
Programming Seminar

Zdeněk Sawa

Department of Computer Science, FEI
Technical University of Ostrava

17. listopadu 2172/15, Ostrava-Poruba 708 00
Czech republic

September 17, 2025

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 1 / 41

Lecturer

Name: Zdeněk Sawa

E-mail: zdenek.sawa@vsb.cz

Room: EA413

WWW: http://www.cs.vsb.cz/sawa/spr-en

Seminar:

Wednesday 9:00–10:30, room EB130

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 2 / 41

Requirements

During the semester, problems will be published on the following page.
You will obtain points for (accepted) solutions of these problems:

http://www.cs.vsb.cz/sawa/spr-en/problems.html

For each problem, there will be specified the number of points you
can obtain for its successful solution, and a date until which you can
send your solutions.

Send your solutions by e-mail to address zdenek.sawa@vsb.cz.

You must present your solutions to the lecturer at the end of semester.

To obtain your credit, you need to obtain at least 51 points.

It will be also possible to obtain points for problems solved in CTU
Open 2025 programming contest
(20 points for each problem solved in this contest).

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 3 / 41

Content of the course

The goal of the course is to better understand how to design and
implement algorithms.

In particular:

general methods used to create algorithms (recursive algorithms,
dynamic programming, greedy algorithms)

some graph algorithms

algorithms working with (big) numbers

solutions of some combinatorial problems

solutions of some problems from the area of computational geometry

. . .

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 4 / 41

Algorithms and Problems

Algorithm are used as solutions of problems.

In a description of a problems there should be specified:

What is the input.

What is the output.

How the output depends on the input.

Remark: A particular input of a problem is called an instance of the
problem.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 5 / 41

Example of a problem

Input: A list of cities and roads connecting these cities.
It is specified for each road, from which city to which it goes,
and its length (in km).
Two cities from the list of the cities – Let us denote them
a cite A and a city B .

Output: A shortest path from city A to city B .

30

29

25

37

15

28

17

31
18

14
21

20

17

34

22

41

23 18

A

B

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 6 / 41

Why this course

Organization ACM (Association for Computing Machinery)
organizes a world-wide programming constest called ACM
International Collegiate Programming Contest (ICPC)
every year since 1977.

Student teams from universities from all over the world participate in
this contest.

Before world finals there are regional contests (for example Central
European Regional Contest), which is preceded by national contests.

For many years, there is a Czech and Slovak contest called CTU
Open (Prague – Brno – Ostrava – Pilsen – Bratislava – Žilina –
Banská Bystrica – Košice).

One of the motivations for this course: To prepare our students for
types of problems that typically appear in this contest.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 7 / 41

Server Online Judge

In programming contests, solutions are evaluated automatically –
evaluation system sends some testing data as an input, and evaluates
the output of the program.

Similar systems as are used in such contests are also available on
Internet. One of the biggest and the best known of them is on address

https://onlinejudge.org/

Several thousands of problems are available on this server.

In Programming Seminar, problems from this server will be specified
on the web page

http://www.cs.vsb.cz/sawa/spr-en/problems.html

Successful solutions will be those programs that will be accepted by
this server.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 8 / 41

Evaluation of solutions of problems on Online Judge

It is necessary to register on the server, to send solutions there.

Problems have assigned numbers.

There is a web form for submitting solutions, to which you go by
clicking on “Submit” button.

A source code is send to the server, not a compiled binary.

A whole program must be in one file.

The following programming languages can be used:

C
C++
C++11
Java
Pascal
Python

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 9 / 41

Evaluation of solutions of problems on Online Judge

All problems are of the form where:

a program reads data from the standard input
the program writes data to the standard output

Statements of problems contain detailed description of the format of
input and output data.

In all cases, both input and output are pure ASCII text.

The server tests only if your program gives correct output for given
input data.

The statements of problems always contain an example of input data
and corresponding output data.

Remark: If your program works on sample input, this does not
necessarily mean that your solution is correct and will be accepted by
the server.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 10 / 41

Example of a problem: Minesweeper (10189)

The problem: to find out for each empty cell the number of mines in
nighbouring cells

22

1

1

1
111

1

0 0
0

0

0

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 11 / 41

An example of input and output

Sample Input

4 4

*...

....

.*..

....

3 5

**...

.....

.*...

0 0

Sample Output

Field #1:

*100

2210

1*10

1110

Field #2:

**100

33200

1*100

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 12 / 41

Evaluation of problems on Online Judge

How solutions are evaluated on Online Judge:

You will send your solution to the server using a web form.

The program is compiled.

The program is run and test data are sent to its standard input.

If the program does not finish its computation in a specified time
limit, it is killed.

If the program successfully finishes, its output is compared with an
expected output (remark: sometimes a special test program is used on
the server for this purpose if there can be more than one correct
output).

You will find the result of the evaluation (i.e., if your solution was
accepted or not) on the webpage accessed by “My submissions” item
in the menu on the left.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 13 / 41

Evaluation of problems on Online Judge

The possible answers of the server (Online Judge):

Accepted – the problem was successfully solved

Compile Error – it was not possible to compile the program

Restricted Function – the program uses some function whose use is
restricted

Runtime Error – the program ended with some error during its
execution (e.g., Segmentation Fault)

Time Limit Exceeded – the program was running too long, and so it
was killed

Wrong Answer – the program produced an incorrect output

Presentation Error – the output seems to be almost correct but its
format is not exactly as expected

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 14 / 41

Evaluation of problems on Online Judge

There are some restrictions on programs sent to the server concerning
what kinds of operations can be executed by the program.

It is not allowed to:

work with files (except reading from the standard input and writing to
the standard output)

communicate using network

run other processes

communicate with other processes

call any other system calls of an operating system

On the other hand, the following is allowed:

to read from the standard input and to write to the standard output

to allocate memory (the maximal amount of memory available to the
program is limited (approx. 10–20MB))

to use function from standard libraries (mathematical functions,
manipulation with strings, data structures, . . .)

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 15 / 41

Evaluation of problems on Online Judge

Some remarks:

Statement of each problem precisely specifies the format of inputs.
Programs do not need to solve situations when data on the input are
not of this format.

On the other hand, programs should not assume anything about the
data that is not explicitly stated in the statement of the problem.

Statements of problems precisely specify a format of the output.
The output must be exactly of this format.

The system does not provide any information about particular test
data that were used. It is not possible to obtain the data causing for
example response Wrong Answer.

The number of tries (i.e., the number how many times a program is
sent to the server) is not limited.

Read statements of the problems carefully!

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 16 / 41

Evaluation of problems on Online Judge

Some other remarks:

Input data are of typically of the form that allows to test a program
for many differrent instances of a problem. The statement of the
problem specifies how individual instances are separated in the input
(e.g., by an empty line).

Test data are usually quite big (it can be many MB of data).

It is necessary to be careful with boundary cases that can be allowed
by the statement of the problem.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 17 / 41

Evaluation of problems on Online Judge

Some remarks concerning programs in Java:

A program is sent to the server as a single file.

The program can contain several classes but none of them should be
public.

There should not be a package name at the beginning of the file,
i.e., all classes defined in the program belong to the default unnamed
package.

The program must contain a class called Main.

The class Main must contain a static method

public static void main(String[] args)

that is called by the system to start the program.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 18 / 41

Sending solutions of problems

Send your solutions by e-mail to address zdenek.sawa@vsb.cz.

Send source codes of your solutions as attachment to e-mails.

The name of the file with a source code should be of the form
〈problem number〉.〈extension〉 where:

〈problem number〉 – the number of the problem,

〈extension〉 – filename extension determines the programming language
(.c, .cpp, .c11, .java, .pas, .py)

For example: 10189.c, 10189.cpp, 10189.c11, 10189.java,
10189.pas, 10189.py

The e-mail should also contain: your name and surname, login, and
numbers and names of the problems whose solutions you are sending.

Do not pack files into archives and do not compress them.

Do not send any additional unnecessary files (e.g., compiled
executable binaries).

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 19 / 41

Points

The number of points specified for each problem is the maximal
number of points you can get for solving this problem.

The number of obtained points is finally determined at the
presentations of your solutions at the end of semester.

Cancelling of points in the cases when solutions were copied:

the first case: –20 points

the second case: –50 points

the third case: not obtaining the credit for the course

Remark: A solution is considered copied also in the cases when it was
obtained by modifications of an existing solution (renaming identifiers,
changes in formatting, changing order of functions or methods in the
source code, etc.).

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 20 / 41

CTU Open programming contest

Programming contest

CTU Open Contest 2025

November 7 and 8, 2025

Info for contestants from TU Ostrava:
http://acm.vsb.cz

Official pages of the contest, registration form:
http://contest.felk.cvut.cz/25prg

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 21 / 41

CTU Opem programming contest

Team with three members solve problems
(typically 8–12 problems).

Limited time for solving (5 hours).

The contest is distributed and runs concurrently at several universities
(Prague, Brno, Ostrava, Pilsen, Bratislava, Žilina, Bánská Bystrica,
Košice).

The best teams from each university have a chance to advance to
Central European Reginal Contest that will be held in Wroclaw in
Poland, from 5th to 7th December 2025 .

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 22 / 41

Remarks about implementation

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 23 / 41

Standard input and output

In all common operating systems (MS Windows, all different variant of
Unix), it is possible to redirect standard input and output when programs
are run from command line.

Standard input can be read from file instead of keyboard:

./program < input.txt

program.exe < input.txt

Standard output can be written to file instead of screen:

./program > output.txt

Both can be used at the same time:

./program < input.txt > output.txt

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 24 / 41

Reading from standard input in C

Reading individual chars (bytes) one by one:

int getchar(void);

It is possible to return back the last read char:

int ungetc(int c, FILE ∗stream);

Usage:

ungetc(c, stdin);

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 25 / 41

Reading from standard input in C

Reading lines:

char∗ gets(char ∗s);

It is strongly discouraged to use this function!

Better variant:

char∗ fgets (char ∗s, int size , FILE ∗stream);

Usage:

#define BUF SIZE 1024
char buffer[BUF SIZE];
char ∗s = fgets(buffer, BUF SIZE, stdin);

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 26 / 41

Reading from standard input in C

Formatted input:

int scanf(const char ∗format, ...);

Example of usage:

int m, n;
while (scanf(”%d %d”, &m, &n) == 2) {

. . .

Function scanf () returns the number of parameters that were successfully
read. It returns EOF in the case of error.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 27 / 41

Reading from standard input in C

Reading blocks:

size t fread(void ∗ptr , size t size , size t nmemb, FILE ∗stream);

Usage:

#define BUF SIZE 1024
char buffer[BUF SIZE];
size t ret = fread(buffer, 1, BUF SIZE, stdin);

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 28 / 41

Writing to standard output in C

One char:

int putchar(int c);

One line (it automatically adds ’\n’ at the end):

int puts(const char ∗s);

Formatted output:

int printf (const char ∗format, ...);

Writing blocks:

size t fwrite (const void ∗p, size t sz , size t nmemb, FILE ∗stream);

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 29 / 41

Function qsort

Declaration

#include <stdlib.h>

void qsort(void ∗base, size t nmemb, size t size,
int(∗compare)(const void ∗, const void ∗));

Return value of function compare:

< 0 – the first argument is smaller than the second

= 0 – the first and the second arguments are equal

> 0 – the first argument is greater than the second

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 30 / 41

Function qsort

Usage

int a[LEN];
. . .

int compare(const void ∗xv, const void ∗yv) {
const int ∗x = (int ∗)xv;
const int ∗y = (int ∗)yv;
if (∗x < ∗y) return −1;
else if (∗x > ∗y) return 1;
return 0;

}
. . .

qsort(a, n, sizeof(int), compare);

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 31 / 41

Function qsort

Usage

int a[LEN];
. . .

int compare(const void ∗x, const void ∗y) {
return ∗(const int ∗)x − ∗(const int ∗)y;

}
. . .

qsort(a, n, sizeof(int), compare);

Remark: To compare strings, the function strcmp can be used.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 32 / 41

ASCII chars

In C, C++, and Jave, there is no distinction between a character and
its ASCII (resp. Unicode) code. We can do the same operations with
characters as can be done with integers.

for (int i = ’A’; i <= ’Z’; i++) {
a[i] = . . .

}

for (int i = 65; i <= 90; i++) {
a[i] = . . .

}

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 33 / 41

ASCII table

0 NUL 16 DLE 32 48 0 64 @ 80 P 96 ‘ 112 p

1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 q

2 STX 18 DC2 34 " 50 2 66 B 82 R 98 b 114 r

3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 c 115 s

4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t

5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 e 117 u

6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 f 118 v

7 BEL 23 ETB 39 ’ 55 7 71 G 87 W 103 g 119 w

8 BS 24 CAN 40 (56 8 72 H 88 X 104 h 120 x

9 HT 25 EM 41) 57 9 73 I 89 Y 105 i 121 y

10 LF 26 SUB 42 * 58 : 74 J 90 Z 106 j 122 z

11 VT 27 ESC 43 + 59 ; 75 K 91 [107 k 123 {

12 FF 28 FS 44 , 60 < 76 L 92 \ 108 l 124 |

13 CR 29 GS 45 - 61 = 77 M 93] 109 m 125 }

14 SO 30 RS 46 . 62 > 78 N 94 ^ 110 n 126 ~

15 SI 31 US 47 / 63 ? 79 O 95 _ 111 o 127 DEL

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 34 / 41

Examples of taking advantage of properties of ASCII table

Transformation of a digit to a corresponding value:

char c; // c contains chars ’0’, ’1’, ’2’, ..., ’9’
int x = c − ’0’;

Transformation of a value x in interval 0, 1, . . . , 9 to char:

char c = x + ’0’;

Transformation of letters ’A’, ’B’, ..., ’Z’ to numbers 0, 1, ... , 25:

int x = c − ’A’;

Testing whether variable c contains a lower-case letter, and if it is the
case, transformation of this letter to upper-case:

if (c >= ’a’ && c <= ’z’) {
c = c − ’a’ + ’A’;

}

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 35 / 41

Examples of taking advantage of properties of ASCII table

Transformation of a hexadecomal digit to the corresponding value:

int hex2num(char c) {
if (c >= ’0’ && c <= ’9’) return c − ’0’;
if (c >= ’A’ && c <= ’F’) return c − ’A’ + 10;
if (c >= ’a’ && c <= ’f’) return c − ’a’ + 10;
return −1;

}
. . .
int x = hex2num(c);

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 36 / 41

Examples of taking advantage of properties of ASCII table

Version 2: to precompute a table

int hex table[256];
int init() {

for (int i = 0; i < 256; i++) {
if (i >= ’0’ && i <= ’9’) hex table[i] = i − ’0’;
else if (i >= ’A’ && i <= ’F’) hex table[i] = i − ’A’ + 10;
else if (i >= ’a’ && i <= ’f’) hex table[i] = i − ’a’ + 10;
else hex table[i] = −1;

}
}
. . .

int x = hex table[c];

Remark: In this case, the effect of using table is negligible. It makes more
sence for example for Unicode for transformations between lower-case and
upper-case, etc.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 37 / 41

Function strlen in C

Is something wrong with the following contruction?

char ∗s;
. . .

for (int i = 0; i < strlen(s); i++) {

// do something with s[i]

. . .
}

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 38 / 41

Function strlen in C

Is something wrong with the following contruction?

char ∗s;
. . .

for (int i = 0; i < strlen(s); i++) {

// do something with s[i]

. . .
}

Function strlen requires time growing linearly with the length of the
string!
If n is the length of the string then the loop shown above has the time
complexity O(n2), not O(n).

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 38 / 41

Function strlen in C

Simple solution:

char ∗s;
. . .

int l = strlen(s);
for (int i = 0; i < l; i++) {

// do something with s[i]

. . .
}

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 39 / 41

Using String class in Java

Is something wrong with the following loop?

String[] a;
. . .

String s = ””;
for (int i = 0; i < a.length; i++) {

s += a[i];
}
return s;

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 40 / 41

Using String class in Java

Is something wrong with the following loop?

String[] a;
. . .

String s = ””;
for (int i = 0; i < a.length; i++) {

s += a[i];
}
return s;

If the length of array a is n, it unnecessarily creates n instances of String
class.
If m is the sum of lengths of all string in the array a, copying content
between instances of String class requires time O(m · n).

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 40 / 41

Using String class in Java

Better solution:

String[] a;
. . .

StringBuilder s = new StringBuilder();
for (int i = 0; i < a.length; i++) {

s.append(a[i]);
}
return s.toString();

The total time is this case is O(m) where m is the sum of lengths of all
strings in array a.

Zdeněk Sawa (TU Ostrava) SPR September 17, 2025 41 / 41

	Remarks about implementation

