences.

Chapter 6

Conclusion

This thesis concentrates on complexity and decidability of some equivalence-
checking problems, i.e., the problems where for given (descriptions of) tran-
sition systems we ask whether they are equivalent with respect to some
notion of equivalence, or, more generally, whether they are in some given
relation.

Several specific types of systems were considered in the thesis – finite-state
systems, parallel compositions of finite-state systems, 1-safe Petri nets, one-
counter automata, one-counter nets, and Basic Parallel Processes. Also
several different types of relations were studied on these systems, especially
bisimulation equivalence, simulation equivalence, simulation preorder, trace
equivalence, and trace preorder. Some results hold for whole families of
relations, for example for all relations between bisimulation equivalence and
trace preorder.

The rest of this chapter contains an overview of the results presented in the
thesis and an overview of open problems connected with these problems.

6.1 Summary of the Results

Finite-state systems were considered in Chapter 3. It was shown that de-
ciding any relation between bisimulation equivalence and trace preorder is
PTIME-hard for finite-state systems that are explicitly given (they are called
explicit finite-state systems in the thesis). It was also shown that the prob-
lem of deciding any relation between bisimulation equivalence and trace pre-
order becomes EXPTIME-hard when we consider different types of composed

91

92 Chapter 6. Conclusion

systems such as parallel composition of finite-state systems that synchronize
of common actions where actions can be hidden (i.e., replaced with τ ac-
tions), called parallel composition with hiding (PCH) in the thesis, or 1-safe
Petri nets. This result approves a conjecture by Rabinovich [51]. To simplify
the proof, a new model called reactive linear bounded automata (RLBA) was
introduced. The EXPTIME-hardness result was proved at first for RLBA.
Because RLBA can be ‘simulated’ by other different types of composed sys-
tems such PCH or 1-safe Petri nets, EXPTIME-hardness result applies also
to them.

One-counter machines were considered in Chapter 4. It was shown that
deciding simulation equivalence and simulation preorder is undecidable for
one-counter automata. A new general method for proving DP-hardness of
different types of problems concerning one-counter automata was devised.
This method was used for proving DP-hardness of deciding any relation
between bisimulation-equivalence and simulation preorder for one-counter
nets (one-counter automata that cannot test for zero), and DP-hardness
of deciding simulation equivalence and simulation preorder between a one-
counter automaton and a finite-state system (in both directions). This gen-
eral method uses a fragment of Presburger arithmetic called One-Counter
Logic (OCL) chosen is such a way that deciding the truth of formulas in
OCL can be easily reduced to problems concerning one-counter automata.
Because, as was shown, deciding the truth of formulas in OCL is DP-hard,
DP-hardness of these problems follows.

Basic Parallel Processes (BPP) were studied in Chapter 5. Using a tech-
nique of Jančar [25], polynomial time algorithms for deciding bisimulation
equivalence between a BPP and a finite-state system (with time complex-
ity O(n4)), and for deciding distributed bisimilarity of two BPP systems
(with time complexity O(n3)), were shown. A polynomial time algorithm
for the latter problem was already known [40], but the algorithm presented
in this thesis has lower time complexity and gives an explicit degree of the
polynomial, that was missing in the algorithm presented in [40].

6.2 Open Problems

The problems of deciding bisimulation equivalence of one-counter automata
and one-counter nets and problems of deciding simulation equivalence and
simulation preorder of one-counter nets are known to be decidable and DP-
hard, however no upper bound on the complexity is known for these prob-

6.2 Open Problems 93

lems.

Decidability of weak bisimulation equivalence on one-counter automata or
one-counter nets remains open.

Decidability of weak bisimulation equivalence on BPP remains open.

The algorithm for deciding bisimulation equivalence of a BPP and a finite-
state system is probably not the most optimal, and the complexity of the
problem can be further improved. We conjecture that an algorithm with
time complexity O(n3) exists for this problem.

94 Chapter 6. Conclusion

Appendix A

List of Publications

The following list contains publications of the author in the chronological
order:

• Jančar, P., F. Moller and Z. Sawa, Simulation problems for one-counter
machines, in: Proceedings of SOFSEM’99, Lecture Notes in Computer
Science 1725 (1999), pp. 404–413. [32]

• Sawa, Z. and P. Jančar, P -hardness of equivalence testing on finite-
state processes, in: Proceedings of SOFSEM 2001, Lecture Notes in
Computer Science 2234 (2001), p. 326. [53]

• Jančar, P., A. Kučera, F. Moller and Z. Sawa, Equivalence-checking
with one-counter automata: A generic method for proving lower bo-
unds, in: Proceedings of FoSSaCS 2002, Lecture Notes in Computer
Science 2303 (2002), pp. 172–186. [30]

• Sawa, Z., Equivalence checking of non-flat systems is EXPTIME-hard,
in: Proceedings of CONCUR 2003, Lecture Notes in Computer Science
2761 (2003), pp. 237–250. [52]

• Jančar, P., A. Kučera, F. Moller and Z. Sawa, DP lower bounds for
equivalence-checking and model-checking of one-counter automata, In-
formation and Computation 188 (2004), pp. 1–19. [31]

• Kot, M. and Z. Sawa, Bisimulation equivalence of a BPP and a finite-
state system can be decided in polynomial time, in: Proceedings of
Infinity 2004 (A Satellite Workshop of CONCUR 2004), 2004, pp.
73–81. [35]

95

96 Chapter A. List of Publications

Bibliography

[1] Abdulla, P. and K. Čerāns, Simulation is decidable for one-counter nets,
in: Proceedings of CONCUR’98, Lecture Notes in Computer Science
1466 (1998), pp. 253–268.

[2] Aho, A. V., J. E. Hopcroft and J. D. Ullman, “Design and Analysis of
Computer Algorithms,” Addison-Wesley Reading, 1974.

[3] Bach, E. and J. Shallit, “Algorithmic Number Theory. Vol. 1, Efficient
Algorithms,” The MIT Press, 1996.

[4] Baeten, J. C. M. and W. P. Weijland, Process algebra, Cambridge Tracts
in Theoretical Computer Science 18 (1990).

[5] Balcázar, J., J. Gabarró and M. Sántha, Deciding bisimilarity is P-
complete, Formal Aspects of Computing 4 (1992), pp. 638–648.

[6] Bérard, B., M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
P. Schnoebelen and P. McKenzie, “Systems and Software Verification:
Model-Checking Techniques and Tools,” Springer, 2001.

[7] Bergstra, J. A. and J. W. Klop, Algebra of communicating processes
with abstraction, Theoretical Computer Science 37 (1985), pp. 77–121.

[8] Bouajjani, A., R. Echahed and P. Habermehl, Verifying infinite state
processes with sequential and parallel composition, in: Proceedings of
POPL’95 (1995), pp. 95–106.

[9] Burkart, O., D. Caucal, F. Moller and B. Steffen, Verification on infinite
structures, in: Handbook of Process Algebra (2001), pp. 545–623.

[10] Castellani, I., “Bisimulations for Concurrency,” Ph.D. thesis, University
of Edinburg (1988).

97

98 Bibliography

[11] Castellani, I., Process algebras with localities, chapter 15, Handbook of
Process Algebra (2001), pp. 945–1046.

[12] Chandra, A. K., D. C. Kozen and L. J. Stockmeyer, Alternation, Jour-
nal of the ACM 28 (1981), pp. 114–133.

[13] Christensen, S., “Decidability and Decomposition in Process Algebras,”
Ph.D. thesis, The University of Edinburgh (1993).

[14] Christensen, S., Y. Hirsfeld and F. Moller, Bisimulation is decidable
for all basic parallel processes, in: Proc. CONCUR’93, Lecture Notes
in Computer Science 715 (1993), pp. 143–157.

[15] Clarke, E. M., O. Grumberg and D. A. Peled, “Model Checking,” The
MIT Press, 1999.

[16] Darondeau, P. and P. Degano, Causal trees, in: Automata, Languages
and Programming (ICALP ’89) (1989), pp. 234–248.

[17] Emerson, E. A., Temporal and modal logic, Handbook of Theoretical
Computer Science B (1991), pp. 995–1072.

[18] Gibbons, A. and W. Rytter, “Efficient Parallel Algorithms,” Cambridge
University Press, 1988.

[19] Gorrieri, R., M. Roccetti and S. Stancampiano, A theory of processes
with durational actions, Theoretical Computer Science 140 (1995),
pp. 73–94.

[20] Hirshfeld, Y., M. Jerrum and F. Moller, A polynomian-time algorithm
for deciding bisimulation equivalence of normed basic parallel processes,
Mathematical Structures in Computer Science 6 (1996), pp. 251–259.

[21] Hüttel, H. and S. Shukla, The complexity of deciding behavioural equiv-
alences and preorders, Technical Report SUNYA-CS-96-03, State Uni-
versity of New York at Albany (1996).

[22] Immerman, N., “Descriptive Complexity,” Springer-Verlag, 1998, 53–54
pp.

[23] Jančar, P., Decidability of bisimilarity for one-counter processes, Infor-
mation and Computation 158 (2000), pp. 1–17.

Bibliography 99

[24] Jančar, P., Nonprimitive recursive complexity and undecidability for
Petri net equivalences, Theoretical Computer Science 256 (2001),
pp. 23–30.

[25] Jančar, P., Strong bisimilarity on basic parallel processes is PSPACE-
complete, in: Proceedings of the eightteenth Annual IEEE Symposium
on Logic in Computer Science (LICS-03)9 (2003), pp. 218–227.

[26] Jančar, P. and J. Esparza, Deciding finiteness of Petri nets up to bisim-
ulation, in: Proc. of ICALP’96, Lecture Notes in Computer Science
1099 (1996), pp. 478–489.

[27] Jančar, P. and M. Kot, Bisimilarity on normed basic parallel processes
can be decided in time O(n3), in: R. Bharadwaj, editor, Proceed-
ings of the Third International Workshop on Automated Verification
of Infinite-State Systems – AVIS 2004, 2004.

[28] Jančar, P., A. Kučera and R. Mayr, Deciding bisimulation-like equiv-
alences with finite-state processes, Theoretical Computer Science 258

(2001), pp. 409–433.

[29] Jančar, P., A. Kučera and F. Moller, Simulation and bisimulation over
one-counter processes, in: Proceedings of STACS 2000, Lecture Notes
in Computer Science 1770 (2000), pp. 334–345.

[30] Jančar, P., A. Kučera, F. Moller and Z. Sawa, Equivalence-checking with
one-counter automata: A generic method for proving lower bounds, in:
Proceedings of FoSSaCS 2002, Lecture Notes in Computer Science 2303

(2002), pp. 172–186.

[31] Jančar, P., A. Kučera, F. Moller and Z. Sawa, DP lower bounds for
equivalence-checking and model-checking of one-counter automata, In-
formation and Computation 188 (2004), pp. 1–19.

[32] Jančar, P., F. Moller and Z. Sawa, Simulation problems for one-counter
machines, in: Proceedings of SOFSEM’99, Lecture Notes in Computer
Science 1725 (1999), pp. 404–413.

[33] Jategaonkar, L. and A. R. Meyer, Deciding true concurrency equiva-
lences on safe, finite nets, Theoretical Computer Science 154 (1996),
pp. 107–143.

100 Bibliography

[34] Kanellakis, P. C. and S. A. Smolka, CCS expressions, finite state pro-
cesses, and three problems of equivalence, Information and Computation
86 (1990), pp. 43–68.

[35] Kot, M. and Z. Sawa, Bisimulation equivalence of a BPP and a finite-
state system can be decided in polynomial time, in: Proceedings of In-
finity 2004 (A Satellite Workshop of CONCUR 2004), 2004, pp. 73–81.

[36] Kučera, A., Efficient verification algorithms for one-counter processes,
in: Proceedings of ICALP 2000, Lecture Notes in Computer Science
1853 (2000), pp. 317–328.

[37] Kučera, A., On simulation-checking with sequential systems, in: Pro-
ceedings of ASIAN 2000, Lecture Notes in Computer Science 1961

(2000), pp. 133–148.

[38] Kučera, A. and R. Mayr, Simulation preorder over simple process alge-
bras, Information and Computation 173 (2002), pp. 184–198.

[39] Laroussinie, F. and P. Schnoebelen, The state explosion problem from
trace to bisimulation equivalence, in: Proc. 3rd Int. Conf. Foundations
of Software Science and Computation Structures (FOSSACS’2000),
Berlin, Germany, Mar.-Apr. 2000, Lecture Notes in Computer Science
1784 (2000), pp. 192–207.

[40] Lasota, S., A polynomial-time algorithm for deciding true concurrency
equivalences of Basic Parallel Processes, in: MFCS: Symposium on
Mathematical Foundations of Computer Science, 2003.

[41] Mayr, R., Combining Petrin nets and PA-processes, in: Proceedings of
TACS’97, Lecture Notes in Computer Science 1281 (1997).

[42] Mayr, R., Process rewrite systems, Electronic Notes in Theoretical
Computer Science 7 (1997), proceedings of Expressivness in Concur-
rency (EXPRESS’97).

[43] Mayr, R., Process rewrite systems, Information and Computation 156

(2000), pp. 264–286.

[44] Milner, R., “Communication and Concurrency,” Prentice-Hall, 1989.

[45] Minsky, M., “Computation: Finite and Infinite Machines,” Prentice-
Hall, 1967.

Bibliography 101

[46] Moller, F., Infinite results, in: Proceedings of CONCUR’96, Lecture
Notes in Computer Science 1119 (1996), pp. 195–216.

[47] Paige, R. and R. E. Tarjan, Three partition refinement algorithms,
SIAM Journal on Computing 16 (1987), pp. 973–989.

[48] Papadimitriou, C. H., “Computational Complexity,” Addison-Wesley,
1994.

[49] Park, D., Concurrency and automata on infinite sequences, in: Pro-
ceedings 5th GI Conference, Lecture Notes in Computer Science 104

(1981), pp. 167–183.

[50] Peterson, J., “Petri Net Theory and the Modelling of Systems,”
Prentice-Hall, 1981.

[51] Rabinovich, A., Complexity of equivalence problems for concurrent
systems of finite agents, Information and Computation 139 (1997),
pp. 111–129.

[52] Sawa, Z., Equivalence checking of non-flat systems is EXPTIME-hard,
in: Proceedings of CONCUR 2003, Lecture Notes in Computer Science
2761 (2003), pp. 237–250.

[53] Sawa, Z. and P. Jančar, P -hardness of equivalence testing on finite-
state processes, in: Proceedings of SOFSEM 2001, Lecture Notes in
Computer Science 2234 (2001), p. 326.

[54] Shukla, S. K., H. B. Hunt, D. J. Rosenkrantz and R. E. Stearns, On
the complexity of relational problems for finite state processes, Lecture
Notes in Computer Science 1099 (1996), p. 466.

[55] Srba, J., Roadmap of infinite results, Bulletin of the European Associ-
ation for Theoretical Computer Science 78 (2002), pp. 163–, columns:
Concurrency.

[56] Srba, J., Strong bisimilarity and regularity of basic parallel processes is
PSPACE-hard, in: Proc. STACS’02, Lecture Notes in Computer Sci-
ence 2285 (2002), pp. 535–546.

[57] Stirling, C., Modal and temporal logics, Handbook of Logic in Computer
Science 2 (1992), pp. 477–563.

[58] Tarski, A., A lattice-theoretical fixpoint theorem and its applications,
Pacific Journal of Mathematics 5 (1955), pp. 285–309.

102 Bibliography

[59] Valmari, A. and A. Kervinen, Alphabet-based synchronisation is ex-
ponentially cheaper, Lecture Notes in Computer Science 2421 (2002),
p. 161.

[60] van Glabbeek, R., The linear time—branching time spectrum, Hand-
book of Process Algebra (1999), pp. 3–99.

[61] van Glabbeek, R. J. and U. Goltz, Equivalence notions for concurrent
systems and refinement of actions, in: A. Kreczmar and G. Mirkowska,
editors, Proc. Conf. on Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science 379 (1989), pp. 237–248.

[62] Walukiewicz, I., Pushdown processes: Games and model-checking, In-
formation and Computation 164 (2001), pp. 234–263.

