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Configurations as data

Let us recall what are the configurations of different kinds of machines:

one-tape Turing machine:
— a state of the control unit, a content of the tape, a position of the
head

multitape Turing machine:
— a state of the control unit, contents of all tapes, positions of all
heads

Random Access Machine:
— instruction pointer, a content of working memory, contents of the
input and output tapes

control-flow graph:
— a control state (a node in the control-flow graph), a content of
memory (values of all variables)

Minsky machine:
— a state of the control unit, values of all counters
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Configurations as data

In all these cases (and also for other models of computations),
configurations of a given machine are finite object that can be
manipulated as data:

in high-level programming languages, they can be for example
represented as a suitable data structure.

they can be also represented as words over some alphabet
— it is necessary to choose some reasonable format how
configurations are written

These data objects (data structures, objects, etc.) representing
configurations can be identified with these configurations:

For example, when we say that something can be done with
configuration α, we mean that in fact, we work with configuration α

in a form of data.
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Configurations as data

Consider some paricular machine M:

Let Conf denote the set all configurations of a given machine M.

Let us define relation

⟶ ⊆ Conf × Conf

as the of those pairs of configurations α and α
′
, for which it holds

that the machine M can go by one step from configuration α to
configuration α

′
, which will be written as

α ⟶ α
′

Some configurations from the set Conf are denoted as final
— the computation (successfully) ends in them.

It holds for each final configuration α that there is no configuration α
′

such that α ⟶ α
′
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Configurations as data

A computation of a given machine M for inpute w ∈ In (where In is the
set of possible inputs) is a finite or infinite sequence of configurations from
the set Conf , i.e.,

finite computation: α0, α1, α2, . . . , αt

infinite computation: α0, α1, α2, . . .

where:

α0 is an initial configuration for input w

For each i ∈ N (in the case of a finite computation, for each i ∈ N

such that i < t) we have
αi ⟶ αi+1

In the case of finite computation, αt is a final configuration.

Remark: In the case of a deterministic machine M, for each
configuration α, there is at most one configuration α

′
such that α ⟶ α

′
.

Z. Sawa (TU Ostrava) Theoretical Computer Science October 28, 2024 5 / 105



Configurations as data

We can perform different operations on data objects representing
configurations of machine M:

to construct an initial configuration α0 for a given input w of
machine M

to test whether α is a final configuration of machine M

— if this is the case, then to determine the output of machine M

that halted in this configuration α

to compute, for a given configuration α that is not final,
a configuration α

′
such that machine M can go from configuration α

to configuration α
′
in one step

to test for a given pair of configurations α and α
′
whether machine M

can go in one step from configuration α to configuration α
′

Such operations can be easily implemented as algorithms.
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Configurations as data

Using these operations, for example a simulation of a computation of
machine M over input w can be implemented:

Algorithm: Simulation of a computation of machine M over input w

Run (w):
α ∶= Init-Conf(w)
while not Is-Final(α) do

α ∶= Next-Conf(α)
return Extract-Output(α)

where:

Init-Conf(w) — computes an initial configuration of machine M for
input w

Is-Final(α) — tests if α is a final configuration

Next-Conf(α) — computes configuration α
′
such that α ⟶ α

′

Extract-Output(α) — extracts an output of machine M from final
configuration α
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Computations as data

We can work with a finite computation

α0 ⟶ α1 ⟶ ⋯ ⟶ αt

as with data.

It can be represented for example as:

some appropriate data structure represening a sequence of
configurations

α0

α1

α2

⋮

αt
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Computations as data

We can work with a finite computation

α0 ⟶ α1 ⟶ ⋯ ⟶ αt

as with data.

It can be represented for example as:

a word

#α0#α1#α2# ⋯ #αt#

where:

α0, α1, . . . , αt — words representing configurations of the
computation

# – a symbol chosen as a separator of configurations
(it does not occur in the words representing configurations)
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Configurations of a Turing machine as data

q5

⋯⋯ □ □ a b a b b a a b □ □ □

Consider for example a one-tape Turing machine M = (Q,Σ, Γ, δ, q0,F ).
A configuration of such a machine must contain an information about:

a state of the control unit

a content of the tape

a position of the head
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Configurations of a Turing machine as data

q5

⋯⋯ □ □ a b a b b a a b □ □ □

Configurations can be represented for example as words over alphabet
∆ = Γ ∪ (Q × Γ):

a b a b
q5
b a a b

This word always contains exactly one symbol from (Q × Γ) that denotes
a state of the control unit and a position of the head.
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Configurations of a Turing machine as data

q5

⋯⋯ □ □ a b a b b a a b □ □ □

Configurations can be represented for example as words over alphabet
∆ = Γ ∪ (Q × Γ):

a b a b
q5
b a a b

Remark: Symbols from (Q × Γ) can be also written as q
a instead of

(q, a) .
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Configurations of a Turing machine as data

q5

⋯⋯ □ □ a b a b b a a b □ □ □

Configurations can be represented for example as words over alphabet
∆ = Γ ∪ (Q × Γ):

a b a b
q5
b a a b

Other symbols (from Γ) represent a content of the tape.
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Configurations of a Turing machine as data

q5

⋯⋯ □ □ a b a b b a a b □ □ □

Configurations can be represented for example as words over alphabet
∆ = Γ ∪ (Q × Γ):

a b a b
q5
b a a b

Those cells of the tape that are not included in the word contain the

symbol □ .
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Configurations of a Turing machine as data

Let Conf denote the set all configurations of a given machine
M = (Q,Σ, Γ, δ, q0,F ).

If we represent configurations of the Turing machine M as words over
the alphabet ∆ = Γ ∪ (Q × Γ), the set Conf can be identified with
the set of those words over alphabet ∆ that contain exactly one
occurrence of a symbol from (Q × Γ), i.e., with the set of words of
the form

u(q, a)v
where q ∈ Q, a ∈ Γ, u, v ∈ Γ

∗
.
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Configurations of a Turing machine as data

The initial configuration for an input w ∈ Σ
∗
, where w = a1a2⋯an, is

then represented as the word

q0
a1

a2 a3 a4 a5 a6 ⋯⋯ an−1 an

or (when we use a standard mathematical notation) as:

(q0, a1) a2 a3⋯ an−1 an

Remark: If w = ε then the initial configuration is represented as the
word (q0,□).
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Configurations of a Turing machine as data

For each configuration α of the form

u(q, a)v
where q ∈ (Q − F ), a ∈ Γ, u, v ∈ Γ

∗
, there exists exactly one

configuration α
′
such that α ⟶ α

′
.

This configuration α
′
is determined by the transition function δ.

Let us assume that δ(q, a) = (q′, a′, d):
If d = 0 then α

′
= u(q′, a′)v .

If d = −1:
If u = ε then α

′
= (q′,□)a′v .

If u = u
′
b (where u

′
∈ Γ

∗
and b ∈ Γ) then α

′
= u

′(q′, b)a′v .
If d = +1:

If v = ε then α
′
= ua

′(q′,□).
If v = bv

′
(where b ∈ Γ and v

′
∈ Γ

∗
) then α

′
= ua

′(q′, b)v ′.
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Configurations of a Turing machine as data

Final configurations are configurations of the form

u(q, a)v
where q ∈ F , a ∈ Γ, u, v ∈ Γ

∗
.
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Computations of a Turing machine as data

A finite computation of a Turing machine

α0 ⟶ α1 ⟶ α2 ⟶ α3 ⟶ ⋯ ⟶ αt−1 ⟶ αt

then can be represented as for example:

a sequence of configurations separated by a special symbol # /∈ ∆.

— i.e., as one long word over alphabet ∆ ∪ {#}
A table whose cells contain symbols from alphabet ∆, and where
rows correspond to individual configurations, and columns to
positions on the tape.

Note that in this representation a content of cell i (where i > 0) and
in column j is completely determined by a description of machine M

and the content of cells in columns j − 1, j , and j + 1 in row i − 1.
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αi

αt−1
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Computations of a Turing machine as data

When we have such representation of a finite computation of
a machine M on input w , for example, in the form of a word consisting of
a sequence of configurations, in the of a table, etc., we can test for this
representation for example if:

α0 is really the initial configuration of machine M for input w .

for each i < t it holds that αi ⟶ αi+1.

αt is the final configuration, and what is the corresponing output of
machine M in this configuration.

For example, the machine M gives answer Yes for a given input w iff
there exists a representation of the computation of the machine M on
word w satisfying the above conditions, and moreover that the
machine M return Yes in the final configuration αt as an output.
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Code of a Turing machine as Data

A description of arbitrary Turing machine M (or other computation
model) can be represented in a form of data — e.g., a word over some
alphabet.

Let Code(M) denote such representation of machine M (in some
particular format).

A representation Code(M) contains information about states of the
control unit, a transition functions, etc.

Code(M) can be viewed as a code of a program.
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Universal Turing Machine

A universal Turing machine U is a machine that when obtains a word
Code(M) and word w ∈ Σ

∗
(where Σ is the input alphabet of the

machine M), starts to simulate a computation of the machine M over
input w .

(The machine U can obtain the input Code(M) and w for example as
a word Code(M)#w .)

So the universal Turing machine is able to perform a computation of any
other Turing machine (whose description it obtains as a part of its input).

Remark: This corresponds to a situation where we have:

hardware of a computer (machine U), which is able to execute an
arbitrary algorithm

code of a program (Code(M)) running on this computer

input data for this program (word w)
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Universal Turing Machines

Remark: It is possible to construct suprisingly small universal Turing
machines.

For example, there are known universal Turing machines simulating
behaviour of a given one-tape Turing machine with:

3 states and 11 symbols

5 states and 7 symbols

6 states and 6 symbols

7 states and 5 symbols

8 states and 4 symbols

(Here, the number of states is the number of state of the control unit Q
where finil states are not counted. Number of symbols is the size of the
tape alphabet Γ of the given universal machine.)

Even smaller universal Turing machines can be constructed but they do
not simulate Turing machines but some other (extremely restricted) Turing
complete models.
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Undecidable Problems
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Algorithmically Solvable Problems

Let us assume we have a problem P .

If there is an algorithm solving the problem P then we say that the
problem P is algorithmically solvable.

If P is a decision problem and there is an algorithm solving the problem P

then we say that the problem P is decidable (by an algorithm).

If we want to show that a problem P is algorithmically solvable, it is
sufficient to show some algorithm solving it (and possibly show that the
algorithm really solves the problem P).
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Algorithmically Unsolvable Problems

A problem that is not algorithmically solvable is algorithmically
unsolvable.

A decision problem that is not decidable is undecidable.

Surprisingly, there are many (exactly defined) problems, for which it was
proved that they are not algorithmically solvable.
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Halting Problem

Let us consider some general programming language L.

Futhermore, let us assume that programs in language L run on some
idealized machine where a (potentially) unbounded amount of memory is
available — i.e., the allocation of memory never fails.

Example: The following problem called the Halting problem is
undecidable:

Halting problem

Input: A source code of a L program P , input data x .

Question: Does the computation of P on the input x halt after some
finite number of steps?

Z. Sawa (TU Ostrava) Theoretical Computer Science October 28, 2024 23 / 105



Halting Problem

Let us assume that there is a program that can decide the Halting problem.

So we could construct a subroutine H, declared as

Bool H(String code, String input)

where H(P , x) returns:

true if the program P halts on the input x ,

false if the program P does not halt on the input x .

Remark: Let us say that subroutine H(P , x) returns false if P is not
a syntactically correct program.
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Halting Problem

Using the subroutine H we can construct a program D that performs the
following steps:

It reads its input into a variable x of type String.

It calls the subroutine H(x , x).
If subroutine H returns true, program D jumps into an infinite loop

loop: goto loop

In case that H returns false, program D halts.

What does the program D do if it gets its own code as an input?
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Halting Problem

If D gets its own code as an input, it either halts or not.

If D halts then H(D,D) returns true and D jumps into the infinite
loop. A contradiction!

If D does not halt then H(D,D) returns false and D halts.
A contradiction!

In both case we obtain a contradiction and there is no other possibility. So
the assumption that H solves the Halting problem must be wrong.
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Semidecidable Problems

A problem is semidecidable if there is an algorithm such that:

If it obtains as an input an instance of the problem P , for which the
correct answer is Yes, it will halt after a finite number of steps on
this input, and gives answer Yes.

If it obtains as an input an instance of the problem P , for which the
correct answer is No, it will halt on this input and gives answer No,
or it will not halt on this input and runs on it forever.
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Semidecidable Problems

Remarks:

So an algorithm A that semi-decides a problem P , need not halt for
all inputs but only needs to halt for those inputs where answer is Yes.

The algorithm A of course should not give incorrect answers for those
inputs where it halts.

It is obvious that every decidable problem is also semidecidable:
— An algorithm A that solves a given decision problem P also
semidecides this problem.

There exist semidecidable problems that are not decidable.
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Semidecidable Problems

Example: Halting problem (HP) is a typical example of a problem that
is semidecidable but not decidable.

Algorithm A that semidecides HP:

To read program P and its input data x .

To simulate behaviour of program P on input data x step by step.

If this simulation ends (i.e., if the computation of program P on
data x halts after some finite number of steps), then to write
answer Yes.

If the computation of program P on input data x never halts, then
also the simulation runs forever.

— This is a correct behaviour since the correct answer in this case
is No, and so the algorithm A can run forever for the input consisting
of the pair P and x .
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Complement problems

The complement problem for a given decision problem P is a problem
where inputs are the same as for the problem P and the question is the
negation of the question from the problem P .

Examples:

The complement problem of the Halting problem:

Input: A source code of a L program P , input data x .

Question: Does the computation of P on the input x not halt after
some finite number of steps?

The complement problem of the SAT problem:

Input: Boolean formula ϕ.

Question: Is formula ϕ unsatisfiable (i.e., is it a contradiction)?
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Complement problems

If P is a decision problem, its complement problem will be denoted P .

It is obvious that problem P is decidable iff its complement
problem P is decidable:

— Using algorithm A solving problem P , we can easily construct an
algorithm A

′
solving problem P in such a way that A

′
calls A as

a subroutine with the given input, negates the output produced by A,
and this negated answer gives as its output.

— In the same way, an algorithm solving problem P can be
transformed into an algorithm solving problem P .

But if problem P is not decidable, it is not possible that both P

and P would be semidecidable.

This follows from the following theorem.

Z. Sawa (TU Ostrava) Theoretical Computer Science October 28, 2024 31 / 105



Post’s Theorem

Post’s Theorem

If a problem P and its complement problem P are semidecidable then the
problem P is decidable.

Proof:

Let us assume that problem P is semidecidable, and so that there is
an algorithm A1 semideciding it.

Moreover, we can assume that the algorithm A1 halts exactly for
those instances of problem P where the answer is Yes.

Let us assume also that problem P is semidecidable, and so that there
is an algorithm A2 that semidecides it.

Moreover, we can assume that the algorithm A2 halts exactly for
those instances of problem P where the answer is Yes, which are
exactly those instances where in problem P the answer is No.
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Post’s Theorem

An algorithm solving problem P can not call algorithms A1 and A2 as
subroutines because these algorithms can not halt for some inputs.

But for each instance x of problem P , one of these algorithms always
halts after some finite number of steps.

So the algorithm A solving problem P can work by simulating
computations of both algorithms A1 and A2 on input x in parallel:

It stores configurations of both algorithms running in parallel.

It alternates in performing steps of algorithms A1 and A2.

As soon as one of these algorithms reaches a final configurations, the
algorithm A halts and returns the corresponding answer:

Yes — if A1 has halted, No — if A2 has halted
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Post’s Theorem

The following follows from Post’s theorem:

The complement problem of Halting problem is not semidecidable.

Proof:

Halting problem is semidecidable.

if its complement problem would be semidecidable,
then Post’s theorem would imply that the Halting problem is
decidable.

But this is a contradiction with the previously proved fact that
Halting problem is undecidable. So the complement problem of
Halting problem can not be semidecidable.

The same arguments can be used to show for any semidecidable problem P

that is not decidable, that its complement problem P is not semidecidable.
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Semidecidability — alternative characterizations

Semidecidability of problem P can be alternatively chacterized as follows:

Let us assume that In se the set of inputs of problem P .

Let us assume also that W is the set of potential witnesses of the
fact that for a given instance x ∈ In, the correct answer is Yes:

A problem P is semidecidable iff there exists an algorithm A that for
every pair (x ,w), where x ∈ In and w ∈ W, determines after a finite
number of steps, whether w is a actual witness confirming that the
answer for x is really Yes, i.e.,

the answer for x ∈ In is Yes

⟺

there exists an actual witness w ∈ W
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Semidecidability — alternative characterizations

Let us assume for simplicity that In and W are sets of words over some
alphabet Σ (e.g., {0, 1}).

Let us assume that for problem P there exists an algorithm A that
halts (and given the answer Yes) exactly for those inputs x ∈ In

where the answer is Yes:

As the set of potential witnesses W we can take the
representations of computations of algorithm A over differents
inputs (in the form of a sequence of configurations).

A sequence of configurations w will be an (actual) witness for x
iff w is a correct representation of the algorithm A over input x
that gives the answer Yes.
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Semidecidability — alternative characterizations

Let us assume that for problem P there exists a set of potential
witnesses W and an algorithm A that for each pair (x ,w), where
x ∈ In and w ∈ W decides whether w is an actual witness of the fact
that the answer for x is Yes.

We can construct an algorithm A
′
that semidecides the problem P :

The algorithm reads an input x ∈ In.
The algorithm A

′
will systematically generate all potential witnesses,

i.e., all elements of the set W, as a sequence w0,w1,w2, . . . (e.g., all
words over a given alphabet in the order according to their lengths and
sorted lexicographically for the same length)

For each generated potential witness wi , it will call the algorithm A as
a subroutine for the pair (x ,wi).
If A returns the answer Yes, the algorithm A

′
halts with the

answer Yes.
Otherwise, it continues with generating the next potential witness.
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Semidecidability — alternative characterizations

Other possible characterization of semidecidable problems looks as follows:

A problem P se semidecidable iff there exists an algorithm A that:

It does not expect anything on the input.

It runs forever.

it successively produces as an output a sequence of instances of
problem P :

x0, x1, x2, . . .

Individual instances are seperated by some reasonable way, e.g., by
some special symbol, so it is easy to recognize when output of each
individual instance was finished.

This sequence consists of exactly those instances of problem P where
the correct answer is Yes, i.e., each such instance will appear in this
sequence after some finite number of steps of the algorithm A.
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Semidecidability — alternative characterizations

If have an algorithm A generating a (possibly infinite) sequence of all
instances of problem P , for which that answer is Yes, we can use it to
construct an algorithm A

′
that semidecides the problem P :

The algorithm A
′
reads input x and stores it into memory.

The algorithm A
′
starts to simulate individual steps of the

algorithm A.

Everytime, when A generates a next instance xi of problem P , the
simulation is interrupted and A

′
checks if xi = x .

It is is true that xi = x , the computation of A
′
ends and A

′

produces Yes as an output.

If xi ≠ x , then A
′
continues in the simulation of algorithm A as long

as until the next instance, for which the answer is Yes, is generated.
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Semidecidability — alternative characterizations

On the other hand, if we have an algorithm A that semidecides problem P

(i.e., it halts and returns the answer Yes for exactly those inputs where
the answer is Yes), then it is possible to construct an algorithm A

′
that

runs forever and successively generates a sequence of all instances of the
problem P where the answer is Yes:

The algorithm A
′
will successively generate all instances of the

problem P from the set In.

The algorithm A
′
will simulate the behaviour of the algorithm A on

these instances.

But the algorithm A
′
can not do this in such a way that it would start

to simulate the computation of the algorithm A on a given
instance xi and simulate it as long until this computation halts, since
this computation can run forever, and A

′
would never start to

simulate computations for remaining instances.
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Semidecidability — alternative characterizations

Instead, the algorithm A
′
will simulate the computations of the

algorithm A on many inputs in parallel.

It will forever repeat the cycle where in one interation of the cycle
always performs the following operations:

It will simulate one step of a computation for each computation
simulated so far.

The set of computations simulated so far will be extended with
the next simulated computation of the algorithm A where its
input will be the next instance from the set In.

As soon as one of the simulated computations halts with the
answer Yes, the algorithm A will write the input of this
computation to the output.

(To write this outpus, the algorithm A
′
must remember for each

simulated computation what was the input for this computation.)

Z. Sawa (TU Ostrava) Theoretical Computer Science October 28, 2024 41 / 105



Semidecidability — alternative characterizations

The following fourth characterization of semidecidable problems is similar
to the previous one:

Problem P is semidecidable iff there exists an algorithm A with the
following properties:

It expects as an input a natural number i (i.e., i ∈ N).

For each input i ∈ N, the algorithm A halts after some finite number
of steps and produces some instance of the problem P , for which the
answer is Yes, as an output.

If denote the output of the algorithm A for input i as f (i), then the
infinite sequence

f (0), f (1), f (2), . . .
will contain all instances of the problem P where the answer is Yes.
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Semidecidability — alternative characterizations

Remark:

Above mentioned characterizations assumes that there is at least one
instance of problem P , for which the answer is Yes.

It is obvious how using the algorithm A with the given properties to
construct an algorithm that runs forever and successively generates all
instances of problem P , for which the answer is Yes.

On the other hand, when we have an algorithm A
′
running forever

and generating all instances, for which the answer is Yes, it is easy to
construct an algorithm A with the properties specified above:

It reads a number i and stores it in a counter k .
Then it will simulate algorithm A

′
step by step.

Always, where A
′
generates a next instance of problem P , it

decrements the counter k by 1.
When the counter k reaches zero, A will continue in the simulation
of A

′
as long until the next instance is generated.

This instance is written to the output and the simulation ends.
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Recursive and Recursively Enumerable Sets

In literature, you can find also the following terminology:
Let us say that A is the set of those instances of problem P where the
answer is Yes.

The set A is called recursive if there exists an algorithm that for each
instance x determines whether x belongs to A, i.e., whether the
problem P is decidable.

The set A is called recursively enumerable if there exists an
algorithm that write seccessively all these instance, i.e., if it is
semidecidable for each instance x whether x belongs to A.
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Reduction between Problems

If we have already proved a (decision) problem to be undecidable, we can
prove undecidability of other problems by reductions.

Problem P1 can be reduced to problem P2 if there is an algorithm Alg

such that:

It can get an arbitrary instance of problem P1 as an input.

For an instance of a problem P1 obtained as an input (let us denote it
as w) it produces an instance of a problem P2 as an output.

It holds i.e., the answer for the input w of problem P1 is Yes iff the
answer for the input Alg(w) of problem P2 is Yes.
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Reductions between Problems

Inputs of problem P1 Inputs of problem P2

Yes
Yes

No
No
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Reductions between Problems

Inputs of problem P1 Inputs of problem P2

Yes
Yes

No
No

Alg
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Reductions between Problems

Let us say there is some reduction Alg from problem P1 to problem P2.

If problem P2 is decidable then problem P1 is also decidable.

Solution of problem P1 for an input x :

Call Alg with x as an input, it returns a value Alg(x).
Call the algorithm solving problem P2 with input Alg(x).
Write the returned value to the output as the result.

It is obvious that if P1 is undecidable then P2 cannot be decidable.
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Halting Problem

For purposes of proofs, the following version of Halting problem is often
used:

Halting problem

Input: A description of a Turing machine M and a word w .

Question: Does the computation of the machine M on the word w

halt after some finite number of steps?
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Halting Problem

This problem is undecidable even in the case, where we assume that the
input for machine M is an empty word ε:

Halting problem (where the input is ε)

Input: A description of a Turing machine M.

Question: Does the computation of the machine M on the word ε halt
after some finite number of steps?

A reduction from the standard Halting problem to this variant is simple.

For each machine M with input w we construct a machine M
′
such that:

It writes word w to the tape and moves its head to the beginning.

It starts to behave as M.
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Halting Problem

When Halting problem is used in reductions to prove undecidability of
some other problems, it can be sometimes useful to assume some other
restrictions on this machines, e.g.:

that it uses just one tape that is infinite only in one direction

that it uses tape alphabet {0, 1}
that after the end of computation, the head is on the same position
where it was at the beginning

that the tape is empty after the end of the computation

. . .
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Halting Problem

Halting problem is also often used in reductions in the variant where
a Minsky machine is used instead of a Turing machine:

Halting problem (for Minsky machine)

Input: Description of a Minsky machine M.

Question: Does machine M halt after some number of steps when it
starts in a configuration where every counter is set to 0 ?

Remark: Also here, it can be useful to use some simplifying assumptions:

that the machine never tries to decrement a counter whose value is 0

that there are only two counters

that all counters contain value 0 after a computation.
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Tiling

We will see now another example of an undecidable problem.

An input is a set of types of tiles, such as:

The question is whether it is possible to cover whole infinite plane using
the given types of tiles in such a way that the colors of neighboring tiles
agree.

Remark: We can assume that we have an infinite number of tiles of all
types.

The tiles cannot be rotated.
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Tiling
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Tiling

This problem can be described more formally as follows:

Let us assume that C is a finite set of colors.

The set {N, S, E, W} represents four directions — north, south, east,
west.

A type of a tile is given as an assignment of colors to directions,
i.e., as a function τ ∶ {N, S, E, W} → C .

Let us assume that we have a set of types of tiles
T = {τ1, τ2, . . . , τn}.
Covering of a plane with tiles is a function p ∶ Z× Z → T satisfying
the following two conditions for each i , j ∈ Z:

If p(i , j) = τ and p(i + 1, j) = τ
′
, then τ(E) = τ

′(W).
If p(i , j) = τ and p(i , j + 1) = τ

′
, then τ(N) = τ

′(S).
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Tiling

Consider the following variant of the problem:

Input: A set of types of tiles T = {τ1, τ2, . . . , τn} and an initial
tile τ0 ∈ T .

Question: Is there some covering of a plane p with tiles from the set T
such that p(0, 0) = τ0 ?

So in this variant, one of the types of tiles is distinguished as a special
initial tile, and the question is whether it is possible to cover whole plane
in a way where this special tile is used.
(The other types of tiles can, but need not be, used.)
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Tiling

Undecidability of this problem (resp. of the complement problem of this
problem) can be proved for example using a reduction from Halting
problem in the following variant :

Input: Turing machine M = (Q,Σ, Γ, δ, q0, {qf }).
Question: Does the Turing machine M halts after a finite number of

steps if it obtains the empty word ε as an input?

We will describe an algorithm that:

It obtains a Turing machine M = (Q,Σ, Γ, δ, q0, {qf }) as an input.

It constructs (and outputs) a set of types of tiles T with a special
distinguished tile τ0 ∈ T .

The following will hold: It will be possible to cover whole plane using
tiles from T so that on position (0, 0) is the tile τ0 iff the machine M

on input ε never halts (i.e., its computation is infinite).
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Tiling

The algorithm constructs the tiles for the given machine M as follows
(in the following description of tiles, the names of elements from set Q, Γ
a (Q × Γ) are used in addition to colors — replacing them with additional
colors is straightforward):

For each q, q
′
∈ Q − F a a, a

′
∈ Γ, where δ(q, a) = (q′, a′,−1), we

add the following type of a tile:

a
′

q, a

q
′

For each q, q
′
∈ Q − F a a, a

′
∈ Γ, where δ(q, a) = (q′, a′,+1), we

add the following type of a tile:

a
′

q
′

q, a
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Tiling

For each q
′
∈ Q a a ∈ Γ we add the following two types of tiles:

q
′
, a

q
′

a

q
′
, a

a

q
′

For each a ∈ Γ we add the following type of a tile:

a

a
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Tiling

We add the following three types of tiles
(the tile in the middle will be distinguished as the initial tile τ0):

□ q0,□ □

(Here, the symbol □ ∈ Γ represents the blank symbol of the Turing
machine M.)

Finally, we add the following “empty” tile:
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Tiling

Let us say that the computation of the Turing machine M over the empty
word ε consists of the sequence of configurations

α0, α1, α2, . . .

It is not hard to check that any possible covering of a plane using these
tiles has the following properties (when the position (0, 0) contains the
tile τ0):

The colors on the upper sides of tiles in row 0 correspond to the
initial configuration α0.

This enforces that the colors on the upper sides of tiles in row 1 must
correspond to configuration α1.

This enforces that the colors on the upper sides of tiles in row 2 must
correspond to configuration α2.

. . .
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Tiling

So in general, for each i , where i ≥ 0, it must hold that:

The colors on the upper sides of tile in row i correspond to
configuration αi .

But this is only possible if the computation of machine M over input ε is
infinite.

In the case, when a final configuration (e.g., in row t) is reached, the next
row (t + 1) can not be added.

If the computation is infinite:

it is possible to fill in all rows i , kde i ≥ 0.

The rows −1, −2, −3, . . . can be always filled with “empty” tiles.
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Tiling

So we see that the following holds:

If the computation of M over ε is infinite, then it is possible to cover
whole plane with the corresponding set of tiles.

If the computation of M over ε halts after a finite number of steps,
the plane cannot be covered.

If there would exist an algorithm that would be able to determine for an
arbitrary set of tiles (and a given initial tile) whether whole plane can be
filled, them this algorithm could be used also for solving Halting problem .

But this is not possible (we already know that there is no algorithm that
would solve Halting problem), and so there cannot exist such algorithm.
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Tiling

Remark: It is possible to show that the problem of covering whole plane is
undecidable even in the variant where no “initial” tile is specified:

Input: A set of tupes of tiles T = {τ1, τ2, . . . , τn}.
Question: Is there some covering of whole plane with tiles from the

set T ?

The proof is more technically complicated but is based on similar ideas as
presented above — i.e., encoding of computations of the Turing machine
in such a way that covering whole plane is possible exactly in those cases
where the computation of the given machine are infinite.
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Post correspondence problem

An input is a set of types of cards, such as:

a

aa

abb

bbab

bab

ab

baba

aa

aba

a

The question is whether it is possible to construct from the given types of
cards a non-empty finite sequence such that the concatenations of the
words in the upper row and in the lower row are the same. Every type of a
card can be used repeatedly.

a

aa

abb

bbab

abb

bbab

baba

aa

abb

bbab

aba

a

In the upper and in the lower row we obtained the word
aabbabbbabaabbaba.
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Post correspondence problem

This problem is called Post Correspondence Problem (PCP):

Post correspondence problem (PCP)

Input: Sequences of words u1, u2, . . . , un and v1, v2, . . . , vn over
some alphabet Σ.

Question: Is there some sequence i1, i2, . . . , im, where m ≥ 1, where for
each ij holds 1 ≤ ij ≤ n, and where

ui1ui2⋯uim = vi1vi2⋯vim ?
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Post correspondence problem

Undecidability of this problem can be shown by reduction from Halting
problem (HP).

In the describtion of this reduction, it is useful to use as an intermediate
step the following variant of Post correspondence problem where one of
the cards is distiguished as initial:

Inicial Post correspondence problem (IPCP)

Input: Sequences of words u1, u2, . . . , un and v1, v2, . . . , vn over
some alphabet Σ.

Question: Is there a sequence i1, i2, . . . , im, where m ≥ 1, where for
each ij holds 1 ≤ ij ≤ n, and where

ui1ui2⋯uim = vi1vi2⋯vim

and where moreover is i1 = 1 ?
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Post correspondence problem

The reduction from HP to IPCP:

The algorithm obtains a description of a Turing machine
M = (Q,Σ, Γ, δ, q0,F ) and its input w = a1a2 . . . an as an input.

The algorithm creates an instance of IPCP, i.e., a set of types of
cards.

The create instance of IPCP will have a solution iff machine M over
input w halts.

The solutions will be such that the common word created in upper
and lower line will be basically a description of the computation of
machine M over word w :

it will be a sequence of individual configurations written as words

these configurations will be separated by a special symbol #
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Post correspondence problem

The first card, distinguished as the initial card, is as follows:

[ #

#q0a1a2⋯an#
]

For each q, q
′
∈ Q and a, a

′
∈ Γ, where δ(q, a) = (q′, a′,+1),

the following card is added:

[ qa

a′q′
]

For each q, q
′
∈ Q and a, a

′
, b ∈ Γ, where δ(q, a) = (q′, a′,−1),

the following card is added:

[ bqa

q′ba′
]
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Post correspondence problem

For each a ∈ Γ, the following card is added:

[aa]

The following cards are added:

[#
#
] [ #

□#
]

For each a ∈ Γ and qf ∈ F , the following cards are added:

[aqfqf
] [qf aqf ] [qf ##

#
]
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Post correspondence problem

The reduction from IPCP to PCP can be done as follows:

Instead of each card of the form

[a1a2⋯ak
b1b2⋯bℓ

]
the card of the following form is added

[∗a1∗a2∗⋯∗ak
b1∗b2∗⋯∗bℓ∗

]
For the initial card, the card of the following form is also added

[∗a1∗a2∗⋯∗ak
∗b1∗b2∗⋯∗bℓ∗

]
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Post correspondence problem

The following card is added

[∗◇
◇

]

Remark: It is assumed that symbols ∗ and ◇ are some new special
symbols that do not occur in the original instance of IPCP.
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Post correspondence problem

Undecidability of several other problems dealing with context-free
grammars can be proved by reductions from the previous problem:

Problem

Input: Context-free grammars G1 and G2.

Question: Is L(G1) ∩ L(G2) = ∅?
Problem

Input: A context-free grammar G.

Question: Is G ambiguous?
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Equivalence of context-free grammars

Also the following two problems concerning context-free grammars are
undecidable:

Problem

Input: Context-free grammars G1 and G2.

Question: Is L(G1) = L(G2)?
Problem

Input: A context-free grammar generating a language over an
alphabet Σ.

Question: Is L(G) = Σ
∗
?
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Equivalence of context-free grammars

The proof of undecidability can be done again by a reduction from HP.

For a given Turing machine M and its input w , a context-free grammar G
is constructed such that:

if machines M halts on w , the language L(G) will contain all words,
except a word that is a description of the computation of machine M

over word w in the form of a sequence of configurations

if machine M halts on w , the language L(G) will contain all words
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Equivalence of context-free grammars

So the grammar G will generate exactly those words that are not
descriptions of the computations of machine M over word w , i.e.:

they do not have a form of a sequence of configurations, or

they do not start with the initial configuration

they do not end with a final configuration

there exists a consucutive pair of configurations that does not
correspond the step that would be performed by M

To allow to describe the fourth of the above mentioned conditions using
a context-free grammar, the following idea is used:

configurations on even positions are written as usual from left to right

configuration on odd positions are written in reverse, i.e., from right
to left
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Arithmetic on natural numbers

Problem

Input: A closed formula of the first order predicate logic where the
only predicate symbol is =, the only function symbols are
+ and ⋅, and the only constant symbols are 0 and 1.

Question: Is the given formula true in the domain of natural numbers
(using the natural interpretation of all function and predicate
symbols)?

An example of an input:

∀x∃y∀z((x ⋅ y = z) ∧ (y + 1 = x))
Remark: There is a close connection with Gödel’s incompleteness
theorem.
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Arithmetic on natural numbers

We will show that this problem is undecidable.

For this proof, a reduction from the halting problem for Minsky machine
will be used:

Input: Description of a Minsky machine M.

Question: Does the machine M halts after some finite number of steps
when it starts in a configuration where all counters have
value 0 ?
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Arithmetic on natural numbers

We will describe an algorithm that:

It obtains a description of a Minsky machine M as an input.

For this machine M constructs a formula ϕ, and produces this
formula as an output.

The following will hold for this formula:

The formula ϕ will be true (in the standard interpretation on natural
numbers) iff machine M halts after some finite number of steps.

Remark: Formula ϕ will be built in several steps.

It will be built from simpler formulas.
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Arithmetic on natural numbers

Let Var be an countably infinite set of all variables that can occur in
formulas — Var = {x , y , z , . . .}
Terms are defined as follows:

Every variable x from set Var is a well-formed term.

Constants 0 and 1 are well-formed terms.

If t1 and t2 are well-formed terms, then also i t1 + t2 and t1 ⋅ t2 are
well-formed terms.

Formulas are defined as follows:

If t1 and t2 are well-formed terms, then t1 = t2 is a well-formed
formula.

If ϕ1 and ϕ2 are well-formed formulas, then also ¬ϕ1, ϕ1 ∧ ϕ2,
ϕ1 ∨ ϕ2, ϕ1 → ϕ2, and ϕ1 ↔ ϕ2 are well-formed formulas.

If ϕ is a well-formed formula and x is a variable from the set Var ,
then also ∀x .ϕ and ∃x .ϕ are well-formed formulas.
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Arithmetic on natural numbers

Remarks:

Formulas will be interpreted over the set of natural numbers
N = {0, 1, 2, . . .}.
Constants 2, 3, 4, . . . can be viewed as shorthands for 1 + 1,
1 + 1 + 1, 1 + 1 + 1 + 1, . . .

Notation t1 ≤ t2 is a shorthand for

∃x .(t1 + x = t2)
(It is assumed that x does not occur in t1 nor in t2.)

Similarly, notation t1 < t2 is a shorthand for

∃x .(t1 + x + 1 = t2)
In a similar way, we can define also t1 ≥ t2 and t1 > t2.
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Arithmetic on natural numbers

Divides(x , y) — x is a divisor of y :

∃k .(x ⋅ k = y)
Prime(p) — p is a prime:

p > 1 ∧ ∀x .(Divides(x , p) → (x = 1) ∨ (x = p))
Prime-Power(p, x) — x is a power of a prime p

(i.e., there exists i ∈ N such that x = p
i
):

Prime(p) ∧ (x ≥ 1) ∧
∀y .(Divides(y , x) ∧ Prime(y) → (y = p))
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Arithmetic on natural numbers

Let us say we have a Minsky machine M:

The set of states of the control unit of machine M is
S = {0, 1, . . . , s}.
The initial state is 0

The final state s.

The machine has r counters, denoted x1, x2, . . . , xr .

A configuration of machine M can be described as an (r + 1)-tuple of
natural numbers (q, v1, . . . , vr)
where q represents the current state of the control unit, and v1, . . . , vr are
values of the counters x1, . . . , xr .
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Arithmetic on natural numbers

Let us say for concreteness that machine M will use for
example 3 counters, i.e., r = 3.

It is easy to construct formulas that characterize initial and final
configurations:

Initial-Conf(q, v1, v2, v3) — it is an initial configuration:

(q = 0) ∧ (v1 = 0) ∧ (v2 = 0) ∧ (v3 = 0)
Final-Conf(q, v1, v2, v3) — it is a final configuration:

q = s
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Arithmetic on natural numbers

Similarly, it is not too difficult to construct a formula for the given Minsky
machine that characterizes when the machine can go from one
configuration to another in one step:

Step(q, v1, v2, v3, q′, v ′1, v ′2, v ′3) — the machine M can go in one step
from configuration (q, v1, v2, v3) to configuration (q′, v ′1, v ′2, v ′3)
This is a disjunction of many formulas where each of these formulas
describes the behaviour of one instruction of the machine M, e.g.,

7

13

x2 ∶= x2 + 1
(q = 7) ∧ (q′ = 13)∧(v ′1 = v1) ∧ (v ′2 = v2 + 1) ∧ (v ′3 = v3)
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Arithmetic on natural numbers

14

5 15

[x3 = 0] [x3 ≠ 0]
(q = 14)∧(((v3 = 0) ∧ (q′ = 5)) ∨((v3 > 0) ∧ (q′ = 15))) ∧(v ′1 = v1) ∧ (v ′2 = v2) ∧ (v ′3 = v3)
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Arithmetic on natural numbers

A computation of the machine M can be described as a sequence of
configurations

α0, α1, α2, . . .

This sequence can be represented as several separate sequences:

a sequence of states of the control unit

a sequence of values of counter x1

a sequence of values of counter x2

⋮

a sequence of values of counter xr

In general, any finite sequence of natural numbers can be encoded as one
natural number.

So if the machine M halts, each of sequences above can be represented as
one natural number.
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Arithmetic on natural numbers

If we have for example a sequence of natural numbers

a0, a1, . . . , at

it can be encoded as number

at ⋅ b
t
+ at−1 ⋅ b

t−1
+ ⋯ + a2 ⋅ b

2
+ a1 ⋅ b

1
+ a0 ⋅ b

0

where b is a big enough natural number, i.e., a number
where for all ai (where 0 ≤ i ≤ t) is

0 ≤ ai < b

So the sequence a0, a1, . . . , at can be represented by individual digits in
the representation of a number written in base b.
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Arithmetic on natural numbers

If A is the number encoding a sequence a0, a1, . . . , at in the way
described above, the value ai can be expressed as follows:

∃u.∃v .((A = (u ⋅ b + ai) ⋅ bi + v) ∧ (v < b
i))

But there is a problem how to express b
i
.

We can use some big enough prime p as the base b.

In fact, we need not work directly with indexes i (where 0 ≤ i ≤ t).

Instead, we can work with powers of prime p, i.e., with values
p
0
, p

1
, p

2
, p

3
, . . .

So, instead of i , we will use value p
i
.
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Arithmetic on natural numbers

So, let us assume that p is a prime, and that a sequence a0, a1, . . . , at is
encoded as number

A = at ⋅ p
t
+ at−1 ⋅ p

t−1
+ ⋯ + a2 ⋅ p

2
+ a1 ⋅ p

1
+ a0 ⋅ p

0

(It is assumed that for each i we have 0 ≤ ai < p.)

Digit(p, d ,A, c) — for some i ∈ N it holds that d = p
i
and in the

sequence a0, a1, . . . , at , encoded as number A, is ai = c :

Prime-Power(p, d) ∧ (c < p) ∧
∃u.∃v .((A = (u ⋅ p + c) ⋅ d + v) ∧ (v < d))
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Arithmetic on natural numbers

This means that the computation of machine M can be fully described by
the values of the following variables (for concreteness, we assume that
there are three counters, i.e., r = 3):

p — a big enough prime (bigger than the number of states s and
bigger than the value of any counter during the computation)

T — the value p
t
where t is the total number of steps performed by

the machine M during the computation

Q — the number encoding the sequence of states of the control unit

X1 — the number encoding the sequence of values of counter x1

X2 — the number encoding the sequence of values of counter x2

X3 — the number encoding the sequence of values of counter x3
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Arithmetic on natural numbers

Conf(p, d ,Q,X1,X2,X3, q, v1, v2, v3):
— configuration αi , where d = p

i
, is equal to (q, v1, v2, v3)

Digit(p, d ,Q, q) ∧ Digit(p, d ,X1, v1) ∧
Digit(p, d ,X2, v2) ∧ Digit(p, d ,X3, v3)

Check-Initial(p,Q,X1,X2,X3):
— checking that the computation starts with the initial configuration

∃q.∃v1.∃v2.∃v3.(Conf(p, 1,Q,X1,X2,X3, q, v1, v2, v3) ∧
Initial-Conf(q, v1, v2, v3))

Check-Final(p,T ,Q,X1,X2,X3):
— checking that the computation ends with a final configuration

∃q.∃v1.∃v2.∃v3.(Conf(p,T ,Q,X1,X2,X3, q, v1, v2, v3) ∧
Final-Conf(q, v1, v2, v3))
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Arithmetic on natural numbers

Check-One-Step(p, d ,Q,X1,X2,X3):
— checking that in the given computation, the machine correctly goes
from the configuration αi to the configuration αi+1, where d = p

i

∃q.∃v1.∃v2.∃v3.∃q
′
.∃v

′
1.∃v

′
2.∃v

′
3.(

Conf(p, d ,Q,X1,X2,X3, q, v1, v2, v3) ∧
Conf(p, d ⋅ p,Q,X1,X2,X3, q

′
, v
′
1, v

′
2, v

′
3) ∧

Step(q, v1, v2, v3, q′, v ′1, v ′2, v ′3))
Check-All-Steps(p,T ,Q,X1,X2,X3):
— checking that all steps are correct

∀d .((d < T ) ∧ Prime-Power(p, d) →

Check-One-Step(p, d ,Q,X1,X2,X3))
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Arithmetic on natural numbers

Machine-Halts:
— checking that there exists a finite computation of the given
machine

∃p.∃T .∃Q.∃X1.∃X2.∃X3.(
Prime(p) ∧
Prime-Power(p,T ) ∧
Check-Initial(p,Q,X1,X2,X3) ∧
Check-All-Steps(p,T ,Q,X1,X2,X3) ∧
Check-Final(p,T ,Q,X1,X2,X3))

It is not hard to check that this formula is true iff the computation of
machine M halts after some finite number of steps.
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Arithmetic on natural numbers

So if there would exist an algorithm that could find out for each such
formula whether it is true, we would have an algorithm solving Halting
problem. But this is not possible.

Remarks:

It is interesting that an analogous problem, where real numbers are
considered instead of natural numbers, is decidable (but the algorithm
for it and the proof of its correctness are quite nontrivial).

Also when we consider natural numbers or integers and the same
formulas as in the previous case but with the restriction that it is not
allowed to use the multiplication function symbol ⋅, the problem is
algorithmically decidable.
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Arithmetic on natural numbers

If the function symbol ⋅ can be used then even the very restricted case is
undecidable:

Hilbert’s tenth problem

Input: A polynomial f (x1, x2, . . . , xn) constructed from variables
x1, x2, . . . , xn and integer constants.

Question: Are there some natural numbers x1, x2, . . . , xn such that
f (x1, x2, . . . , xn) = 0 ?

An example of an input: 5x
2
y − 8yz + 3z

2
− 15

I.e., the question is whether

∃x∃y∃z(5 ⋅ x ⋅ x ⋅ y + (−8) ⋅ y ⋅ z + 3 ⋅ z ⋅ z + (−15) = 0)
holds in the domain of natural numbers.

Z. Sawa (TU Ostrava) Theoretical Computer Science October 28, 2024 96 / 105



Other Undecidable Problems

Also the following problem is algorithmically undecidable:

Problem

Input: A closed formula ϕ of the first-order predicate logic.

Question: Is ⊧ ϕ ?

Remark: Notation ⊧ ϕ denotes that formula ϕ is logically valid, i.e., it is
true in all interpretations.
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Other Undecidable Problems

By reductions from the Halting problem we can show undecidability of
many other problems dealing with a behaviour of programs:

Does a given program produce the output Yes for some input?

Does a given program halt for an arbitrary input?

Do two given programs produce the same outputs for the same
inputs?

. . .
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Rice’s Theorem

Let P be an arbitrary prorperty of Turing machines.

The property P is:

nontrivial — if there exists at least one machine that has the
property P , and at least one machine that does not have the
property P

input-output — if in every pair of machines that halt on the same
inputs and that give the same outputs for the same inputs, either
both machines have the property P or both do not have it

Theorem

Every problem of the form

Input: A Turing machine M.

Question: Does machine M have property P?

where P is a nontrivial input-output property, is undecidable.
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Rice’s Theorem

Proof:

The proof is done by a reduction from Halting problem.

This is not a single reduction but a general schema describing how to
construct the corresponding reduction from Halting problem to one of
two following problems for each particular nontrivial input-output
property P :

The question whether the given Turing machine has the given
property P .

The question whether the given Turing machine does not have
the given property P .
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Rice’s Theorem

The algorithm performing this reduction:

It obtains an instance (M,w) of Halting problem as an input
(kde M je Turing̊uv stroj a w jeho vstup).

It constructs a Turing machine M’ for the given pair.

One of two following possibilities will be always true for the reduction:

Machine M
′
will have the property P iff machine M halts over

input w .

Machine M
′
will have the property P iff machine M does not halt

over input w .

Which of these possiblities will hold depends on the property P .
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Rice’s Theorem

Let M0 be the Turing machine that never halts for any input instance and
never produces any output, i.e., for each input, it always runs forever.

There are two possibilities:

The machine M0 has the property P .

The machine M0 does not have property P .

We will concentrate on the second possibility, i.e., when M0 does not
have the property P .
(The proof for the first possibility, i.e., when M0 has the property P , is
similar.)

Because the property P is nontrivial, there must exist at least one
machine M1 that has the property P .
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Rice’s Theorem

The algorithm performing the reduction for the given instance (M,w) of
Halting problem, which it obtains as an input, constructs a Turing
machine M

′
that will behave as follows:

It will leave its input w
′
on the tape intact and will use the remaining

“empty” part of the tape for a simulation of the computation of
machine M on input w .

If this simulation of the computation of machine M on input w halts,
then:

it clears all cells on the tape used in this simulation
(i.e., it rewrites them with blank symbols),

it goes with its head to the beginning of word w
′
,

it will start to bahave as machine M1.
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Rice’s Theorem

It is obvious that:

If the computation of the machine M on the input w halts then:

The machine M
′
behaves from the point of view of input and output

exactly as the machine M1.

So the machine M
′
has the property P

(since it is an input-output property and the machine M1 has this property).

If the computation of the machine M on the input w does not halt, then:

The simulation of the behaviour of the machine M on the input w
performed by the machine M

′
never halts.

So the machine M0 behaves exactly as the machine M0 from the point of
view of input and output.

So the machine M
′
does not have the property P in this case

(since it is an input-output property and the machine M0 does not have this
property).
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Rice’s Theorem

The case when the machine M0 has the property P is similar:

As M1, we can choose some machine that does not have the
property P .

If M halts on w , then M
′
behaves as M1 and so it does not have

the property P .

If M does not halt on w , then M
′
behaves as M0 and so it has the

property P .
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