
## **Tutorial 6**

**Exercise 1:** Recall the formulation Generalized Geography problem.

Determine for the following two instances of Generalized Geography, which of the players has a winning strategy in the given game:



**Exercise 2:** Explain why each PSPACE-hard problem is also NP-hard.

**Exercise 3:** Consider those sequences of word  $w_1, w_2, \ldots, w_k$  where all words are of the same length and where every two consecutive words differ in exactly one symbol.

Example:

head, hear, near, fear, bear, beer, deed, feed, feet, fret, free

Show that the following problem is in PSPACE:

INPUT: A deterministic finite automaton  $\mathcal{A}$  and a pair of words  $\mathfrak{u}$  and  $\mathfrak{v}$  of the same length.

QUESTION: Is there a sequences of the type described above starting with word  $\mathfrak u$  and ending with word  $\mathfrak v$  such that every word in this sequence is accepted by automaton  $\mathcal A$ ?

**Exercise 4:** Boolean formulas  $\varphi$  and  $\psi$  are *equivalent* if they have the same truth value for each truth valuation.

The notation  $|\varphi|$  represents the size of formula  $\varphi$ , i.e., the number of symbols of this formula. A formula  $\varphi$  is called *minimal* of for each formula  $\psi$  that is equivalent to formula  $\varphi$ , we have  $|\psi| \ge |\varphi|$ .

Show that the following problem is in PSPACE:

Input: Boolean formula  $\varphi$ .

QUESTION: Is formula  $\varphi$  minimal?

Does this problem belong to NP or co-NP class?

Exercise 5: Consider the following game played by two players on an undirected graph G. One player plays with a figure representing a cat and the other with a figurer representing a mouse. These figures are put on nodes of the graph. Players alternate in moves. Player who is on turn, takes her/his figure and moves it to a neighbouring node. One of nodes of the graph is denoted as a "mouse hole". A player with the cat can not go to this node. A player with the cat wins if the figures of the cat and the mouse occur on the same node of the graph. A player with the mouse wins if she/he succeeds in reaching the node representing the "mouse hole" with her/his figure.

Show that the following problem is in P:

INPUT: An undirected graph G with denoted positions of the cat and the mouse, and with one node representing the mouse hole, and information, whose turn it is.

QUESTION: Does the player with the cat a winning strategy in the given position?