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Tutorial 2

Exercise 1: Construct and describe in detail a universal Turing machine U , which
expects as an input a word of the form u#v where u is a code of a one-tape Turing machine M
and v is an input for this machine M.

For simplicity, you can consider just those cases where machines M is assumed to use the tape
alphabet Γ = {0, 1,�} and input alphabet Σ = {0, 1}, and v is a word over this alphabet Σ.

What should be modified to allow the machine U to simulate computations of Turing machi-
nes M with arbitrary tape alphabet Γ and arbitrary input alphabet Σ?

Exercise 2: Explain, what will do a universal Turing machine U if it obtains a word of the
form u#v, where u is a code representing machine U , as an input.

Exercise 3: Consider the following problem:

Název: UHP (Uniform Halting Problem)

Input: Turing machine M.

Question: Does M halt for every input?

Find out whether this problem is decidable or undecidable, and prove your claim. If the
problem is decidable, show an algorithm solving this problem; if it is undecidable, you can
use undecidability to show the corresponding reduction.

Exercise 4: Let us recall a tiling problem descibed in the lecture where it was shown that
the problem is undecidable.

This problem can be defined as follows. Let us say that C is a finite set of colors. The set
{N, S, E, W} represents four directions — north, south, east, west. A type of a tile is specified
as an assignment of colors to directions, i.e., as a function τ : {N, S, E, W} → C.

Let us assume that we have a set of types of tiles

T = {τ1, τ2, . . . , τn}.

Covering of a plane with tiles is a function p : Z × Z → T satisfying the following two
conditions for each i, j ∈ Z:

• If p(i, j) = τ a p(i+ 1, j) = τ ′, then τ(E) = τ ′(W).

• If p(i, j) = τ a p(i, j+ 1) = τ ′, then τ(N) = τ ′(S).

Consider now the following problem:

Input: A set of types of tiles T = {τ1, τ2, . . . , τn}.

Question: Is the covering of a plane p with tiles from the set T ?
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It is known that this problem is undecidable.

Does this problem remain undecidable if there would be an addition restriction that the
number of colors, i.e., the size of set C can not be greater than some given constant k (e.g., it
is not possible to use more than 100 colors)?

Justify your answer.

Exercise 5: Show that the following problem is undecidable:

Input: A pair of Turing machines M1 and M2.

Question: Is L(M1) = L(M2) ?

Is this problem or its complement semidecidable?

Exercise 6: Show that the following problem is undecidable:

Input: Context-free grammars G1 and G2.

Question: Is L(G1) ∩ L(G2) = ∅?

Hint: You can use a reduction from the Post correspondence problem.

Is this problem or its complement semidecidable?

Exercise 7: Show that the following problem is undecidable:

Input: A context-free grammar G.

Question: Is G ambiguous?

Hint: You can use a reduction from the Post correspondence problem.

Is this problem or its complement semidecidable?

Exercise 8: Consider the following two problems:

Input: A context-free grammar generating a language over an alphabet Σ.

Question: Is L(G) = Σ∗?

Input: Context-free grammars G1 and G2.

Question: Is L(G1) = L(G2)?

a) Show a reduction from the first of these problems to the second.

b) Show how the Halting problem can be reduced to the complement of the first problem.
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c) Determine, which of these problems or their complements are semidecidable.

Exercise 9: Recall how formulas of the first-order predicate logic are defined, and what it
means that a given formula is closed.

Recall also what it means that a given formula is logically valid , i.e., true in every interpre-
tation.

Show that the following problem is undecidable:

Input: A closed formula ϕ of the first-order predicate logic.

Question: Is formula ϕ logically valid?

Hint: You can use a reduction from the Post correspondence problem.

Exercise 10: A linear bounded automaton is a special case of a one-tape Turing machine
where its tape is not infinite but it is restricted to the size of the input word. The tape consists
of cells that contain an input word w where special endmarks ⊢ and ⊣are added to the left
and to the right. On the left endmark ⊢, the head can not move to the left, and on the right
endmark ⊣, the head can not move to the right. These endmarks can not be overwritten but
all other cells (that contain at the beginning the symbols of the input word) can be.

The language L(M) of words accepted by the given linear bounded automaton M is defined
similarly as in the case of standard Turing machines.

Consider the following two problems:

Input: Linear bounded automaton M and word w.

Question: Does the automaton M accepts the word w, i.e., is w ∈ L(M) ?

Input: Linear bounded automaton M.

Question: Is there some word w accepted by the automaton M, i.e., is L(M) 6=

∅ ?

Determine, which of these problems are decidable and which are not.

For the problems that are undecidable, determine where the given problem or its complement
are semidecidable.

Exercise 11: Consider a machine with a control unit with finite number of states and with
one counter. This machine reads its input from an input tape. This input tape is read-only, so
its content can not be changed. The head on this input tape can be moved in both directions
and the word is bounded from the left and from the right by endmarkes ⊢ and ⊣.

The counter can contain an arbitrary natural number as a value. In one step, the value of the
counter can be increased by 1, decreased by 1, or unchanged, and it is also possible to test if
the value of the counter is 0.
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Define formally this kind of a machine, and define what it means that this machine accepts
a given word w.

Show that the following problem is undecidable:

Input: One-counter nachine M.

Question: Is there a word w accepted by machine M, i.e., is L(M) 6= ∅ ?

Exercise 12: Give an example of an undecidable problem that is reducible to complement.

Exercise 13: Give examples of at least three properties of Turing machines whose undeci-
dability follows from Rice’s theorem, and at least three properties whose undecidability does
not follow from Rice’s theorem.


