
Computational Complexity of Algorithms

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 1 / 92

Complexity of Algorithms

Computers work fast but not infinitely fast. Execution of each
instruction takes some (very short) time.

The same problem can be solved by several different algorithms. The
time of a computation (determined mostly by the number of executed
instructions) can be different for different algorithms.

We would like to compare different algorithms and choose a better
one.

We can implement the algorithms and then measure the time of their
computation. By this we find out how long the computation takes on
particular data on which we test the algorithm.

We would like to have a more precise idea how long the computation
takes on all possible input data.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 2 / 92

Complexity of Algorithms

Consider some particular machine executing an algorithm — e.g., RAM,
Turing machine, . . .

We will assume that for the given machine M we have defined the
following two functions that assign to each input x from set of all
inputs In:

timeM ∶ In → N ∪ {∞} — represents the running time of the
machine M on an input

spaceM ∶ In → N ∪ {∞} — represents an amount of memory used
by the machine M in a computation on an input

Remark: This is not yes the time and space complexity of an algorithm
executed by a given machine M.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 3 / 92

Complexity of algorithms — Turing Machines

For example, in the case of Turing machines, the following could be
analyzed:

the number of steps that the given machine performs in the
computation over a given word

— this value represents the running time of the computation

the number of cells of the tape visited by the given machine during
the computation oven a given word

— this value represents the amount of the used memory

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 4 / 92

Complexity of algorithms — Turing Machines

Formally, these notions can be defined as follows
(we assume a given Turing machine M = (Q,Σ, Γ, δ, q0,F)):

Function
timeM ∶ Σ

∗
→ N ∪ {∞}

For w ∈ Σ
∗
, the value timeM(w) specifies the number of steps the

machine M performs in a computation over the word w .

I.e., if this computation is finite and looks as follows

α0 ⟶ α1 ⟶ α2 ⟶ α3 ⟶ ⋯ ⟶ αt−1 ⟶ αt

where αt is a final configuration, then timeM(w) = t.

In the case of an infinite computation

α0 ⟶ α1 ⟶ α2 ⟶ α3 ⟶ ⋯

we have timeM(w) = ∞.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 5 / 92

Complexity of algorithms — Turing Machines

Function
spaceM ∶ Σ

∗
→ N ∪ {∞}

For w ∈ Σ
∗
, the value spaceM(w) specifies the number of cells that

the machine M visits during a computation over an the input w .

Remark: It is obvious that in the case of a finite computation also
the value spaceM(w) is finite.

In the case of an infinite computation, the value spaceM(w) can be
finite or infinite.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 6 / 92

Complexity of algorithms — RAMs

A running time of a RAM can be computed in two different ways:

uniform cost — the number of executed instructions

logarithmic cost — the sum of cost of individual instructions;
the cost of one instruction depends on the number of bits of values
used in the given instruction.

For example:

The cost of execution of instructions for addition and subtruction is the
sum of the number of bits of their operands.

The cost of execution of instructions for multiplication and division is
the product of the number of bits of their operands.

The cost of instructions accessing memory (load, store) is the sum of
the number of bits of an address and the number of bits of a number
that is read or written.

Remark: When counting the number of bits of a given number, it is
assumed that value 0 has 1 bit.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 7 / 92

Complexity of algorithms — RAMs

Also the amount of memory used during a computation by a RAM can be
computed in two different ways:

uniform cost — the number of memory cells used, i.e., the number
of cells, which were read or written to during the computation.

logarithmic cost — the maximal number of bits of memory that
were used during the computation.

The number of bits includes both the number of bits of used cells and
the number of bits of their addresses.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 8 / 92

Complexity of algorithms — RAMs

The uniform cost realistically represents the amount of a work done during
the execution and the amount of used memory only in those cases where
the values stored in memory cells are “small”, i.e., if in a real
implemantation for “reasonably” big inputs it would be possible to
represents them for example as 32-bit or 64-bit numbers.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 9 / 92

Complexity of algorithms — RAMs

For those machines that do not have an instruction for multiplication,
it can be easily shown that each instruction can produce a number
that has at most one bit more than the bigger (in absolute value) of
its operands.

For such machines, after t steps of computation, each cell contains
a number that has at most t +m + n bits where m is the number of
bits of the biggist constant occurring in the program and n is the
biggest number of bits of a number in the input.

If the machine has an instruction for the multiplication then after
t steps, some memory cell can contain a number that has
approximately 2

t
bits.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 10 / 92

Size of Input

For different input data the program performs a different number of
instructions.

If we want to analyze somehow the number of performed instructions, it is
useful to introduce the notion of the size of an input.

Typically, the size of an input is a number specifying how “big” is the
given instance (a bigger number means a bigger instance).

Remark: We can define the size of an input as we like depending on what
is useful for our analysis.

The size of an input is not strictly determinable but there are usually some
natural choices based on the nature of the problem.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 11 / 92

Size of Input

Examples:

For the problem “Sorting”, where the input is a sequence of numbers
a1, a2, . . . , an and the output the same sequence sorted, we can take
n as the size of the input.

For the problem “Primality” where the input is a natural number x
and where the question is whether x is a prime, we can take the
number of bits of the number x as the size of the input.

(The other possibility is to take directly the value x as the size of the
input.)

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 12 / 92

Size of Input

Sometimes it is useful to describe the size of an input with several
numbers.

For example for problems where the input is a graph, we can define the
size of the input as a pair of numbers n,m where:

n – the number of nodes of the graph

m – the number of edges of the graph

Remark: The other possibility is to define the size of the input as one
number n +m.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 13 / 92

Size of Input

In general, we can define the size of an input for an arbitrary problem as
follows:

When the input is a word over some alphabet Σ:
the length of word w

When the input as a sequence of bits (i.e., a word over {0, 1}):
the number of bits in this sequence

When the input is a natural number x :
the number of bits in the binary representation of x

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 14 / 92

Time Complexity

We want to analyze a particular algorithm (its particular implementation).

We want to know how many steps the algorithm performs when it gets an
input of size 0, 1, 2, 3, 4,

It is obvious that even for inputs of the same size the number of performed
steps can be different.

Let us denote the size of input x ∈ In as size(x).
Now we define a function T ∶ N → N such that for n ∈ N is

T (n) = max { timeM(x) ∣ x ∈ In, size(x) = n }

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 15 / 92

Time Complexity in the Worst Case

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(x)

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 16 / 92

Time Complexity in the Worst Case

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(x)T (n)

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 16 / 92

Time Complexity in the Worst Case

Such function T (n) (i.e., a function that for the given algorithm and the
given definition of the size of an input assignes to every natural number n
the maximal number of instructions performed by the algorithm if it
obtains an input of size n) is called the time complexity of the

algorithm in the worst case.

T (n) = max { timeM(x) ∣ x ∈ In, size(x) = n }

Analogously, we can define space complexity of the algorithm in the
worst case as a function S(n) where:

S(n) = max { spaceM(x) ∣ x ∈ In, size(x) = n }
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 17 / 92

Time Complexity in an Average Case

Sometimes it make sense to analyze the time complexity in an average

case.

In this case, we do not define T (n) as the maximum but as the arithmetic
mean of the set

{ timeM(x) ∣ x ∈ In, size(x) = n }

It is usually more difficult to determine the time complexity in an
average case than to determine the time complexity in the worst case.

Often, these two function are not very different but sometimes the
difference is significant.

Remark: It usually makes no sense to analyze the time complexity in the
best case.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 18 / 92

Time Complexity in an Average Case

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(x)T (n)

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 19 / 92

Growth of Functions

A program works on an input of size n.
Let us assume that for an input of size n, the program performs T (n)
operations and that an execution of one operation takes 1µs (10

−6
s).

n

T (n) 20 40 60 80 100 200 500 1000

n 20µs 40µs 60µs 80µs 0.1ms 0.2ms 0.5ms 1ms

n log n 86µs 0.213ms 0.354ms 0.506ms 0.664ms 1.528ms 4.48ms 9.96ms

n
2

0.4ms 1.6ms 3.6ms 6.4ms 10ms 40ms 0.25 s 1 s

n
3

8ms 64ms 0.216 s 0.512 s 1 s 8 s 125 s 16.7min.

n
4

0.16 s 2.56 s 12.96 s 42 s 100 s 26.6min. 17.36 hours 11.57 days

2
n

1.05 s 12.75 days 36560 years 38.3⋅10
9
years 40.1⋅10

15
years 50⋅10

45
years 10.4⋅10

136
years –

n! 77147 years 2.59⋅10
34
years 2.64⋅10

68
years 2.27⋅10

105
years 2.96⋅10

144
years – – –

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 20 / 92

Growth of Functions

Let us consider 3 algorithms with complexities
T1(n) = n,T2(n) = n

3
,T3(n) = 2

n
. Our computer can do in a reasonable

time (the time we are willing to wait) 10
12

steps.

Complexity Input size

T1(n) = n 10
12

T2(n) = n
3

10
4

T3(n) = 2
n

40

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 21 / 92

Growth of Functions

Let us consider 3 algorithms with complexities
T1(n) = n,T2(n) = n

3
,T3(n) = 2

n
. Our computer can do in a reasonable

time (the time we are willing to wait) 10
12

steps.

Complexity Input size

T1(n) = n 10
12

T2(n) = n
3

10
4

T3(n) = 2
n

40

Now we speed up our computer 1000 times, meaning it can do 10
15

steps.

Complexity Input size Growth

T1(n) = n 10
15

1000×

T2(n) = n
3

10
5

10×

T3(n) = 2
n

50 +10

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 21 / 92

Asymptotic Notation

It is usually quite difficult to express the complexity exactly.

The exact complexity depends on the used model of computation and
on the particular implementation (on details of this implementation).

We are interested in the complexity for big inputs. For small inputs
usually even nonefficient algorithms work fast.

We usually do not need to know the exact number of performed
instructions and we will be satisfied with some estimation of how fast
this number grows when the size of an input grows.

So we use the so called asymptotic notation, which allows us to
ignore unimportant details and to estimate approximately how fast
the given function grows. This simplifies the analysis considerably.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 22 / 92

Asymptotic Notation

Let us take an arbitrary function g ∶ N → N. Expressions O(g), Ω(g),
Θ(g), o(g), and ω(g) denote sets of functions of the type N → N,
where:

O(g) – the set of all functions that grow at most as fast as g

Ω(g) – the set of all functions that grow at least as fast as g

Θ(g) – the set of all functions that grow as fast as g

o(g) – the set of all fuctions that grow slower than function g

ω(g) – the set of all functions that grow faster than function g

Remark: These are not definitions! The definitions will follow on the next
slides.

O – big “O”

Ω – uppercase Greek letter “omega”

Θ – uppercase Greek letter “theta”

o – small “o”

ω – small “omega”
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 23 / 92

Asymptotic Notation – Symbol O

nn0

cg(n)
f (n)

Definition

Let us consider an arbitrary function g ∶ N → N. For a function f ∶ N → N

we have f ∈ O(g) iff

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0) ∶ f (n) ≤ c g(n).
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 24 / 92

Asymptotic Notation – Symbol Ω

nn0

cg(n)

f (n)

Definition

Let us consider an arbitrary function g ∶ N → N. For a function f ∶ N → N

we have f ∈ Ω(g) iff

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0) ∶ c g(n) ≤ f (n).
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 25 / 92

Asymptotic Notation – Symbol Θ

nn0

c2g(n)
f (n)
c1g(n)

Definition

Let us consider an arbitrary function g ∶ N → N. For a function f ∶ N → N

we have f ∈ Θ(g) iff

f ∈ O(g) and f ∈ Ω(g).
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 26 / 92

Asymptotic Notation – Symbols o and ω

Definition

Let us consider an arbitrary function g ∶ N → N. For a function f ∶ N → N

we have f ∈ o(g) iff
lim

n→+∞

f (n)
g(n) = 0

Definition

Let us consider an arbitrary function g ∶ N → N. For a function f ∶ N → N

we have f ∈ ω(g) iff
lim

n→+∞

f (n)
g(n) = +∞

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 27 / 92

Asymptotic Notation

For simplicity, we consider only functions of type N → N in the previous
definitions.

In fact, these definitions could be extended to all asymptotically

nonnegative functions of type R+ → R, which moreover can be undefined
on some finite subinterval of its domain.

Function f ∶ R+ → R is asymptotically nonnegative if it satisfies:

(∃n0 ≥ 0)(∀n ≥ n0)(f (n) ≥ 0)
Remark: For n < n0, the value of f (n) can be undefined.

R+ = {x ∈ R ∣ x ≥ 0}
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 28 / 92

Asymptotic Notation

There are pairs of functions f , g ∶ N → N such that

f /∈ O(g) and g /∈ O(f),
for example

f (n) = n g(n) = {n2 if n mod 2 = 0

⌈log2 n⌉ otherwise
.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 29 / 92

Asymptotic Notation

O(1) denotes the set of all bounded functions, i.e., functions whose
function values can be bounded from above by a constant.

A function f is called:

logarithmic, if f (n) ∈ Θ(log n)
linear, if f (n) ∈ Θ(n)
quadratic, if f (n) ∈ Θ(n2)
cubic, if f (n) ∈ Θ(n3)
polynomial, if f (n) ∈ O(nk) for some k > 0

exponential, if f (n) ∈ O(cnk) for some c > 1 and k > 0

Exponential functions are often written in the form 2
O(nk)

when the
asymptotic notation is used, since then we do not need to consider
different bases.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 30 / 92

Asymptotic Notation

As mentioned before, expressions O(g), Ω(g), Θ(g), o(g), and ω(g)
denote certain sets of functions.

In some texts, these expressions are sometimes used with a slightly
different meaning:

an expression O(g), Ω(g), Θ(g), o(g) or ω(g) does not represent
the corresponding set of functions but some function from this set.

This convention is often used in equations and inequations.

Example: 3n
3
+ 5n

2
− 11n + 2 = 3n

3
+O(n2)

When using this convention, we can for example write f = O(g) instead of
f ∈ O(g).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 31 / 92

Complexity of Algorithms

Let us say we would like to analyze the time complexity T (n) of some
algorithm consisting of instructions I1, I2, . . . , Ik :

If m1,m2, . . . ,mk are the number of executions of individual
instructions for some input x (i.e., the instruction Ii is performed
mi times for the input x), then the total number of executed
instructions for input x is

m1 +m2 +⋯+mk .

Let us consider functions t1, t2, . . . , tk , where ti ∶ N → N, and where
ti(n) is the maximum of numbers of executions of instruction Ii for all
inputs of size n.

Obviously, T ∈ Ω(ti) for any function ti .

It is also obvious that T ∈ O(t1 + t2 +⋯+ tk).
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 32 / 92

Complexity of Algorithms

Let us recall that if f ∈ O(g) then f + g ∈ O(g).
If there is a function ti such that for all tj , where j ≠ i , we have
tj ∈ O(ti), then

T ∈ O(ti).
This means that in an analysis of the time complexity T (n), we can
restrict our attention to the number of executions of the instruction
that is performed most frequently (and which is performed at most
ti(n) times for an input of size n), since we have

T ∈ Θ(ti).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 33 / 92

Complexity of Algorithms

Let us try to analyze the time complexity of the following algorithm:

Algorithm: Insertion sort

Insertion-Sort (A, n):
for j ∶= 1 to n − 1 do

x ∶= A[j]
i ∶= j − 1
while i ≥ 0 and A[i] > x do

A[i + 1] ∶= A[i]
i ∶= i − 1

A[i + 1] ∶= x

I.e., we want to find a function T (n) such that the time complexity of the
algorithm Insertion-Sort in the worst case is in Θ(T (n)).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 34 / 92

Complexity of Algorithms

Let us consider inputs of size n:

The outer cycle for is performed at most n − 1 times.

The inner cycle while is performed at most j times for a given value j .

There are inputs such that the cycle while is performed exactly
j times for each value j from 1 to (n − 1).
So in the worst case, the cycle while is performed exactly m times,
where

m = 1 + 2 +⋯+ (n − 1) = (1 + (n − 1)) ⋅ n−1
2

=
1
2
n
2
−

1
2
n

This means that the total running time of the algorithm
Insertion-Sort in the worst case is Θ(n2).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 35 / 92

Complexity of Algorithms

In the previous case, we accurately computed the total number of
executions of the cycle while.

This is not always possible in general, or it can be quite complicated. It is
also not necessary, if we only want an asymptotic estimation.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 36 / 92

Complexity of Algorithms

For example, if we were not able to compute the sum of the arithmetic
progression, we could proceed as follows:

The outer cycle for is not performed more than n times and the inner
cycle while is performed at most n times in each iteration of the
outer cycle.

So we have T ∈ O(n2).
For some inputs, the cycle while is performed at least ⌈n/2⌉ times in
the last ⌊n/2⌋ iterations of the cycle for.

So the cycle while is performed at least ⌊n/2⌋ ⋅ ⌈n/2⌉ times for some
inputs.

⌊n/2⌋ ⋅ ⌈n/2⌉ ≥ (n/2 − 1) ⋅ (n/2) = 1
4
n
2
−

1
2
n

This implies T ∈ Ω(n2).
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 37 / 92

Complexity of Algorithms

When we use asymptotic estimations of the complexity of algorithms, we
should be aware of some issues:

Asymptotic estimations describe only how the running time grows
with the growing size of input instance.

They do not say anything about exact running time. Some big
constants can be hidden in the asymptotic notation.

An algorithm with better asymptotic complexity than some other
algorithm can be in reality faster only for very big inputs.

We usually analyze the time complexity in the worst case. For some
algorithms, the running time in the worst case can be much higher
than the running time on “typical” instances.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 38 / 92

Complexity of Algorithms

This can be illustrated on algorithms for sorting.

Algorithm Worst-case Average-case

Bubblesort Θ(n2) Θ(n2)
Heapsort Θ(n log n) Θ(n log n)
Quicksort Θ(n2) Θ(n log n)

Quicksort has a worse asymptotic complexity in the worst case than
Heapsort and the same asymptotic complexity in an average case but
it is usually faster in practice.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 39 / 92

Space Complexity of Algorithms

So far we have considered only the time necessary for a computation

Sometimes the size of the memory necessary for the computation is
more critical.

Let us recall that for a machine M, the function spaceM(x) gives a value
repsenting a amount of memory used by the machine M in a computation
on input x .

Definition

For a given machine M, the space complexity of the machine M is the
function S ∶ N → N defined as

S(n) = max{ spaceM(x) ∣ x ∈ In, size(x) = n }
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 40 / 92

Space Complexity of Algorithms

There can be two algorithms for a particular problem such that one of
them has a smaller time complexity and the other a smaller space
complexity.

If the time comlexity of a given algorithm is in O(f (n)) then the
space complexity of the algorithm is also in O(f (n)).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 41 / 92

Complexity of Algorithms

Some typical values of the size of an input n, for which an algorithm with
the given time complexity usually computes the output on
a “common PC” within a fraction of a second or at most in seconds.

(Of course, this depends on particular details. Moreover, it is assumed
here that no big constants are hidden in the asymptotic notation)

O(n) O(n log n) O(n2) O(n3)
1 000 000 – 100 000 000 100 000 – 1 000 000 1000 – 10 000 100 – 1000

2
O(n)

O(n!)
20 – 30 10 – 15

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 42 / 92

Polynomial Algorithms

Polynomial — an expression of the form

akn
k
+ ak−1n

k−1
+ ⋯ + a2n

2
+ a1n + a0

where a0, a1, . . . , ak are constants.

Examples of polynomials:

4n
3
− 2n

2
+ 8n + 13 2n + 1 n

100

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 43 / 92

Polynomial Algorithms

Function f is called polynomial if it is bounded from above by some
polynomial, i.e., if there exists a constant k such that f ∈ O(nk).
For example, the functions belonging to the following classes are
polynomial:

O(n) O(n log n) O(n2) O(n5) O(√n) O(n100)
Function such as 2

n
or n! are not polynomial — for arbitrarily big

constant k we have

2
n
∈ ω(nk) n! ∈ ω(nk)

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 44 / 92

Polynomial Algorithms

Polynomial algorithm — an algorithm whose time complexity is
polynomial — i.e., bounded from above by some polynomial
(so it is in O(nk) where k is a constant).

The notion of “polynomial algorithm” can be viewed as a certain
approximation of what algorithms are generally viewed as “efficient” and
useable in practive for quite long inputs.

Roughly we can say that:

Polynomial algorithms are effiecient algorithms that can be used in
practice for inputs of considerable size.

Algorithms, which are not polynomial (i.e., that have a greater time
complexity than polynomial, e.g., exponential), are generally not
viewed as efficient.

Such algorithms can be usually used only for “small” inputs.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 45 / 92

Polynomial Algorithms

However, we must be aware of the following:

An algorithm whose time complexity is for example in Θ(n100) surely
can not be viewed as effiecient from a practical point of view.

It can be shown that for each k it is possible to construct an artificial
example of an algorithmic problem that can be solved using an
algorithm with time complexity in O(nk+1) but there with no

algorithm with time complexity in O(nk).
For “naturally” defined problems that are solved in practice it is not
the case that for there would be some polynomial algorithm with
a big degree of a polynomial and would not be some algorithm with
a small degree of polynomial.

Usually, we have one of two possibilities:

A polynomial algorithm is known and the degree of the polynomial is
quite small, e.g., at most 5.

There is no known algorithm for the given problem.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 46 / 92

Polynomial Algorithms

From the practical point of view, sometimes even an algorithm with
time complexity for example Θ(n2) can be viewed as inefficient for
some purpose — e.g., for extremely bigs inputs or if there are some
very strict timing constraints.

On the other hand, for some purposes even an algorithm with
exponential time complexity can sometimes useful in practice.

There are examples of algorithms that have an an exponential time
complexity in the worst case but for many inputs they actually work
efficiently and they can be used to process quite big inputs.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 47 / 92

Complexity of Algorithms

For most of common algorithmic problems, one of the following three
possibilities happens:

A polynomial algorithm with time complexity O(nk) is known, where
k is some very small number (e.g., 5 or more often 3 or less).

No polynomial algorithm is known and the best known algorithms

have complexities such as 2
Θ(n)

, Θ(n!), or some even bigger.

In some cases, a proof is known that there does not exist a polynomial
algorithm for the given problem (it cannot be constructed).

No algorithm solving the given problem is known (and it is possibly
proved that there does not exist such algorithm)

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 48 / 92

Complexity of Algorithms

A typical example of polynomial algorithm — matrix multiplication with
time complexity Θ(n3) and space complexity Θ(n2):
Algorithm: Matrix multiplication

Matrix-Mult (A,B ,C , n):
for i ∶= 1 to n do

for j ∶= 1 to n do

x ∶= 0
for k ∶= 1 to n do

x ∶= x + A[i][k] ∗ B[k][j]
C[i][j] ∶= x

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 49 / 92

Complexity of Algorithms

For a rough estimation of complexity, it is often sufficient to count
the number of nested loops — this number then gives the degree of
the polynomial

Example: Three nested loops in the matrix multiplication — the
time complexity of the algorithm is O(n3).
If it is not the case that all the loops go from 0 to n but the number
of iterations of inner loops are different for different iterations of an
outer loops, a more precise analysis can be more complicated.

It is often the case, that the sum of some sequence (e.g., the sum of
arithmetic or geometric progression) is then computed in the analysis.

The results of such more detailed analysis often does not differ from
the results of a rough analysis but in many cases the time complexity
resulting from a more detailed analysis can be considerably smaller
than the time complexity following from the rough analysis.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 50 / 92

Arithmetic Progression

Arithmetic progression — a sequence of numbers a0, a1, . . . , an−1, where

ai = a0 + i ⋅ d ,

where d is some constant independent on i .

So in an arithmetic progression, we have ai+1 = ai + d for each i .

Example: The arithmetic progression where a0 = 1, d = 1, and n = 100:

1, 2, 3, 4, 5, 6, . . . , 96, 97, 98, 99, 100

The sum of an arithmetic progression:

n−1

∑
i=0

ai = a0 + a1 +⋯+ an−1 =
1

2
n (a0 + an−1)

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 51 / 92

Arithmetic Progression

Example:

1 + 2 +⋯+ n =
1

2
n(n + 1) =

1

2
n
2
+

1

2
n = Θ(n2)

For example, for n = 100 we have

1 + 2 +⋯+ 100 = 50 ⋅ 101 = 5050.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 52 / 92

Arithmetic Progression

Proof: Let us denote

s =

n−1

∑
i=0

ai = a0 + a1 +⋯+ an−1

2s = s + s

= (a0 + a1 +⋯+ an−1) + (a0 + a1 +⋯+ an−1)
= (a0 + a1 +⋯+ an−1) + (an−1 + an−2 +⋯+ a0)
= (a0 + an−1) + (a1 + an−2) +⋯+ (an−1 + a0)
= ((a0 + 0⋅d) + (a0 + (n − 1)⋅d)) + ((a0 + 1⋅d) + (a0 + (n − 2)⋅d))+

⋯ + ((a0 + (n − 1)⋅d) + (a0 + 0⋅d))
= n ⋅ (a0 + a0 + (n − 1)⋅d)
= n ⋅ (a0 + an−1)
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 53 / 92

Arithmetic Progression

Example: s = 1 + 2 + 3 +⋯+ 99 + 100

2s = s + s

= (1 + 2 +⋯+ 100) + (1 + 2 +⋯+ 100)
= (1 + 2 +⋯+ 100) + (100 + 99 +⋯+ 1)
= (1 + 100) + (2 + 99) + (3 + 98) +⋯+ (99 + 2) + (100 + 1)
= 100 ⋅ (1 + 100) = 10100

So

s =
1

2
⋅ 10100 = 5050

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 54 / 92

Geometric Progression

Geometric progression — a sequence of numbers a0, a1, . . . , an, where

ai = a0 ⋅ q
i
,

where q is some constant independent on i .

So in a geometric progression we have ai+1 = ai ⋅ q for each i .

Example: The geometric progression where a0 = 1, q = 2, and n = 14:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384

The sum of a geometic progression (where q ≠ 1):

n

∑
i=0

ai = a0 + a1 +⋯+ an = a0
q
n+1

− 1

q − 1

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 55 / 92

Geometric Progression

Example:

1 + q + q
2
+⋯+ q

n
=

q
n+1

− 1

q − 1

In particular, for q = 2:

1 + 2
1
+ 2

2
+ 2

3
+⋯+ 2

n
=

2
n+1

− 1

2 − 1
= 2 ⋅ 2

n
− 1 = Θ(2n)

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 56 / 92

Geometric Progression

Proof: Let us denote

s =

n

∑
i=0

ai = a0 + a1 +⋯+ an

s = a0 ⋅ q
0
+ a0 ⋅ q

1
+⋯+ a0 ⋅ q

n

s ⋅ q = (a0 ⋅ q0 + a0 ⋅ q
1
+⋯+ a0 ⋅ q

n) ⋅ q
= a0 ⋅ q

1
+ a0 ⋅ q

2
+⋯+ a0 ⋅ q

n+1

s ⋅ q − s = a0 ⋅ q
n+1

− a0 ⋅ q
0

s ⋅ (q − 1) = a0 ⋅ (qn+1 − 1)
s = a0 ⋅

q
n+1

− 1

q − 1

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 57 / 92

Complexity of Algorithms

An exponential function: a function of the form c
n
, where c is a constant

— e.g., function 2
n

Logarithm — the inverse function to an exponential function: for
a given n,

logc n

is the value x such that c
x
= n.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 58 / 92

Complexity of Algorithms

n 2
n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536
17 131072
18 262144
19 524288
20 1048576

n ⌈log2 n⌉
0 —
1 0
2 1
3 2
4 2
5 3
6 3
7 3
8 3
9 4
10 4
11 4
12 4
13 4
14 4
15 4
16 4
17 5
18 5
19 5
20 5

n log2 n
1 0
2 1
4 2
8 3
16 4
32 5
64 6
128 7
256 8
512 9
1024 10
2048 11
4096 12
8192 13
16384 14
32768 15
65536 16
131072 17
262144 18
524288 19
1048576 20

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 59 / 92

Complexity of Algorithms

Examples where exponential functions and logarithms can appear in an
analysis of algorithms:

Some value is repeatedly decreased to one half or is repeatedly
doubled.

For example, in the binary search, the size of an interval halves in
every iteration of the loop.

Let us assume that an array has size n.

What is the minimal size of an array n, for which the algorithm
performs at least k iterations?

The answer: 2
k

So we have k = log2(n). The time complexity of the algorithm is
then Θ(log n).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 60 / 92

Complexity of Algorithms

Using n bits we can represent numbers from 0 to 2
n
− 1.

The minimal numbers of bits, which are sufficient for representing
a natural number x in binary is

⌈log2(x + 1)⌉.
A perfectly balanced tree of height h has 2

h+1
− 1 nodes, and 2

h
of

these nodes are leaves.

The height of a perfectly balanced binary tree with n nodes is log2 n.

An illustrating example: If we would draw a balanced tree
with n = 1 000 000 nodes in such a way that the distance between
neighbouring nodes would be 1 cm and the height of each layer of
nodes would be also 1 cm, the width of the tree would be 10 km and
its height would be approximately 20 cm.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 61 / 92

Complexity of Algorithms

A perfectly balanced binary tree of height h:

h

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 62 / 92

Complexity of Algorithms

A perfectly balanced binary tree of height h:

h

2
0

2
1

2
2

2
3

2
4

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 62 / 92

Complexity of Algorithms

An efficient way to store a complete binary tree in an array:

64

2

5 7

3

1

9 108 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 63 / 92

Complexity of Algorithms

An efficient way to store a complete binary tree in an array:

64

2

5 7

3

1

9 108 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Children of a node with index i have indexes 2i and 2i + 1.
The parent of a node with index i has index ⌊i/2⌋.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 63 / 92

Complexity of Algorithms

Heap — a complete binary tree stored in an array A in way described on
the previous slide, where moreover the following invariant holds for each
i = 1, 2, . . . , n:

if 2i ≤ n then A[i] ≤ A[2i]
if 2i + 1 ≤ n then A[i] ≤ A[2i + 1]

Examples of a usage of a heap:

sorting algorithm HeapSort

an efficient implementation of a priority queue — this allows to
perform most operations on this queue with time complexity
in O(log n) where n is the number of elements currently in the queue

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 64 / 92

Complexity of Algorithms

Algorithm: Construction of a heap from an unsorted array

Create-Heap (A, n):
i ∶= ⌊n/2⌋
while i ≥ 1 do

j ∶= i

x ∶= A[j]
while 2 ∗ j ≤ n do

k ∶= 2 ∗ j

if k + 1 ≤ n and A[k + 1] < A[k] then

k ∶= k + 1

if x ≤ A[k] then break

A[j] ∶= A[k]
j ∶= k

A[j] ∶= x

i ∶= i − 1

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 65 / 92

Complexity of Algorithms

Time complexity of Create-Heap:

By a quick and rough analysis, we can easily determine that this
complexity is in O(n log n) and in Ω(n):

The outer cycle is executed always ⌊n/2⌋ times — so the number of its
iterations is in Θ(n).
The number of iterations of the inner cycle (in one iteration of the
outer cycle) is obviously in O(log n).

It is much less obvious that the total number of iterations of the inner
cycle (i.e., over all iterations of the outer cycle) is in fact in O(n).

So together we obtain:

The time complexity of Create-Heap is in Θ(n).
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 66 / 92

Complexity of Algorithms

Justification that the total number of iterations of the inner cycle is
in O(n):
Let us assume for simplicity that all branches of the tree are of the same
length and that their length is h — so we have n = 2

h+1
− 1.

Let Ci , where 0 ≤ i < h, be the total number of iterations of the inner
cycle where at the beginning of the cycle the node with index j is in i-th
layer of the tree (the layers are numbered top to bottom as 0, 1, 2, . . .).

It is obvious that the total number of iterations s is

s = Ch−1 + Ch−2 +⋯+ C0 =

h−1

∑
i=0

Ci

The value of Ci can be computed as the total number of nodes in the
layers 0, 1, . . . , i :

Ci = 2
0
+ 2

1
+⋯+ 2

i
=

i

∑
k=0

2
k

=
2
i+1

− 1

2 − 1
= 2

i+1
− 1

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 67 / 92

Complexity of Algorithms

The total sum then can be computed as follows:

s =

h−1

∑
i=0

Ci =

h−1

∑
i=0

(2i+1 − 1) = 2 ⋅ (h−1

∑
i=0

2
i) − (h−1

∑
i=0

1)
= 2 ⋅

2
h
− 1

2 − 1
− h = 2

h+1
− 2 − h = n − 1 − h = O(n)

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 68 / 92

Analysis of Recursive Algorithms

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 69 / 92

Recursive Algorithms

A recursive algorithm is an algorithm that transforms solving of an
original problem to solving of several similar problems for smaller instances.

A general form of recursive algorithms:

If it is an elementary case, solve it directly and return the result.

In other cases, create instances of subproblems.

Call itself for each of the instances.

Compute the solution of the original problem from solutions of
individual subproblems and return it as the result.

Remark: Instances of the subproblems must be always in some sense
smaller than the instance of the original problem. Very often (but not
always), the size of an instance is decreased.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 70 / 92

Recursive Algorithms

A computation of a recursive algorithm can be represented as a tree:

nodes of the tree correspond to individual subproblems

the root is the original problem

children of a node correspond to subproblems of the given problem

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 71 / 92

Recursive Algorithms — Merge-Sort

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

34 42 58 61

10 11 53 67

⟹

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 72 / 92

Recursive Algorithms — Merge-Sort

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

34 42 58 61

11 53 67

⟹ 10

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 72 / 92

Recursive Algorithms — Merge-Sort

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

34 42 58 61

53 67

⟹ 10 11

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 72 / 92

Recursive Algorithms — Merge-Sort

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

42 58 61

53 67

⟹ 10 11 34

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 72 / 92

Recursive Algorithms — Merge-Sort

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

58 61

53 67

⟹ 10 11 34 42

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 72 / 92

Recursive Algorithms — Merge-Sort

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

58 61

67

⟹ 10 11 34 42 53

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 72 / 92

Recursive Algorithms — Merge-Sort

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

61

67

⟹ 10 11 34 42 53 58

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 72 / 92

Recursive Algorithms — Merge-Sort

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

67

⟹ 10 11 34 42 53 58 61

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 72 / 92

Recursive Algorithms — Merge-Sort

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

⟹ 10 11 34 42 53 58 61 67

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 72 / 92

Recursive Algorithms — Merge-Sort

Algorithm: Merge sort

Merge-Sort (A, p, r):
if r − p > 1 then

q ∶= ⌊(p + r) / 2⌋
Merge-Sort(A, p, q)
Merge-Sort(A, q, r)
Merge(A, p, q, r)

To sort an array A containing elements A[0],A[1],⋯,A[n − 1] we call
Merge-Sort(A, 0, n).
Remark: Procedure Merge(A, p, q, r) merges sorted sequences stored
in A[p . . q − 1] and A[q . . r − 1] into one sequence stored
in A[p . . r − 1].

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 73 / 92

Recursive Algorithms — Merge-Sort

Input: 58, 42, 34, 61, 67, 10, 53, 11

10 11 34 42 53 58 61 67

61584234 67531110

42 58 34 61 10 67 11 53

58 42 34 61 67 10 53 11

The tree of recursive calls has Θ(log n) layers. On each layer, Θ(n)
operations are performed. The time complexity of Merge-Sort is
Θ(n log n).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 74 / 92

The master theorem

Master theorem

Let us assume that a ≥ 1 and b > 1 are constants f (n) is a function, and
that function T (n) is defined by a recursive equation

T (n) = a ⋅ T (n/b) + f (n)
(where n/b can be either ⌊n/b⌋ or ⌈n/b⌉). Then it holds that:

a If f (n) ∈ O(nlogb a−ǫ) for some constant ǫ > 0, then

T (n) = Θ(nlogb a).
b If f (n) ∈ Θ(nlogb a), then T (n) = Θ(nlogb a log n).
c If f (n) ∈ Ω(nlogb a+ǫ) for some constant ǫ > 0 and if

a ⋅ f (n/b) ≤ c ⋅ f (n) for some constant c < 1 and all big enough n,
then T (n) = Θ(f (n)).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 75 / 92

The master theorem

The master theorem can be used to analyze complexity of those recursive
algorithms where:

Solving of one subproblem of size n, where n > 1, is transformed to
solving a subproblems where every one of them is of size n/b.
The time, which is spent by solving of one subproblem of size n, when
we do not count time spent in recursive invokations,
is bounded from above by a function f (n).

Example: Algorithm Merge-Sort: a = 2, b = 2, f (n) ∈ Θ(n)
(in one call — two subproblems, each of them of size n/2, merging two
sorted sequences in time Θ(n))
It holds f (n) ∈ Θ(nlogb a) = Θ(n), and so

T (n) ∈ Θ(nlogb a log n) = Θ(n log n).
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 76 / 92

The master theorem — multiplication of big numbers

Example: Let us say that we want to work with natural numbers that are
so big that they do not fit to integer datatypes we have available.

For example, we may want to work with number that have 4096 bits but
operations with numbers that are available in a given programming
language, in which we program, allow to work directly only with numbers
that have 32 or 64-bits.

A simple way how to do it, is to store each such “big” number into an
array of a corresponding size where every element of this array will be
a “small” number of a size, with which we can work directly.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 77 / 92

The master theorem — multiplication of big numbers

So, a “big” number u can be stored in array U with
elements U[0], . . . ,U[n − 1] where each element will be one “small”
number in range 0, . . . , q − 1 where q is some suitable base chosen so that
we can work directly with numbers in this range.

It will hold that

u =

n−1

∑
i=0

U[i] ⋅ qi
A number u stored in this way can be viewed as written a number
representation with base q where elements of array U represent individual
“digits” of this representation.

The size of number u will be the number of these “digits” necessary for its
representation (i.e., the number n).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 78 / 92

The master theorem — multiplication of big numbers

Two numbers of size n can easily added in time O(n) using a standard
“elementary school” algorithm for addition.

Similarly we can start to think about the problem of multiplication of two
natural numbers:

Multiplication of two natural numbers

Input: Number u stored in array U of size n

and number v stored in array V of size n.

Output: Number w stored in array W of size 2n such that u ⋅ v = w .

The standard “elementary school” algorithm for multiplication is of time
complexity Θ(n2).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 79 / 92

The master theorem — multiplication of big numbers

Instead of this standard algorithm we consider a recursive algorithm based on the
following idea:

If the numbers are of size 1 (i.e., n = 1), then we multiply them directly.

If they are bigger (i.e., when n > 1), both numbers can be decomposed into
pairs of numbers whose size is approximately one half of the original size, i.e.,

u = U1 ⋅ Q + U0

v = V1 ⋅ Q + V0

where Q = q
⌈n/2⌉

.

The product w = u ⋅ v then can be computed as

w = W2 ⋅ Q
2
+W1 ⋅ Q +W0

where

W2 = U1 ⋅ V1

W1 = U0 ⋅ V1 + U1 ⋅ V0

W0 = U0 ⋅ V0

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 80 / 92

The master theorem — multiplication of big numbers

This way, the problem of multiplication of two numbers of size n is
transformed to 4 problems of multiplication of numbers of size n/2.
To multiply these smaller numbers, we can use recursion — the function
calls itself with these smaller numbers as parameters.

(Multiplication by powers of Q can be implemented using shifts by
a corresponding number of positions.)

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 81 / 92

The master theorem — multiplication of big numbers

The total running time of the algorithm then can be expressed by the
following recursive formula:

T (n) = 4 ⋅ T (n/2) +Θ(n)
To use the master theorem we have a = 4, b = 2 and f (n) ∈ Θ(n):

It is f (n) ∈ O(nlogb a−ǫ), since n ∈ O(nlog2 4−ǫ) = O(n2−ǫ)
holds for example for ǫ = 1.

It follows by the master theorem that

T (n) ∈ Θ(nlogb a) = Θ(nlog2 4) = Θ(n2).
So the time complexity of the recursive algorithm is Θ(n2), which is the
same as the time complexity of the simple standard algorithm.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 82 / 92

The master theorem — multiplication of big numbers

However, in the recursive algorithm, the number of multiplications of
numbers of the half size can be decreased from 4 to 3:

At first, the values W2 and W0 are computed the same way as before:

W2 = U1 ⋅ V1

W0 = U0 ⋅ V0

The value W1 then can be computed as follows:

W1 = (U0 + U1) ⋅ (V0 + V1) −W0 −W2

Verifying the correctness:

W1 = (U0 + U1) ⋅ (V0 + V1) −W0 −W2

= U0V0 + U0V1 + U1V0 + U1V1 − U0V0 − U1V1

= U0V1 + U1V0

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 83 / 92

The master theorem — multiplication of big numbers

This recursive algorithm for multiplication of big numbers is called
Karatsuba multiplication.

Similarly as in the previous case, we can express the time complexity of
this algorithm as a recursive formula

T (n) = 3 ⋅ T (n/2) +Θ(n)
Then, using the master theorem (for a = 3, b = 2 and f (n) ∈ Θ(n)),
we can derive

T (n) ∈ Θ(nlog2 3)
log2 3 is approximately 1.5849625

So T (n) ∈ O(n1.59), which is better than Θ(n2).
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 84 / 92

The master theorem — multiplication of big numbers

Remark:

There exist a whole range of even more efficient algorithms for
multiplication of big numbers. This algorithms are based, similarly as
Karatsuba multiplication, on the recursive approach:

for example several variants of Toom-Cook algorithm

The most efficient algorithms for multiplication of natural numbers
are based on Fast Fourier transform (FFT):

Schönhage–Strassen

The time complexity of Schönhage-Strassen is O(n ⋅ log n ⋅ log log n).
In 2019, an algorithm with the time complexity O(n ⋅ log n) was
discovered (D. Harvey, J. van der Hoeven).

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 85 / 92

The master theorem — matrix multiplication

Example: The multiplication of square matrices A and B of dimension n × n using

a recursive approach:

For n = 1, the result is computed directly.

For n > 1, every of the matrices A and B is decomposed into four submatrices of

size (n/2) × (n/2).
The result is composed from these eigth submatrices using addition and

multiplication. To multiply these smaller matrices, the function is called recursively.

A straightforward way requires 8 multiplications of matrices of size (n/2) × (n/2).
So we have a = 8, b = 2, f (n) ∈ Θ(n2).
Then f (n) ∈ O(nlogb a−ǫ) because n

2
∈ O(nlog2 8−ǫ) = O(n3−ǫ) hold for example

for ǫ = 1.

So T (n) ∈ Θ(nlogb a) = Θ(nlog2 8) = Θ(n3).
This means that this approach is not better than standard simple algorithm for matrix

multiplication.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 86 / 92

The master theorem — matrix multiplication

But there is a clever way how the computation above can be done in
a more complicated way where in one recursive call, it is sufficient to call
the function 7-times
(using more additions and multiplications).

This is called Strassen algorithm.

Here we have a = 7, b = 2, and f (n) ∈ Θ(n2).
Again we have f (n) ∈ O(nlogb a−ǫ) because n

2
∈ O(nlog2 7−ǫ) holds for

example for ǫ = 0.5.

(log2 7 is approximately 2.80735)

So T (n) ∈ Θ(nlogb a) = Θ(nlog2 7) and T (n) ∈ O(n2.81).
Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 87 / 92

The master theorem — proof

Proof of the master theorem:

For simplicity, we will concentrate just to the cases when f (n) = n
c
for

some constant c > 0.

We also assume for simplicity that n is a power of b, so we need not to
deal with rounding.

Let us imagine a tree of recursive calls for an instance of size n:

The height of the tree is logb n.

The numbers of nodes on individual layers are a
0
, a

1
, . . . , a

logb n

The time spent in one node of layer i is

f (n

bi
) = (n

bi
)c

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 88 / 92

The master theorem — proof

So we have

T (n) =

logb n

∑
i=0

a
i
⋅ f (n

bi
) =

logb n

∑
i=0

a
i
⋅ (n

bi
)c = n

c
⋅

logb n

∑
i=0

(a

bc
)i

Let us denote q = a/bc . Three cases must be distinguished:

q > 1 — i.e., when a > b
c
, which holds iff c < logb a

q = 1 — i.e., when a = b
c
, which holds iff c = logb a

q < 1 — i.e., when a < b
c
, which holds iff c > logb a

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 89 / 92

The master theorem — proof

The case q > 1 — i.e., when a > b
c
, which means c < logb a:

T (n) = n
c
⋅

logb n

∑
i=0

(a

bc
)i = n

c
⋅
q
logb n+1 − 1

q − 1
∈ Θ(nc ⋅ qlogb n)

It holds

n
c
⋅ q

logb n
= n

c
⋅ (a

bc
)logb n = n

c
⋅ n

logb(a

bc
)

= n
c
⋅ n

logb a−logb(bc)
= n

c+logb a−c
= n

logb a

And so T (n) ∈ Θ(nlogb a).
Remark: The number of the leaves in the tree is a

logb n
= n

logb a.

So the most of the time is spent by solving these elementary cases.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 90 / 92

The master theorem — proof

The case q = 1 — i.e., when a = b
c
, which means c = logb a:

T (n) = n
c
⋅

logb n

∑
i=0

(a

bc
)i = n

c
⋅

logb n

∑
i=0

1 = n
c
⋅(logb n+1) ∈ Θ(nlogb a log n)

Remark: Approximately the same time Θ(nlogb a) is spent in each layer of
the tree.

There are Θ(log n) layers.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 91 / 92

The master theorem — proof

The case q < 1 — i.e., when a < b
c
, which means c > logb a:

T (n) = n
c
⋅

logb n

∑
i=0

(a

bc
)i < n

c
⋅

∞

∑
i=0

(a

bc
)i = n

c
⋅

1

1 − q
∈ O(nc)

because for q, where 0 < q < 1, it holds that

∞

∑
i=0

q
i
= lim

z→∞

z

∑
i=0

q
i
= lim

z→∞

q
z+1

− 1

q − 1
=

1

1 − q

Obviously T (n) ∈ Ω(nc) (because the time spent just in the root of the
tree is Θ(nc)), and therefore we have T (n) ∈ Θ(nc).
Remark: In this case, the most of the time is spent in the root of the tree.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 20, 2024 92 / 92

	Computation complexity of algorithms
	Analysis of Recursive Algorithms

