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classes

Z. Sawa (TU Ostrava) Theoretical Computer Science November 27, 2024 1 / 61



PSPACE-complete and EXPTIME-complete problems

A problem A is PSPACE-hard if for every problem A
′
from PSPACE

there is a polynomial time reduction of A
′
to A.

A problem A is PSPACE-complete if it is PSPACE-hard
and belongs to PSPACE.

A problem A is EXPTIME-hard if for every problem A
′

from EXPTIME there is a polynomial time reduction of A
′
to A.

A problem A is EXPTIME-complete if it is EXPTIME-hard
and belongs to EXPTIME.

⋮

Z. Sawa (TU Ostrava) Theoretical Computer Science November 27, 2024 2 / 61



PSPACE-complete and EXPTIME-complete problems

Generally, for arbitrary complexity class C we can introduce classes of
C-hard and C-complete problems:

Definition

A problem A is C-hard if for every problem A
′
from the class C there

is a polynomial time reduction of A
′
to A.

A problem A is C-complete if it is C-hard and belongs to the class C.

So in addition to NP-complete problems, we have PSPACE-complete
problems, EXPTIME-complete problems, EXPSPACE-complete problems,
2-EXPTIME-complete problems, . . .

Generally speaking, C-complete problems are always the hardest problems
in the given class C.
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P-complete problems, NL-complete problems, . . .

Remark: The notions of C-hard and C-complete problems defined as
above, where a polynomial time reductions are used, do not make much
sense for the class P and other classes, which are subsets of this class
(such as NL).

For such classes, the notions of C-hard and C-complete problems are
defined in a similar way as before but instead of polynomial time
reductions they use so called logspace reductions:

an algorithm performing the given reduction must be deterministic
and to have a logarithmic space complexity

For example, the following classes are defined this way:

P-complete and P-hard problems

NL-complete and NL-hard problems
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Classes co-NP, co-NL, . . .

For those classes where whether a given problem belongs or does not
belong to a given class depends on existence or nonexistence of
a deterministic algorithm solving this problem, it holds that:

a problem A belongs to the given class iff its complement problem Ā

belongs to the class.

An algorithm solving problem Ā is obtained from an algorithm solving
problem A by simply negating the answer of the original algorithm.

But this need not be the case for classes that refer to existence of
nondeterministic algorithms — such as classes NP, NL, or NEXPTIME.
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Classes co-NP, co-NL, . . .

Therefore there are introduced classes such as:

co-NP — the class consisting of exactly those problems that are
complement problems of problem in the class NP

co-NL — the class consisting of exactly those problems that are
complement problems of problems in the class NL

. . .

For example, the class co-NP consists of those problems, for which:

There exists a nondeterministic algorithm with polynomial time
complexity accepting exactly those inputs, for which the answer is No.

For inputs, for which the answer is No, there exist witnesses of
polynomial size that can be checked by a deterministic polynomial
algorithm.
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co-NP-complete problems

In a similar way how NP-hard and NP-complete problems are defined, we
can also define co-NP-hard and co-NP-complete problems.

Examples of co-NP-complete problems:

UNSAT

Input: Boolean formula ϕ.

Question: Is formula ϕ unsatisfiable?

The complement problem to problem IS (independent set)

Input: Undirected graph G and number k .

Question: Is it the case that the graph G does not contain any
independent set of size k ?

Remark: Reduction showing co-NP-hardness of complement problems are
exactly the same reductions that show NP-hardness of original problems.
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co-NP-complete problems

An example of a problem where it is more natural to define it in a form
that belongs to class co-NP:

TAUTOLOGY

Input: Boolean formula ϕ.

Question: Is formula ϕ a tautology?

Again, this is an example of co-NP-complete problem.
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Class PSPACE
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Class PSPACE

Let us recall the definition of the class PSPACE:

A decision problem A belongs to the class PSPACE iff there exists an
algorithm with polynomial space complexity (i.e., an algorithm with
space complexity O(f (n)), where f (n) is a polynomial) that solves it.

Let us recall Savitch’s theorem:

For each nondeterministic algorithm with space complexity f (n), it
is possible to construct a deterministic algorithm with space
complexity O(f (n)

2
) that gives answer Yes for exactly those inputs,

for which there exists an accepting computation of the original
nondeterministic algorithm.

Therefore, to show that a given problem A belongs to PSPACE, it is
sufficient to show a nondeterministic algorithm with a polynomial space
complexity.
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Transition systems

Let us say that we have a system where:

The system can be in any state from a given set of states.

Let us denote this set of states States.

It is possible to from one state to another using a transition.

Let Transitions be the set of those transitions, i.e., those pairs (α, β)
where α, β ∈ States and it is possible to go from state α to state β.

The notation
α⟶ β

stands for (α, β) ∈ Transitions.
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Transition systems

We say that a state αn is reachable from a state α0 if there exists
a finite sequence α0, α1, . . . , αn, where n ≥ 0, and where

α0 ⟶ α1 ⟶ α2 ⟶ ⋯ ⟶ αn−1 ⟶ αn

The fact that state β is reachable from state α is denoted by the
notation

α⟶
∗
β

Let us assume we have some initial state α0 and some final

state αf .

We can ask whether
α0 ⟶

∗
αf

(We could also consider more general case where we have a set of

initial states and a set of final states.)
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Transition systems

Such system can be viewed as a directed graph:

nodes — the elements of the set States

edges — the transitions from the set Transitions

Reachability corresponds to an existence of a path between given nodes.

I.e., α⟶
∗
β holds iff there is a path from α to β in the given graph.
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Transition systems

Such system need not be given explicitly, i.e., by listing all states and
transitions, but it can be described implicitly by some other way, e.g.:

States cound be represented by some finite objects (for example as
words over some alphabet Σ).

Moreover, we can have an algorithm that determines for a given
object whether this object represents a state of the given system or
not(e.g., if a given word is a represntation of a state from the set
States).

Transitions could be represented by an algorithm that determines for
each pair α, β ∈ States whether

α⟶ β

Initial states can be represented by an algorithm that for each
state α determines whether it is an initial state or not.

Final states can be represented by an algorithm that for each state α
determines whether it is a final state or not.
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Transition systems

Consider now such system where we also assume that:

States could be represented by objects of polynomial size where it is
possible to check by an algorithm with polynomial space if it is
a state from the set States or not.

So there can exponentially many states but a polynomial space is
sufficient to store one state.

There are algorithms with polynomial space complexity that allow to
check for each states α, β whether:

if α and β are the same state, i.e.. if α = β

if α⟶ β

if α is an initial state
if α is a final state

There is a way how to generate, using a polynomial amount of
memory, all states from the set States, i.e., we have an algorithm
with polynomial space complexity that for a describion of a state α
computes the next state α’ .
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Transition systems

For such system, we can easily construct a nondeterministic algorithm
with polynomial space complexity solving the problem whether some final
state is reachable from some initial state,
i.e., if there exist some initial state α0 and some final state αf ,
for which we have α0 ⟶

∗
αf :

The algorithm will rememeber:

A current state α
A value of the counter c — how many steps can be done yet
(the counter c will be represented in binary)

At the beginning, α is initialized by some nondeterministically chosen
initial state α0.

The counter will be initialized to a value that will be greater or equal
to ∣States ∣ − 1.

Since there is at most an exponential number of states, a polynomial
number of bits will be sufficient to represent a value of the counter.
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Transition systems

The algorithm will perform the following in a cycle:

If α is a final state, it halts with answer Yes.

If the value of the counter c is 0, it halts with answer No.

It nondeterministically chooses a state α
′
such that α⟶ α

′
.

Is sets the value α to α
′
.

The counter c is decremented by 1.

It continues with the next interation.

So the algorithm nondeterministically guesses a path in the graph, while
remembering only a current state.

It is obvious that a polynomial space is sufficient for this algorithm.
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Transition systems

We can use Savitch’s theorem and derive from it that there exists
a deterministic algorithm with polynomial space complexity solving the
given problem.

Alternatively, it is possible to directly construct a deterministic algorithm
based on the same idea that is used in the proof of Savitch’s theorem.

So this solution does not need to use to Savitch’s theorem.

The main part of the algorithm is a recursive function

Reach(i , α, β)

that returns a boolean value as the return value:

it returns True iff there exists a path from α to β of length at
most 2

i
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Transition systems

Reach (i , α, β):
if i = 0 then

if (α = β or α⟶ β) then return True

else

for each γ ∈ States do

if Reach(i − 1, α, γ) and Reach(i − 1, γ, β) then

return True

return False

So it is sufficient to call function Reach(h, α, β) for all initial states α
and all final states β, with a number h such that

2
h
≥ ∣States ∣ − 1
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Transition systems

It is obvious that:

For each call of the function Reach, a polynomial amount of
memory is sufficient to store its arguments and local variables.

the initial value of variable i , the value h, is in O(log ∣States ∣).

The depth of recursive calls of function Reach is equal to h, and so
it is also in O(log ∣States ∣).

This value is at most polynomial.

So we can see that this deterministic algorithm has a polynomial space
complexity.
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Pebble game

Consider the following pebble game:

We have a directed acyclic graph G = (V ,E)where one of the nodes
(denoted t) is selected as a target.

We have k pebbles. These pebbles can be put on nodes of the graph.

At the beginning, the graph is empty.

The steps can be performed according to the following rules:

If a node v is empty and all predecessors of v (i.e., all nodes v
′

such that there is an edge from v
′
to v) contain pebbles, it is

possible to put a pebble on node v .

If a node v is empty and all predecesors of v contain pebbles,
a pebble from one of there predecesors can be moved to node v .

A pebble lying on a node of graph G can be taken away.
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Pebble game

The goal is to find a sequence of moves such that after these moves,
a pebble is put on the target node t, or to find out that there is no
such sequence.

Remark: This is not a game in a proper sanse since there are not two
players playing againts each other. It is more like a puzzle.

The problem can be formulated as follows:

Pebble game

Input: A directed acyclic graph G with a denoted target node t,
and a number of pebbles k .

Question: Is there a sequence of moves such that at the end of this
sequence, a pebble is put on the node t ?
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Pebble game

The pebble game can be viewed as a transition system where:

The states correspond to all possibilities how up to k pebbles can be
put on n nodes of the graph G .

The transitions are given by the rules that specify how pebbles could
be put, moved, or removed.

The initial state corresponds to the situation where graph G

contains no pebbles.

The final states are those situations where a pebble is on the node t.
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Pebble game

States can be represented as n-tuples of bits where the value of i-th
bit specifies whether a node with number i contains a pebble or not.

(We assume that nodes are denoted by numbers 0, 1, . . . , n − 1.)

It is obvious that the following tests can be done in time proportional
to the size of graph G :

a test whether states α and β are the same (i.e., if α = β)
a test whether it is possible to go from state α to state β in one step
a test if α is an initial state
a test if α is an final test

We can see that:

Theorem

The “Pebble game” problem is in PSPACE.
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Equivalence of nondeterministic finite automata

Equivalence of NFA

Input: Nondeterministic finite automata A1 and A2.

Question: Is L(A1) = L(A2) ?

This problem can be solved as follows:

For given nondeterministic finite automata A1 and A2, we can
construct equivalent deterministic finite automata A

′
1 and A

′
2, and

for these deterministic finite automata we will try to find
a distinguishing word that is accepted by one of these automata and
rejected by the other.

If there exists such a distinguishing word, we have L(A1) ≠ L(A2)

(and the answer is No), if not, then L(A1) = L(A2) (and the answer
is Yes).
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Equivalence of nondeterministic finite automata

When a nondeterministic finite automaton is transformed to deterministic,
the number of states can increase exponentially:

The states of the deterministic automaton correspond to subsets of
the set of states of the original nondeterministic automaton, and
there can be up to 2

n
such subsets where n is the number of the

states of the original automaton.

So this approach is of an exponential space complexity.
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Equivalence of nondeterministic finite automata

But it is not necessary to keep whole deterministic automata A
′
1 and A

′
2 is

memory.

Moreover, we can use nondeterminism when we are looking for
a distinguishing word:

The algorithm remembers only current states of deterministic
automata A

′
1 and A

′
2

(where the first of them is a subset of the set of states of
automaton A1 and the second a subset of the set of states of
automaton A2).

The algorithm nondeterministically guesses symbols of
a distinguishing word.

In one step, it guesses a following symbol, and simulates reading of
this symbol on the states of automata A

′
1 and A

′
2.
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Equivalence of nondeterministic finite automata

It is obvious that a polynomial amount of memory is sufficient for this
nondeterministic algorithm.

Using Savitch’s theorem, this nondeterministic algorithm can be
transformed into a deterministic algorithm with a polynomial space
complexity.

So we have the following:

Theorem

Problem “Equivalence of NFA” is in PSPACE.

Remark: Alternatively, it is possible not to refer to Savitch’s theorem but
instead, to construct a corresponding deterministic algorithm with
polynomial space complexity directly.
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Equivalence of nondeterministic finite automata

It follows from this that also the following problem (that can be viewed as
a special case of “’Equivalence of NFA”) belongs to PSPACE:

Universality of NFA

Input: A nondeterministic finite automaton A.

Question: Is L(A) = Σ
∗
?

Moreover, this problem is PSPACE-hard and so PSPACE-complete.

From this we immediately obtain that the problem “Equivalence of NFA”
is PSPACE-complete.

Theorem

Problems “Equivalence of NFA” and “Universality of NFA” are both
PSPACE-complete.
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Equivalence of nondeterministic finite automata

The proof of PSPACE-hardness of “Universality of NFA” can be done in
such a way that we show for every problem A from PSPACE how to
construct a polynomial reduction from A to the complement problem of
“Universality of NFA”:

Let us assume that problem A belongs to PSPACE.

So there exists a one-tape deterministic Turing
machine M = (Q,Σ, Γ, δ, q0,F ) that solves problem A, and
a polynomial p(n) such that if machine M obtains as input a word w

of size n, then all configurations, through which the machine M goes
during the computation on w , are of size at most p(n).

These configurations can be written as words over the alphabet
∆
′
= Γ ∪ (Q × Γ) of size exactly p(n).
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Equivalence of nondeterministic finite automata

A computation of machine M on word w then can be represented as
a word obtained by concatenating of words representing individual
configurations where these configurations are separated by #.

The machine M gives answer Yes for input w iff its computation
over this word halts in an accepting configuration where the state of
the control unit will be the accepting final state qacc .

For the given Turing machine M and word w we can construct
a nondeterministic finite automaton A that accepts exactly those
words over alphabet ∆ = ∆

′
∪ {#} that are not representations of an

accepting computation of machine M over word w :

if M accepts w , then L(A) ≠ ∆
∗

if M does not accept w , then L(A) = ∆
∗
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Equivalence of nondeterministic finite automata

Those words over alphabet ∆ that are not correct representations of an
accepting computation of machine M over word w where every
configuration is written as a word of length p(n), look as follows:

they are not of the correct format, i.e., they are not a sequence of
configurations where every configuration is of length p(n), or
they do not start with the initial configuration of machine M over
input w , or
they contain some pair of consecutive configurations αi and αi+1 that
do not correspond to the step that would be performed by
machine M in configuration αi , or
they do not end with a configuration where the state of the control
unit is qacc .

All of them are properties that can be easily recognized by
a nondeterministic finite automaton A whose size is polynomial with
respect to the length of word w (which is the input of the machine M),
assuming p(n) is a polynomial.
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Equivalence of regular expressions

In a very similar way, it is possible to prove PSPACE-completeness of the
following two problems.

Equivalence of regular expressions

Input: Regular expressions α1 and α2.

Question: Is L(α1) = L(α2) ?

Universality of regular expressions

Input: A regular expression α.

Question: Is L(α) = Σ
∗
?
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Equivalence of regular expressions

To show that these problems are in PSPACE, it is sufficient to note
that for every regular expression α, it is possible to construct
a nondeterministic finite automaton A such that L(A) = L(α), and
this construction can be done in polynomial time (and so also in
polynomial space).

So it is sufficient to transform the given regular expressions to
nondeterministic finite automata and to use the algorithms described
before that work with nondeterministic finite automata and are of
polynomial space complexity.

For the proof of PSPACE-hardness, a regular expression is constructed
that describes a language consisting of exactly those words that are
not a correct representation of an accepting computation of Turing
machine M on word w .
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Equivalence of regular expressions

Regular expressions with squaring are defined similarly as standard regular
expressions but in addition to the standard operators +, ⋅, and

∗
, they can

contain unary operator
2
with the following meaning:

α
2
is a shorthand for α ⋅ α.

The following two problems are EXPSPACE-complete:

Equivalence of regular expressions with squaring

Input: Regular expressions with squaring α1 and α2.

Question: Is L(α1) = L(α2) ?

Universality of regular expressions with squaring

Input: A regular expression with squaring α.

Question: Is L(α) = Σ
∗
?
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Equivalence of regular expressions

To show that these problems are in EXPSPACE can be done as
follows:

In a regular expression with squaring, each subexpression of the
form α

2
can be replaced with an equivalent subexpression α ⋅ α.

This transformation increases the size of an expression at most
exponentially.

So when we use the algorithms with polynomial space complexity
described before on these exponentially big regular expressions
obtained by this transformation, we will obtain an algorithm with an
exponential space complexity.
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Equivalence of regular expressions

The proof of EXPSPACE-hardness is very similar to the proof of
PSPACE-hardness for regular expressions without squaring.

A general reduction that can be used for every problem A

from EXPSPACE is described.

If a problem A is in EXPSPACE, there exists a one-tape deterministic
Turing machine M that solves it, with a space complexity, which is

bounded from above by a function of the form 2
p(n)

, where p(n) is
a polynomial.

A computation of this machine M on word w of length n can be
described as a sequence of configurations where each configuration

can be written as a word over alphabet ∆ of length 2
p(n)

.

Again, we can construct a regular expression (now with squaring)
describing exactly those words that are not representations of
an accepting computation of the machine M on the word w .
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Equivalence of regular expressions

It is possible to describe exponentially long sequences of symbols between
pairs of corresponding triples of symbols in each consecutive pair of
configurations with subexpressions of the form

((⋯(((α
2
)
2
)
2
)⋯)

2
)
2

of polynomial size.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 27, 2024 38 / 61



Quantified Boolean Formulas (QBF)

Quantified Boolean Formulas (QBF) are a generalization of standard
boolean formulas.

These formulas are defined as follows:

Formula of the form x , where x is a boolean variable, is a well-formed
formula.

Formulas of the form ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, ϕ1 ↔ ϕ2,
where ϕ1 and ϕ2 are well-formed formulas, are well-formed formulas.

Formulas of the form ∃x .ϕ1 and ∀x .ϕ1, where x is a boolean variable
and ϕ1 is a well-formed formula, are well-formed formulas.

Example:

∃x1.∀x2.∃x3.((¬x1 ∨ x2) ∧ (x1 ∨ ¬x3))
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Quantified Boolean Formulas (QBF)

Boolean variables take values from the set Bool = {0, 1}.

A formula of the form ∃x .ϕ can be viewed as a short way how to
express the formula of the form

ϕ[0/x] ∨ ϕ[1/x]

and similarly a formula of the form ∀x .ϕ can be viewed as a short
way how to express the formula of the form

ϕ[0/x] ∧ ϕ[1/x]

where notation ϕ[b/x] denotes formula ϕ with free occurrences of
variable x replaced with boolean constant b.

The meaning of boolean connectives ¬, ∧, ∨, →, and ↔ is the same
as in propositional logic.
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Quantified Boolean Formulas (QBF)

Quantified boolean formulas can be also viewed as a special case of
formulas of predicate logic where variables take values from the
universe Bool = {0, 1}.

A formula ϕ is closed if it does not contain any free variables, i.e., if
every occurrence of a boolean variable is bound by a quantifier.

Truth value of formula ϕ depends on assignment of truth values to all
boolean variables that have free occurrences in ϕ.

So in the case of closed formulas, their truth value does not depend
on an assignment of truth values to variables.

We say a closed formula ϕ is true if its truth value is 1.
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Quantified Boolean Formulas (QBF)

Consider the following decision problem:

Problem of quantified boolean formulas (QBF)

Input: A quantified boolean formula ϕ.

Question: Is formula ϕ true?

Remark: In literature, this problem problem is also denoted with the
following names:

TQBF — True Quantified Boolean Formulas

QSAT — Quantified Satisfiability
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Quantified Boolean Formulas (QBF)

The problem of satisfiability of boolean formulas (SAT) can be
viewed as a special case of QBF:

Let ϕ be a standard boolean formula without quantifiers and assume
that x1, x2, . . . , xn are all boolean variables occurring in the
formula ϕ.

It is obvious that formula ϕ is satisfiable iff the following formula is
true:

∃x1.∃x2.⋯.∃xn.ϕ

In a similar way, we can express that a formula ϕ is a tautology by
the following quantified boolean formula:

∀x1.∀x2.⋯.∀xn.ϕ
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Quantified Boolean Formulas (QBF)

It is not difficult to see that the problem QBF belongs to PSPACE:

The core of the algorithm is a recursively defined function

Eval(ϕ, ν)

that obtains as arguments:

ϕ — a quantified boolean formula that should be evaluated

ν — a truth valuation assigning truth values to all boolean variables
that can occur as free variables in formula ϕ

Remark: The notation
ν[x ↦ b]

denotes the truth valuation that is the same as a truth valuation ν,
except that boolean value b is assigned to variable x .
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Quantified Boolean Formulas (QBF)

Function Eval(ϕ, ν) distinguishes different cases depending on the form
of formula ϕ.

If ϕ is of the form:

x : return (ν(x))

¬ϕ1: return (not Eval(ϕ1, ν))

ϕ1 ∧ ϕ2: return (Eval(ϕ1, ν) and Eval(ϕ2, ν))

ϕ1 ∨ ϕ2: return (Eval(ϕ1, ν) or Eval(ϕ2, ν))

ϕ1 → ϕ2: return ((not Eval(ϕ1, ν)) or Eval(ϕ2, ν))

ϕ1 ↔ ϕ2: return (Eval(ϕ1, ν) iff Eval(ϕ2, ν))

∃x .ϕ1: return (Eval(ϕ1, ν[x ↦ 0]) or Eval(ϕ1, ν[x ↦ 1]))

∀x .ϕ1: return (Eval(ϕ1, ν[x ↦ 0]) and Eval(ϕ1, ν[x ↦ 1]))
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Quantified Boolean Formulas (QBF)

It is obvious that the depth of recursive calls of function Eval is
bounded from above by the size of formula ϕ.

The total amount information that the algorithm must remember
during a computation is obviously bounded by a polynomial.

The problem QBF belongs to PSPACE.
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Quantified Boolean Formulas (QBF)

We will show now that the problem QBF is PSPACE-hard:

We need to show that for every problem A from PSPACE there exists
a polynomial reduction of problem A to QBF.

So let us assume that A is a problem from PSPACE, i.e., that there
exists an algorithm with polynomial space complexity that solves this
problem.

Let us assume that this algorithm is implemented in a form of some
machine M.

For example, we can assume that M is a one-tape deterministic
Turing machine.

(This choice is not very important, and the algorithm for the
reduction would work correctly also for other types of machines.)

Let us assume that the size of configurations of machine M on
word w is bounded from above by some polynomial p(n) where n is
the length of word w .
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Quantified Boolean Formulas (QBF)

Configurations of machine M in a computation on word w can be
“encoded” using values of boolean variables.

Let us assume that a configuration α will be encoded using values of
boolean variables

x1, x2, . . . , xr ,

where r is a natural number whose value is in O(p(n)).
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Quantified Boolean Formulas (QBF)

If a configuration α is encoded using variables x1, x2, . . . , xr , the
notations

∃α.ϕ ∀α.ϕ

will be understood as shorthands for

∃x1.∃x2.⋯.∃xr .ϕ ∀x1.∀x2.⋯.∀xr .ϕ

Let us say that configuration α is encoded using variables
x1, x2, . . . , xr , and configuration β using variables y1, y2, . . . , yr .

Formula Eq(α, β) expresses that α and β are one and the same
configuration:

(x1 ↔ y1) ∧ (x2 ↔ y2) ∧ ⋯ ∧ (xr ↔ yr)
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Quantified Boolean Formulas (QBF)

The behaviour of machine M will be represented by the following three
formulas (where configuration α is represented for example by variables
x1, x2, . . . , xr , and configuration β by variables y1, y2, . . . , yr )

— details of how precisely these formulas look will be similar as for
example in the case of the proof of NP-hardness of problem SAT:

Step(α, β) — expresses that machine M can go in one step from
configuration α to configuration β

Is-Init(α) — expresses that α is the initial configuration of
machine M on input w

Is-Acc(α) — expresses that α is an accepting final configuration of
machine M

Sizes of all these formulas are polynomial (or even linear) with respect to
value p(n).
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Quantified Boolean Formulas (QBF)

If we assume that configurations are encoded by r boolean variables, it is
obvious that the number of distinct configurations is at most 2

r
.

Configurations can not repeat during a computation of machine M

— this means that the length of such computation is at most 2
r
.

We will create a sequence of formulas

Reach0, Reach1, . . . , Reachr

where each formula

Reachi(α, β)

where 0 ≤ i ≤ r , will express that the machine M can go by at
most 2

i
steps from configuration α to configuration β.
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Quantified Boolean Formulas (QBF)

These formulas are defined inductively:

Reach0(α, β): is defined as

Eq(α, β) ∨ Step(α, β)

Reachi+1(α, β), where i ≥ 0:

simple direct definition could look like this

∃γ.(Reachi(α, γ) ∧ Reachi(γ, β))

However, the problem with this definition is that the size of formulas
Reachi here grows exponentially with the value of i .

Equivalently, we can express the same thing as follows:

∃γ.∀σ1.∀σ2.(

((Eq(σ1, α) ∧ Eq(σ2, γ)) ∨ (Eq(σ1, γ) ∧Eq(σ2, β))) →

Reachi(σ1, σ2))
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Quantified Boolean Formulas (QBF)

The resulting formula ϕ is constructed as follows:

∃α.∃β.(Is-Init(α) ∧ Is-Acc(β) ∧ Reachr(α, β))

It is not difficult to check that the formula ϕ is true iff there exists an
accepting computation of the machine M on the word w .

It is also not difficult to check that the size of this formula is
polynomial with respect to the length of the word w — this size
is O(p(n)

2
) where n = ∣w∣.

This formula can be easily constructed in polynomial time.

So we can see that QBF is PSPACE-hard problem.

So the proof of the following theorem is finished:

Theorem

Problem QBF is PSPACE-complete.
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Quantified Boolean Formulas (QBF)

Let us recall that problem SAT is often used for proving of NP-hardness of
different problems where NP-hardness of a problem A is shown by
describing a polynomial reduction from SAT to A.

In a similar way, QBF is often used to show PSPACE-hardness of other
problems:

To show that a problem A is PSPACE-hard,
is is sufficient to show polynomial reduction from QBF to A.
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Quantified Boolean Formulas (QBF)

By providing a reduction from QBF, it is possible to prove
PSPACE-hardness (and so also PSPACE-completeness) of the following
problem described before:

Pebble game

Input: An acyclic directed graph G with a distinguished target
node t, and number of pebbles k .

Question: Is there a sequence of moves such that at the end of this
sequence a pebble is put on node t ?

(This reduction is quite complicated, so we will not discuss it in detail
here.)
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Quantified Boolean Formulas (QBF)

In proofs of NP-hardness, SAT (where input is an arbitrary formula) can
be used but it is often easier to use 3-SAT (a restricted variant of SAT):

it is assumed that formulas are of a specific form
— they are in conjunctive normal form where every clause has
exactly 3 literals

In a similar way, it is ofter convenient to assume in a proof of
PSPACE-hardness of some problem A done by a polynomial reduction
from A to QBF that formula that is an instance of QBF is of a specific
form:

Q1 x1.Q2 x2.⋯ Qn xn . ψ

Q1, Q2, . . . , Qn are quantifiers (∃, ∀) that alternate,
i.e., Qi = ∃ for i odd, and Qi = ∀ for i even

the subformula ψ does not contain quantifiers and is in conjunctive
normal form where every clause contains exactly 3 literals
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Quantified Boolean Formulas (QBF)

Quantified formulas can be transformed to equivalent formulas in some
specific form using equivalent tranformations.

For example, we can transform every formula ϕ to an equivalent
formula ϕ

′
satisfying the following restrictions:

the only logical connectives that are used are ¬, ∧, and ∨
(it does not contain connectives ↔ and →):

A ↔ B ⟺ (A → B) ∧ (B → A)

A → B ⟺ ¬A ∨ B

negations (¬) are applied only to atomic formulas,
i.e., on boolean variables (e.g., ¬x):

¬∃x .A ⟺ ∀x .¬A

¬∀x .A ⟺ ∃x .¬A

¬¬A ⟺ A

¬(A ∧ B) ⟺ ¬A ∨ ¬B

¬(A ∨ B) ⟺ ¬A ∧ ¬B
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Quantified Boolean Formulas (QBF)

Moreover, the given quantified formula ϕ can be transformed by
equivalent transformations to so called prenex normal form:

Q1 x1.Q2 x2.⋯ Qn xn . ψ

where Q1, Q2, . . . , Qn are quantifiers (∃, ∀) and where subformula ψ
contains no quantifiers.

If x does not occur in formula A as a free variable, then we have for
example:

A ∧ ∃x .B ⟺ ∃x .(A ∧ B)

A ∨ ∃x .B ⟺ ∃x .(A ∨ B)

A ∧∀x .B ⟺ ∀x .(A ∧ B)

A ∨∀x .B ⟺ ∀x .(A ∨ B)

(Occurrences of variables can be renamed in such a way that variables
bound by different quantifiers have different names.
This will ensure that for example x does not occur in A as required above.)
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Quantified Boolean Formulas (QBF)

In a formula in prenex normal form

Q1 x1.Q2 x2.⋯ Qn xn . ψ

the subformula ψ (that does not contain quantifiers) can be transformed
to subformula of the form

∃y1.∃y2.⋯.∃yk .ψ
′

where:

ψ
′
is in conjunctive normal form where every clause contains

exactly 3 literals

y1, y2,⋯, yk are new auxiliary variables correponding to individual
subformulas of formula ψ

The construction is done is a similar way as in the reduction of SAT to
3-SAT.
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Quantified Boolean Formulas (QBF)

A formula in a prenex normal form can be easily transformed to the form
where quantifiers alternate regularly:

it is sufficient to add new quantifiers with new variables that are not
used anywhere else in the formula

Example: A formula of the form

∀x1.∀x2.∀x3.∃x4.∃x5.∃x6.∀x7.∀x8. ψ

can be transformed to formula

∃y1.∀x1.∃y2.∀x2.∃y3,∀x3.∃x4.∀y4.∃x5.∀y5∃x6.∀x7.∃y6.∀x8. ψ

where y1, y2, . . . , y6 are new, so far unused, variables.
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Quantified Boolean Formulas (QBF)

Note that most of these transformations do not change the size of a given
formula much:

the size of formula ϕ
′
is linear with respect to the size of original

formula ϕ
(i.e., if the size of the original formula ϕ is n, then the size of the
resulting formula ϕ

′
is in O(n))

The only problematic transformation where the size of the formula could
increase exponentially, is the replacement of formula of the form A ↔ B

with formula

(A → B) ∧ (B → A)

The only occurrence of logical connective ↔ in formulas that are created
in the construction described in the proof of PSPACE-hardness of QBF, is
in the formulas Eq(α, β)where it is applied only to atomic formulas.
So the size of such formulas increases only linearly by this transformation.
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