
Theoretical Computer Science (2024/2025) – tutorial 3 1

Tutorial 3

Exercise 1: Let a, b > 1. Show that:

• alogb n = nlogb a (hint: apply the function logb to both sides of the equation)

• ∃c : ∀x : loga x = c · logb x (which implies loga n ∈ Θ(logb n))

Exercise 2: Recall the precise meaning of the notation O, Ω, Θ, o, ω and define it formally.

Then order the following functions according how fast they grow and determine, which of the
relationships of the form f ∈ O(g), f ∈ Ω(g), f ∈ Θ(g), f ∈ o(g), and f ∈ ω(g), hold for the
given functions and which do not.

a) n

b) n2

c) n3

d)
√
n · 3n

e) n2 log2 n

f) log2 n

g) log10 n

h) (log2 n)
2

i) 2n

j) nn

k) nlog2 n

l) (log2 n)
n

m) 2
√
n

n) 22
n

o) 22
n+1

p)

{
n2 if n is odd

2n if n is even

Exercise 3: Describe some polynomial algorithm solving the following problem:

Input: A directed graph G = (V, E) and a pair of nodes s, t ∈ V .

Output: A shortest path from node s to node t, or information that there is no
such path.

Remark: There can be more than one shortest path in the graph. The output can be any of
these shortest paths.

Write down the algorithm that solves this problem in a form of a pseudocode, and analyze
its time and space complexity as precisely as possible.

Exercise 4: Recall that a walk is an undirected graph G = (V, E) is a sequence of nodes
and edges

v0, e1, v1, e2, v2, . . . , vr−1, er, vr,

where v0, . . . , vr ∈ V and e1, . . . , er ∈ E, where each ei (where 1 ≤ i ≤ r) is as edge from
node vi−1 to node vi. (Both nodes and edges can repeat in this sequence.)

A trail is a special case of a walk where nodes can repeat but edges should not repeat. (I.e., all
edges e1, . . . , er in this sequence are distinct.)

A trail is called Eulerian if it contains all edges of graph G. A name Eulerian path is often
used instead of Eulerian trail , even if it is in fact a trail, not a path. So an Eulerian path
describes a way how to go through the graph in such a way that each edge is visited exactly
once.

Consider the following problem:

2 Theoretical Computer Science (2024/2025) – tutorial 3

Name: Euler-Path

Input: An undirected graph G = (V, E).

Output: An Eulerian path going through all edges of the graph G, or information
that there is no such path.

(Remark: There can exist more than one Eulerian path in a given graph G. The output can
be any of them.)

a) Show that the problem Euler-Path is algorithmically solvable. What is the computati-
onal complexity of the proposed algorithm?

b) Show that there is a polynomial algorithm solving the problem Euler-Path.

Exercise 5: Consider the problem of finding the maximum flow throught a network
(Max-Flow).

A network here means a directed graphG = (V, E)where every edge (u, v) ∈ E has an assigned
capacity c(u, v), which is an non-negative number. For simplicity, we can consider it in such
a way that if there is no edge from one node to another, it is the same as if there would be
an edge with capacity 0, i.e., if (u, v) 6∈ E, then c(u, v) = 0. So formally, the capacities can
be defined by a function c : V × V → R≥0. There are two distinguished nodes s (source)
and t (sink) in the network.

A flow in a network G with capacities of edges c and with source t and sing t, is a function
f : V × V → R satisfying two following conditions:

• The flow flows only through edge of the given graph, and a capacity of any of the edges
is exceeded, i.e., for each u, v ∈ V it holds

0 ≤ f(u, v) ≤ c(u, v)

(If (u, v) 6∈ E, then c(u, v) = 0, and so necessarily f(u, v) = 0.)

• For each node with exception of the source and the sink, it holds that what flows in
into the node, it also flows out of this node, i.e., for each u ∈ (V − {s, t}) it holds that

∑

v∈V
f(v, u) =

∑

v∈V
f(u, v)

The value of a flow f, denoted as |f|, is the sum of what flows out of the source s, minus what
flows in, i.e.,

|f| =
∑

v∈V
f(s, v) −

∑

v∈V
f(v, s)

A flow f is maximum if for each other flow f ′ we have |f| ≥ |f ′|.

The problem Max-Flow is defined as follows:

Name: Max-Flow

Theoretical Computer Science (2024/2025) – tutorial 3 3

Input: A network G = (V, E) with capacities of edges c : V × V → R≥0, source s

and sink t (where s, t ∈ V).

Output: A maximum flow f in the given network.

(Remark: There can be more than one maximum flow in a given network. The output can be
any of them.)

For simplicity you can assume that the capacities of edges are given as natural numbers.

a) Show that the Max-Flow problem is algorithmically solvable, i.e., describe an algorithm
solving this problem.

Hint: For a given network G with capacities of edges c and a given flow f, we can compute
residual network G ′ with capacities of edges c ′ that express how much the flow through
each edge of the original network can be changed in one or the other direction (i.e., how
much it can be increased or decreased) without exceeding capacities of edges. It can be
shown that a given flow f is maximum iff the residual network corresponding to this flow
contains no path from s to t.

b) Show that if we would use a simple algorithm, based on the above idea, where we would
just check whether there is an augmenting path from s to t, and it is the case, the flow
would be increased along this path, and we would repeat this step as long as there would
be some augmenting path, then there could be some bad choice of these augmenting
paths that could lead to the number of iterations that could correspond the value of the
maximum flow, which is a value that could be much bigger than the number of nodes
and edges of the given network.

c) Propose a modification of the approach described above that will ensure that the number
of iterations is polynomial with respect to the number of nodes and edges of a given
network, and so it is bounded from above by some value that does not depend on particular
values of capacities of edges.

What is the computation complexity of the proposed algorithm?

Exercise 6: Consider the problem of finding a maximum matching in a bipartite graph

(i.e., a matching with maximal number of edges).

A bipartite graph G = (U,V, E) consists of two disjoint sets of nodes U = {u1, . . . , un}

and V = {v1, . . . , vm} (where U ∩ V = ∅) and a set of edges E ⊆ U × V . A matching M in
graph G is a subset of edges M ⊆ Ewhere for every two different edges (u, v), (u ′, v ′) ∈ M

we have u 6= u ′ and v 6= v ′. A maximum matching M is a matching where for each other
matching M ′ we have |M ′| ≤ |M|.

Name: Maximum matching in a bipartite graph

Input: A bipartite graph G = (U,V, E).

Output: A maximum matching in the graph G.

4 Theoretical Computer Science (2024/2025) – tutorial 3

(Remark: There can be more than one maximum matching in a graph G. The output can be
any of them.)

Propose a polynomial algorithm for this problem.

Hint: This problem can be reduced to the problem of finding maximum network flow.

Exercise 7: Recall the travelling salesmen problem (TSP).

An instance of this problem is a set of n cities V = {1, . . . , n} A distances for every pair of
cities. Let d(i, j) denote the distance from city i to city j. We can assume that for every i ∈ V

is d(i, i) = 0 and that for each pair i, j ∈ V we have d(i, j) = d(j, i).

The goal is to find a closed path that goes through each city exactly once and ends in the
same city where it started, such that the total length of this path will be the smallest possible
between all such closed paths.

It is obvious that such path can start and end in city 1. So we can restrict our attantion to
this case. In this variant of the problem, it is not allowed to visit cities repeatedly (with the
exception of city 1, which is viseted twice — at the beginning and at the end). So the goal is
to find a permutation (i1, . . . , in) of cities {1, . . . , n} where i1 = 1 and where the sum

d(i1, i2) + d(i2, i3) + · · · + d(in−1, in) + d(in, i1)

is as small as possible.

a) Propose an algorithm solving this problem. What is the time and space complexity of
your algorithm?

b) Design an algorithm based on the following idea:

For each subset S ⊆ (V − {1}) and each j ∈ S, we can define c[S, j] as the length of
a shortest path that starts in city 1, visits all cities from S exactly once (and does not
visit any other cities), and ends in city j.

All values c[S, j] can be computed using dynamic programming where these values
can be computed in the order determined by the size of set S (from the smallest to the
biggest), where for the computing of values for bigger sets we can use already computed
values for smaller sets.

Show how this algorithm can be implemented in such a way that its time complexity is
O(n22n). What is the space complexity of this algorithm?

Compare the time complexity and the space complexity of this algorithm and the previous
algorithm your have proposed. Which of them is better?

Exercise 8: Use the master theorem to derive the time complexity of recursive algorithms,
for which heir running times are given by the following recurrences:

a) T(n) = 3T(n/2) + n

b) T(n) = 4T(n/2) + n2

Theoretical Computer Science (2024/2025) – tutorial 3 5

c) T(n) = 5T(n/2) + n3

