Examples of Proofs of NP-completeness

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 1/62

NP-completeness of SAT problem

Recall the SAT problem:

SAT (satisfiability of boolean formulas)

Input: Boolean formula .

Question: Is ¢ satisfiable?

It is easy to show that SAT belongs to NPTIME:
A nondeterministic algorithm solving SAT in polynomial times works as
follows:
@ It nondeterministically chooses truth valuation v that assigns boolean
value to each variable occurring in formula .

@ It evaluates ¢ is valuation v, i.e., computes value [¢],.

e If [¢], =1, the algorithm returns answer YES.
Otherwise, it returns answer NO.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 2/62

NP-completeness of SAT problem

To show that SAT is NP-hard is more difficult.

It is necessary to show that for every problem P € NPTIME there exists
a polynomial reduction from problem P to SAT,
i.e., to show that there exists an algorithm that:

@ obtains as an input an (arbitraty) instance of problem P,

o for this instance, it constructs a boolean formula ¢ such that ¢ is
satisfiable iff for the given instance of problem P the answer is YES,

@ it will be of polynomial time complexity.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

NP-completeness of SAT problem

If P € NPTIME, there must exist nondeterministic Turing machine M
and a polynomial p(n) such that:

@ It holds for every instance w of problem P (represented as a word
over some alphavet ¥) that:

o If the answer for w is YES, then there exists at least one
computation of machine M on word w where machine M gives
answer YES.

o If the answer for w is NO, then all computations of machine M
on word w end with answer NO.

@ The machine M executes in every computation on word w at most
p(|w]) steps.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

NP-completeness of SAT problem

We will show how for a given nondeterministic Turing machine
M =(Q.,X.T,6 qo, F), a polynomial p(n), and word w € £* to construct
a boolean formula ¢ such that:

@ ¢ will be satisfiable iff there exists a computation of the machine M
on the word w where M executes p(|w|) steps and gives
answer YES.

@ The formula ¢ could be constructed in polynomial time with respect
to the size of the word w.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

NP-completeness of SAT problem

1 2 3 4 5 6 7 8 9 10 11 12

We will assume that the Turing machine uses a one-sided tape.
The cells of the tape can be numbered 1,2,3,....

We can also assume that the final states are F = {qacc, Grej}
(gacc — accepts input, g,j — rejects input).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

NP-completeness of SAT problem

1 2 3 4 5 6 7 8 9 10 11 12

Configurations can be written as words over alphabet ' U (Q X I'):

DEREHAEEE

This word always contains exactly one symbol from (Q X I') that denotes
a state of the control unit and a position of the head.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

NP-completeness of SAT problem

We also assume that the time complexity of the machine M is bounded
from above by a function p(n) where p(n) is a polynomial.

(Without loss of generality we can assume that for all n we have p(n) = n.)

If the machine M obtains a word w of length n as an input, it will execute
at most p(n) steps during a computation.

Because the machine starts with the head on cell number 1, the head can

reach during this computation at most the cell number p(n) + 1 (in every
step it moves by one cell).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

NP-completeness of SAT problem

So if the time complexity of the machine M is bounded from above by
function p(n), all configurations in a computation on an input of size n
can be written as words of length p(n) + 1.

So cells with numbers greater than p(n) + 1 are not reached during
a computation and they will contain symbol O (recall that we assume that
p(n) = n).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

NP-completeness of SAT problem

Words representing configuration in a computation of the machine M on
the word w = wyws---w, can be written to a table where:

@ Rows correspond to configurations (written as words over alphabet
ru(xr)).

@ Columns correspond to the cells of the tape with numbers
1,2,...,p(n) + 1.

@ For technical reasons we also add two columns from the left and from
the right containg only specicial separating symbols #

(where # ¢ QUT).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

NP-completeness of SAT problem

#ﬁ/01W2W3W4‘ ‘Wn‘lj‘ ‘D#
#
#
p(n)+1
#
p(n) +3

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 10/ 62

NP-completeness of SAT problem

@ So individual cells of the table will contain symbols from alphabet

A=TuU(QxT)u{#}

@ Rows will be numbered from 0 to p(n) + 1.
(Row 0 will contain the initial configuration.)

@ Columns will be numbered from 0 to p(n) + 2.
(Columns 0 and p(n) + 2 will contain symbols #.)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 11/62

NP-completeness of SAT problem

Remark: A computation can be shorter than p(n) steps, and in such case,
some rows of the table would not be filled.

To ensure that the table is always completely filled, we can repeat the last
configuration where computation halts, and copy it to all remaining rows
of the table.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 12 /62

NP-completeness of SAT problem

So if we have a (nondeterministic) Turing machine M with a time
complexity bounded from above by a polynomial p(n) solving problem P
and an instance of this problem written as a word w, the answer for this
instance is YES iff there exists an accepting computation of the

machine M on word w.

Such accepting computation can be written in the way described above

into a table with p(n) + 1 rows and p(n) + 3 columns.

Remark: Note that that the size of the table is polynomial with respect
to n.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 13 /62

NP-completeness of SAT problem

For the given machine M, the polynomial p(n), and the word w,
a formula ¢ is created such that:

o Different valuations v of boolean variables in the formula ¢ will
represent all possible (including nonsensical) contents of the table.

@ [¢], =1 will hold for exactly those valuations v that represent such
a content of the table that is a representations of an accepting
computation of the machine M on the input w.

So the formula ¢ will be satisfiable iff there exists an accepting
computation of the machine M on the input w.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 14 /62

NP-completeness of SAT problem

The formula ¢ will be composed using logical connectives from atomic
propositions of the form:

“Cell (i,j) contains symbol a.”

where i/, j, a will be particular constants, as in:

“Cell (9,4) contains symbol

Remark: When we talk about cell (/,/), we mean the cell on j-th row and
j-th column of the table.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 15 /62

NP-completeness of SAT problem

So the formula ¢ will contain boolean variables x i where:
e0=<i=<p(n)+1
e 0=<j=<p(n)+2
eaceA (where A =T U (Q xT)U{#})
with the intended meaning that v(x7;) = 1 holds if v represents a content
of the table where cell (/,;) contains symbol a,

and v(x;;) = 0 means that v represents a content of the table where cell
(i,j) does not contain symbol a.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

NP-completeness of SAT problem

Example: Variable xg’i{b represents proposition:
“Cell (9,4) contains symbol . "

Remark: Values from (@ X I') in indexes will be written as g, a instead of

So if y(xgzb) =1, that in the content of the table represented by v, the

cell (9,4) contains the symbol ,

and if I/(ngb) =0, then the cell (9,4) does not contain .

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 17 /62

NP-completeness of SAT problem

The whole formula ¢ will basically say:
The table contains an accepting computation of the machine M
on the word w.

It will consist of many subformulas where each of these subformulas will
describe some simple condition that must by satisfied for an accepting
computation of the machine M on the word w.

These subformulas will be connected by conjunctions.

So if for a given valuation v some of these conditions is violated, the whole
formula ¢ will have value 0, i.e., [¢], = 0.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 18 /62

NP-completeness of SAT problem

In the following description, the individual subformulas will be described.
When we say about a formula ¢ that
) is added to ¢,”

we mean that 1 will be connected using conjunction (A) with the the part
of the formula ¢ that was created so far.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 19 /62

NP-completeness of SAT problem

To ensure that the table really contains an accepting computation of the
machine M of the word w, the following conditions must be satisfied:

@ Every cell of the table contains exactly one symbol from A.
@ The row 0 contains the initial configuration on the word w.

© Every row of the table (except the row 0) contains either:

o a configuration that is reachable by one step (according to the
transition function) from a configuration written in the
previous row, or

o a final configuration that is a copy of the configuration in the
previous line.

@ The last row of the table contains a configuration with the state g,.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 20/62

NP-completeness of SAT problem

It is obvious that if the table contains an accepting computation, then
these four conditions are satisfied.

On the other hand, it is also obvious that if these four conditions are
satisfied, then the table really contains an accepting computation of the
machine M on the word w.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 21/62

NP-completeness of SAT problem

Take a look at the first condition:
Every cell in the table contains exactly one symbol from A.

This will be ensured by adding, for every cell (i,j), a subformula to ¢ that
will say:

The cell (i,J) exactly one symbol from A,

which can be also formulated as follows:

. . a a a
Exactly one variable from variables x,-j-, x,-j, o x,-j has value 1,
where {a1, a>, ..., ax} is the set of all symbols from A.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 22 /62

NP-completeness of SAT problem

To express the proposition that exactly one of variables xi, x>, ..., xx has
value 1 (where xq, X2, . .., Xx are some arbitrary boolean variables) is not
difficult.

We will demostrate on an example where for simplicity we have only four
boolean variables A, B, C, D:

(AN=BA-CA=D)
(—1A/\ B/\—|C/\—1D)
(nAAN-BA CA=D)
(—1A/\—|B/\—|C/\ D)

< < < <

It is not difficult to check that this formula has value 1 in exactly those
valuations where exactly one of variables A, B, C, D has value 1.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 23 /62

NP-completeness of SAT problem

In general, for a set of variables X = {x{,xo,...,x,}, this condition can be
written as follows:

xi€X x;€X—{x;}

Note that for k variables, this formula is of size O(kz).

In our case k = |A|, and so the size of each subformula added for each
cell is O(]A|?) and so it is a constant that does not depend on the size of
the input w.

Remark: There is a way how to represent the given condition using
a formula of size O(k log k) but we do need it here.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 24 /62

NP-completeness of SAT problem

The next condition that must be satisfied, is:
The row 0 contains the initial configuration with the word w.

So if wyws ... w, are the symbols of the word w while n = 1, the following
must be true:

@ Cell (0,1) contains symbol (qgg, w1) where qq is the initial state.

e Cells (0,2), (0,3), ..., (0,n) contain symbols ws, ws, ..., w,.

e Cells (0,n+1), (0,n+2),...,(0,p(n+1)) contain symbol O.

@ Cells (0,0) and (0, p(n) + 2) contain symbol #.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 25 /62

NP-completeness of SAT problem

So this condition can be represented by the following formula that is added
to ¢:

p(n)+1
qo,w1 w;] # Fi
=2 i=n+1

The size of this formula is O(p(n)).

Remark: In the case when n = 0, the only difference would be that

. W . ,0
instead of x;"" the formula would contain xj3

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 26 /62

NP-completeness of SAT problem

The most complicated is ensuring of the third condition:
Every row (except the row 0) contains a configuration that is
obtained from the previous configuration by executing a single
step (or it is a copy of the previous final configuration).

Consider two consecutive configurations.

A difference between these two configurations is always in at most two
positions:

@ at the position where the head occurs in the first of these
configurations,

@ and at the neighbouring position where the head moves.

So the content of rows i and i + 1 in the table is always closely connected
to each other.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 27 /62

NP-completeness of SAT problem

If a content of row i + 1 does not correspond to a configuration reachable
by one step from a configuration on row i, we can check this by finding

a particular position where these configurations do not “fit".

It is not hard to see that in such case we can always find a “window"” of
size 2 X 3 for these two configurations such that to check that these two
rows do not contain consecutive configurations, it is sufficient to consider
the content of this window (i.e., without considering the content of the
other cells).

j—=2 j-1 j j+1 j+2 j+3 j+4

i+1

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 28 /62

NP-completeness of SAT problem

#ﬁ/01W2W3W4‘ ‘Wn‘lj‘ ‘D#

#

#
p(n) +1 window

#

p(n) +3

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 29 /62

NP-completeness of SAT problem

Those contents of windows that can occur in two consecutive
configurations will be called correct, and those can not occur in two
consecutive configurations (and so witness that these two lines do not
represent consecutive configurations) are called incorrect.

We will not describe here the exact rules that a correct contents of
a window need to satisfy .

Instead we will see examples of correct and incorrect windows.

But you can try (after seeing these example) to formulate these conditions
yourself.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 30/62

NP-completeness of SAT problem

Examples of incorrect windows where we assume that
5(q57 a) = {(q87b7 _1)7 (q37 a, +1)}:

as as
a b a a 5 a a a b
b | # | a blala Bl | T
as q
Iy a aaCC a b a b b
de as
b b a a a b a b a

Z. Sawa (TU Ostrava)

Theoretical Computer Science December 8, 2024 31/62

NP-completeness of SAT problem

Examples of correct windows where we assume
5(q57 a) = {(q87b7 _1)7 (q37 a, +1)}:

alb| a a ‘;5 b a | O
as a3

a b a a a b b a O

as Qacc

Iy b a a a b O O #

b | b | a a | a q%“ oo #

Z. Sawa (TU Ostrava)

Theoretical Computer Science

December 8, 2024 32/62

NP-completeness of SAT problem

We denote the set of all tuples of six symbols that form a correct contents
of windows (for the given particular machine M) as Corr.

le., (a,b,c,d,e, f) € Corr iff

is a correct content of a window.

The total number of all possible contents of a window is |A|®, which is
a constant independent of the size the input w, and so also the number of
elements of the set Corr is a constant independent of the size of the input.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 33/62

NP-completeness of SAT problem

For each window in the table we add a subformula to ¢ that claims that
the content of the given window is correct (i.e., that it contains one of the
correct tuples of six symbols).

l.e., for each i such that 0 </ < p(n), and each j such that 0 < j < p(n),
we add the following subformula to ¢:

a b c d e f
\/ (Xi,j A Xij+1 N Xijeo A Xip1j A Xig1je1 A Xi+1,j+2)
(a7 b? C’ d7 e’ f)
€ Corr

Each of these subformulas is of the size at most (’)(|A|6), i.e., bounded by
some constant independent of the size of the input w.

The total number of these subformulas is O(p(n)?)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 34 /62

NP-completeness of SAT problem

Now it remains to ensure the last condition:

The last line of the table contains a configuration where the state
of the control unit is qcc.

Again, this is simple — it is sufficient to add a subformula to ¢ that
claims that on some position in the last line (i.e., on the line p(n)) there is
a pair (gacc, @) where a a symbol from T.
This subformula looks as follows:

p(n)+1

(qBCC 7a)
X .
\/ p(n),j
j=1 ael

The size of this formula is O(p(n)).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 35/62

NP-completeness of SAT problem

We can see from the previous description that the size of the formula ¢
created for the given input w of the size n is in O(p(n)?).

If p(n) is a polynomial then also p(n)2 is a polynomial, and so the size of
@ is polynomial with respect to n.

Because the structure of the formula ¢ is simple and regular, it is also
obvious that the time complexity of the algorithm that creates the formula

for the given word w basically corresponds to the size of the formula ¢,
. 2
and it is also O(p(n)).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 36 /62

NP-completeness of SAT problem

So we have seen that the construction is polynomial; now we shortly
describe why it is correct:

@ Let us assume that the answer for w in the problem P is YES, which
means that there exists a computation of the nondeterministic
machine M (that solves the problem P) on the word w that gives the
answer YES.

This computation can be written to the table, and the variables in the
formula ¢ can be assigned boolean values according to the content of
this table.

It is obvious that in this assignment ¢ will have the value 1 becuase
all conditions tested in the fomula ¢ are satisfied.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 37/62

NP-completeness of SAT problem

@ Let us assume now that the formula ¢ is satisfiable, i.e., for some
assignment v is [¢], = 1.

Now, according to the valuation v we can fill in the table.

Because all conditions described in the formula ¢ must be satisfied
for the valuation v, it follows that the table filled this way contains
a description of an computation of the machine M on the word w
where this machine gives the answer YES, and so that such
computation exists.

We can see that the formula ¢ is satisfiable iff there exists a computation
of the machine M that accepts the word w, i.e., iff the answer is YES.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 38/62

Reduction from SAT to 3-SAT

We have seen that the SAT problem is NP-complete.

We will now show that it is still NP-complete even if it is restricted to
formulas of a certain specific form:

3-SAT

Input: A boolean formula ¢ in conjunctive normal form where every
clause contains exactly 3 literals.

Question: Is ¢ satisfiable?

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 39/62

Reduction T to 3-SAT

We will describe an algorithm that for a given formula ¢ constructs
a formula go' such that:

° <p' will be in CNF and each of its clauses will contain exactly 3 literals,

° <p' will be satisfiable iff ¢ will be satisfiable.

Remark: The simple idea — to transform ¢ to CNF — does not work.
The problem is that the resulting formula can be exponentially bigger
than ¢ (and so it can not be constructed in a polynomial time).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 40 /62

Reduction T to 3-SAT

The algorithm will be divided into two parts:

@ At first we construct a formula ¢, which will be in CNF and will
contain at most 3 literals in every clause
(and that will be satisfiable iff ¢ is satisfiable).

@ Then we will construct formula go' from 1 that will be in CNF and
that will contain exactly 3 literals in every clause
(and that will be satisfiable iff ; is satisfiable).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 41/62

Reduction from SAT to 3-SAT

Formula ¢ can be represented as a boolean circuit whose structure is given
by an (abstract) syntax tree of the given formula:

((x1 A =x3) = =x2) A ((x2 AX3) V x1)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 42 /62

Reduction from SAT to 3-SAT

The formula ¢ is satisfiable iff there exists some input, for which we
obtain 1 on the output.

((x1 A =x3) = =x2) A ((x2 AX3) V x1)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 42 /62

Reduction from SAT to 3-SAT

The formula ¢ is satisfiable iff there exists some input, for which we
obtain 1 on the output.

((x1 A =x3) = =x2) A ((x2 AX3) V x1)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 42 /62

Reduction from SAT to 3-SAT

The formula ¢; that will be constructd for a given formula ¢ will contain
the following variables:

o all variables that occur in the original formula ¢
(i.e., one variable for every input of the circuit),

@ one variable for every occurrence of a boolean operator in ¢
(i.e., one variable for every gate of the circuit).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 43 /62

Reduction from SAT to 3-SAT

Example: Formula ¢; will contain variables x, xo, . .., Xq0.

X1 X2 X3

((x1 A =x3) = =x2) A ((x2 A X3) V x1)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 44 /62

Reduction T to 3-SAT

The formula @7 will be constructed in such a way that for each valuation v
it will hold [1], = 1 iff:

@ v represents a correct assignment of boolean values to all inputs and
outputs of all gates, and

@ there is the value 1 on the output of the circuit.

(If some of these conditions is violated then 1], = 0.)

Z. Sawa (TU Ostrava)

Theoretical Computer Science December 8, 2024 45 /62

Reduction T to 3-SAT

Let us concentrate now on a single gate (e.g., of type A) whose output is

represented by a variable x; and whose inputs are represented by variables
xj and xj.

Xi

Z. Sawa (TU Ostrava)

Theoretical Computer Science

December 8, 2024 46 / 62

Reduction from SAT to 3-SAT

Possible (correct) assignments of values on inputs and on the output of
the given gate (of type A) are described by the following table:

The content of this table can represented by the following formula ¢:

(X A aXe X) A
(=g A x = -x) A
(x5 A = = =x) A
(x5 A X = X)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 47 /62

Reduction T to 3-SAT

The formula v represents the table given above in the sense that ¢ has
the value 1 for exactly those assignments that occur in this table (and for
those that do not occur there, it has the value 0).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 48 /62

Reduction T to 3-SAT

An arbitrary formula of the form
AANB - C
can be transformed to the formula of the form
-(AAB)Vv C
and this can be rewritten to the equivalent formula of the form

-Av-BvC

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 49 /62

Reduction from SAT to 3-SAT

So formula
(—X; AN X, D X) A
(= A X = =x) A
(g A x> oox) A
(x A x = x)
can be rewritten to the equivalent formula
(X vV X V =x) A
(X V =Xy V =X) A
(=xj V X V =x) A
(=% VvV =x VvV X)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 50/ 62

Reduction T to 3-SAT

For a gate of the type Vv, we can use similar approach.
For the table

we can construct formula

(X vV X V =x) A
(X VvV =xx V Xxi) A
(=xj V X vV x) A
(=% VvV =x vV Xx)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 51/62

Reduction from SAT to 3-SAT

In a similar way, we can represent also other boolean operations (—, <,

As an example, here we have also a construction for a gate of the type =
(there is now just one input x;):

For the table

X | X
01
110

the corresponding formula is
(=x; = xi) A (xj = =x;)
that can be rewritten to the form

(x5 Vx;) A (=xV =x)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

Reduction from SAT to 3-SAT

Now we go to the construction of the fomula ¢; that can be created as
a conjunction of the following formulas:

@ For each gate, we add one corresponding formula constructed as
discussed above.

o We add the formula x,,; where x,,; is a variable representing the
output of the circuit.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 53 /62

Reduction from SAT to 3-SAT

Example:

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 54 /62

Reduction from SAT to 3-SAT

Example:

X1 X2 X3

For x4 we add the following clauses to the formula ¢1:
(Xl V X5 V —|X4), (X]_ V =Xs V —|X4), (—|X1 V X5 V —|X4), (—|X]_ V X5 V X4)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 54 /62

Reduction from SAT to 3-SAT

Example:

For x5 the following clauses will be added to the formula ¢1:
(x3 V x5), (X3 V =x5)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 54 /62

Reduction from SAT to 3-SAT

Example:

X1 X2 X3

For xg we add the following clauses to the formula ¢1:
(X4 V X7V X6)7 (X4 V =ax7 V X6)7 (—|X4 VX7V —|X6), (—|X4 V =ax7 V X6)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 54 /62

Reduction from SAT to 3-SAT

Example:

X1 X2 X3

For x7 the following clauses will be added to the formula ¢1:
(x2 vV x7), (=32 V =x7)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 54 /62

Reduction from SAT to 3-SAT

Example:

X1 X2 X3

For xg we add the following clauses to the formula ¢1:
(X2 V X3V —|X8), (X2 V ax3V —1X8)7 (—|X2 V X3V _'X8)7 (—|X2 V ax3V Xg)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 54 /62

Reduction from SAT to 3-SAT

Example:

X1 X2 X3

For x9 we add the following clauses to the formula ¢1:
(Xg VX1V —|X9), (X8 V ax3 V Xg), (—|X8 VXV Xg), (—|X8 V =x3 V Xg)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 54 /62

Reduction from SAT to 3-SAT

Example:

X1 X2 X3

For x19 we add the following clauses to the formula ¢;:
(X6 V Xg V —1X]_0), (X6 V =Xg V —|X10), (—|X6 V Xg V —|X10), (—|X6 V =Xg V XlO)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 54 /62

Reduction from SAT to 3-SAT

Example:

X1 X2 X3

At the end, we add a clause representing the value on the output:
(x10)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 54 /62

Reduction from SAT to 3-SAT

The whole formula ¢ now looks as follows:

(x1VxsVaxa) A (g VaxsVaxg) A (axq Vs Vaxg) A (Bxg Vaxs Vxg) A
(x33Vxs) A (Ax3V axs) A

(xaVxsVxs) AN (xaVaxsVxg) A (mxa VX Vaxg) A (mxg Vaxg Vxg) A
(VX)) A (mxVaxg) A

(oVx3Vaxg) A (xoV=ax3Vaxg) A (axoVxzVaxg) A (mx V—axz Vxg) A
(g VXxgVaxg) A(xgVaxiVx) A (mxgVxiVxg) A (mxgVaxgVxg) A
(X6 VXxgV=xip) A (X6V=xgV—xig) A (mxgV X9V axig) A (=X VaxgVxgg) A
(x10)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 55 /62

Reduction from SAT to 3-SAT

Now we will check that ¢ is satisfiable iff ¢ is satisfiable.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 56 /62

Reduction T to 3-SAT

At first, let us assume that ¢ is satisfiable.
So there exists a valuation v such that [¢], = 1. Let us define
valuation /' as follows:

o V'(x;) = v(x;) if x; is a variable in formula ¢

o If x; represent an output of a gate, then we set '(x;) to the value
that will be on this output in valuation v.

Since [¢], = 1, there must be the case that '(xoy) = 1.

So it is obvious that [],' = 1 because x,,; and all other clauses
corresponding to individual gates will have the value 1 in the valuation v

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 57 /62

Reduction from SAT to 3-SAT

Let us assume now that ¢y is satisfiable,
i.e., [¢1], = 1 for some valuation v/'.

It is easy to verify that [],r = 1 because v must correspond to some
assignment of values on the outputs of individual gates where on the
output of the whole circuit is the value 1.

By this we have verified that the described construction of the formula ¢4
is correct.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 58 /62

Reduction from SAT to 3-SAT

Now we construct, for a formula 1, a formula cp' such that:
o ¢ will be in CNF,

I . . .
@ every clause of formule ¢ will contain exactly 3 literals,
. . . I
@ no variable will occcur in some clause of formula ¢ more than once,

o ¢ will be satisfiable iff ¢ is satisfiable.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 59 /62

At first, we get rid of redundant literals and clauses:

@ If some literal occurs in some clause more than once, we can remove
all its occurrences except one.

o If some clause contains at the same time literals x; and —x; (where x;
is a variable), we can remove the whole clause
(such clause will have the value 1 in every valuation).

It is obvious that the modified formula is equivalent to the original formula.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024

Reduction from SAT to 3-SAT

We add two new variables y and z.
o Clauses with three literals will be left as they are.

e Every clause of the form (A v B) (i.e., a clause with two literals
A and B) will be replaced with the following pair of clauses:

(AvBvVy) A (AVv BV -y)

@ Every clause of the form (A) (i.e., a clause with one literal) will be
replace the four following clauses:

(Avyvz) A (AVvyv=z) A (AVayvz) A (AV ayV az)

It is not difficult to check that the resulting formula ' is satisfiable iff the
original formula was satisfiable.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 61 /62

Reduction T to 3-SAT

If the size of formula ¢ is n, the sizes of formulas ¢; and gp’ will be

in O(n).

The formulas o7 and ¢’ can be easily construct in time O(n).

So the described reduction is a polynomial reduction.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 8, 2024 62 /62

	Examples of Proofs of NP-completeness

