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Lecturer

Name: Ing. Zdeněk Sawa, Ph.D.

E-mail: zdenek.sawa@vsb.cz

Room: A1024

Web: http://www.cs.vsb.cz/sawa/uti/index-en.html

On these pages you will find:

Information about the course

Study texts

Slides from lectures

Exercises for tutorials

Actual information

A link to a page with animations

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 2 / 401



Requirements

Credit (22 points):

Written test (22 points) — it will be written on a tutorial

The minimal requirement for obtaining the credit is 7 points.

A correcting test for 14 points.

Exam (78 points)

A written exam consisting of three parts (26 points for each
part); it is necessary to obtain at least 10 points for each part.
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Theoretical Computer Science

Different areas of theoretical computer science:

algorithms

computational complexity

models of computation

automata theory

formal languages

syntax and semantics of programming languages

type theory

parallel and distributed systems

. . .
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Theoretical Computer Science

Overlapping with many other areas of mathematics and computer science:

logic

graph theory

number theory

cryptography

computational geometry

game theory

numerical mathematics

. . .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 5 / 401



Theoretical Computer Science

Some important characteristics of theoretical computer science:

formal mathematical approach to problems

the use of mathematical definitions and proofs

rigorous mathematical proofs

The notion of a proof, aximatic approach.

Logic — the study of reasoning, proofs, formalisms
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Conjunction

conjuction: A ∧ B

A B A ∧ B

0 0 0
0 1 0
1 0 0
1 1 1

Remark: also denoted as & or and

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 7 / 401



Rules for Conjunction

∧i:
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B

∧e1:
Γ ⊢ A ∧ B

Γ ⊢ A
∧e2:

Γ ⊢ A ∧ B

Γ ⊢ B

Assm:
Γ,A,∆ ⊢ A
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A Formally Written Proof

A ∧ B ,C ∧ D ⊢ B ∧ C

1. A ∧ B ,C ∧ D ⊢ A ∧ B (Assm)
2. A ∧ B ,C ∧ D ⊢ B (∧e2 1)
3. A ∧ B ,C ∧ D ⊢ C ∧ D (Assm)
4. A ∧ B ,C ∧ D ⊢ C (∧e1 3)
5. A ∧ B ,C ∧ D ⊢ B ∧ C (∧i 2,4)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 9 / 401



A Formally Written Proof

A ∧ B ,C ∧ D ⊢ B ∧ C

1. Γ ⊢ A ∧ B (Assm)
2. Γ ⊢ C ∧ D (Assm)
3. Γ ⊢ C (∧e1 2)
4. Γ ⊢ B (∧e2 1)
5. Γ ⊢ B ∧ C (∧i 4,3)

Remark: Γ := A ∧ B ,C ∧ D
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A Proof Represented as a Tree

A ∧ B ,C ∧ D ⊢ B ∧ C

Γ ⊢ A ∧ B
Γ ⊢ B

Γ ⊢ C ∧ D
Γ ⊢ C

Γ ⊢ B ∧ C

Remark: Γ := A ∧ B ,C ∧ D
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Derived Rule

Γ ⊢ (A ∧ B) ∧ C

Γ ⊢ A ∧ (B ∧ C )

1. Γ ⊢ (A ∧ B) ∧ C (premise)
2. Γ ⊢ A ∧ B (∧e1 1)
3. Γ ⊢ A (∧e1 2)
4. Γ ⊢ B (∧e2 2)
5. Γ ⊢ C (∧e2 1)
6. Γ ⊢ B ∧ C (∧i 4,5)
7. Γ ⊢ A ∧ (B ∧ C ) (∧i 3,6)
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Assumptions

permutation: weakening: contraction:

Γ,A,B ,∆ ⊢ C

Γ,B ,A,∆ ⊢ C

Γ,∆ ⊢ B

Γ,A,∆ ⊢ B

Γ,A,A,∆ ⊢ B

Γ,A,∆ ⊢ B

Ant:
Γ ⊢ A

Γ′ ⊢ A
(Γ ⊆ Γ′)

Ch:
Γ ⊢ A Γ,A ⊢ B

Γ ⊢ B
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Disjuction

Disjunction: A ∨ B

A B A ∨ B

0 0 0
0 1 1
1 0 1
1 1 1

Remark: also denoted as or
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XOR

xor (exclusive or): A⊕ B

A B A⊕ B

0 0 0
0 1 1
1 0 1
1 1 0

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 15 / 401



Rules for Disjuction

∨i1:
Γ ⊢ A

Γ ⊢ A ∨ B
∨i2:

Γ ⊢ B

Γ ⊢ A ∨ B

∨e:
Γ ⊢ A ∨ B Γ,A ⊢ C Γ,B ⊢ C

Γ ⊢ C
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An Example of a Proof

(A ∨ B) ∨ C ⊢ A ∨ (B ∨ C )

1. ϕ ⊢ (A ∨ B) ∨ C (Assm)
2. ϕ,A ∨ B ⊢ A ∨ B (Assm)
3. ϕ,A ∨ B ,A ⊢ A (Assm)
4. ϕ,A ∨ B ,A ⊢ A ∨ (B ∨ C ) (∨i1 3)
5. ϕ,A ∨ B ,B ⊢ B (Assm)
6. ϕ,A ∨ B ,B ⊢ B ∨ C (∨i1 5)
7. ϕ,A ∨ B ,B ⊢ A ∨ (B ∨ C ) (∨i2 6)
8. ϕ,A ∨ B ⊢ A ∨ (B ∨ C ) (∨e 2,4,7)
9. ϕ,C ⊢ C (Assm)
10. ϕ,C ⊢ B ∨ C (∨i2 9)
11. ϕ,C ⊢ A ∨ (B ∨ C ) (∨i2 10)
12. ϕ ⊢ A ∨ (B ∨ C ) (∨e 1,8,11)

Remark: ϕ := (A ∨ B) ∨ C
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Nagation

Negation: ¬A

A ¬A
0 1
1 0

Remark: also denoted by ∼ or not
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Proofs by Contradiction

Ctr:
Γ,A ⊢ B Γ,A ⊢ ¬B

Γ ⊢ ¬A

CtrN:
Γ,¬A ⊢ B Γ,¬A ⊢ ¬B

Γ ⊢ A
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Double Negation

¬¬i:
Γ ⊢ A

Γ ⊢ ¬¬A

1. Γ ⊢ A (premise)
2. Γ,¬A ⊢ A (Ant 1)
3. Γ,¬A ⊢ ¬A (Assm)
4. Γ ⊢ ¬¬A (Ctr 2,3)

¬¬e:
Γ ⊢ ¬¬A
Γ ⊢ A

1. Γ ⊢ ¬¬A (premise)
2. Γ,¬A ⊢ ¬A (Assm)
3. Γ,¬A ⊢ ¬¬A (Ant 1)
4. Γ ⊢ A (CtrN 2,3)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 20 / 401



Double Negation

The proof of CtrN by Ctr and ¬¬e:

CtrN:
Γ,¬A ⊢ B Γ,¬A ⊢ ¬B

Γ ⊢ A

1. Γ,¬A ⊢ B (premise)
2. Γ,¬A ⊢ ¬B (premise)
3. Γ ⊢ ¬¬A (Ctr 1,2)
4. Γ ⊢ A (¬¬e 3)
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From a Contradiction Anything Follows

CtrA:
Γ ⊢ A Γ ⊢ ¬A

Γ ⊢ B

1. Γ ⊢ A (premise)
2. Γ ⊢ ¬A (premise)
3. Γ,¬B ⊢ A (Ant 1)
4. Γ,¬B ⊢ ¬A (Ant 2)
5. Γ ⊢ B (CtrN 3,4)
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Contraposition

Cp (a):
Γ,A ⊢ B

Γ,¬B ⊢ ¬A
Cp (b):

Γ,A ⊢ ¬B
Γ,B ⊢ ¬A

Cp (c):
Γ,¬A ⊢ B

Γ,¬B ⊢ A
Cp (d):

Γ,¬A ⊢ ¬B
Γ,B ⊢ A

1. Γ,A ⊢ B (premise)
2. Γ,¬B ,A ⊢ B (Ant 1)
3. Γ,¬B ,A ⊢ ¬B (Assm)
4. Γ,¬B ⊢ ¬A (Ctr 2,3)

1. Γ,A ⊢ ¬B (premise)
2. Γ,B ,A ⊢ B (Assm)
3. Γ,B ,A ⊢ ¬B (Ant 1)
4. Γ,B ⊢ ¬A (Ctr 2,3)
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Chaining of Arguments

Ch:
Γ ⊢ A Γ,A ⊢ B

Γ ⊢ B

1. Γ ⊢ A (premise)
2. Γ,A ⊢ B (premise)
3. Γ,¬B ⊢ A (Ant 1)
4. Γ,¬B ⊢ ¬A (Cp (a) 2)
5. Γ ⊢ B (CtrN 3,4)
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Proof by Cases

PC:
Γ,A ⊢ B Γ,¬A ⊢ B

Γ ⊢ B

1. Γ,A ⊢ B (premise)
2. Γ,¬A ⊢ B (premise)
3. Γ,¬B ⊢ A (Cp (c) 2)
4. Γ,¬B ⊢ ¬A (Cp (a) 1)
5. Γ ⊢ B (CtrN 3,4)
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Law of Exluded Middle (Tertium Non Datur)

⊢ A ∨ ¬A

1. A ⊢ A (Assm)
2. A ⊢ A ∨ ¬A (∨i1 1)
3. ¬A ⊢ ¬A (Assm)
4. ¬A ⊢ A ∨ ¬A (∨i2 3)
5. ⊢ A ∨ ¬A (PC 2,4)
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Other Rules for Disjunction

Γ,¬A ⊢ B

Γ ⊢ A ∨ B

Γ,¬B ⊢ A

Γ ⊢ A ∨ B

1. Γ,A ⊢ A (Assm)
2. Γ,A ⊢ A ∨ B (∨i1 1)
3. Γ,¬A ⊢ B (premise)
4. Γ,¬A ⊢ A ∨ B (∨i2 3)
5. Γ ⊢ A ∨ B (PC 2,4)
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Implication

Implication: A→ B

A B A→ B

0 0 1
0 1 1
1 0 0
1 1 1

Remark: also denoted by ⇒ or ⊃

→ i:
Γ,A ⊢ B

Γ ⊢ A→ B
→e:

Γ ⊢ A→ B Γ ⊢ A

Γ ⊢ B

Remark: →e is better known as modus ponens
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Examples of Proofs with Implication

Γ ⊢ A→ B

Γ,A ⊢ B

1. Γ ⊢ A→ B (premise)
2. Γ,A ⊢ A→ B (Ant 1)
3. Γ,A ⊢ A (Assm)
4. Γ,A ⊢ B (→e 2,3)

Ch:
Γ ⊢ A Γ,A ⊢ B

Γ ⊢ B

1. Γ ⊢ A (premise)
2. Γ,A ⊢ B (premise)
3. Γ ⊢ A→ B (→ i 2)
4. Γ ⊢ B (→e 3,1)
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Equivalence

equivalence: A↔ B

A B A↔ B

0 0 1
0 1 0
1 0 0
1 1 1

Remark: also denoted by ⇔ or ≡ or iff
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Rules for Equivalence

↔ i:
Γ,A ⊢ B Γ,B ⊢ A

Γ ⊢ A↔ B

↔e1:
Γ ⊢ A↔ B Γ ⊢ A

Γ ⊢ B

↔e2:
Γ ⊢ A↔ B Γ ⊢ B

Γ ⊢ A
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Logical Constants

Logical Constants: ⊥ (false), ⊤ (true)

Remark: also denoted by 0, 1 or ff, tt

⊥e:
Γ ⊢ ⊥
Γ ⊢ A

⊤i:
⊢ ⊤
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⊥ and Negation

¬i:
Γ,A ⊢ ⊥
Γ ⊢ ¬A

1. Γ,A ⊢ ⊥ (premise)
2. Γ,A ⊢ ¬⊥ (⊥e 1)
3. Γ ⊢ ¬A (Ctr 1,2)

¬e:
Γ ⊢ ¬A Γ ⊢ A

Γ ⊢ ⊥
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⊥ and Negation

Ctr:
Γ,A ⊢ B Γ,A ⊢ ¬B

Γ ⊢ ¬A

1. Γ,A ⊢ B (premise)
2. Γ,A ⊢ ¬B (premise)
3. Γ,A ⊢ ⊥ (¬e 2,1)
4. Γ ⊢ ¬A (¬i 3)

CtrA:
Γ ⊢ A Γ ⊢ ¬A

Γ ⊢ B

1. Γ ⊢ A (premise)
2. Γ ⊢ ¬A (premise)
3. Γ ⊢ ⊥ (¬e 2,1)
4. Γ ⊢ B (⊥e 3)
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Syntax — Logical Connectives

If ϕ is a well-formed formula, then also ¬ϕ is a well-formed formula.

If ϕ and ψ are well-formed formulas, then also (ϕ ∧ ψ), (ϕ ∨ ψ),
(ϕ→ ψ), and (ϕ↔ ψ) are well-formed formulas.

⊥ and ⊤ are well-formed formulas.

Abstract syntax tree.

Conventions for omitting parentheses.
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Propositional Logic — Syntax

At — the set of atomic propositions

Alphabet — the set of symbols:

atomic propositions: all elements from At

logical connectives: ¬, ∧, ∨, →, ↔, ⊥, ⊤

parentheses: ), (

Language — which sequences of symbols are formulas:

If p ∈ At, then p is a formula.

⊥ and ⊤ are formulas.

If ϕ is a formula, then also ¬ϕ is a formula.

If ϕ and ψ are formulas, then also (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), and
(ϕ↔ ψ) are formulas.

There are no other formulas than those created according to the
previous rules.
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Propositional Logic — Syntax

A more succinct desciption of the syntax using so called Backus-Naur form:

ϕ ::= p | ⊥ | ⊤ | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ)

p represents an arbitrary atomic proposition from the set At

In the so called abstract syntax, we abstract from details such as
parentheses, priorities, etc.:

ϕ ::= p | ⊥ | ⊤ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ϕ↔ ϕ

An alternative notation for the abstract syntax:

ϕ ::= p | ⊥ | ⊤ | ¬ϕ1 | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | ϕ1 → ϕ2 | ϕ1 ↔ ϕ2
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Propsitional Logic — Semantics

Truth valuation: ν : At → {0, 1}

ν |= ϕ — fomula ϕ is true in valuation ν

ν 6|= ϕ — formula ϕ is not true in valuation ν

The definition of when a formula is true in valuation ν:

ν |= p, where p ∈ At, holds if and only if ν(p) = 1.

ν |= ⊥ never holds (i.e., it always holds that ν 6|= ⊥).

ν |= ⊤ always holds.

ν |= ¬ϕ holds if and only if ν 6|= ϕ.

ν |= ϕ ∧ ψ holds if and only if ν |= ϕ and ν |= ψ.

ν |= ϕ ∨ ψ holds if and only if ν |= ϕ or ν |= ψ.

ν |= ϕ→ ψ holds if and only if ν 6|= ϕ or ν |= ψ.

ν |= ϕ↔ ψ holds if and only if ν |= ϕ and ν |= ψ, or if ν 6|= ϕ and
ν 6|= ψ.
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Propositional Logic — Semantics

h¬ : {0, 1} → {0, 1}

x h¬(x)

0 1
1 0

h∗ : {0, 1} × {0, 1} → {0, 1} for ∗ ∈ {∧,∨,→,↔}

x y h∧(x , y) h∨(x , y) h→(x , y) h↔(x , y)

0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1
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Propositional Logic — Semantics

LAt — the set of all well-formed formulas

To each truth valuation ν : At → {0, 1}, there is assigned a function

ν̂ : LAt → {0, 1}

ν̂(p) = ν(p) for p ∈ At

ν̂(⊥) = 0

ν̂(⊤) = 1

ν̂(¬ϕ) = h¬(ν̂(ϕ))

ν̂(ϕ ∗ ψ) = h∗(ν̂(ϕ), ν̂(ψ)) for ∗ ∈ {∧,∨,→,↔}

ν |= ϕ — when ν̂(ϕ) = 1

ν 6|= ϕ — when ν̂(ϕ) = 0
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Interpretations and Models

In general, when discussing a semantics of a logic, we talk about
interpretations.

In the case of propositional logic, an interpretation is just a truth
valuation.

For other logics, interpretations can be something different.

If ν is an interpretation, the notation ν |= ϕ denotes that formula ϕ is
true in the intepretation ν.

An interpretation, where formula ϕ holds, is called a model of the
formula ϕ.

When Γ is a set of formulas, a model of this set of formulas is such
interpretation that is a model of each formula from Γ.
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Logical Entailment

ϕ – formula, Γ – a set of formulas

Fomula ϕ logically follows from formulas Γ, which is written as

Γ |= ϕ,

if ν |= ϕ hold for each interpretation ν, where for all formulas ψ ∈ Γ it
holds that ν |= ψ.

Remark: The set Γ can be infinite.

Instead of {ψ1, ψ2, . . . , ψn} |= ϕ, we usually write ψ1, ψ2, . . . , ψn |= ϕ.

Instead of ∅ |= ϕ, we usually write |= ϕ.
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Tautologies, Contradictions, and Satisfiable Formulas

Formula ϕ is:

tautology — for every interpretation ν it holds that ν |= ϕ

contradiction — for every interpretation ν it holds that ν 6|= ϕ

satisfiable — there exists at least one interpretation, for which it
holds that ν |= ϕ

|= ϕ — denotes that ϕ is a tautology

Remark:

A1,A2, . . . ,An |= B

iff

|= A1 → (A2 → ( · · · → (An → B) · · · ))
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Table Method

p ∧ (q → ¬r)

p q r ¬r q → ¬r p ∧ (q → ¬r)
0 0 0 1 1 0
0 0 1 0 1 0
0 1 0 1 1 0
0 1 1 0 0 0
1 0 0 1 1 1
1 0 1 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
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Table Method

((A→ B)→ A)→ A

A B A→ B (A→ B)→ A ((A→ B)→ A)→ A

0 0 1 0 1
0 1 1 0 1
1 0 0 1 1
1 1 1 1 1
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Deduction Systems

Deduction system — a set of rules that determine, how proofs can look
and what kinds of steps can be done in these proofs .

Example: A deduction system for propositional logic based on sequents
(sequent calculus), containing the following rules:

Assm Ant
∧i ∧e1, ∧e2

∨i1, ∨i2 ∨e
→ i →e
↔ i ↔e1, ↔e2
¬i ¬e
⊤i ⊥e

¬¬e

Remark: This is one of variants of so called natural deduction.
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Deduction Systems

ϕ – a formula, Γ – a set of formulas (it can be infinite)

For a given deduction system D, the notation

Γ ⊢D ϕ

denotes that in the system D, there exists a proof of formula ϕ from
assumptions Γ.

For a given deduction system D, it must specified precisely when Γ ⊢D ϕ
holds.

A system based on sequents (sequent calculus):

Γ ⊢D ϕ holds iff there are some formulas ψ1, ψ2, . . . , ψn from set Γ
such that using the rules of the system it is possible to derive

ψ1, ψ2, . . . , ψn ⊢ ϕ

(i.e., there exists a proof of this sequent).
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Deduction Systems

A deduction system D is:

sound — if it holds that if Γ ⊢D ϕ then Γ |= ϕ

I.e., it is not possible to prove an incorrect conclusion in this system.
What is derived, it really holds.

complete — if it holds that if Γ |= ϕ then Γ ⊢D ϕ

I.e., everything that holds can be also proved in the system.
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Deduction Systems

For proving that a given system is sound, it is sufficient to prove that every
rule is sound.

Example: For proving that rule

∧i:
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B

is sound, it is sufficient to show that:

if Γ |= A and Γ |= B , then Γ |= A ∧ B .
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Table Method in the Deduction System

It is possible to simulate the table method in the deduction system:

The fact that ϕ has truth value 1 in a given truth valuation, is
represented by formula ϕ.

The fact that ϕ has truth value 0 in a given truth valuation, is
represented by formula ¬ϕ.
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Table Method in the Deduction System

Example: Let us have atomic propositions p, q, r , and a formula ϕ
constructed from those atomic propositions using logical connectives.

If for example ν1 |= ϕ for valuation ν1, where

ν1(p) = 1, ν1(q) = 0, ν1(r) = 0,

it is possible to derive sequent

p,¬q,¬r ⊢ ϕ

If for example ν2 6|= ϕ for valuation ν2, where

ν2(p) = 0, ν2(q) = 1, ν2(r) = 0,

it is possible to derive sequent

¬p, q,¬r ⊢ ¬ϕ
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Table Method in the Deduction System

A B A ∧ B

0 0 0
0 1 0
1 0 0
1 1 1

For example, it is possible to derive the following rules for conjunction:

Γ ⊢ ¬A Γ ⊢ ¬B
Γ ⊢ ¬(A ∧ B)

Γ ⊢ ¬A Γ ⊢ B

Γ ⊢ ¬(A ∧ B)

Γ ⊢ A Γ ⊢ ¬B
Γ ⊢ ¬(A ∧ B)

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
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Table Method in the Deduction System

The table method can be viewed as an example of a proof by cases:

p1 p2 p3 ϕ

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

1. ¬p1,¬p2,¬p3 ⊢ ϕ (. . . )
2. ¬p1,¬p2, p3 ⊢ ϕ (. . . )
3. ¬p1, p2,¬p3 ⊢ ϕ (. . . )
4. ¬p1, p2, p3 ⊢ ϕ (. . . )
5. p1,¬p2,¬p3 ⊢ ϕ (. . . )
6. p1,¬p2, p3 ⊢ ϕ (. . . )
7. p1, p2,¬p3 ⊢ ϕ (. . . )
8. p1, p2, p3 ⊢ ϕ (. . . )
9. ¬p1,¬p2 ⊢ ϕ (PC 2,1)

10. ¬p1, p2 ⊢ ϕ (PC 4,3)
11. p1,¬p2 ⊢ ϕ (PC 6,5)
12. p1, p2 ⊢ ϕ (PC 8,7)
13. ¬p1 ⊢ ϕ (PC 10,9)
14. p1 ⊢ ϕ (PC 12,11)
15. ⊢ ϕ (PC 14,13)
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Equivalence of Formulas

Formulas ϕ and ψ are logicaly equivalent, which is denoted ϕ⇔ ψ, if for
every interpretation ν it holds

ν |= ϕ iff ν |= ψ.

Remark: ϕ⇔ ψ holds iff ϕ |= ψ and ψ |= ϕ.

Formulas ϕ and ψ are provably equivalent in a given deduction system,
which is denoted ϕ ⊣⊢ ψ, if

ϕ ⊢ ψ and ψ ⊢ ϕ.

Remark: If the deduction system is sound, then from ϕ ⊣⊢ ψ follows
ϕ⇔ ψ, if it is complete, then from ϕ⇔ ψ follows ϕ ⊣⊢ ψ.
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Equivalence of Formulas

ϕ⇔ ψ iff |= ϕ↔ ψ.

ϕ ⊣⊢ ψ iff ⊢ ϕ↔ ψ.

For arbitrary formulas ϕ, ψ, and χ, it holds:

ϕ⇔ ϕ.

If ϕ⇔ ψ, then ψ ⇔ ϕ.

If ϕ⇔ ψ and ψ ⇔ χ, then ϕ⇔ χ.

Similarly:

ϕ ⊣⊢ ϕ.

If ϕ ⊣⊢ ψ, then ψ ⊣⊢ ϕ.

If ϕ ⊣⊢ ψ and ψ ⊣⊢ χ, then ϕ ⊣⊢ χ.
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Equivalence of Formulas

When A ⊣⊢ A′ holds:

It is possible to prove Γ ⊢ A′ from Γ ⊢ A (and vice versa).

It is possible to prove Γ,A′,∆ ⊢ B from Γ,A,∆ ⊢ B (and vice versa).

When A ⊣⊢ A′ then it also holds that:

¬A ⊣⊢ ¬A′

A ∧ B ⊣⊢ A′ ∧ B , B ∧ A ⊣⊢ B ∧ A′

A ∨ B ⊣⊢ A′ ∨ B , B ∨ A ⊣⊢ B ∨ A′

A→ B ⊣⊢ A′ → B , B → A ⊣⊢ B → A′

A↔ B ⊣⊢ A′ ↔ B , B ↔ A ⊣⊢ B ↔ A′

(similarly for ⇔)
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Some Important Equivalences

Remark: All equivalences mentioned below are also provable (⊣⊢).

A⇔ ¬¬A ,

Associativity of ∧, ∨, ↔:

(A ∧ B) ∧ C ⇔ A ∧ (B ∧ C )
(A ∨ B) ∨ C ⇔ A ∨ (B ∨ C )

(A↔ B)↔ C ⇔ A↔ (B ↔ C )

Commutativity of ∧, ∨, ↔:

A ∧ B ⇔ B ∧ A A ∨ B ⇔ B ∨ A A↔ B ⇔ B ↔ A

Idempotence of ∧ and ∨:

A ∧ A⇔ A A ∨ A⇔ A
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Some Important Equivalences

Distributive laws for ∧ and ∨:

A∧ (B ∨C )⇔ (A∧B)∨ (A∧C ) A∨ (B ∧C )⇔ (A∨B)∧ (A∨C )

De Morgan’s laws:

¬(A ∧ B)⇔ ¬A ∨ ¬B ¬(A ∨ B)⇔ ¬A ∧ ¬B

Conjuction, resp. disjunction, of formulas A and ¬A is equivalent to ⊥,
resp. ⊤:

A ∧ ¬A⇔ ⊥ A ∨ ¬A⇔ ⊤
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Some Important Equivalences

Equvalences involving ⊥ and ⊤:

¬⊥ ⇔ ⊤ ¬⊤ ⇔ ⊥
A ∧ ⊥ ⇔ ⊥ A ∧ ⊤ ⇔ A

A ∨ ⊥ ⇔ A A ∨ ⊤ ⇔ ⊤
A→ ⊥⇔ ¬A A→ ⊤⇔ ⊤
⊥ → A⇔ ⊤ ⊤ → A⇔ A

A↔ ⊥⇔ ¬A A↔ ⊤⇔ A

Equivalences for replacing the logical connective implication:

A→ B ⇔ ¬A ∨ B ¬(A→ B)⇔ A ∧ ¬B

Equivalences for replacing the logical connective equivalence:

A↔ B ⇔ (A→ B) ∧ (B → A)
A↔ B ⇔ (A ∧ B) ∨ (¬A ∧ ¬B)
A↔ B ⇔ (A ∨ ¬B) ∧ (¬A ∨ B)
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Equivalent Transformations

Instead of A1 ⇔ A2, A2 ⇔ A3, . . . , An−1 ⇔ An, it is possible to write

A1 ⇔ A2 ⇔ A3 ⇔ · · · ⇔ An−1 ⇔ An

For arbitrary Ai , Aj , where i , j ∈ {1, 2, . . . , n}, it holds that Ai ⇔ Aj .

Similarly, instead of A1 ⊣⊢ A2, A2 ⊣⊢ A3, . . . , An−1 ⊣⊢ An, it is possible
to write

A1 ⊣⊢ A2 ⊣⊢ A3 ⊣⊢ · · · ⊣⊢ An−1 ⊣⊢ An

For arbitrary Ai , Aj , where i , j ∈ {1, 2, . . . , n}, it holds that Ai ⊣⊢ Aj .
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Normal Forms of Fomulas

Let us consider only formulas of propositional logic.

Literal — an atomic proposition or its negation, e.g., p or ¬r

L ::= p | ¬p

Elementary conjunction — a conjunction of one of more literals,
e.g., p ∧ ¬q, r , q ∧ ¬r ∧ p

C ::= L | L ∧ C

Elementary disjunction (clause) — a disjunction of one or more
literals, e.g., p ∨ ¬q, r , q ∨ ¬r ∨ p

D ::= L | L ∨ D
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Normal Forms of Fomulas

Disjunctive normal form (DNF) — a disjunction of one or more
elementary conjunctions, e.g., (p ∧ ¬q) ∨ (¬r) ∨ (¬r ∧ ¬p ∧ ¬q)

E ::= C | C ∨ E

Conjunctive normal form (CNF) — a conjunction of one or more
elementary disjunctions (clauses),
e.g., (p ∨ ¬q) ∧ (¬r) ∧ (¬r ∨ ¬p ∨ ¬q)

F ::= D | D ∧ F

Remark: Formulas ⊥ and ⊤ will be also considered to be in DNF and
CNF.
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Normal Forms of Fomulas

For formulas in CNF, it is easy to determine if they are tautologies or
not:

In a tautology in CNF, every clause constains as literals some atomic
proposition p and its negation ¬p.

For formulas in DNF, it is easy to determine if they are contradictions
or not:

In a contradiction in DNF, every elementary conjunction contains as
literals some atomic proposition p and its negation ¬p.
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Normal Forms of Fomulas

p q r ϕ

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

DNF:
(¬p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ ¬r) ∨ (p ∧ ¬q ∧ r)

KNF:
(p ∨ q ∨ r)∧ (p ∨¬q ∨¬r)∧ (¬p ∨ q ∨ r)∧ (¬p ∨¬q ∨ r)∧ (¬p ∨¬q ∨¬r)
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Normal Forms of Fomulas

When we consider a fixed finite set of atomic propositions At:

Complete disjunctive normal form (CDNF) — a formula in DNF,
where every elementary conjunction contains every atomic proposition
from At exactly once.

Example: (p ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r)

Complete conjunctive normal form (CCNF) — a formula in CNF,
where every clause contains every atomic proposition from At exactly
once.

Example: (p ∨ ¬q ∨ ¬r) ∧ (p ∨ q ∨ ¬r) ∧ (¬p ∨ q ∨ ¬r)

Remark: In the examples is At = {p, q, r}.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 65 / 401



Sets

Set — a collection of elements

Element a is a member of set S :

a ∈ S

Element a is not a member of set S : a 6∈ S

A finite set can be expressed by a list of elements of the set:

S = {a, b, c}

Subset: S ⊆ T — every element of set S is a member of set T
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Ordered n-tuples

Ordered n-tuple: (a1, a2, . . . , an) or 〈a1, a2, . . . , an〉

Ordered pair: (a, b) or 〈a, b〉

Ordered triple: (a, b, c) or 〈a, b, c〉

. . .

Cartesian product:
S1 × S2 × · · · × Sn

— the set of all ordered n-tuples

(a1, a2, . . . , an)

where a1 ∈ S1, a2 ∈ S2, . . . , an ∈ Sn
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Relations

Relation: R ⊆ S1 × S2 × · · · × Sn

to express relationships between n-tuples of elements

n — the arity of the relation

n = 1 — unary
n = 2 — binary
n = 3 — ternary

Example: Binary relation R1 ⊆ N× N consisting of pairs of numbers
(m, n), where m < n

(m, n) ∈ R1 iff m < n

Remark: N = {0, 1, 2, . . .}
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Relations

Predicate — assigns a truth value to a given n-tuple of elements
(a1, a2, . . . , an), depending on whether this n-tuple is or is not in a given
relation R :

R(a1, a2, . . . , an)

I.e., R(a1, a2, . . . , an) holds iff (a1, a2, . . . , an) ∈ R .

Example: Predicate R1, where

R1(m, n)

holds iff (m, n) ∈ R1, i.e., when m < n
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Relations

Unary relation — R ⊆ S represents some property of elements from set S

Example: Unary relation R2 ⊆ N consisting of those numbers that are
primes

Predicate R2 expressing that n is a prime

R2(n)
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Functions

Function — a binary relations f ⊆ S × T satisfying:

if (x , y1) ∈ f and (x , y2) ∈ f , then y1 = y2

I.e., for every element x ∈ S , there exists at most one element y ∈ T such
that (x , y) ∈ f .

This element is denoted
f (x)

Function f — represents a mapping that assignes elements from set T to
elements from set S :

f : S → T

Total vs. parcial functions
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Functions

Function f : S → T , where S = A1 × A2 × · · · × An:

f : A1 × A2 × · · · × An → T

n — the arity of function f

Instead of f ((a1, a2, . . . , an)), we write f (a1, a2, . . . , an).

Example: Binary function f1 : N× N→ N, which assigns to a pair of
numbers their sum

f1(x , y) = x + y
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Structures

Structure — a non-empty set of elements together with several relations
and functions over the elelents of this set

Example: Set N = {0, 1, 2, . . .} together with the following relations and
functions:

unary function f : N→ N, where f (x) = x + 1

binary function g : N× N→ N, where g(x , y) = x + y

binary function h : N× N→ N, where h(x , y) = x · y

binary relation P ⊆ N× N, where (x , y) ∈ P iff x = y

binary relation Q ⊆ N× N, where (x , y) ∈ Q iff x < y
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Structures

Example: Set A = {a, b, c} together with the following functions f and g

and relation R :

unary function f : A→ A and binary function g : A× A→ A

x f (x)

a b

b a

c b

g a b c

a c a a

b a b c

c a c c

binary relation R ⊆ A× A, where

R = {(a, a), (a, c), (b, b), (c , a), (c , b)}
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Signatures

Signature — tuple
(P,F , C, arity)

P — a set of predicate symbols

F — a set of function symbols

C — a set of constant symbols

arity : P ∪ F → N — a function determining the arity of each
predicate or function symbol

Example: Signature S = (P,F , C, arity), where P = {P ,Q,R},
F = {f , g}, C = {c , d}, and where arity(P) = 1, arity(Q) = 1,
arity(R) = 2, arity(f ) = 2, arity(g) = 1
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Interpretations

Signature S = (P,F , C, arity)

Interpretation: A = (A, a)

A — universe — an arbitrary non-empty set

a — a mapping assigning meaning to every symbol in signature S :

for P ∈ P (where arity(P) = n):

a(P) = PA, where PA ⊆ An is an arbitrary n-ary relation over set A

for f ∈ F (where arity(f ) = n):

a(f ) = f A, where f A : An → A is an arbitrary n-ary (total) function
over set A

for c ∈ C:

a(c) = cA, where cA ∈ A is an arbitrary element of the universe A
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Valuations

Variables: Var = {x0, x1, x2, . . .}

Remark: Variables will be denoted x , y , z

Assume an interpretation A = (A, a).

Valuation — determines values of variables, it assignes elements of the
universe to variables:

v : Var → A

An interpretation and a valuation:

I = (A, v)
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Terms

Term — an expression denoting an element of the universe:

x — where x ∈ Var

c — where c ∈ C

f (t1, t2, . . . , tn) — where f ∈ F , arity(f ) = n, and where t1, t2, . . . , tn
are terms

Examples of terms: x c f (x , y) f (g(x), f (c , y))

Syntax:
t ::= x | c | f (t, t, . . . , t)
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Terms

An interpretation and a valuation I = (A, v)

I(t) — a value of term t in interpretation A a valuation v

for x ∈ Var : I(x) = v(x)

for c ∈ C: I(c) = cA

for f ∈ F (where arity(f ) = n) and terms t1, t2, . . . , tn:

I(f (t1, t2, . . . , tn)) = f A(I(t1), I(t2), . . . , I(tn))
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Atomic Formulas

Atomic formula:
P(t1, t2, . . . , tn)

where P ∈ P (where arity(P) = n) and t1, t2, . . . , tn are terms

Examples of atomic formulas: P(x) Q(g(g(c))) R(f (x , y), x)

An interpretation and a valuation I = (A, v)

Formula ϕ is true in interpretation A and valuation v :

I |= ϕ

I |= P(t1, t2, . . . , tn) iff (I(t1), I(t2), . . . , I(tn)) ∈ PA.
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Equality

Equality (identity): denoted by =

Atomic formula:
t1 = t2

Examples of atomic formulas with equality:

x = y f (f (x , y), z) = g(x)

I |= t1 = t2 iff I(t1) = I(t2)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 81 / 401



Quantifiers

It is possible to create formulas from smaller subformulas using logical
connectives: ¬, ∧, ∨, →, ↔, ⊥, ⊤

It is also possible to use quantifiers:

universal quantifier: ∀

existential quantifier: ∃

If ϕ is a formula and x is a variable (x ∈ Var), then also:

∀xϕ is a formula

— it represents propositions “for every element x , ϕ holds ”, “for
each x , ϕ holds”, etc.

∃xϕ is a formula

— it represents propositions “there exists an element x , for which ϕ
holds”, “for some x , ϕ holds”, etc.
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Quantifiers

Interpretation A = (A, a), valuation v : Var → A

x ∈ Var , a ∈ A

Notation
v [x 7→ a]

denotes the valuation v ′ : Var → A, which assignes to every variable the
value as valuation v , except that it assignes value a to variable x

I.e., for y ∈ Var is

v ′(y) =

{

a if y = x

v(y) otherwise

I = (A, v)

I[x 7→ a] = (A, v [x 7→ a])
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Quantifiers

I |= ∀xϕ holds iff for every a ∈ A it holds that I[x 7→ a] |= ϕ

I |= ∃xϕ holds iff there exists some a ∈ A such that I[x 7→ a] |= ϕ

Examples of formulas:

∀x∃yR(x , y) — for each x there exists some y such that x and y are
in relation R

¬∃x(P(x) ∧ Q(x)) — there does not exist such x , for which both
P(x) and Q(x) would be true

∃xP(x)→ ∀yQ(y) — if there is some x , for which P(x) holds, then
for every y , Q(y) holds
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First order predicate logic — summary

Symbols:

Logical symbols:

variables: x ∈ Var , where Var = {x0, x1, x2, . . .}
logical connectives: ¬, ∧, ∨, →, ↔
quantifiers: ∀, ∃
parentheses: ), (
equality: =

Non-logical symbols — given by signature S = (P,F , C, arity):

predicate symbols: P ∈ P
function symbols: f ∈ F
constant symbols: c ∈ C

Syntax:

t ::= x | c | f (t, t, . . . , t)

ϕ ::= P(t, t, . . . , t) | t = t | ⊥ | ⊤ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ
| ϕ→ ϕ | ϕ↔ ϕ | ∀xϕ | ∃xϕ
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First order predicate logic — summary

Semantics:

A value of a term for I = (A, v):

for x ∈ Var : I(x) = v(x)

for c ∈ C: I(c) = cA

for f ∈ F (where arity(f ) = n) and terms t1, t2, . . . , tn:

I(f (t1, t2, . . . , tn)) = f A(I(t1), I(t2), . . . , I(tn))
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First order predicate logic — summary

A truth value of a formula for I = (A, a):

For P ∈ P, where arity(P) = n, and for terms t1, t2, . . . , tn, I |= P(t1, t2, . . . , tn)
holds iff (I(t1), I(t2), . . . , I(tn)) ∈ PA

For terms t1, t2, I |= t1 = t2 holds iff I(t1) = I(t2)

I |= ⊥ never holds, i.e., I 6|= ⊥ always holds

I |= ⊤ always holds

I |= ¬ϕ holds iff I 6|= ϕ

I |= ϕ ∧ ψ holds iff I |= ϕ and I |= ψ

I |= ϕ ∨ ψ holds iff I |= ϕ or I |= ψ

I |= ϕ→ ψ holds iff I 6|= ϕ or I |= ψ

I |= ϕ↔ ψ holds iff I |= ϕ and I |= ψ, or if I 6|= ϕ and I 6|= ψ

I |= ∀xϕ holds iff for every a ∈ A it holds that I[x 7→ a] |= ϕ

I |= ∃xϕ holds iff there exists some a ∈ A such that I[x 7→ a] |= ϕ
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Free and Bound Occurrences of Variables

Every occurrence of variable x in a subformula of the form ∃xϕ or ∀xϕ is
bound.

An occurrence of a variable, which is not bound, is free.

free(t) — the set of variables, which occur as free variables in term t:

free(x) = {x} for x ∈ Var

free(c) = ∅ for c ∈ C

free(f (t1, t2, . . . , tn)) = free(t1) ∪ free(t2) ∪ . . . ∪ free(tn) for f ∈ F

free(ϕ) — the set variables, which occur as free variables in formula ϕ:

free(P(t1, t2, . . . , tn)) = free(t1) ∪ free(t2) ∪ · · · ∪ free(tn) for P ∈ P

free(t1 = t2) = free(t1) ∪ free(t2)

free(⊥) = free(⊤) = ∅

free(¬ϕ) = free(ϕ)

free(ϕ ∗ ψ) = free(ϕ) ∪ free(ψ) for ∗ ∈ {∧,∨,→,↔}

free(Qxϕ) = free(ϕ)− {x} for Q ∈ {∃, ∀} and x ∈ Var
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Free and Bound Occurrences of Variables

The truth value of formula ϕ for I = (A, v) depends only on A a values
assigned by v to variables from the set free(ϕ).

In particular, in the case when free(ϕ) = ∅, the truth value of ϕ in
I = (A, v) depends only on the interpretation A.

For formalas ϕ, where free(ϕ) = ∅, we can write

A |= ϕ or A 6|= ϕ

Formula ϕ, where free(ϕ) = ∅, is called a closed formula or a sentence.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 89 / 401



Substitution

ϕ – formula, x – variable, t – term

The formula obtained when we substiture term t for free occurrences of
variable x in formula ϕ:

ϕ[t/x ]

Example: ϕ := ∀x(P(x)→ R(f (x , z), y)), t := g(f (y ,w))

Formula ϕ[t/z ]:

∀x(P(x)→ R(f (x , g(f (y ,w))), y))

Remark: It is necessary to avoid the situation when a free occurrence of
some variable in term t becomes bound after the substitution.
In such case, it is necessary to rename the bound variable.
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Deduction System for First Order Predicate Logic

A deduction system consisting of the same rules as the system for
propositional logic.

Some additional rules for quantifiers and equality.

∀e:
Γ ⊢ ∀xA

Γ ⊢ A[t/x ]

Example:
∀x(P(x)→ Q(x)), P(c) ⊢ Q(c)

1. Γ ⊢ ∀x(P(x)→ Q(x)) (Assm)
2. Γ ⊢ P(c)→ Q(c) (∀e 1)
3. Γ ⊢ P(c) (Assm)
4. Γ ⊢ Q(c) (→e 2,3)

Γ := ∀x(P(x)→ Q(x)), P(c)
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Universal Quantifier

∀i:
Γ ⊢ A[y/x ]

Γ ⊢ ∀xA
(y 6∈ free(Γ, ∀xA))

A special case:
Γ ⊢ A

Γ ⊢ ∀xA
(x 6∈ free(Γ))
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Universal Quantifier

Example: ∀x(P(x) ∨ Q(x)), ∀x(Q(x)→ R(x)) ⊢ ∀x(P(x) ∨ R(x))

1. Γ ⊢ ∀x(P(x) ∨ Q(x)) (Assm)
2. Γ ⊢ P(x) ∨ Q(x) (∀e 1)
3. Γ,P(x) ⊢ P(x) (Assm)
4. Γ,P(x) ⊢ P(x) ∨ R(x) (∨i1 3)
5. Γ,Q(x) ⊢ ∀x(Q(x)→ R(x)) (Assm)
6. Γ,Q(x) ⊢ Q(x)→ R(x) (∀e 5)
7. Γ,Q(x) ⊢ Q(x) (Assm)
8. Γ,Q(x) ⊢ R(x) (→e 6,7)
9. Γ,Q(x) ⊢ P(x) ∨ R(x) (∨i2 8)
10. Γ ⊢ P(x) ∨ R(x) (∨e 2,4,9)
11. Γ ⊢ ∀x(P(x) ∨ R(x)) (∀i 10)

Γ := ∀x(P(x) ∨ Q(x)), ∀x(Q(x)→ R(x))
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Existential Quantifier

∃i:
Γ ⊢ A[t/x ]

Γ ⊢ ∃xA

∃e:
Γ ⊢ ∃xA Γ,A[y/x ] ⊢ B

Γ ⊢ B
(y 6∈ free(Γ, ∃xA,B))

A special case:

Γ ⊢ ∃xA Γ,A ⊢ B

Γ ⊢ B
(x 6∈ free(Γ,B))
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Equality

= i:
⊢ t = t

=e:
Γ ⊢ t = t ′ Γ ⊢ A[t/x ]

Γ ⊢ A[t ′/x ]

Example:
Γ ⊢ t1 = t2
Γ ⊢ t2 = t1

1. Γ ⊢ t1 = t2 (premise)
2. ⊢ t1 = t1 (= i)
3. Γ ⊢ t1 = t1 (Ant 2)
4. Γ ⊢ (x = t1)[t1/x ] (rep. 3, x 6∈ free(t1))
5. Γ ⊢ (x = t1)[t2/x ] (=e 1,4)
6. Γ ⊢ t2 = t1 (rep. 5)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 95 / 401



Some Important Equivalences

Remark: All following equivalences are also provable (⊣⊢)

¬∀xϕ ⇔ ∃x¬ϕ
¬∃xϕ ⇔ ∀x¬ϕ

When x 6∈ free(ψ):

(∀xϕ) ∧ ψ ⇔ ∀x(ϕ ∧ ψ)
(∀xϕ) ∨ ψ ⇔ ∀x(ϕ ∨ ψ)
(∃xϕ) ∧ ψ ⇔ ∃x(ϕ ∧ ψ)
(∃xϕ) ∨ ψ ⇔ ∃x(ϕ ∨ ψ)
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Some Important Equivalences

(∀xϕ) ∧ (∀xψ) ⇔ ∀x(ϕ ∧ ψ)
(∃xϕ) ∨ (∃xψ) ⇔ ∃x(ϕ ∨ ψ)

∀x∀yϕ ⇔ ∀y∀xϕ
∃x∃yϕ ⇔ ∃y∃xϕ

When y 6∈ free(ϕ):

∀xϕ ⇔ ∀y(ϕ[y/x ])
∃xϕ ⇔ ∃y(ϕ[y/x ])

When x 6∈ free(ϕ):

∀xϕ ⇔ ϕ
∃xϕ ⇔ ϕ
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There Exists Exactly One

Let us assume that:

ϕ is a fomula

variable y is a different variable than x

y ∈ free(ϕ)

Proposition “there is exacly one element x , for which ϕ holds” can be
represented by formula

∃x(ϕ ∧ ∀y(ϕ[y/x ] → x = y))

It can be denoted also:
∃=1xϕ

Remark: With the same meaning as ∃=1, the following symbols are also
used: ∃1, ∃

=1, ∃!.
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Natural Numbers

Signature ({<}, {σ,+, ·}, {0}, arity), where arity(<) = 2, arity(σ) = 1,
arity(+) = 2, arity(·) = 2

Examples of Formulas:

∀x∃y(x < y) — for each natural number, there exists a greater
natural number

σ(0) + σ(0) = σ(σ(0)) — it holds that 1 + 1 = 2

σ(0) < x ∧ ¬∃y∃z(σ(0) < y ∧ σ(0) < z ∧ y · z = x) — formula
with free variable x , representing proposition that x je a prime number
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Natural Numbers — Robinson and Peano Arithmetic

Axioms:

∀x(σ(x) 6= 0)

∀x∀y(σ(x) = σ(y) → x = y)

∀x(x = 0 ∨ ∃y(σ(y) = x))

∀x(x + 0 = x)

∀x∀y(x + σ(y) = σ(x + y))

∀x(x · 0 = 0)

∀x∀y(x · σ(y) = (x · y) + x)

∀x∀y(x < y ↔ ∃z(σ(z) + x = y))

Induction axiom schema:

∀y1 · · · ∀yn(ϕ[0/x ] ∧ ∀x(ϕ→ ϕ[σ(x)/x ]) → ∀xϕ)

— ϕ is an arbitrary formula, where free(ϕ) ⊆ {x , y1, . . . , yn}
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Definitions

Let us assume a given set of axioms Γ.

The definition of a predicate symbol P , where arity(P) = n:

∀x1 · · · ∀xn (P(x1, . . . , xn) ↔ ϕ)

where free(ϕ) ⊆ {x1, . . . , xn}

The definition of a function symbol f , where arity(f ) = n:

∀x1 · · · ∀xn∀y (f (x1, . . . , xn) = y ↔ ϕ)

where free(ϕ) ⊆ {x1, . . . , xn, y}, and where Γ ⊢ ∀x1 · · · ∀xn∃=1y(ϕ)

The definition of a constant symbol c :

ϕ[c/x ]

where free(ϕ) ⊆ {x}, and where Γ ⊢ ∃=1x(ϕ)
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Group Theory

Signature (∅, {◦}, {e}, arity), where arity(◦) = 2

Axioms:

∀x∀y∀z((x ◦ y) ◦ z = x ◦ (y ◦ z))

∀x(x ◦ e = x)

∀x∃y(x ◦ y = e)
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Set Theory

Signature ({∈}, ∅, ∅, arity), where arity(∈) = 2

Examples of some of axioms of set theory:

Axiom of extensionality:

∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y)

Axiom schema of specification:

∀y∃z∀x(x ∈ z ↔ (x ∈ y ∧ ϕ))

where ϕ is an arbitrary formula, where z 6∈ free(ϕ)

The set of those elements x of set y , for which it holds that ϕ:

{x ∈ y | ϕ}
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Often Used Abbreviations

Proposition “ϕ holds for some element x of set A”:

∃x(x ∈ A ∧ ϕ)

Abbreviation:
(∃x ∈ A)(ϕ)

Proposition “ϕ holds for each element x of set A”:

∀x(x ∈ A → ϕ)

Abbreviation:
(∀x ∈ A)(ϕ)
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Formal Languages
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Alphabet and Word

Definition

Alphabet is a nonempty finite set of symbols.

Remark: An alphabet is often denoted by the symbol Σ (upper case
sigma) of the Greek alphabet.

Definition

A word over a given alphabet is a finite sequence of symbols from this
alphabet.

Example 1:

Σ = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

Words over alphabet Σ: HELLO ABRACADABRA ERROR
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Alphabet and Word

Example 2:

Σ2 = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,  }

A word over alphabet Σ2: HELLO WORLD

Example 3:

Σ3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Words over alphabet Σ3: 0, 31415926536, 65536

Example 4:

Words over alphabet Σ4 = {0, 1}: 011010001, 111, 1010101010101010

Example 5:

Words over alphabet Σ5 = {a, b}: aababb, abbabbba, aaab
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Alphabet and Word

Example 6:

Alphabet Σ6 is the set of all ASCII characters.

Example of a word:

class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, world!");

}

}

class HelloWorld { ←֓     public static void main(Str · · ·
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Theory of Formal Languages – Motivation

Language — a set of (some) words of symbols from a given alphabet

Examples of problem types, where theory of formal languages is useful:

Construction of compilers:

Lexical analysis
Syntactic analysis

Searching in text:

Searching for a given text pattern
Seaching for a part of text specified by a regular expression
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Representation of Formal Languages

To describe a language, there are several possibilities:

We can enumerate all words of the language (however, this is possible
only for small finite languages).

Example: L = {aab, babba, aaaaaa}

We can specify a property of the words of the language:

Example: The language over alphabet {0, 1} containing all words
with even number of occurrences of symbol 1.
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Representation of Formal Languages

In particular, the following two approaches are used in the theory of formal
languages:

To describe an (idealized) machine, device, algorithm, that recognizes
words of the given language – approaches based on automata.

To describe some mechanism that allows to generate all words of the
given language – approaches based on grammars or regular
expressions.
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Some Basic Concepts

The length of a word is the number of symbols of the word.

For example, the length of word abaab is 5.

The length of a word w is denoted |w |.

For example, if w = abaab then |w | = 5.

We denote the number of occurrences of a symbol a in a word w by |w |a.

For word w = ababb we have |w |a = 2 and |w |b = 3.

An empty word is a word of length 0, i.e., the word containing no
symbols.

The empty word is denoted by the letter ε (epsilon) of the Greek alphabet.

(Remark: In literature, sometimes λ (lambda) is used to denote the empty
word instead of ε .)

|ε| = 0
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Concatenation of Words

One of operations we can do on words is the operation of concatenation:

For example, the concatenation of words OST and RAVA is the word
OSTRAVA.

The operation of concatenation is denoted by symbol · (similarly to
multiplication). It is possible to omit this symbol.

OST · RAVA = OSTRAVA

Concatenation is associative, i.e., for every three words u, v , and w we
have

(u · v) · w = u · (v · w)

which means that we can omit parenthesis when we write multiple
concatenations. For example, we can write w1 · w2 · w3 · w4 · w5 instead of
(w1 · (w2 · w3)) · (w4 · w5).
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Concatenation of Words

Concatenation is not commutative, i.e., the following equality does not
hold in general

u · v = v · u

Example:
OST · RAVA 6= RAVA · OST

It is obvious that the following holds for any words v and w :

|v · w | = |v |+ |w |

For every word w we also have:

ε · w = w · ε = w
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Prefixes, Suffixes, and Subwords

Definition

A word x is a prefix of a word y , if there exists a word v such that y = xv .

A word x is a suffix of a word y , if there exists a word u such that y = ux .

A word x is a subword of a word y , if there exist words u and v such that
y = uxv .

Example:

Prefixes of the word abaab are ε, a, ab, aba, abaa, abaab.

Suffixes of the word abaab are ε, b, ab, aab, baab, abaab.

Subwords of the word abaab are ε, a, b, ab, ba, aba, baa, aab,
abaa, baab, abaab.
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Language

The set of all words over alphabet Σ is denoted Σ∗.

Definition

A (formal) language L over an alphabet Σ is a subset of Σ∗, i.e., L ⊆ Σ∗.

Example 1: The set {00, 01001, 1101} is a language over alphabet {0, 1}.

Example 2: The set of all syntactically correct programs in the C
programming language is a language over the alphabet consisting of all
ASCII characters.

Example 3: The set of all texts containing the sequence hello is a
language over alphabet consisting of all ASCII characters.
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Set Operations on Languages

Since languages are sets, we can apply any set operations to them:

Union – L1 ∪ L2 is the language consisting of the words belonging to
language L1 or to language L2 (or to both of them).

Intersection – L1 ∩ L2 is the language consisting of the words belonging
to language L1 and also to language L2.

Complement – L1 is the language containing those words from Σ∗ that
do not belong to L1.

Difference – L1− L2 is the language containing those words of L1 that do
not belong to L2.

Remark: It is assumed the languages involved in these operations use the
same alphabet Σ.
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Set Operations on Languages

Formally:

Union: L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 ∨ w ∈ L2}

Intersection: L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 ∧ w ∈ L2}

Complement: L1 = {w ∈ Σ∗ | w 6∈ L1}

Difference: L1 − L2 = {w ∈ Σ∗ | w ∈ L1 ∧ w 6∈ L2}

Remark: We assume that L1, L2 ⊆ Σ∗ for some given alphabet Σ.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 118 / 401



Set Operations on Languages

Example:

Consider languages over alphabet {a, b}.

L1 — the set of all words containing subword baa

L2 — the set of all words with an even number of occurrences of
symbol b

Then

L1 ∪ L2 — the set of all words containing subword baa or an even
number of occurrences of b

L1 ∩ L2 — the set of all words containing subword baa or an even
number of occurrences of b

L1 — the set of all words that do not contain subword baa

L1 − L2 — the set of all words that contain subword baa but do not
contain an even number of occurrences of b
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Concatenation of Languages

Definition

Concatenation of languages L1 and L2, where L1, L2 ⊆ Σ∗, is the
language L ⊆ Σ∗ such that for each w ∈ Σ∗ it holds that

w ∈ L ↔ (∃u ∈ L1)(∃v ∈ L2)(w = u · v)

The concatenation of languages L1 and L2 is denoted L1 · L2.

Example:
L1 = {abb, ba}
L2 = {a, ab, bbb}

The language L1 · L2 contains the following words:

abba abbab abbbbb baa baab babbb
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Iteration of a Language

Definition

The iteration (Kleene star) of language L, denoted L∗, is the language
consisting of words created by concatenation of some arbitrary number of
words from language L.
I.e. w ∈ L∗ iff

∃n ∈ N : ∃w1,w2, . . . ,wn ∈ L : w = w1w2 · · ·wn

Example: L = {aa, b}

L∗ = {ε, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaab, aabaa, aabb, . . .}

Remark: The number of concatenated words can be 0, which means that
ε ∈ L∗ always holds (it does not matter if ε ∈ L or not).
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Iteration of a Language – Alternative Definition

At first, for a language L and a number k ∈ N we define the language Lk :

L0 = {ε}, Lk = Lk−1 · L for k ≥ 1

This means
L0 = {ε}
L1 = L

L2 = L · L
L3 = L · L · L
L4 = L · L · L · L
L5 = L · L · L · L · L

. . .

Example: For L = {aa, b}, the language L3 contains the following words:

aaaaaa aaaab aabaa aabb baaaa baab bbaa bbb
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Iteration of a Language – Alternative Definition

Alternative definition

The iteration (Kleene star) of language L is the language

L∗ =
⋃

k≥0

Lk

Remark:
⋃

k≥0

Lk = L0 ∪ L1 ∪ L2 ∪ L3 ∪ · · ·
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Iteration of a Language

Remark: Sometimes, notation L+ is used as an abbreviation for L · L∗, i.e.,

L+ =
⋃

k≥1

Lk
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Reverse

The reverse of a word w is the word w written from backwards (in the
opposite order).

The reverse of a word w is denoted wR .

Example: w = HELLO wR = OLLEH

Formally, for w = a1a2 · · · an (where ai ∈ Σ) is wR = anan−1 · · · a1.
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Reverse

The reverse of a language L is the language consisting of reverses of all
words of L.

Reverse of a language L is denoted LR .

LR = {wR | w ∈ L}

Example: L = {ab, baaba, aaab}

LR = {ba, abaab, baaa}
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Order on Words

Let us assume some (linear) order < on the symbols of alphabet Σ, i.e., if
Σ = {a1, a2, . . . , an} then

a1 < a2 < . . . < an .

Example: Σ = {a, b, c} with a < b < c .

The following (linear) order <L can be defined on Σ∗:
x <L y iff:

|x | < |y |, or

|x | = |y | there exist words u, v ,w ∈ Σ∗ and symbols a, b ∈ Σ such
that

x = uav y = ubw a < b

Informally, we can say that in order <L we order words according to their
length, and in case of the same length we order them lexicographically.
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Order on Words

All words over alphabet Σ can be ordered by <L into a sequence

w0,w1,w2, . . .

where every word w ∈ Σ∗ occurs exactly once, and where for each i , j ∈ N

it holds that wi <L wj iff i < j .

Example: For alphabet Σ = {a, b, c} (where a < b < c) , the initial part
of the sequence looks as follows:

ε, a, b, c , aa, ab, ac , ba, bb, bc , ca, cb, cc , aaa, aab, aac , aba, abb, abc , . . .

For example, when we talk about the first ten words of a language L ⊆ Σ∗,
we mean ten words that belong to language L and that are smallest of all
words of L according to order <L.
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Regular Expressions
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Regular Expressions

Regular expressions describing languages over an alphabet Σ:

∅, ε, a (where a ∈ Σ) are regular expressions:

∅ . . . denotes the empty language
ε . . . denotes the language {ε}
a . . . denotes the language {a}

If α, β are regular expressions then also (α+ β), (α · β), (α∗) are
regular expressions:

(α+ β) . . . denotes the union of languages denoted α and β
(α · β) . . . denotes the concatenation of languages denoted α

and β
(α∗) . . . denotes the iteration of a language denoted α

There are no other regular expressions except those defined in the two
points mentioned above.
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Regular Expressions

Example: abeceda Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.
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Regular Expressions

Example: abeceda Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.

Since 0 and 1 are regular expression, (0+ 1) is also a regular
expression.
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Regular Expressions

Example: abeceda Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.

Since 0 and 1 are regular expression, (0+ 1) is also a regular
expression.

Since 0 is a regular expression, (0∗) is also a regular expression.
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Regular Expressions

Example: abeceda Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.

Since 0 and 1 are regular expression, (0+ 1) is also a regular
expression.

Since 0 is a regular expression, (0∗) is also a regular expression.

Since (0+ 1) and (0∗) are regular expressions, ((0+ 1) · (0∗)) is also
a regular expression.
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Regular Expressions

Example: abeceda Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.

Since 0 and 1 are regular expression, (0+ 1) is also a regular
expression.

Since 0 is a regular expression, (0∗) is also a regular expression.

Since (0+ 1) and (0∗) are regular expressions, ((0+ 1) · (0∗)) is also
a regular expression.

Remark: If α is a regular expression, by [α] we denote the language
defined by the regular expression α.

[((0+ 1) · (0∗))] = {0, 1, 00, 10, 000, 100, 0000, 1000, 00000, . . . }
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Regular Expressions

The structure of a regular expression can be represented by an abstract
syntax tree:

+

·

·

∗

·

0 1

1

·

1 1

∗

+

·

0 0

1

(((((0 · 1)∗) · 1) · (1 · 1)) + (((0 · 0) + 1)∗))
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Regular Expressions

A description of an (abstract) syntax of regular expressions using
Backus-Naur form:

α ::= ∅ | ε | a | α∗ | α · α | α+ α

The formal definition of semantics of regular expressions:

[∅] = ∅

[ε] = {ε}

[a] = {a}

[α∗] = [α]∗

[α · β] = [α] · [β]

[α+ β] = [α] ∪ [β]
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Regular Expressions

To make regular expressions more lucid and succinct, we use the following
conventions:

The outward pair of parentheses can be omitted.

We can omit parentheses that are superflous due to associativity of
operations of union (+) and concatenation (·).

We can omit parentheses that are superflous due to the defined
priority of operators (iteration (∗) has the highest priority,
concatenation (·) has lower priority, and union (+) has the lowest
priority).

A dot denoting concatenation can be omitted.

Example: Instead of

(((((0 · 1)∗) · 1) · (1 · 1)) + (((0 · 0) + 1)∗))

we usually write

(01)∗111+ (00+ 1)∗
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Regular Expressions

Examples: In all examples Σ = {0, 1}.

0 . . . the language containing the only word 0
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Regular Expressions

Examples: In all examples Σ = {0, 1}.
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(0+ 1)∗00+ (01)∗111(01)∗ . . . the language containing all words that
either end with 00 or contain a subwords 111 preceded and
followed with some arbitrary number of words 01

(0+ 1)∗1(0+ 1)∗ . . . the language of all words that contain at least one
occurrence of symbol 1
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Finite Automata
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Recognition of a Language

Example: Consider words over alphabet {0, 1}.

We would like to recognize a language L consisting of words with even
number of symbols 1.

We want to design a device that reads a word and then tells us if the word
belongs to the language L or not.

0 1 0 1 1 1 0 1 0 0 1
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Recognition of a Language

Example: Consider words over alphabet {0, 1}.

We would like to recognize a language L consisting of words with even
number of symbols 1.

We want to design a device that reads a word and then tells us if the word
belongs to the language L or not.
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Recognition of a Language

The first idea: To count the number of occurrences of symbol 1.

0
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Recognition of a Language

The first idea: To count the number of occurrences of symbol 1.

6

0 1 0 1 1 1 0 1 0 0 1

YES – 6 is an even number
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Recognition of a Language

The second idea: In fact, we just need to remember if the number of
symbols 1 read so far is even or odd (i.e., it is sufficient to remember only
the last bit of the number).
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The second idea: In fact, we just need to remember if the number of
symbols 1 read so far is even or odd (i.e., it is sufficient to remember only
the last bit of the number).
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Recognition of a Language

The behaviour of the device can be described by the following graph:
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Deterministic Finite Automaton

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

A deterministic finite automaton consists of states and transitions.
One of the states is denoted as an initial state and some of states are
denoted as accepting.
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Deterministic Finite Automaton

Formally, a deterministic finite automaton (DFA) is defined as a tuple

(Q,Σ, δ, q0,F )

where:

Q is a nonempty finite set of states

Σ is an alphabet (a nonempty finite set of symbols)

δ : Q × Σ→ Q is a transition function

q0 ∈ Q is an initial state

F ⊆ Q is a set of accepting states
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Deterministic Finite Automaton

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

Q = {1, 2, 3, 4, 5}

Σ = {a, b}

q0 = 1

F = {1, 4, 5}

δ(1, a) = 2 δ(1, b) = 1
δ(2, a) = 4 δ(2, b) = 5
δ(3, a) = 1 δ(3, b) = 4
δ(4, a) = 1 δ(4, b) = 3
δ(5, a) = 4 δ(5, b) = 5
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Deterministic Finite Automaton

Instead of

δ(1, a) = 2 δ(1, b) = 1
δ(2, a) = 4 δ(2, b) = 5
δ(3, a) = 1 δ(3, b) = 4
δ(4, a) = 1 δ(4, b) = 3
δ(5, a) = 4 δ(5, b) = 5

we rather use a more succinct representation as a table or a depicted
graph:

δ a b

↔ 1 2 1
2 4 5
3 1 4

← 4 1 3
← 5 4 5
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Deterministic Finite Automaton

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

1

a b a b b
1
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Deterministic Finite Automaton
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2

a b a b b
1

a

−→ 2
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Deterministic Finite Automaton

Definition

Let us have a DFA A = (Q,Σ, δ, q0,F ).

By q
w
−→ q′, where q, q′ ∈ Q and w ∈ Σ∗, we denote the fact that the

automaton, starting in state q goes to state q′ by reading word w .

Remark: −→⊆ Q × Σ∗ × Q is a ternary relation.

Instead of (q,w , q′) ∈−→ we write q
w
−→ q′.

It holds for a DFA that for each state q and each word w there is exactly
one state q′ such that q

w
−→ q′.
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Deterministic Finite Automaton

Relation −→ can be formally defined by the following inductive definition:

q
ε
−→ q for each q ∈ Q

For a ∈ Σ and w ∈ Σ∗:

q
aw
−→ q′ iff there is q′′ ∈ Q such that δ(q, a) = q′′ and q′′

w
−→ q′.
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Deterministic Finite Automaton

A word w ∈ Σ∗ is accepted by a deterministic finite automaton
A = (Q,Σ, δ, q0,F ) iff there exists a state q ∈ F such that q0

w
−→ q.

Definition

A language accepted by a given deterministic finite automaton
A = (Q,Σ, δ, q0,F ), denoted L(A), is the set of all words accepted by the
automaton, i.e.,

L(A) = {w ∈ Σ∗ | ∃q ∈ F : q0
w
−→ q}
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Regular languages

Definition

A language L is regular iff there exists some deterministic finite
automaton accepting L, i.e., DFA A such that L(A) = L.
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Equivalence of Automata

1 2 3
a a

a

b b b

1 2 3a

a

a

b b b

1 2
a

a

b b

All 3 automata accept the language of all words with an even number of
a’s.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 151 / 401



Equivalence of Automata

Definition

We say automata A1,A2 are equivalent if L(A1) = L(A2).
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Unreachable States of an Automaton

1 2 3

4 5 6

a

b

b

a

a

b

b

b

a

a
a, b

The automaton accepts the language
L = {w ∈ {a, b}∗ | w contains subword ab}

There is no input sequence such that after reading it, the automaton
gets to states 3, 4, or 5.

.
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The automaton accepts the language
L = {w ∈ {a, b}∗ | w contains subword ab}

There is no input sequence such that after reading it, the automaton
gets to states 3, 4, or 5.

If we remove these states, the automaton still accepts the same
language L.
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Unreachable States of an Automaton

Definition

A state q of a finite automaton A = (Q,Σ, δ, q0,F ) is reacheable if there
exists a word w such that q0

w
−→ q.

Otherwise the state is unreachable.

There is no path in a graph of an automaton going from the initial
state to some unreachable state.

Unreachable states can be removed from an automaton (together
with all transitions going to them and from them). The language
accepted by the automaton is not affected.
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An Automaton for Intersection of Languages

Let us have the following two automata:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Do both of them accept the word ababb?
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An Automaton for Intersection of Languages

Formally, the construction can be described as follows:

We assume we have two deterministic finite automata
A1 = (Q1,Σ, δ1, q01,F1) and A2 = (Q2,Σ, δ2, q02,F2).

We construct DFA A = (Q,Σ, δ, q0,F ) where:

Q = Q1 × Q2

δ( (q1, q2), a ) = ( δ1(q1, a), δ2(q2, a) ) for each q1 ∈ Q1, q2 ∈ Q2,
a ∈ Σ

q0 = (q01, q02)

F = F1 × F2

It is not difficult to check that for each word w ∈ Σ∗ we have w ∈ L(A) iff
w ∈ L(A1) and w ∈ L(A2), i.e.,

L(A) = L(A1) ∩ L(A2)
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Intersection of Regular Languages

Theorem

If languages L1, L2 ⊆ Σ∗ are regular then also the language L1 ∩ L2 is
regular.

Proof: Let us assume that A1 and A2 are deterministic finite automata
such that

L1 = L(A1) L2 = L(A2)

Using the described construction, we can construct a deterministic finite
automaton A such that

L(A) = L(A1) ∩ L(A2) = L1 ∩ L2
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An Automaton for the Union of Languages
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Union of Regular Languages

The construction of an automaton A that accepts the union of languages
accepted by automata A1 and A2, i.e., the language

L(A1) ∪ L(A1)

is almost identical as in the case of the automaton accepting
L(A1) ∩ L(A2).

The only difference is the set of accepting states:

F = (F1 × Q2) ∪ (Q1 × F2)
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is almost identical as in the case of the automaton accepting
L(A1) ∩ L(A2).

The only difference is the set of accepting states:
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Theorem

If languages L1, L2 ⊆ Σ∗ are regular then also the language L1 ∪ L2 is
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An Automaton for the Complement of a Language

0 1 2 3
a b a

b a

b

a, b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 161 / 401



An Automaton for the Complement of a Language
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Complement of a Regular Language

Given a DFA A = (Q,Σ, δ, q0,F ) we construct DFA
A′ = (Q,Σ, δ, q0,Q − F ).

It is obvious that for each word w ∈ Σ∗ we have w ∈ L(A′) iff w 6∈ L(A),
i.e.,

L(A′) = L(A)
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Nondeterministic Finite Automaton

1 2
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b

The number of transitions going from one state and labelled with the
same symbol can be arbitrary (including zero).

There can be more than one initial state in the automaton.
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Nondeterministic Finite Automaton

A nondeterministic finite automaton accepts a given word if there exists
at least one computation of the automaton that accepts the word.

YESYESYES YES NONONONONO
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Nondeterministic Finite Automaton

a b

↔ 1 2, 3, 4 1
2 − 5

→ 3 − 4
4 2 3, 5

← 5 − 5

1 3

2 3 4

5 4 3 5

5 3 5 4 5

a
a

a

b b b b

b b b b b

Example: A forest representing all possible computations over the
word abb.
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Nondeterministic Finite Automaton

Formally, a nondeterministic finite automaton (NFA) is defined as
a tuple

(Q,Σ, δ, I ,F )

where:

Q is a finite set of states

Σ is a finite alphabet

δ : Q × Σ→ P(Q) is a transition fuction

I ⊆ Q is a set of initial states

F ⊆ Q is a set of accepting states
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Transformation of NFA to DFA
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Transformation of NFA to DFA

a b

↔ 1 − 2, 3
→ 2 2, 3 3
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Transformation of NFA to DFA

Remark: When a nondeterministic automaton with n states is transformed
into a deterministic one, the resulting automaton can have 2n states.

For example when we transform an automaton with 20 states, the
resulting automaton can have 220 = 1048576 states.

It is often the case that the resulting automaton has far less than 2n

states. However, the worst cases are possible.
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Generalized Nondeterministic Finite Automaton
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Generalized Nondeterministic Finite Automaton

Compared to a nondeterministic finite automaton, a generalized
nondeterministic finite automaton has the so called ε-transitions, i.e.,
transitions labelled with symbol ε.

When ε-transition is performed, only the state of the control unit is
changed but the head on the tape is not moved.

Remark: The computations of a generalized nondeterministic automaton
can be of an arbitrary length, even infinite (if the graph of the automaton
contains a cycle consisting only of ε-transitions) regardless of the length of
the word on the tape.
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Generalized Nondeterministic Finite Automaton

Formally, a generalized nondeterministic finite automaton (GNFA) is
defined as a tuple

(Q,Σ, δ, I ,F )

where:

Q is a finite set of states

Σ is a finite alphabet

δ : Q × (Σ ∪ {ε})→ P(Q) is a transition function

I ⊆ Q is a set of initial states

F ⊆ Q is a set of accepting states

Remark: NFA can be viewed as a special case of GNFA, where δ(q, ε) = ∅
for all q ∈ Q.
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Transformation to a Deterministic Finite Automaton

A generalized nondeterministic finite automaton can be transformed into
a deterministic one using a similar construction as a nondeterministic finite
automaton with the difference that we add to sets of states also all states
that are reachable from already added states by some sequence of
ε-transitions.

q

ε

ε

ε

ε

ε

ε

ε

ε

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 175 / 401



1

2 3

b
ε

a
a, b

a

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

a

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2}

a

b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

a

b

a

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

a

b

a

b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

a

b

a

b

a

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

a

b

a

b

a

b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

a

b

a

b

a

b

a

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

∅

a

b

a

b

a

b

a b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

∅

a

b

a

b

a

b

a b

a

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

∅

a

b

a

b

a

b

a b

a

b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

∅

a

b

a

b

a

b

a b

a

b

a, b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

∅

a

b

a

b

a

b

a b

a

b

a, b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 176 / 401



Transformation of GNFA to DFA

Before formally describing the transition of GNFA to DFA, let us introduce
some auxiliary definitions.

Let us assume some given GNFA A = (Q,Σ, δ, I ,F ).

Let us define the function δ̂ : P(Q)× (Σ ∪ {ε})→ P(Q) so that for
K ⊆ Q and a ∈ Σ ∪ {ε} there is

δ̂(K , a) =
⋃

q∈K

δ(q, a)
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Transformation of GNFA to DFA

For K ⊆ Q, let Clε(K ) be the all states reachable from the states from the
set K by some arbitrary sequence of ε-transitions.

This means that the function Clε : P(Q)→ P(Q) is defined so that for
K ⊆ Q is Clε(K ) the smallest (with respect to inclusion) set satisfying the
following two conditions:

K ⊆ Clε(K )

For each q ∈ Clε(K ) it holds that δ(q, ε) ⊆ Clε(K ).

Remark: Let us note that Clε(Clε(K )) = Clε(K ) for arbitrary K .

Let us also note that in the case of NFA (where δ(q, ε) = ∅ for each
q ∈ Q) is Clε(K ) = K .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 178 / 401



Transformation of GNFA to DFA

For a given GNFA A = (Q,Σ, δ, I ,F ) we can now construct DFA
A′ = (Q ′,Σ, δ′, q′0,F

′), where:

Q ′ = P(Q) (so K ∈ Q ′ means that K ⊆ Q)

δ′ : Q ′ × Σ→ Q ′ is defined so that for K ∈ Q ′ and a ∈ Σ:

δ′(K , a) = Clε(δ̂(Clε(K ), a))

q′0 = Clε(I )

F ′ = {K ∈ Q ′ | Clε(K ) ∩ F 6= ∅}

It is not difficult to verify that L(A) = L(A′).
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Concatenation of Languages

Σ = {a, b, c, d}

a

b
A1:

c

d
A2:
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Concatenation of Languages

Σ = {a, b, c, d}

a

b
A1:

c

d
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An incorrect construction:

a
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d
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acdbac ∈ L(A) but acdbac 6∈ L(A1) · L(A2)
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Concatenation of Languages

A1 A2
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Concatenation of Languages
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Iteration of a Language

A1
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Iteration of a Language
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Union of Languages

An alternative construction for the union of languages:

A1

A2
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Closure Properties of the Class of Regular Languages

The set of (all) regular languages is closed with respect to:

union

intersection

complement

concatenation

iteration

. . .
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Transformation of a Regular Expression to a Finite
Automaton

Proposition

Every language that can be represented by a regular expression is regular
(i.e., it is accepted by some finite automaton).

Proof: It is sufficient to show how to construct for a given regular
expression α a finite automaton accepting the language [α].

The construction is recursive and proceeds by the structure of the
expression α:

If α is a elementary expression (i.e., ∅, ε or a):
We construct the corresponding automaton directly.

If α is of the form (β + γ), (β · γ) or (β∗):
We construct automata accepting languages [β] and [γ] recursively.
Using these two automata, we construct the automaton accepting the
language [α].
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Transformation of a Regular Expression to a Finite
Automaton

The automata for the elementary expressions:

∅ ε a

a
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Transformation of a Regular Expression to a Finite
Automaton

The construction for the concatenation:
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Transformation of a Regular Expression to a Finite
Automaton

Example: The construction of an automaton for expression ((0 + 1) · 1)∗:
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Transformation of a Regular Expression to a Finite
Automaton

If an expression α consists of n symbols (not counting parenthesis) then
the resulting automaton has:

at most 2n states,

at most 4n transitions.

Remark: By transforming the generalized nondeterministic automaton
into a deterministic one, the number of states can grow exponentially,
i.e., the resulting automaton can have up to 22n = 4n states.
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Transformation of an Automaton to a Regular Expression

Proposition

Every regular language can be represented by some regular expression.

Proof: It is sufficient to show how to construct for a given finite
automaton A a regular expression α such that [α] = L(A).

We modify A in such a way that ensures it has exactly one initial and
exactly one accepting state.

Its states will be removed one by one.

Its transitions will be labelled with regular expressions.

The resulting automaton will have only two states – the initial and
the accepting, and only one transition labelled with the resulting
regular expression.
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Transformation of an Automaton to a Regular Expression

The main idea: If a state q is removed, for every pair of remaining states
qj , qk we extend the label on a transition from qj to qk by a regular
expression representing paths from qj to qk going through q.

qj qk

q

α

β

γ

δ

After removing of the state q:

qj qk
α+ βγ∗δ
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Transformation of an Automaton to a Regular Expression

Example:

1 2

3

a

b

a

b

b

a
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Transformation of an Automaton to a Regular Expression

Example:

1 2

3

s f

a

b

a

b

b

a

ε ε

ε
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Transformation of an Automaton to a Regular Expression

Example:

2

3

s f

b+ aa

a+ ba

ε

ε

a

b

ab

bb
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Transformation of an Automaton to a Regular Expression

Example:

3

s f

ε+ (a+ ba)(b+ aa)∗b+ a(b+ aa)∗ab

bb+ (a+ ba)(b+ aa)∗ab

a(b+ aa)∗
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Transformation of an Automaton to a Regular Expression

Example:

s f

a(b+ aa)∗+

(b+ a(b+ aa)∗ab)

(bb+ (a+ ba)(b+ aa)∗ab)∗

(ε+ (a+ ba)(b+ aa)∗)
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Equivalence of Finite Automata and Regular Expressions

Theorem

A language is regular iff it can be represented by a regular expression.
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Context-Free Grammars
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Context-Free Grammars

Example:

〈stmt〉 → 〈if-stmt〉 | 〈while-stmt〉 | 〈block-stmt〉 |
〈assg-stmt〉

〈if-stmt〉 → if 〈bool-expr〉 then 〈stmt〉 else 〈stmt〉
〈while-stmt〉 → while 〈bool-expr〉 do 〈stmt〉
〈block-stmt〉 → begin 〈stmt-list〉 end
〈stmt-list〉 → 〈stmt〉 | 〈stmt〉 ; 〈stmt-list〉
〈assg-stmt〉 → 〈var〉 := 〈arith-expr〉
〈bool-expr〉 → 〈arith-expr〉〈compare-op〉〈arith-expr〉
〈compare-op〉 → < | > | ≤ | ≥ | = | 6=
〈arith-expr〉 → 〈var〉 | 〈const〉 |

(〈arith-expr〉〈arith-op〉〈arith-expr〉)
〈arith-op〉 → + | − | ∗ | /
〈const〉 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈var〉 → a | b | c | · · · | x | y | z
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Context-Free Grammars

The symbols, that have the form 〈xxx〉 in the previous example, are called
nonterminal symbols (nonterminals).

The rules describe the strings represented by a given nonterminal.

From nonterminal 〈stmt〉 we can for example obtain the text

while x ≤ y do begin x := (x + 1) ; y := (y − 1) end
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Context-Free Grammars

while x ≤ y do begin x := (x + 1) ; y := (y − 1) end
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Context-Free Grammars

while x ≤ y do begin x := (x + 1) ; y := (y − 1) end

〈stmt〉
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Context-Free Grammars

while x ≤ y do begin x := (x + 1) ; y := (y − 1) end

〈stmt〉
〈while-stmt〉
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Context-Free Grammars

while x ≤ y do begin x := (x + 1) ; y := (y − 1) end

〈stmt〉
〈while-stmt〉
while 〈bool-expr〉 do 〈stmt〉
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Context-Free Grammars
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Context-Free Grammars
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Context-Free Grammars
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Context-Free Grammars

Formally, a context-free grammar is a tuple

G = (Π,Σ, S ,P)

where:

Π is a finite set of nonterminal symbols (nonterminals)

Σ is a finite set of terminal symbols (terminals),
where Π ∩ Σ = ∅

S ∈ Π is an initial nonterminal

P ⊆ Π× (Π ∪ Σ)∗ is a finite set of rewrite rules
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Context-Free Grammars

Remarks:

We will use uppercase letters A, B , C , . . . to denote nonterminal
symbols.

We will use lowercase letters a, b, c , . . . or digits 0, 1, 2, . . . to
denote terminal symbols.

We will use lowercase Greek letters α, β, γ, . . . do denote strings
from (Π ∪ Σ)∗.

We will use the following notation for rules instead of (A, α)

A→ α

A – left-hand side of the rule
α – right-hand side of the rule
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Context-Free Grammars

Example: Grammar G = (Π,Σ, S ,P) where

Π = {A,B ,C}

Σ = {a, b}

S = A

P contains rules
A → aBBb

A → AaA

B → ε
B → bCA

C → AB

C → a

C → b
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Context-Free Grammars

Remark: If we have more rules with the same left-hand side, as for
example

A → α1 A → α2 A → α3

we can write them in a more succinct way as

A → α1 | α2 | α3

For example, the rules of the grammar from the previous slide can be
written as

A → aBBb | AaA
B → ε | bCA
C → AB | a | b
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Context-Free Grammars

Grammars are used for generating words.

Example: G = (Π,Σ,A,P) where Π = {A,B ,C}, Σ = {a, b}, and P

contains rules
A → aBBb | AaA
B → ε | bCA
C → AB | a | b

For example, the word abbabb can be in grammar G generated as follows:
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Context-Free Grammars

On strings from (Π∪Σ)∗ we define relation ⇒⊆ (Π∪Σ)∗ × (Π∪Σ)∗ such
that

α⇒ α′

iff α = β1Aβ2 and α′ = β1γβ2 for some β1, β2, γ ∈ (Π ∪ Σ)∗ and A ∈ Π
where (A → γ) ∈ P .

Example: If (B → bCA) ∈ P then

aCBbA⇒ aCbCAbA

Remark: Informally, α⇒ α′ means that it is possible to derive α′ from α
by one step where an occurrence of some nonterminal A in α is replaced
with the right-hand side of some rule A → γ with A on the left-hand side.
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Context-Free Grammars

A derivation of length n is a sequence β0, β1, β2, · · · , βn, where
βi ∈ (Π ∪ Σ)∗, and where βi−1 ⇒ βi for all 1 ≤ i ≤ n, which can be
written more succinctly as

β0 ⇒ β1 ⇒ β2 ⇒ . . .⇒ βn−1 ⇒ βn

The fact that for given α, α′ ∈ (Π ∪ Σ)∗ and n ∈ N there exists some
derivation β0 ⇒ β1 ⇒ β2 ⇒ . . .⇒ βn−1 ⇒ βn, where α = β0 and
α′ = βn, is denoted

α⇒n α′

The fact that α⇒n α′ for some n ≥ 0, is denoted

α⇒∗ α′

Remark: Relation ⇒∗ is the reflexive and transitive closure of relation ⇒
(i.e., the smallest reflexive and transitive relation containing relation ⇒).
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Context-Free Grammars

Sentential forms are those α ∈ (Π ∪ Σ)∗, for which

S ⇒∗ α

where S is the initial nonterminal.
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Context-Free Grammars

A language L(G ) generated by a grammar G = (Π,Σ, S ,P) is the set of
all words over alphabet Σ that can be derived by some derivation from the
initial nonterminal S using rules from P , i.e.,

L(G ) = {w ∈ Σ∗ | S ⇒∗ w}
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Context-Free Grammars

Example: We want to construct a grammar generating the language

L = {anbn | n ≥ 0}
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Grammar G = (Π,Σ, S ,P) where Π = {S}, Σ = {a, b}, and P contains

S → aSb | ε
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Context-Free Grammars

Example: We want to construct a grammar generating the language

L = {anbn | n ≥ 0}

Grammar G = (Π,Σ, S ,P) where Π = {S}, Σ = {a, b}, and P contains

S → aSb | ε

S ⇒ ε
S ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaaaSbbbb ⇒ aaaabbbb

· · ·
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Context-Free Grammars

Example: We want to construct a grammar generating the language
consisting of all palindroms over the alphabet {a, b}, i.e.,

L = {w ∈ {a, b}∗ | w = wR}

Remark: wR denotes the reverse of a word w , i.e., the word w written
backwards.
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Example: We want to construct a grammar generating the language
consisting of all palindroms over the alphabet {a, b}, i.e.,

L = {w ∈ {a, b}∗ | w = wR}

Remark: wR denotes the reverse of a word w , i.e., the word w written
backwards.

Solution:

S → aSa | bSb | a | b | ε
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Context-Free Grammars

Example: We want to construct a grammar generating the language
consisting of all palindroms over the alphabet {a, b}, i.e.,

L = {w ∈ {a, b}∗ | w = wR}

Remark: wR denotes the reverse of a word w , i.e., the word w written
backwards.

Solution:

S → aSa | bSb | a | b | ε

S ⇒ aSa⇒ abSba⇒ abaSaba⇒ abaaaba
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Context-Free Grammars

Example: We want to construct a grammar generating the language L

consisting of all correctly parenthesised sequences of symbols ‘(’ and ‘)’.

For example (()())(()) ∈ L but )()) 6∈ L.
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Context-Free Grammars

Example: We want to construct a grammar generating the language L

consisting of all correctly parenthesised sequences of symbols ‘(’ and ‘)’.

For example (()())(()) ∈ L but )()) 6∈ L.

Solution:

S → ε | (S) | SS

S ⇒ SS ⇒ (S)S ⇒ (S)(S)⇒ (SS)(S)⇒ ((S)S)(S)⇒
(()S)(S)⇒ (()(S))(S)⇒ (()())(S)⇒ (()())((S))⇒
(()())(())
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Context-Free Grammars

Example: We want to construct a grammar generating the language L

consisting of all correctly constructed arithmetic experessions where
operands are always of the form ‘a’ and where symbols + and ∗ can be
used as operators.

For example (a+ a) ∗ a+ (a ∗ a) ∈ L.
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Example: We want to construct a grammar generating the language L

consisting of all correctly constructed arithmetic experessions where
operands are always of the form ‘a’ and where symbols + and ∗ can be
used as operators.

For example (a+ a) ∗ a+ (a ∗ a) ∈ L.

Solution:

E → a | E + E | E ∗ E | (E )
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Context-Free Grammars

Example: We want to construct a grammar generating the language L

consisting of all correctly constructed arithmetic experessions where
operands are always of the form ‘a’ and where symbols + and ∗ can be
used as operators.

For example (a+ a) ∗ a+ (a ∗ a) ∈ L.

Solution:

E → a | E + E | E ∗ E | (E )

E ⇒ E + E ⇒ E ∗ E + E ⇒ (E ) ∗ E + E ⇒ (E + E ) ∗ E + E ⇒
(a+E ) ∗E +E ⇒ (a+ a) ∗E +E ⇒ (a+ a) ∗ a+E ⇒ (a+ a) ∗ a+(E )⇒
(a+ a) ∗ a+ (E ∗ E )⇒ (a+ a) ∗ a+ (a ∗ E )⇒ (a+ a) ∗ a+ (a ∗ a)
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Derivation Tree

A → aBBb | AaA
B → ε | bCA
C → AB | a | b
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Derivation Tree
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B → ε | bCA
C → AB | a | b

A
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Derivation Tree

For each derivation there is some derivation tree:

Nodes of the tree are labelled with terminals and nonterminals.

The root of the tree is labelled with the initial nonterminal.

The leafs of the tree are labelled with terminals or with symbols ε.

The remaining nodes of the tree are labelled with nonterminals.

If a node is labelled with some nonterminal A then its children are
labelled with the symbols from the right-hand side of some rewriting
rule A → α.
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Left and Right Derivation

E → E + E | E ∗ E | (E ) | a

A left derivation is a derivation where in every step we always replace the
leftmost nonterminal.

E ⇒ E + E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a+ E ⇒ a ∗ a+ a

A right derivation is a derivation where in every step we always replace
the rightmost nonterminal.

E ⇒ E + E ⇒ E + a⇒ E ∗ E + a⇒ E ∗ a+ a⇒ a ∗ a+ a

A derivation need not be left or right:

E ⇒ E + E ⇒ E ∗ E + E ⇒ E ∗ a+ E ⇒ E ∗ a+ a⇒ a ∗ a+ a
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Left and Right Derivation

There can be several different derivations corresponding to one
derivation tree.

For every derivation tree, there is exactly one left and exactly one
right derivation corresponding to the tree.
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Equvalence of Grammars

Grammars G1 and G2 are equivalent if they generate the same language,
i.e., if L(G1) = L(G2).

Remark: The problem of equivalence of context-free grammars is
algorithmically undecidable. It can be shown that it is not possible to
construct an algorithm that would decide for any pair of context-free
grammars if they are equivalent or not.

Even the problem to decide if a grammar generates the language Σ∗ is
algorithmically undecidable.
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Ambiguous Grammars

A grammar G is ambiguous if there is a word w ∈ L(G ) that has two
different derivation trees, resp. two different left or two different right
derivations.

Example:
E ⇒ E + E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a+ E ⇒ a ∗ a+ a

E ⇒ E ∗ E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a+ E ⇒ a ∗ a+ a

E

E

E

a

∗ E

a

+ E

a

E

E

a

∗ E

E

a

+ E

a
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Ambiguous Grammars

Sometimes it is possible to replace an ambiguous grammar with a
grammar generating the same language but which is not ambiguous.

Example: A grammar

E → E + E | E ∗ E | (E ) | a

can be replaced with the equivalent grammar

E → T | T + E

T → F | F ∗ T
F → a | (E )

Remark: If there is no unambiguous grammar equivalent to a given
ambiguous grammar, we say it is inherently ambiguous.
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Context-Free Languages

Definition

A language L is context-free if there exists some context-free grammar G
such that L = L(G ).

The class of context-free languages is closed with respect to:

concatenation

union

iteration

The class of context-free languages is not closed with respect to:

complement

intersection
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Context-Free Languages

We have two grammars G1 = (Π1,Σ, S1,P1) and G2 = (Π2,Σ, S2,P2),
and can assume that Π1 ∩ Π2 = ∅ and S 6∈ Π1 ∪ Π2.

Grammar G such that L(G ) = L(G1)L(G2):

G = (Π1 ∪ Π2 ∪ {S}, Σ, S , P1 ∪ P2 ∪ {S → S1S2})

Grammar G such that L(G ) = L(G1) ∪ L(G2):

G = (Π1 ∪ Π2 ∪ {S}, Σ, S , P1 ∪ P2 ∪ {S → S1, S → S2})

Grammar G such that L(G ) = L(G1)
∗:

G = (Π1 ∪ {S}, Σ, S , P1 ∪ {S → ε, S → S1S})
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Computability and Complexity
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What Is an Algorithm?

Algorithm

An algorithm is a mechanical procedure consisting of some simple
elementary steps that for any given input produces an output.

An algorithm can be described:

in plain English

by a pseudocode

as a computer program in a programming language

as a hardware circuit

. . .

Algorithms are used for solving problems.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 221 / 401



Problems

Problem

When specifying a problem we must determine:

what is the set of possible inputs

what is the set of possible outputs

what is the relationship between inputs and outputs

inputs outputs
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Examples of Problems

Problem “Sorting”

Input: A sequence of elements a1, a2, . . . , an.

Output: Elements of the sequence a1, a2, . . . , an ordered from the
least to the greatest.

Example:

Input: 8, 13, 3, 10, 1, 4

Output: 1, 3, 4, 8, 10, 13

Remark: A particular input of a problem is called an instance of the
problem.
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Examples of Problems

Problem “’Finding the shortest path in an (undirected) graph’

Input: An undirected graph G = (V ,E ) with edges labelled with
numbers, and a pair of nodes u, v ∈ V .

Output: The shortest path from node u to node v .

Example:

u v

10

12
9

14

11
6

9

13 10

7

12

11

8
10

17
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Problems

Problem

So formally, a problem can be defined as a tuple (In,Out,R), where:

In is the set of possible inputs

Out is the set of possible outputs

R ⊆ In × Out is a relation assigning corresponding outputs to each
input. This relation must satisfy

∀x ∈ In : ∃y ∈ Out : R(x , y).

In Out
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Encoding of Input and Output

In general, we can restrict to the case, where inputs and outputs of
a problem are words over some Σ, i.e., In = Out = Σ∗.

Some other object (numbers, sequences of numbers, graphs, . . . ,) then
can be written (encoded) as words over this alphabet.

Example: In the problem “Sorting”, we can select as an alphabet
Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ,}.

Then an input can be for example the word

826,13,3901,101,128,562

and the output is then the word

13,101,128,562,826,3901

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 226 / 401



Encoding of Input and Output

Example: If an input of some problem is for example a graph, it can be
represented as a list of nodes and edges:

For example, the following graph

1 2

3 4

5

can be represented as word

(1,2,3,4,5),((1,2),(2,4),(4,3),(3,1),(1,1),(2,5),(4,5),(4,1))

over alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ,, (, )}.
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Encoding of Input and Output

Remark: Not all words from Σ∗ necessarily represent some input. We
should choose such encoding that allows us to recognize easily if a word
represents some input or not.
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Encoding of Input and Output

We can restrict our attention to the case where both inputs and outputs
are encoded as words over alphabet {0, 1} (i.e., as sequences of bits).

Symbols of any other alphabet can be represented as sequences of bits.

Example: Alphabet {a, b, c, d, e, f, g}

a ↔ 001
b ↔ 010
c ↔ 011
d ↔ 100
e ↔ 101
f ↔ 110
g ↔ 111

Word ‘defb’ can be represented as ‘100101110010’.
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Other Examples of Problems

Problem “Primality”

Input: A natural number n.

Output: Yes if n is a prime, No otherwise.

Remark: A natural number n is a prime if it is greater than 1 and is
divisible only by numbers 1 and n.

Few of the first primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .
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Decision Problems

The situation when the set of outputs Out is {Yes,No} is quite frequent.
Such problems are called decision problems.

We usually specify decision problems in such a way that instead describing
what the output is, we introduce a question.

Example:

Problem “Primality”

Input: A natural number n.

Question: Is n a prime?
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Decision Problems

Decision problem

One possibility, how the notion of a decision problem can be defined
formally, is to define it as a pair (In,T ), where:

In is the set of all inputs,

T ⊆ In is the set of all inputs, for which the answer is Yes.
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Decision Problems and Languages

If we restrict to the cases where inputs are words over some alphabet Σ,
then decision problems can be viewed as languages.

A language corresponding to a given decision problem is the set of those
words from Σ∗ that represent inputs for which the answer is Yes.

Example: A language consisting of those words from {0, 1}∗ that are
binary representations of primes.

For example, 101 ∈ L but 110 6∈ L.
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An Example of a Decision Problem

SAT problem (boolean satisfiability problem)

Input: Boolean formula ϕ.

Question: Is ϕ satisfiable?

Example:
Formula ϕ1 = x1 ∧ (¬x2 ∨ x3) is satisfiable:
e.g., for valuation ν where ν(x1) = 1, ν(x2) = 0, ν(x3) = 1, it holds that
ν(ϕ1) = 1.

Formula ϕ2 = (x1 ∧ ¬x1) ∨ (¬x2 ∧ x3 ∧ x2) is not satisfiable:
for every valuation ν it holds that ν(ϕ2) = 0.
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Optimization Problems

Other special case are the so called optimization problems.

An optimization problem is a problem where the aim is to choose, from
a set of feasible solutions, a solution that in some respect is optimal.
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Optimization Problems

Other special case are the so called optimization problems.

An optimization problem is a problem where the aim is to choose, from
a set of feasible solutions, a solution that in some respect is optimal.

Example: In the problem “Finding the shortest path in a graph”, the set
of feasible solutions consists of all paths from the node u to the node v .
The criterion by which we compare the paths is the length of a path.
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Optimization Problems

Formally, an optimization problems can be defined as a tuple
(In,Out, f ,m, g), where:

In is the set of inputs,

Out is the set of solutions,

f : In→ P(Out) is a function assigning to each input x a set of
corresponding feasible solutions f (x),

m :
⋃

x∈In({x} × f (x))→ R is an optimization function (cost
function),

g is min or max.

The goal is to find for a given input x ∈ In some feasible solution y ∈ f (x)
such that

m(x , y) = g{m(x , y ′) | y ′ ∈ f (x)},

or to find out that there is no such feasible solution for the input x
(i.e., f (x) = ∅).
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Optimization Problems

The optimization problems, where g is min, are called minimization
problems.

The optimization problems, where g is max, are called maximization
problems.
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Examples of Problems

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k .

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

k = 3
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Examples of Problems

Independent set (IS) problem

Input: An undirected graph G , a number k .

Question: Is there an independent set of size k in the graph G?

k = 4

Remark: An independent set in a graph is a subset of nodes of the
graph such that no pair of nodes from this set is connected by an edge.
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Independent Set (IS) Problem

An example of an instance where the answer is Yes:

k = 4

An example of an instance where the answer is No:

k = 5
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ILP – Integer Linear Programming

Problem ILP (integer linear programming)

Input: An integer matrix A and an integer vector b.

Question: Is there an integer vector x such that Ax ≤ b?

An example of an instance of the problem:

A =





3 −2 5
1 0 1
2 1 0



 b =





8
−3
5





So the question is if the following system of inequations has some integer
solution:

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5
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ILP – Integer Linear Programming

One of solutions of the system

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5

is for example x1 = −4, x2 = 1, x3 = 1, i.e.,

x =





−4
1
1





because
3 · (−4)− 2 · 1 + 5 · 1 = −9 ≤ 8

−4 + 1 = −3 ≤ −3
2 · (−4) + 1 = −7 ≤ 5

So the answer for this instance is Yes.
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Examples of Problems

Problem

Input: Deterministic finite automata A1 and A2.

Question: Is L(A1) = L(A2)?

Problem

Input: Context-free grammars G1 and G2.

Question: Is L(G1) = L(G2)?
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Solutions of Problems

Solving a problem

An algorithm solves a given problem if:

1 It halts after some finite number of steps for any input of the given
problem (for any input instance).

2 It produces an output from the set of possible outputs that satisfies
the conditions specified in the problem statement.

For one problem there can be many diffent algorithms that correctly solve
the problem.

Remark: correctness of an algorithm — the algorithm solves the given
problem
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Solutions of Problems

To each algorithm A we can assign the function

fA : In→ Out

where:

In is the set of inputs for the algorithm A,

Out is the set of outputs, which are generated by the algorithm A,

fA(x) is the output, generated by the algorithm A for an input x ∈ In.

The function need not be total (i.e., the value of fA(x) need not be
defined for each x ∈ In), it can be partial:

the value of fA(x) is undefined if the computation of the algorithm A

for an input x never halts, if an error occurs, etc.
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Solutions of Problems

If we have a problem P = (In,Out,R) and an algorithm A realizing
a function fA : In→ Out, we say that

the algorithm A solves the problem P

if:

the value of fA(x) is defined for each x ∈ In,

for each x ∈ In we have (x , fA(x)) ∈ R
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Algorithmically Solvable Problems

Let us assume we have a problem P .

If there is an algorithm solving the problem P then we say that the
problem P is algorithmically solvable.

If P is a decision problem and there is an algorithm solving the problem P

then we say that the problem P is decidable (by an algorithm).

If we want to show that a problem P is algorithmically solvable, it is
sufficient to show some algorithm solving it (and possibly show that the
algorithm really solves the problem P).
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Algorithmically Unsolvable Problems

A problem that is not algorithmically solvable is algorithmically
unsolvable.

A decision problem that is not decidable is undecidable.
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Random Access Machine

A Random Access Machine (RAM) is an idealized model of a computer.

It consists of the following parts:

Program unit – contains a program for the RAM and a pointer to
the currently executed instruction

Working memory consists of cells numbered 0, 1, 2, . . . ; the content
of the cells can be read and written to

Input tape – read-only

Output tape – write-only
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Random Access Machine
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Random Access Machine

Cells 0 and 1 are special and are used as registers of the RAM:

Cell 0 – a working register (accumulator) – the register that is one
of operands for most of instructions and to which the result of most
of operations is stored.

Cell 1 – an index register – it is used for indirect addressing.

Forms of operands of instructions (i ∈ N):

form the value of the operand

=i the number i
i the number stored in the cell at address i
*i the number stored in the cell at address i + j ,

where j is the current value of the index register
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Random Access Machine

Example:
LOAD <op>

reads the value of the operand <op> into the working register (i.e., into
cell 0).

LOAD =5 – loads 5 into the working register
LOAD 5 – loads the value in cell 5 into the working register
LOAD *5 – loads the value in cell 5 + j , where j is the cur-

rent value of the index register, into the working
register
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Random Access Machine

Input and output instructions (they have no operands):

READ – the value from the cell of input tape on which
is the reading head is stored into the working
register and the reading head is moved right

WRITE – the value in the working register is written on
the output tape and the output head is moved
right by one

Intructions working with memory:

LOAD <op> – the value of the operand is loaded into the work-
ing register

STORE <op> – the value of the operand is rewritten with the
content of the working register (an operand of
the form =i is not allowed)
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Random Access Machine

Instruction for arithmetic operations:

ADD <op> – the value in the working register is increased by
the value of the operand (i.e., the value of the
operand is added to it)

SUB <op> – the value of the operand subtracted from the
value of the working register

MUL <op> – the value in the working register is multiplied by
the value of the operand

DIV <op> – the value in the working register is divided by the
value of the operand (the result is truncated to
an integer value)
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Random Access Machine

Jump instructions:

JUMP <label> – the computation will continue with an in-
struction determined by the label

JZERO <label> – if the working register contains value 0, the
computation will continue with an instruc-
tion determined by the label; otherwise it
will continue with the following instruction

JGTZ <label> – if the working register contains a positive
value, the computation will continue with
an instruction determined by the label; oth-
erwise it will continue with the following in-
struction

A halting instruction:

HALT – the computation is halted
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Random Access Machine

Problem “Searching”

Input: An integer x and a sequence of integers a1, a2, . . . , an (where
ai 6= 0) terminated by 0.

Output: If ai = x then the output is i (if there are several such i then
the smallest one), otherwise the output is 0.

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT
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Random Access Machine

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 0
Cell 1: 0
Cell 2: 0
Cell 3: 0
Cell 4: 0

...

Output:

Instructions: 0
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Random Access Machine
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Random Access Machine

start: READ
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LOAD =1
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JUMP loop
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Random Access Machine

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE
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Random Access Machine

start: READ
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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Random Access Machine
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JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 0
Cell 1: 0
Cell 2: 3
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 24
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Random Access Machine

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 3
Cell 1: 0
Cell 2: 3
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 25
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Random Access Machine

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 3
Cell 1: 0
Cell 2: 3
Cell 3: 9
Cell 4: 0

...

Output: 3

Instructions: 26
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Random Access Machine

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 3
Cell 1: 0
Cell 2: 3
Cell 3: 9
Cell 4: 0

...

Output: 3

Instructions: 27
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Turing Machine

We extend a deterministic finite automaton with the possibility of
moving the head in both directions, of writing symbols on the tape,
and we extend its tape into infinity.

q5

✷ ✷ a b a b b a b ✷ ✷ ✷ ✷
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Turing Machine

Definition

Formally, Turing machine is a tupleM = (Q,Σ, Γ, δ, q0,F ) where:

Q is a finite non-empty set of states

Γ is a finite (non-empty) set of tape symbols (tape alphabet)

Σ ⊆ Γ is a finite non-empty set of input symbols (input alphabet)

δ : (Q − F )× Γ→ Q × Γ× {−1, 0,+1} is a transition function

q0 ∈ Q is an initial state

F ⊆ Q is a set of final states
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Turing Machine

We assume that Γ− Σ always contains a special element ✷ denoting
a blank symbol.

A configuration is given by:

a state of the control unit
a content of the tape
a position of the head

A computation over a word w ∈ Σ∗ starts in the initial
configuration where:

the state of the control unit is q0
word w is written on the tape, remaining cells of the tape are filled
with the blank symbols (✷)
the head is on the first symbol of the word w (or on symbol ✷ when
w = ε)
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Turing Machine

One step of a Turing machine:

Let us assume that:

the state of the control unit is q

the cell of the tape on the position of the head contains symbol b

Let us say that δ(q, b) = (q′, b′, d) where d ∈ {−1, 0, 1}.

One step of the Turing machine is performed as follows:

the state of the control unit is changed to q′

symbol b′ is written on the tape cell on the position of the head
instead of b

The head is moved depending on d :

for d = −1 the head is moved one cell left
for d = 1 the head is moved one cell right
for d = 0 the position of the head is not changed
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Turing Machine

If the state of the control unit belongs to the set F then the next step is
not defined and the computation halts.

We often choose the set of final states F = {qyes, qno}.

Then we can define for a word w ∈ Σ∗ if a given Turing machine accepts
it:

If the state of the control unit after the computation over the word w

is qyes, the machine accepts the word w .

If the state of the control unit after the computation over the word w

is qno, the machine does not accept the word w .

The computation of the machine over the word w can be infinite. In
this case the machine does not accept the word w .

The language L(M) of a Turing machineM is the set of all words
accepted byM.
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Turing Machine

A Turing machine can give not only an answer Yes or No but it can
also compute a function that assignes to each word from Σ∗ some
other word (from Γ∗).

A word assigned to a word w is the word that remains on the tape
after the computation over the word w when we remove all symbols
✷.
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

✷ ✷ a a a a b b b b c c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

✷ ✷ x a a a b b b b c c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

✷ ✷ x a a a b b b b c c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

✷ ✷ x a a a b b b b c c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

✷ ✷ x a a a b b b b c c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

✷ ✷ x a a a x b b b c c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

✷ ✷ x a a a x b b b c c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

✷ ✷ x a a a x b b b c c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

✷ ✷ x a a a x b b b c c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

✷ ✷ x a a a x b b b x c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

✷ ✷ x a a a x b b b x c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

✷ ✷ x a a a x b b b x c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

✷ ✷ x a a a x b b b x c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

✷ ✷ x a a a x b b b x c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

✷ ✷ x a a a x b b b x c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

✷ ✷ x a a a x b b b x c c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
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Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}
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Turing Machine

Language L = {anbncn | n ≥ 0}
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Language L = {anbncn | n ≥ 0}
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Turing Machine

Language L = {anbncn | n ≥ 0}
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Turing Machine

Language L = {anbncn | n ≥ 0}
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
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Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

✷ ✷ x x x a x x b b x x c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

✷ ✷ x x x a x x x b x x c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

✷ ✷ x x x a x x x b x x c c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

✷ ✷ x x x a x x x b x x x c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

✷ ✷ x x x a x x x b x x x c ✷ ✷ ✷

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 264 / 401



Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

✷ ✷ x x x a x x x b x x x c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

✷ ✷ x x x a x x x b x x x c ✷ ✷ ✷

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 264 / 401



Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
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q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
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q4
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

✷ ✷ x x x a x x x b x x x c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

✷ ✷ x x x a x x x b x x x c ✷ ✷ ✷
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x
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q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

✷ ✷ x x x x x x x b x x x c ✷ ✷ ✷

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 264 / 401



Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x

q0 (qyes,✷, 0) (q1, x,+1) (qno, b, 0) (qno, c, 0) (q0, x,+1)
q1 (qno,✷, 0) (q1, a,+1) (q2, x,+1) (qno, c, 0) (q1, x,+1)
q2 (qno,✷, 0) (qno, a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,✷,−1) (qno, a, 0) (qno, b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,✷,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}

Σ = {a, b, c} Γ = {✷, a, b, c, x}

δ ✷ a b c x
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q4

✷ ✷ x x x x x x x x x x x x ✷ ✷ ✷

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 264 / 401



Turing Machine
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Turing Machine
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Turing Machine
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Turing Machine

Language L = {anbncn | n ≥ 0}
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Turing Machine

Language L = {anbncn | n ≥ 0}

Q = {q0, q1, q2, q3, q4, qyes, qno} F = {qyes, qno}
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Turing Machine

q0 q1 q2 q3

q4

qyes qno

x; +

a → x; +

✷; 0
b, c; 0

a, x; +

b → x; +

✷, c; 0

b, x; +

c → x; +

✷, a; 0

c, x; +

a, b; 0

✷;−

a, b, c, x;−

✷; +
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Turing Machine – Multiplication by Three

R 0 1 2

P

✷;−

0,1; + 0;−
1;−

0,✷→ 1;−

1→ 0;−

0,✷→ 0;−

1;−

✷;−

R

✷ ✷ ✷ 1 1 1 0 0 1 1 ✷ ✷ ✷
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Nondeterministic Turing Machines

We can also consider nondeterministic Turing machines where for every
state q and symbol b the transition function δ(q, b) specifies several
different triples (q′, b′, d).

The machine can choose any of them.

The machine accepts a word w iff it has at least one computation
accepting w .

Remark: For every nondeterministic Turing machine, an equivalent
deterministic Turing machine can be constructed.
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Church-Turing Thesis

Church-Turing thesis

Every algorithm can be implemented as a Turing machine.

It is not a theorem that can be proved in a mathematical sense – it is not
formally defined what an algorithm is.

The thesis was formulated in 1930s independently by Alan Turing and
Alonzo Church.
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Church-Turing Thesis

Examples of mathematical formalisms modelling the notion of an
algorithm:

Random Access Machines

Turing machines

Lambda calculus

Recursive functions

. . .

We can also mention:

An arbitrary (general purpose) programming language (for example C,
Java, Lisp, Haskell, Prolog, etc.).

All these models are equivalent with respect to algorithms that can be
implemented by them.
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Complexity of Algorithms
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Complexity of an Algorithm

Computers work fast but not infinitely fast. Execution of each
instruction takes some (very short) time.

The same problem can be solved by several different algorithms. The
time of a computation (determined mostly by the number of executed
instructions) can be different for different algorithms.

We would like to compare different algorithms and choose a better
one.

We can implement the algorithms and then measure the time of their
computation. By this we find out how long the computation takes on
particular data on which we test the algorithm.

We would like to have a more precise idea how long the computation
takes on all possible input data.
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Time Complexity

Problem “Searching”

Input: An integer x and a sequence of integers a1, a2, . . . , an (where
ai 6= 0) terminated by 0.

Output: If ai = x then the output is i (if there are several such i then
the smallest one), otherwise the output is 0.

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 0
Cell 1: 0
Cell 2: 0
Cell 3: 0
Cell 4: 0

...

Output:

Instructions: 0
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Time Complexity
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JUMP loop
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output: WRITE

HALT

Input:
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 9
Cell 1: 0
Cell 2: 0
Cell 3: 0
Cell 4: 0

...

Output:

Instructions: 1
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 9
Cell 1: 0
Cell 2: 0
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 2
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 1
Cell 1: 0
Cell 2: 0
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 3
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 1
Cell 1: 0
Cell 2: 1
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 4
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 13
Cell 1: 0
Cell 2: 1
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 273 / 401



Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 13
Cell 1: 0
Cell 2: 1
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 6
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 4
Cell 1: 0
Cell 2: 1
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 7
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 4
Cell 1: 0
Cell 2: 1
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 8
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 1
Cell 1: 0
Cell 2: 1
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 9
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 2
Cell 1: 0
Cell 2: 1
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 10
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 2
Cell 1: 0
Cell 2: 1
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 11
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 5
Cell 1: 0
Cell 2: 2
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 13
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 5
Cell 1: 0
Cell 2: 2
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 14
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: -4
Cell 1: 0
Cell 2: 2
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 15
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Time Complexity
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HALT

Input:
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 2
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Cell 4: 0

...

Output:
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 3
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Cell 3: 9
Cell 4: 0

...

Output:
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output
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JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE
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Input:
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
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Cell 3: 9
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 9
Cell 1: 0
Cell 2: 3
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 21
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 9
Cell 1: 0
Cell 2: 3
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 22
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 0
Cell 1: 0
Cell 2: 3
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 23
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
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...

Output:
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 3
Cell 1: 0
Cell 2: 3
Cell 3: 9
Cell 4: 0

...

Output:

Instructions: 25
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 3
Cell 1: 0
Cell 2: 3
Cell 3: 9
Cell 4: 0

...

Output: 3

Instructions: 26
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Time Complexity

start: READ

STORE 3

LOAD =1

loop: STORE 2

READ

JZERO output

SUB 3

JZERO found

LOAD 2

ADD =1

JUMP loop

found: LOAD 2

output: WRITE

HALT

Input:
9, 13, 5, 9, 7, 2, 0

Cell 0: 3
Cell 1: 0
Cell 2: 3
Cell 3: 9
Cell 4: 0

...

Output: 3

Instructions: 27
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Time Complexity

In this example, where the input is

9, 13, 5, 9, 7, 2, 0

the algorithm performed 27 instructions.
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Time Complexity

In this example, where the input is

9, 13, 5, 9, 7, 2, 0

the algorithm performed 27 instructions.

We can try to analyze how many instructions the algorithm performes in
general for an input

x , a1, a2, . . . , an, 0
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Time Complexity

In this example, where the input is

9, 13, 5, 9, 7, 2, 0

the algorithm performed 27 instructions.

We can try to analyze how many instructions the algorithm performes in
general for an input

x , a1, a2, . . . , an, 0

If for all i (where 1 ≤ i ≤ n) is x 6= ai :

3 + 8 · n + 3 + 2 = 8n + 8

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 274 / 401



Time Complexity

In this example, where the input is

9, 13, 5, 9, 7, 2, 0

the algorithm performed 27 instructions.

We can try to analyze how many instructions the algorithm performes in
general for an input

x , a1, a2, . . . , an, 0

If for all i (where 1 ≤ i ≤ n) is x 6= ai :

3 + 8 · n + 3 + 2 = 8n + 8

If for some i (where 1 ≤ i ≤ n) is x = ai :

3 + 8 · (i − 1) + 5 + 3 = 8i + 3
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Size of Input

For different input data the program performs a different number of
instructions.

If we want to analyze somehow the number of performed instructions, it is
useful to introduce the notion of the size of an input.

Typically, the size of an input is a number specifying how “big” is the
given instance (a bigger number means a bigger instance).

Example: For problem “Searching” where all inputs are of the form

x , a1, a2, . . . , an, 0

we can choose the number n as the size of the input.

This way the size of the input 9, 13, 5, 9, 7, 2, 0 is 5.
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Size of Input

Remark: We can define the size of an input as we like depending on what
is useful for our analysis.

The size of an input is not strictly determinable but there are usually some
natural choices based on the nature of the problem.

Examples:

For the problem “Sorting”, where the input is a sequence of numbers
a1, a2, . . . , an and the output the same sequence sorted, we can take
n as the size of the input.

For the problem “Primality” where the input is a natural number x
and where the question is whether x is a prime, we can take the
number of bits of the number x as the size of the input.

(The other possibility is to take directly the value x as the size of the
input.)
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Size of Input

Sometimes it is useful to describe the size of an input with several
numbers.

For example for problems where the input is a graph, we can define the
size of the input as a pair of numbers n,m where:

n – the number of nodes of the graph

m – the number of edges of the graph

Remark: The other possibility is to define the size of the input as one
number n +m.
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Size of Input

In general, we can define the size of an input for an arbitrary problem as
follows:

When the input is a word over some alphabet Σ:
the length of word w

When the input as a sequence of bits (i.e., a word over {0, 1}):
the number of bits in this sequence

When the input is a natural number x :
the number of bits in the binary representation of x
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Time Complexity

We want to analyze a particular algorithm (its particular implementation).

We want to know how many steps the algorithm performs when it gets an
input of size 1, 2, 3, 4, . . ..

It is obvious that even for inputs of the same size the number of performed
steps can be different.

Let us assume that X is the set of all possible inputs of the given problem,
and g(x) is the number of steps perfomed by the algorithm for an input
x ∈ X .

Let us denote the size of input x ∈ X as |x |.

Now we define a function f : N→ N such that for n ∈ N is

f (n) = max {g(x) | x ∈ X , |x | = n}
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Time Complexity in the Worst Case

Such function f (n) (i.e., a function that for the given algorithm and the
given definition of the size of an input assignes to every natural number n
the maximal number of instructions performed by the algorithm if it
obtains an input of size n) is called the time complexity of the
algorithm in the worst case.
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Time Complexity in the Worst Case

Such function f (n) (i.e., a function that for the given algorithm and the
given definition of the size of an input assignes to every natural number n
the maximal number of instructions performed by the algorithm if it
obtains an input of size n) is called the time complexity of the
algorithm in the worst case.

Example: As we found out, the previously described algorithm solving the
problem “Searching” performs for an input x , a1, a2, . . . , an, 0 the following
number of steps:

If for all i it holds that x 6= ai , then the algorithm performs
8n + 8 steps.

If for some i it holds that x = ai , then the algorithm performs
8i + 3 steps.

Since in the second case it is always i ≤ n, the time complexity of the
algorithm in the worst case is f (n) = 8n + 8.
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Time Complexity in an Average Case

Sometimes it make sense to analyze the time complexity in an average
case.

In this case, we do not define f (n) as the maximum but as the arithmetic
mean of the set

{g(x) | x ∈ X , |x | = n}

It is usually more difficult to determine the time complexity in an
average case than to determine the time complexity in the worst case.

Often, these two function are not very different but sometimes the
difference is significant.

Remark: It usually makes no sense to analyze the time complexity in the
best case.
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Growth of Functions

A program works on an input of size n.
Let us assume that for an input of size n, the program performs f (n)
operations and that an execution of one operation takes 1µs (10−6 s).

n

f (n) 20 40 60 80 100 200 500 1000

n 20µs 40µs 60µs 80µs 0.1ms 0.2ms 0.5ms 1ms

n log n 86µs 0.213ms 0.354ms 0.506ms 0.664ms 1.528ms 4.48ms 9.96ms

n2 0.4ms 1.6ms 3.6ms 6.4ms 10ms 40ms 0.25 s 1 s

n3 8ms 64ms 0.216 s 0.512 s 1 s 8 s 125 s 16.7min.

n4 0.16 s 2.56 s 12.96 s 42 s 100 s 26.6min. 17.36 hours 11.57 days

2n 1.05 s 12.75 days 36560 years 38.3·109 years 40.1·1015 years 50·1045 years 10.4·10136 years –

n! 77147 years 2.59·1034 years 2.64·1068 years 2.27·10105 years 2.96·10144 years – – –
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Growth of Functions

Let us consider 3 algorithms with complexities
t1(n) = n, t2(n) = n3, t3(n) = 2n. Our computer can do in a reasonable
time (the time we are willing to wait) 1012 steps.

Complexity Input size

t1(n) = n 1012

t2(n) = n3 104

t3(n) = 2n 40
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Growth of Functions

Let us consider 3 algorithms with complexities
t1(n) = n, t2(n) = n3, t3(n) = 2n. Our computer can do in a reasonable
time (the time we are willing to wait) 1012 steps.

Complexity Input size

t1(n) = n 1012

t2(n) = n3 104

t3(n) = 2n 40

Now we speed up our computer 1000 times, meaning it can do 1015 steps.

Complexity Input size Growth

t1(n) = n 1015 1000×

t2(n) = n3 105 10×

t3(n) = 2n 50 +10
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Asymptotic Notation

It is usually quite difficult to express the complexity exactly.

The exact complexity depends on the used model of computation and
on the particular implementation (on details of this implementation).

We are interested in the complexity for big inputs. For small inputs
usually even nonefficient algorithms work fast.

We usually do not need to know the exact number of performed
instructions and we will be satisfied with some estimation of how fast
this number grows when the size of an input grows.

So we use the so called asymptotic notation, which allows us to
ignore unimportant details and to estimate approximately how fast
the given function grows. This simplifies the analysis considerably.
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Asymptotic Notation

Let us take an arbitrary function g : N→ N. Expressions O(g), Ω(g), and
Θ(g) denote sets of functions of the type N→ N, where:

O(g) – the set of all functions that grow at most as fast as g

Ω(g) – the set of all functions that grow at least as fast as g

Θ(g) – the set of all functions that grow as fast as g

Remark: These are not definitions! The definitions will follow on the next
slides.

O – big “O”

Ω – uppercase Greek letter “omega”

Θ – uppercase Greek letter “theta”
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Asymptotic Notation – Symbol O

nn0

cg(n)

f (n)

Definition

Let us consider an arbitrary function g : N→ N. For a function f : N→ N

we have f ∈ O(g) iff

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0) : f (n) ≤ c g(n).
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Asymptotic Notation – Symbol Ω

nn0

cg(n)

f (n)

Definition

Let us consider an arbitrary function g : N→ N. For a function f : N→ N

we have f ∈ Ω(g) iff

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0) : c g(n) ≤ f (n).
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Asymptotic Notation – Symbol Θ

nn0

c2g(n)

f (n)

c1g(n)

Definition

Let us consider an arbitrary function g : N→ N. For a function f : N→ N

we have f ∈ Θ(g) iff

(∃c1 > 0)(∃c2 > 0)(∃n0 ≥ 0)(∀n ≥ n0) : c1 g(n) ≤ f (n) ≤ c2 g(n).
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Asymptotic Notation

For simplicity, we consider only functions of type N→ N in the previous
definitions.

In fact, these definitions could be extended to all asymptotically
nonnegative functions of type R+ → R, which moreover can be
undefined on some finite subinterval of its domain.

Function f : R+ → R is asymptotically nonnegative if it satisfies:

(∃n0 ≥ 0)(∀n ≥ n0)(f (n) ≥ 0)

Remark: For n < n0, the value of f (n) can be undefined.

R+ = {x ∈ R | x ≥ 0}
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Asymptotic Notation

Examples:

n ∈ O(n2) n3 ∈ O(n4)
1000n ∈ O(n) 0.00001n2 − 1010n ∈ Θ(1010n2)

2log2 n ∈ Θ(n) n3 − n2 log32 n + 1000n − 10100 ∈ Θ(n3)
n3 6∈ O(n2) n3 + 1000n − 10100 ∈ O(n3)
n2 6∈ O(n) n3 + n2 6∈ Θ(n2)
n3 + 2n 6∈ O(n2) n! 6∈ O(2n)
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Asymptotic Notation

For any function g : N→ N we have:

g ∈ O(g) g ∈ Ω(g) g ∈ Θ(g)

For any pair of functions f , g : N→ N we have:

f ∈ O(g) iff g ∈ Ω(f )

f ∈ Θ(g) iff g ∈ Θ(f )

f ∈ Θ(g) iff f ∈ O(g) and f ∈ Ω(g)

For any functions f , g , h : N→ N we have:

if f ∈ O(g) and g ∈ O(h) then f ∈ O(h)

if f ∈ Ω(g) and g ∈ Ω(h) then f ∈ Ω(h)

if f ∈ Θ(g) and g ∈ Θ(h) then f ∈ Θ(h)
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Asymptotic Notation

There are pairs of functions f , g : N→ N such that

f 6∈ O(g) and g 6∈ O(f ),

for example

f (n) = n g(n) = n1+sin(n).

O(1) denotes the set of all bounded functions, i.e., functions whose
function values can be bounded from above by a constant.
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Asymptotic Notation

For any pair of functions f , g : N→ N we have:

max(f , g) ∈ Θ(f + g)

if f ∈ O(g) then f + g ∈ Θ(g)

For any functions f1, f2, g1, g2 : N→ N we have:

if f1 ∈ O(f2) and g1 ∈ O(g2) then f1 + g1 ∈ O(f2 + g2) and
f1 · g1 ∈ O(f2 · g2)

if f1 ∈ Θ(f2) and g1 ∈ Θ(g2) then f1 + g1 ∈ Θ(f2 + g2) and
f1 · g1 ∈ Θ(f2 · g2)
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Asymptotic Notation

A function f is called:

logarithmic, if f (n) ∈ Θ(log n)
linear, if f (n) ∈ Θ(n)
quadratic, if f (n) ∈ Θ(n2)
cubic, if f (n) ∈ Θ(n3)
polynomial, if f (n) ∈ O(nk) for some k > 0

exponential, if f (n) ∈ O(cn
k
) for some c > 1 and k > 0

Exponential functions are often written in the form 2O(nk) when the
asymptotic notation is used, since then we do not need to consider
different bases.
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Asymptotic Notation

For any k , ℓ > 0, such that k < ℓ, and any c > 1 we have:

nk ∈ O(nℓ) nℓ 6∈ O(nk)

logkc n ∈ O(logℓc n) logℓc n 6∈ O(logkc n)

cn
k
∈ O(cn

ℓ

) cn
ℓ

6∈ O(cn
k
)

For any k , ℓ > 0 and any c > 1 we have:

logkc n ∈ O(nℓ) nℓ 6∈ O(logkc n)

nk ∈ O(cn
ℓ

) cn
ℓ

6∈ O(nk)

Remark: logkc n is a more succinct notation for (logc n)
k .
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Asymptotic Notation

Proposition

For any a, b > 1 and any n > 0 we have

loga n =
logb n

logb a

Proof: From n = aloga n it follows that logb n = logb(a
loga n).

Since logb(a
loga n) = loga n · logb a, we obtain logb n = loga n · logb n, from

which the above mentioned conclusion follows directly.

So for any constants a, b > 1 we have loga n ∈ Θ(logb n).

Due to this observation, the base of a logarithm is often omited in the
asymptotic notation: for example, instead of Θ(n log2 n) we can write
Θ(n log n).
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Asymptotic Notation

As mentioned before, expressions O(g), Ω(g), and Θ(g) denote certain
sets of functions.

In some texts, these expressions are sometimes used with a slightly
different meaning:

an expression O(g), Ω(g) or Θ(g) does not represent the
corresponding set of functions but some function from this set.

This convention is often used in equations and inequations.

Example: 3n3 + 5n2 − 11n + 2 = 3n3 + O(n2)

When using this convention, we can for example write f = O(g) instead of
f ∈ O(g).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 297 / 401



Asymptotic Notation

The asymptotic notation can be straightforwardly generalized to
functions of several arguments:

Let us consider, for example, a function g : N× N→ N. For function
f : N× N→ N we have f (n,m) ∈ O(g(n,m)) iff

(∃c > 0)(∃n0 ≥ 0)(∃m0 ≥ 0)(∀n ≥ n0)(∀m ≥ m0)(f (n,m) ≤ c g(n,m))

In addition to expressions O(g), Ω(g), and Θ(g), expressions o(g)
and ω(g) are also sometimes used.

o(g) – the set of all fuctions that grow slower than function g

ω(g) – the set of all functions that grow faster than function g

We will not discuss their exact definitions and we will not deal with
these expressions any further.
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Complexity of Algorithms

Let us say we would like to analyze the time complexity t(n) of some
algorithm consisting of instructions I1, I2, . . . , Ik :

If m1,m2, . . . ,mk are the number of executions of individual
instructions for some input x (i.e., the instruction Ii is performed
mi times for the input x), then the total number of executed
instructions for input x is

m1 +m2 + · · ·+mk .

Let us consider functions f1, f2, . . . , fk , where fi : N→ N, and where
fi (n) is the maximum of numbers of executions of instruction Ii for all
inputs of size n.

Obviously, t ∈ Ω(fi ) for any function fi .

It is also obvious that t ∈ O(f1 + f2 + · · ·+ fk).
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Complexity of Algorithms

Let us recall that if f ∈ O(g) then f + g ∈ O(g).

If there is a function fi such that for all fj , where j 6= i , we have
fj ∈ O(fi ), then

t ∈ O(fi ).

This means that in an analysis of the time complexity t(n), we can
restrict our attention to the number of executions of the instruction
that is performed most frequently (and which is performed at most
fi (n) times for an input of size n), since we have

t ∈ Θ(fi ).
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Complexity of Algorithms

Example: In the analysis of the complexity of the searching of a number
in a sequence we obtained

f (n) = 8n + 8 .

If we would not like to do such a detailed analysis, we could deduce that
the time complexity of the algorithm is Θ(n), because:

The algorithm contains the only cycle, which is performed at most
n times, and there are some inputs, for which it is actually performed
n times.

Several instructions are performed in one iteration of the cycle. The
number of these instructions is bounded from both above and below
by some constant indepent of the size of the input.

Other instructions are performed at most once, and so they
contribute to the total running time by adding a constant.
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Complexity of Algorithms

Let us try to analyze the time complexity of the following algorithm:

Insertion-Sort(A, n):

for j := 2 to n do
x := A[j ]
i := j − 1
while i > 0 and A[i ] > x do

A[i + 1] := A[i ]
i := i − 1

end while
A[i + 1] := x

end for

I.e., we want to find a function t(n) such that the time complexity of the
algorithm Insertion-Sort in the worst case is in Θ(t(n)).
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Complexity of Algorithms

Let us consider inputs of size n:

The outer cycle for is performed at most n − 1 times.

The inner cycle while is performed at most (j − 1) times for a given
value j .

There are inputs such that the cycle while is performed exactly
(j − 1) times for each value j from 2 to n.

So in the worst case, the cycle while is performed exactly m times,
where

m = 1 + 2 + · · ·+ (n − 1) = (1 + (n − 1)) · n−1
2 = 1

2n
2 − 1

2n

This means that the total running time of the algorithm
Insertion-Sort in the worst case is Θ(n2).
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Complexity of Algorithms

In the previous case, we accurately computed the total number of
executions of the cycle while.

This is not always possible in general, or it can be quite complicated. It is
also not necessary, if we only want an asymptotic estimation.
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Complexity of Algorithms

For example, if we were not able to compute the sum of the arithmetic
progression, we could proceed as follows:

The outer cycle for is not performed more than n times and the inner
cycle while is performed at most n times in each iteration of the
outer cycle.

So we have t ∈ O(n2).

For some inputs, the cycle while is performed at least ⌈n/2⌉ times in
the last ⌊n/2⌋ iterations of the cycle for.

So the cycle while is performed at least ⌊n/2⌋ · ⌈n/2⌉ times for some
inputs.

⌊n/2⌋ · ⌈n/2⌉ ≥ (n/2− 1) · (n/2) = 1
4n

2 − 1
2n

This implies t ∈ Ω(n2).
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Complexity of Algorithms

When we use asymptotic estimations of the complexity of algorithms, we
should be aware of some issues:

Asymptotic estimations describe only how the running time grows
with the growing size of input instance.

They do not say anything about exact running time. Some big
constants can be hidden in the asymptotic notation.

An algorithm with better asymptotic complexity than some other
algorithm can be in reality faster only for very big inputs.

We usually analyze the time complexity in the worst case. For some
algorithms, the running time in the worst case can be much higher
than the running time on “typical” instances.
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Complexity of Algorithms

This can be illustrated on algorithms for sorting.

Algorithm Worst-case Average-case

Bubblesort Θ(n2) Θ(n2)

Heapsort Θ(n log n) Θ(n log n)

Quicksort Θ(n2) Θ(n log n)

Quicksort has a worse asymptotic complexity in the worst case than
Heapsort and the same asymptotic complexity in an average case but
it is usually faster in practice.
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Complexity of Algorithms

So far we have considered only the case when the execution of all
instructions takes the same time.

In practice, some of instructions can be more time consuming than
others.

If we know the times of an execution for each instruction and if we
can count the number of their executions, we can compute the overall
running time as

∑

i

mi ti

where ni is the number of executions of instruction i and ti is the
time of one exection of i .
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Complexity of Algorithms

Let us assume that we analyze the time complexity of some algorithm
implemented as a RAM.

So far, we have counted only the number of executed instructions in
our analysis.
This is known as using the so called uniform-cost measurement.

Estimations of the time complexity using the uniform-cost
measurement correnspond to the running time on real computers
under the assumption that operations, performed by the RAM, can be
performed by a real computer in a constant time.

This assumption holds, if numbers, the algorithm works with, are
small (they can be stored, say, to 32 or 64 bits).

If the RAM works with “big” numbers (e.g., 1000 bit), the estimation
using the uniform-cost measurement will be unrealistic in the sense
that a computation on a real computer will take much more time.
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Complexity of Algorithms

To analyse the time complexity of algorithms working with big
numbers, we usually use so called logarithmic-cost measurement,
where a duration of one instruction is not 1 but is proportional to the
number of bit operations, which are necessary for an execution of
this instruction.

The duration of an exection of an instruction depends on the actual
values of its operands.

For example, a duration of an execution of instructions ADD and SUB

is equal to the sum of the numbers of bits of their operands.

The duration of an execution of instructions MUL and DIV is equal to
the sum of the numbers of bits of their operands.
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Space Complexity of Algorithms

So far we have considered only the time necessary for a computation

Sometimes the size of the memory necessary for the computation is
more critical.

Amount of memory of a RAMM used for an input x is the number of
memory cells that are used byM during its computation on x .

Definition

A space complexity of a RAMM (in the worst case) is the function
s : N→ N, where s(n) is the maximal amount of memory used byM for
inputs of size n.
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Space Complexity of Algorithms

There can be two algorithms for a particular problem such that one of
them has a smaller time complexity and the other a smaller space
complexity.

If the time-complexity of an algorithm is in O(f (n)) then also the
space complexity is in O(f (n)) (note that a RAM uses at most one
cell beside the accumulator in each step).
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Complexity of Problems
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Complexity of Problems

It seems that different (algorithmic) problems are of different
difficulty.

More difficult are those problems that require more time and space to
be solved.

We would like to analyze somehow the difficultness of problems

absolutely – how much time and space do we need for their solution,

relatively – by how much is their solution harder or simpler with respect
to other problems.

Why do we not succeed in finding efficient algorithms for some
problems?
Can there exist an efficient algorithm for a given problem?

What are practical boundaries of what can be achieved?
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Complexity of Problems

It is necessary to distinguish between a complexity of an algorithm and
a complexity of a problem.

If we for exaple study the time complexity in the worst case, informally we
could say:

complexity of an algorithm – a function expressing how many steps
at most the given algorithm performs for an input of size n

complexity of a problem – what is the time complexity of the “most
efficient” algorithm for the given problem

A formal definition of a notion “complexity of a problem” in the above
sense leads to some technical difficulties. So the notion “complexity of a
problem” is not defined as such but it is bypassed by a definition of
complexity classes.
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Complexity Classes

Complexity classes are subsets of the set of all (algorithmic) problems.

A certain particular complexity class is always characterized by a property
that is shared by all the problems belonging to the class.

A typical example of such a property is a property that for the given
problem there exists some algorithm with some restrictions (e.g., on its
time or space complexity):

Only a problem for which such algorithm exists belongs to the given
class.

A problem for which such algorithm does not exist does not belong to
the class.
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Complexity Classes

Definition

For every function f : N→ N we define T (f (n)) as the class containing
exactly those problems for which there exists an algorithm with time
complexity O(f (n)).

Example:

T (n) – the class of all problems for which there exists an algorithm
with time complexity O(n)

T (n2) – the class of all problems for which there exists an algorithm
with time complexity O(n2)

T (n log n) – the class of all problems for which there exists an
algorithm with time complexity O(n log n)
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Complexity Classes

Definition

For every function f : N→ N we define S(f (n)) as the class containing
exactly those problems for which there exists an algorithm with space
complexity O(f (n)).

Example:

S(n) – the class of all problems for which there exists an algorithm
with space complexity O(n)

S(n2) – the class of all problems for which there exists an algorithm
with space complexity O(n2)

S(n log n) – the class of all problems for which there exists an
algorithm with space complexity O(n log n)
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Complexity Classes

Remark:

Note that for classed T (f ) and S(f ) it depends which problems belong to
the class on the used computational model (if it is a RAM, a one-tape
Turing machine, a multitape Turing machine, . . . ).
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Complexity Classes

Using classes T (f (n)) and S(f (n)) we can define classes PTIME and
PSPACE as

PTIME =
⋃

k≥0

T (nk) PSPACE =
⋃

k≥0

S(nk)

PTIME is the class of all problems for which there exists an algorithm
with polynomial time complexity, i.e., with time complexity O(nk)
where k is a constant.

PSPACE is the class of all all problems for which there exists an
algorithm with polynomial space complexity, i.e., with space
complexity O(nk) where k is a constant.
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Complexity Classes

Remark: Since all (reasonable) computational models are able to simulate
each other in such a way that in this simulation the number of steps does
not increase more than polynomially, the definitions of classes PTIME and
PSPACE are not dependent on the used computational model.
For their definition we can use any computational model.

We say that these classes are robust – their definitions do not depend on
the used computational model.
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Complexity Classes

Other classes are introduced analogously:

EXPTIME – the set of all problems for which there exists an algorithm
with time complexity 2O(nk ) where k is a constant

EXPSPACE – the set of all problems for which there exists an algorithm
with space complexity 2O(nk ) where k is a constant

LOGSPACE – the set of all problems for which there exists an algorithm
with space complexity O(log n)

Remark: Instead of 2O(nk ) we can also write O(cn
k
) where c and k are

constants.
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Relationships between Complexity Classes

If a Turing machine performs m steps then it visits at most m cells on the
tape.

This means that if there exists an algorithm for some problem with time
complexity O(f (n)), the space complexity of this algorithm is (at
most) O(f (n)).

So it is obvious that the following relationship holds.

Observation

For every function f : N→ N is T (f (n)) ⊆ S(f (n)).

Remark: We can analogously reason in the case of a RAM.
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Relationships between Complexity Classes

Based on the previous, we see that:

PTIME ⊆ PSPACE

EXPTIME ⊆ EXPSPACE

Since polynomial functions grow more slowly than exponential, we
obviously have:

PTIME ⊆ EXPTIME

LOGSPACE ⊆ PSPACE ⊆ EXPSPACE
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Relationships between Complexity Classes

For every pair of real numbers 0 ≤ ǫ1 < ǫ2 is

S(nǫ1) ( S(nǫ2)

LOGSPACE ( PSPACE

PSPACE ( EXPSPACE

For every pair of real numbers 0 ≤ ǫ1 < ǫ2 is

T (nǫ1) ( T (nǫ2)

PTIME ( EXPTIME
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Relationships between Complexity Classes

For analyzing relationships between complexity classes it is useful to
consider configurations.

A configuration is a global state of a machine during one step of a
computation.

For a Turing machine, a configuration is given by the state of its
control unit, the content of the tape (resp. tapes), and the position of
the head (resp. heads).

For a RAM, a configuration is given by the content of the memory, by
the content of all registers (including IP), by the content of the input
and output tapes, and by positions of their heads.
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Relationships between Complexity Classes

It should be clear that configurations (or rather their descriptions) can be
written as words over some alphabet.

Moreover, we can write configurations in such a way that the length of the
corresponding words will be approximately the same as the amount of
memory used by the algorithm (i.e., the number of cells on the tape used
by a Turing machine, the number of number of bits of memory used by
a RAM, etc.).

Remark: If we have an alphabet Σ where |Σ| = c then:

The number of words of length n is cn, i.e., 2Θ(n).

The number of words of length at most n is

n
∑

i=0

cn =
cn+1 − 1

c − 1

i.e., also 2Θ(n).
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Relationships between Complexity Classes

It is clear that during a computation of an algorithm there is no
configuration repeated, since otherwise the computation would loop.

Therefore, if we know that the space complexity of an algorithm is
O(f (n)), it means that the number of different configurations that are
reachable during a computation is 2O(f (n)).

Since configurations do not repeat during a computation, also the time
complexity of the algorithm is at most 2O(f (n)).

Observation

For every function f : N→ N it holds that S(f (n)) ⊆ T (2f (n)).
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Relationships between Complexity Classes

The following results can be drawn from the previous discussion:

LOGSPACE ⊆ PTIME

PSPACE ⊆ EXPTIME
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Relationships between Complexity Classes

Summary:

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE

PTIME ( EXPTIME

LOGSPACE ( PSPACE
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Upper and Lower Bounds on Complexity of Problems

An upper bound on a complexity of a problem means that the complexity
of the problem is not greater than some specified complexity.

Usually it is formulated so that the problem belongs to a particular
complexity class.

Examples of propositions dealing with upper bounds on the complexity:

The problem of reachability in a graph is in PTIME.

The problem of equivalence of two regular expressions is
in EXPSPACE.

If we want to find some upper bound on the complexity of a problem it is
sufficient to show that there is an algorithm with a given complexity.
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Upper and Lower Bounds on Complexity of Problems

A lower bound on a complexity of a problem means that the complexity
of the problem is at least as big as some specified complexity.

In general, proving of (nontrivial) lower bounds is more difficult than
proving of upper bounds.

To derive a lower bound we must prove that every algorithm solving the
given problem has the given complexity.
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Upper and Lower Bounds on Complexity of Problems

Problem “Sorting”

Input: Sequence of elements a1, a2, . . . , an.

Output: Elements a1, a2, . . . , an sorted from the smallest to the
greatest.

It can be proven that every algorithm, that solves the problem “Sorting”
and that has the property that the only operation applied on elements of a
sorted sequence is a comparison (i.e., it does not examine the content of
these elements), has the time complexity in the worst case Ω(n log n)
(i.e., for every such algorithm there exist constants c > 0 and n ≥ n0 such
that for every n ≥ n0 there is an input of size n, for which the algorithm
performs at least cn log n operations.)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 333 / 401



Nondeterminism
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Nondeterminism

Nondeterministic RAM:

Its definition is very similar to that of a deterministic RAM.

Moreover, it has an instruction NDJUMP x OR y that allows it to
choose the next instruction from two possibilities.

If at least one of computations of such a machine on a given input
ends with the answer Yes, then the answer is Yes.

If all computations end with the answer No then the answer is No.

Nondeterministic versions of other computational models (such as
nondeterministic Turing machines) are defined similarly.
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Nondeterminism

YESYESYES YES NONONONONO

The time required for a computation of a nondeterministic RAM (or
other nondeterministic machine) on a given input is defined as the
length of the longest computation on the input.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 336 / 401



Nondeterminism
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Nondeterminism

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k .

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

k = 3
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Nondeterminism

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k .

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

A nondeterministic algorithm works as follows:

1 It assignes nondeterministically to every node of G one of k colors.

2 It goes through all edges of G and for each of them verifies that its
endpoints are colored with different colors. If this is not the case, it
halts with the answer No.

3 If it has verified for all edges that their endpoints are colored with
different colors, it halts with the answer Yes.
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Nondeterminism

Problem “Graph isomorphism”

Input: Undirected graphs G1 = (V1,E1) and G2 = (V2,E2).

Question: Are graphs G1 and G2 isomorphic?

Remark: Graphs G1 and G2 are isomorphic if there exists some bijection
f : V1 → V2 such that for every pair of nodes u, v ∈ V1 is (u, v) ∈ E1 iff
(f (u), f (v)) ∈ E2.

A nondeterministic algorithm works as follows:

1 It nondeterministically chooses values of the function f for every
v ∈ V1.

2 It (deterministically) verifies that f is a bijection and that the above
mentioned condition is satisfied for all pairs of nodes.

3 If some of the conditions is violated, it halts with the answer No.
Otherwise it halts with the answer Yes.
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Nondeterminism

Nondeterminism can be viewed in two different ways:

1 When a machine should nondeterministically choose between several
possibilities, it “guesses” which of these possibilities will lead to the
answer Yes (if there is such a possibility).

2 When a machine should choose between several possibilities, it splits
itself into several copies, each corresponding to one of the
possibilities. These copies continue in the computation in parallel.

The answer is Yes iff at least one of these copies halts with the
answer Yes.
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Nondeterminism

For decidability of problems, the nondeterministic algorithms are not
more powerful than deterministic ones:
If a problem can be solved by a nondeterministic RAM or TM, it can
be also solved by a deterministic RAM or TM that successively tries
all possible computations of the nondeterministic machine on a given
input.

Nondeterminism is useful primarily in the study of a complexity of
problems.
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Nondeterministic Complexity Classes

Definition

For a function f : N→ N we define the time complexity class NT (f ) as
the set of all problems that are solved by nondeterministic RAMs with
a time complexity in O(f (n)).

Definition

For a function f : N→ N we define the space complexity class NS(f )
as the set of all problems that are solved by nondeterministic RAMs with
a space complexity in O(f (n)).
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Class NPTIME

Definition

NPTIME =

∞
⋃

k=0

NT (nk)

NPTIME (sometimes we write just NP) is the class of all problems,
for which there exists a nondeterministic algorithm with polynomial
time complexity.

The class NPTIME contains those problems for which it is possible to
verify in polynomial time that the answer is Yes if somebody, who
wants to convince us that this is really the case, provides additional
information.

It is obvious that PTIME ⊆ NPTIME, since deterministic algorithms
can be viewed as a special case of nondeterministic algorithms.
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Complexity Classes

Class NPSPACE can be defined similarly.

Similarly to the deterministic case, it holds that
NPTIME ⊆ NPSPACE.

A nondeterministic RAM can be simulated by a deterministic RAM
which tries all possible computations. Each of these possible
computations uses at most a polynomial amount of memory and
individual computations share no information so we can use the same
memory for each of them. So we have NPTIME ⊆ PSPACE.

It is also known that if some problem is solved by a nondeterministic
Turing machine with a space complexity f (n) then it is also solved by
a deterministic Turing machine with a space complexity O((f (n))2).
Based on this it is evident that NPSPACE ⊆ PSPACE.

PTIME ⊆ NPTIME ⊆ PSPACE = NPSPACE
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NP-Complete Problems
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Polynomial Reduction between Problems

Let us have two decision problems A and B .

Problem A can be reduced to problem B if there is an algorithm P such
that:

It can get an arbitrary instance of problem A as an input.

For an instance of a problem A obtained as an input (let us denote it
as x) it produces an instance of a problem B as an output.

It holds
x ∈ A ⇔ P(x) ∈ B

i.e., the answer for the input x of problem A is Yes iff the answer for
the input P(x) of problem B is Yes.

If, in addition, the algorithm P is polynomial, we say that problem A can
be reduced in polynomial time to problem B .
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Polynomial Reduction between Problems

Inputs of problem A Inputs of problem B

Yes
Yes

No
No

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 346 / 401



Polynomial Reduction between Problems

Inputs of problem A Inputs of problem B

Yes
Yes

No
No

P
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Polynomial Reduction between Problems

Let us say that problem A can be reduced in polynomial time to
problem B , i.e., there is a (polynomial) algorithm P realizing this
reduction.

If problem B is in the class PTIME then problem A is also in the class
PTIME.

A solution of problem A for an input x :

Call P with input x and obtain a returned value P(x).

Call a polynomial time algorithm solving problem B with the
input P(x).
Write the returned value as the answer for A.

That means:

If A is not in PTIME then also B can not be in PTIME.
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Problem SAT

Definition of problem SAT:

SAT (boolean satisfiability problem)

Input: Boolean formula ϕ.

Question: Is ϕ satisfiable?

Example:
Formula ϕ1 = x1 ∧ (¬x2 ∨ x3) is satisfiable:
e.g., for valuation ν where [x1]ν = 1, [x2]ν = 0, [x3]ν = 1, it holds that
[ϕ1]ν = 1.

Formula ϕ2 = (x1 ∧ ¬x1) ∨ (¬x2 ∧ x3 ∧ x2) is not satisfiable:
for every valuation ν it holds that [ϕ2]ν = 0.
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Problem 3-SAT

3-SAT is a variant of the SAT problem where the possible inputs are
restricted to formulas of a certain special form:

3-SAT

Input: Formula ϕ is a conjunctive normal form where every clause
contains exactly 3 literals.

Question: Is ϕ satisfiable?
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Problem 3-SAT

Some notions:

A literal is a formula of the form x or ¬x where x is a boolean
variable.

A clause is a disjuction of literals.

Examples: x1 ∨ ¬x2 ¬x5 ∨ x8 ∨ ¬x15 ∨ ¬x23 x6

A formula is in a conjuctive normal form (CNF) if it is a conjuction
of clauses.

Example: (x1 ∨ ¬x2) ∧ (¬x5 ∨ x8 ∨ ¬x15 ∨ ¬x23) ∧ x6

So in the 3-SAT problem we require that a formula ϕ is in a CNF and
moreover that every clause of ϕ contains exactly three literals.

Example:
(x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4)
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Problem 3-SAT

The following formula is satisfiable:

(x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4)

For example for valuation ν where

[x1]ν = 0
[x2]ν = 1
[x3]ν = 0
[x4]ν = 1

is [ϕ1]ν = 1.

On the other hand, the following formula is not satisfiable:

(x1 ∨ x1 ∨ x1) ∧ (¬x1 ∨ ¬x1 ∨ ¬x1)
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Independent Set (IS) Problem

Independent set (IS) problem

Input: An undirected graph G , a number k .

Question: Is there an independent set of size k in the graph G?

k = 4

Remark: An independent set in a graph is a subset of nodes of the
graph such that no pair of nodes from this set is connected by an edge.
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Independent Set (IS) Problem

An example of an instance where the answer is Yes:

k = 4

An example of an instance where the answer is No:

k = 5
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A Reduction from 3-SAT to IS

We describe a (polynomial-time) algorithm with the following properties:

Input: An arbitrary instance of 3-SAT, i.e., a formula ϕ in a
conjunctive normal form where every clause contains exactly three
literals.

Output: An instance of IS, i.e., an undirected graph G and a number
k .

Moreover, the following will be ensured for an arbitrary input (i.e., for
an arbitrary formula ϕ in the above mentioned form):

There will be an independent set of size k in graph G iff formula ϕ
will be satisfiable.
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A Reduction from 3-SAT to IS

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x4)
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A Reduction from 3-SAT to IS
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x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

For each literal we add a node to the graph.
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A Reduction from 3-SAT to IS

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

We connect with edges the nodes corresponding to literals belonging to
the same clause.
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A Reduction from 3-SAT to IS
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x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

For each pair of nodes corresponding to literals xi and ¬xi we add an edge
between them.
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A Reduction from 3-SAT to IS

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

We put k to be equal to the number of clauses.
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A Reduction from 3-SAT to IS

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

The constructed graph and number k are the output of the algorithm.
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A Reduction from 3-SAT to IS

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

ν(x1) = 1
ν(x2) = 1
ν(x3) = 0
ν(x4) = 1

If the formula ϕ is satisfiable then there is a valuation ν where every
clause contains at least one literal with value 1.
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A Reduction from 3-SAT to IS
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x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

ν(x1) = 1
ν(x2) = 1
ν(x3) = 0
ν(x4) = 1

We select one literal that has a value 1 in the valuation ν, and we put the
corresponding node into the independent set.
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A Reduction from 3-SAT to IS

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

ν(x1) = 1
ν(x2) = 1
ν(x3) = 0
ν(x4) = 1

We can easily verify that the selected nodes form an independent set.
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A Reduction from 3-SAT to IS

The selected nodes form an independent set because:

One node has been selected from each triple of nodes corresponding
to one clause.

Nodes denoted xi and ¬xi could not be selected together.
(Exactly of them has the value 1 in the given valuation ν.)
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A Reduction from 3-SAT to IS

On the other hand, if there is an independent set of size k in graph G ,
then it surely has the following properties:

At most one node is selected from each triple of nodes corresponding
to one clause.

But because there are k clauses and k nodes are selected, exactly one
node must be selected from each triple.

Nodes denoted xi and ¬xi cannot be selected together.

We can choose a valuation according to the selected nodes, since it follows
from the previous discussion that it must exist.
(Arbitrary values can be assigned to the remaining variables.)

For the given valuation, the formula ϕ has surely the value 1, since in each
clause there is at least one literal with value 1.
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A Reduction from 3-SAT to IS

It is obvious that the running time of the described algorithm polynomial:

Graph G and number k can be constructed for a formula ϕ in time O(n2),
where n is the size of formula ϕ.

We have also seen that there is an independent set of size k in the
constructed graph G iff the formula ϕ is satisfiable.

The described algorithm shows that 3-SAT can be reduced in polynomial
time to IS.
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NP-Complete Problems

Let us consider a set of all decision problems.
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NP-Complete Problems

By an arrow we denote that a problem A can be reduced in polynomial
time to a problem B .

A B
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NP-Complete Problems

For example 3-SAT can be reduced in polynomial time to IS.

3-SAT IS
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NP-Complete Problems

Let us consider now the class NPTIME and a problem P .

P

NPTIME
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NP-Complete Problems

A problem P is NP-hard if every problem from NPTIME can be reduced
in polynomial time to P .

P

NPTIME
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NP-Complete Problems

A problem P is NP-complete if it is NP-hard and it belongs to the class
NPTIME.

P

NPTIME
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NP-Complete Problems

If we have found a polynomial time algorithm for some NP-hard
problem P , then we would have polynomial time algorithms for all
problems P ′ from NPTIME:

At first we would apply an algorithm for the reduction from P ′ to P

on an input of a problem P ′.

Then we would use a polynomial algorithm for P on the constructed
instance of P and returned its result as the answer for the original
instance of P ′.

Is such case, PTIME = NPTIME would hold, since for every problem from
NPTIME there would be a polynomial-time (deterministic) algorithm.
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NP-Complete Problems

On the other hand, if there is at least one problem from NPTIME for
which a polynomial-time algorithm does not exist, then it means that for
none of NP-hard problems there is a polynomial-time algorithm.

It is an open question whether the first or the second possibility holds.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 361 / 401



NP-Complete Problems

It is not difficult to see that:

If a problem A can be reduced in a polynomial time to a problem B and
problem B can be reduced in a polynomial time to a problem C , then
problem A can be reduced in a polynomial time to problem C .

So if we know about some problem P that it is NP-hard and that P can
be reduced in a polynomial time to a problem P ′, then we know that the
problem P ′ is also NP-hard.
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NP-Complete Problems

Theorem

Problem SAT is NP-complete.

It can be shown that SAT can be reduced in a polynomial time to 3-SAT
and we have seen that 3-SAT can be reduced in a polynomial time to IS.

This means that problems 3-SAT and IS are NP-hard.

It is obvious that 3-SAT and IS are in NPTIME.

Problems 3-SAT and IS are NP-complete.
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NP-Complete Problems

By a polynomial reductions from problems that are already known to be
NP-complete, NP-completeness of many other problems can be shown:

IS

3−SAT

3−CG

SUBSET−SUM

ILP

SAT

VC

CLIQUE

HC TSPHK
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3-CG – Graph Coloring with 3 Colors

3-CG - graph coloring with 3 colors

Input: An undirected graph G

Question: Is it possible to color nodes of the graph G using 3 colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example:
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3-CG – Graph Coloring with 3 Colors

3-CG - graph coloring with 3 colors

Input: An undirected graph G

Question: Is it possible to color nodes of the graph G using 3 colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example:

Answer: Yes
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3-CG – Graph Coloring with 3 Colors

3-CG - graph coloring with 3 colors

Input: An undirected graph G

Question: Is it possible to color nodes of the graph G using 3 colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example:
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3-CG – Graph Coloring with 3 Colors

3-CG - graph coloring with 3 colors

Input: An undirected graph G

Question: Is it possible to color nodes of the graph G using 3 colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example:

Answer: No
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IS – Independent Set

IS - Independent Set

Input: An undirected graph G and a natural number k .

Question: Is there an independent set of size k in graph G (i.e., a set
of k nodes where no pair of nodes from this set is connected
by an edge)?

Example: k = 5
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IS – Independent Set

IS - Independent Set

Input: An undirected graph G and a natural number k .

Question: Is there an independent set of size k in graph G (i.e., a set
of k nodes where no pair of nodes from this set is connected
by an edge)?

Example: k = 5

Answer: Yes
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VC – Vertex Cover

VC – vertex cover

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
edge has at least one of its nodes in this subset?

Example: k = 6
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VC – Vertex Cover

VC – vertex cover

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
edge has at least one of its nodes in this subset?

Example: k = 6

Answer: Yes

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 367 / 401



CLIQUE

CLIQUE

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
two nodes from this subset are connected by an edge?

Example: k = 4
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CLIQUE

CLIQUE

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
two nodes from this subset are connected by an edge?

Example: k = 4

Answer: Yes
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:

Answer: No
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:

Answer: Yes
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Hamiltonian Circuit

HK – Hamiltonian circuit

Input: An undirected graph G .

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:

Answer: No
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Hamiltonian Circuit

HK – Hamiltonian circuit

Input: An undirected graph G .

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:
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Hamiltonian Circuit

HK – Hamiltonian circuit

Input: An undirected graph G .

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:

Answer: Yes
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Traveling Salesman Problem

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers and a number k .

Question: Is there a closed tour going through all nodes of the graph G

such that the sum of labels of edges on this tour is at
most k?

Example: k = 70

8

18 16

20

1

5 1

2

10
3

4

5

13

6
14

4
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Traveling Salesman Problem

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers and a number k .

Question: Is there a closed tour going through all nodes of the graph G

such that the sum of labels of edges on this tour is at
most k?

Example: k = 70

8

18 16

20

1

5 1

2

10
3

4

5

13

6
14

4

Answer: Yes, since there is a tour with the sum 69.
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SUBSET-SUM

Problem SUBSET-SUM

Input: A sequence a1, a2, . . . , an of natural numbers and a natural
number s.

Question: Is there a set I ⊆ {1, 2, . . . , n} such that
∑

i∈I ai = s ?

In other words, the question is whether it is possible to select a subset
with sum s of a given (multi)set of numbers .

Example: For the input consisting of numbers 3, 5, 2, 3, 7 and number
s = 15 the answer is Yes, since 3 + 5 + 7 = 15.

For the input consisting of numbers 3, 5, 2, 3, 7 and number s = 16 the
answer is No, since no subset of these number has sum 16.
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SUBSET-SUM

Remark:
The order of numbers a1, a2, . . . , an in an input is not important.

Note that this is not exactly the same as if we have formulated the
problem so that the input is a set {a1, a2, . . . , an} and a number s:

Numbers cannot occur multiple times in a set but they can in a sequence.
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SUBSET-SUM

Problem SUBSET-SUM is a special case of a knapsack problem:

Knapsack problem

Input: Sequence of pairs of natural numbers
(a1, b1), (a2, b2), . . . , (an, bn) and two natural numbers s
and t.

Question: Is there a set I ⊆ {1, 2, . . . , n} such that
∑

i∈I ai ≤ s and
∑

i∈I bi ≥ t ?
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SUBSET-SUM

Informally, the knapsack problem can be formulated as follows:

We have n objects, where the i-th object weights ai grams and its price
is bi dollars.

The question is whether there is a subset of these objects with total
weight at most s grams (s is the capacity of the knapsack) and with total
price at least t dollars.

Remark:
Here we have formulated this problem as a decision problem.

This problem is usually formulated as an optimization problem where the
aim is to find such a set I ⊆ {1, 2, . . . , n}, where the value

∑

i∈I bi is
maximal and where the condition

∑

i∈I ai ≤ s is satisfied, i.e., where the
capacity of the knapsack is not exceeded.
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SUBSET-SUM

That SUBSET-SET sum is a special case of the Knapsack problem can be
seen from the following (almost trivial) reduction:

Let us say that a1, a2, . . . , an, s1 is an instance of SUBSET-SUM.
It is obvious that for the instance of the knapsack problem where we have
the sequence (a1, a1), (a2, a2), . . . , (an, an), s = s1 and t = s1, the answer
is the same as for the original instance of SUBSET-SUM.
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SUBSET-SUM

If we want to study the complexity of problems such as SUBSET-SUM or
the knapsack problem, we must clarify what we consider as the size of an
instance.

Probably the most natural it is to define the size of an instance as the
total number of bits needed for its representation.

We must specify how natural numbers in the input are represented – if in
binary (resp. in some other numeral system with a base at least 2 (e.g.,
decimal or hexadecimal) or in unary.

If we consider numbers in an input encoded in binary, i.e., the size of an
input is proportional to the sum of lengths of binary representations of
numbers in the input, then the problem SUBSET-SUM is NP-hard.
(There is a polynomial time reduction from 3-SAT.)
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SUBSET-SUM

It is not difficult to see that SUBSET-SUM and Knapsack problem (its
decision variant) belong to the class NPTIME:

A nondeterministic algorithm at first nondeterministically chooses a
subset of elements of the sequence in the input and then
(deterministically) verifies if it satisfies the given condition
(resp. conditions).

It is obvious that this verification can be done in time polynomial with
respect to the size of the instance.

So the problems SUBSET-SUM and Knapsack problem are NP-complete.
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ILP – Integer Linear Programming

Problem ILP (integer linear programming)

Input: An integer matrix A and an integer vector b.

Question: Is there an integer vector x such that Ax ≤ b?

An example of an instance of the problem:

A =





3 −2 5
1 0 1
2 1 0



 b =





8
−3
5





So the question is if the following system of inequations has some integer
solution:

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5
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ILP – Integer Linear Programming

One of solutions of the system

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5

is for example x1 = −4, x2 = 1, x3 = 1, i.e.,

x =





−4
1
1





because
3 · (−4)− 2 · 1 + 5 · 1 = −9 ≤ 8

−4 + 1 = −3 ≤ −3
2 · (−4) + 1 = −7 ≤ 5

So the answer for this instance is Yes.
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ILP – Integer Linear Programming

Remark: A similar problem where the question for a given system of linear
inequations is whether it has a solution in the set of real numbers, can be
solved in a polynomial time.
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P vs. NP

As already mentioned, the question if PTIME = NPTIME is a
longstanding open problem.

In general, it is supposed that most likely PTIME 6= NPTIME but nobody
has proved it yet.

Remark: For example it can be shown that PTIME 6= NPTIME is
a necessary (but not sufficient) condition for an existence of ciphers that
are not easily breakable.

If somebody did find a polynomial algorithm for at least one NP-complete
problem, we would have immediately obtained algorithms for fast breaking
of all ciphers that are currently used.
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Undecidable Problems
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Algorithmically Undecidable Problems

A problem that is not algorithmically solvable is algorithmically
unsolvable.

A decision problem that is not decidable is undecidable.

Example: The following problem called the Halting problem is
undecidable:

Halting problem

Input: A description of a Turing machine M and a word w .

Question: Does the computation of the machine M on the word w halt
after some finite number of steps?
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Halting Problem

Alternatively, we could define the problem as follows:

Halting problem

Input: A source code of a C program P , input data x .

Question: Does the computation of P on the input x halt after some
finite number of steps?
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Halting Problem

Let us assume that there is a program that can decide the Halting problem.

So we could construct a subroutine H, declared as

boolean H(String code, String input)

where H(P , x) returns:

true if the program P halts on the input x ,

false if the program P does not halt on the input x .

Remark: Let us say that subroutine H(P , x) returns false if P is not
a syntactically correct program.
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Halting Problem

Using the subroutine H we can construct a program D that performs the
following steps:

It reads its input into a variable x of type String.

It calls the subroutine H(x , x).

If subroutine H returns true, program D jumps into an infinite loop

loop: goto loop

In case that H returns false, program D halts.

What does the program D do if it gets its own code as an input?
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Halting Problem

If D gets its own code as an input, it either halts or not.

If D halts then H(D,D) returns true and D jumps into the infinite
loop. A contradiction!

If D does not halt then H(D,D) returns false and D halts.
A contradiction!

In both case we obtain a contradiction and there is no other possibility. So
the assumption that H solves the Halting problem must be wrong.
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Other Undecidable Problems

We have already seen an example of an undecidable problem:

Problem

Input: Context-free grammars G1 and G2.

Question: Is L(G1) = L(G2)?

respectively

Problem

Input: A context-free grammar generating a language over an
alphabet Σ.

Question: Is L(G ) = Σ∗?
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Reduction between Problems

If we have already proved a (decision) problem to be undecidable, we can
prove undecidability of other problems by reductions.

Let us say that A and B are decision problems.
A reduction of problem A to problem B is an algorithm P such that:

It gets as an input an instance of problem A (denoted x).

It produces an instance of problem B as an output (denoted P(x)).

It holds for every instance x of problem A that the answer for x in
problem A is Yes iff the answer for P(x) in problem B is Yes.
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Reduction between Problems

Let us say there is some reduction P from problem A to problem B .

If problem B is decidable then problem A is also decidable.

Solution of problem A for an input x :

Call P with x as an input, it returns a value P(x).

Call the algorithm solving problem B with input P(x).

Write the returned value to the output as the result.

It is obvious that if A is undecidable then B cannot be decidable.
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Other Undecidable Problems

By reductions from the Halting problem we can show undecidability of
many other problems dealing with a behaviour of programs:

Is for some input the output of a given program Yes?

Does a given program halt for an arbitrary input?

Do two given programs produce the same outputs for the same
inputs?

. . .
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Other Undecidable Problems

An input is a set of types of tiles, such as:

The question is whether it is possible to cover every finite area of an
arbitrary size using the given types of tiles in such a way that the colors of
neighboring tiles agree.

Remark: We can assume that we have an infinite number of tiles of all
types.

The tiles cannot be rotated.
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Other Undecidable Problems
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Other Undecidable Problems

An input is a set of types of cards, such as:

a

aa

abb

bbab

bab

ab

baba

aa

aba

a

The question is whether it is possible to construct from the given types of
cards a non-empty finite sequence such that the concatenations of the
words in the upper row and in the lower row are the same. Every type of a
card can be used repeatedly.

a

aa

abb

bbab

abb

bbab

baba

aa

abb

bbab

aba

a

In the upper and in the lower row we obtained the word
aabbabbbabaabbaba.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 6, 2014 395 / 401



Other Undecidable Problems

Undecidability of several other problems dealing with context-free
grammars can be proved by reductions from the previous problem:

Problem

Input: Context-free grammars G1 and G2.

Question: Is L(G1) ∩ L(G2) = ∅?

Problem

Input: A context-free grammar G .

Question: Is G ambiguous?
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Other Undecidable Problems

Problem

Input: A closed formula of FOL where +, ∗, and integer constants
can be used as function symbols and = and < as predicate
symbols.

Question: Is the given formula true in the domain of natural numbers
(using the natural interpretation of all function and predicate
symbols)?

An example of an input:

∀x∃y∀z((x ∗ y = z) ∧ (y + 5 = x))

Remark: There is a close connection with Gödel’s incompleteness
theorem.
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Other Undecidable Problems

It is interesting that an analogous problem, where real numbers are
considered instead of natural numbers, is decidable (but the algorithm for
it and the proof of its correctness are quite nontrivial).

Also when we consider natural numbers or integers and the same formulas
as in the previous case but with the restriction that it is not allowed to use
the multiplication function symbol ∗, the problem is algorithmically
decidable.
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Other Undecidable Problems

If the function symbol ∗ can be used then even the very restricted case is
undecidable:

Hilbert’s tenth problem

Input: A polynomial f (x1, x2, . . . , xn) constructed from variables
x1, x2, . . . , xn and integer constants.

Question: Are there some natural numbers x1, x2, . . . , xn such that
f (x1, x2, . . . , xn) = 0 ?

An example of an input: 5x2y − 8yz + 3z2 − 15

I.e., the question is whether

∃x∃y∃z(5 ∗ x ∗ x ∗ y + (−8) ∗ y ∗ z + 3 ∗ z ∗ z + (−15) = 0)

holds in the domain of natural numbers.
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Other Undecidable Problems

Also the following problem is algorithmically undecidable:

Problem

Input: A closed formula ϕ of FOL.

Question: Is |= ϕ ?

Remark: Notation |= ϕ denotes that formula ϕ is logically valid, i.e., it is
true in all interpretations.
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Semidecidable Problems

A problem is semidecidable if there is an algorithm such that:

If it gets as an input an instance for which the answer is Yes, then it
halts after some finite number of steps and writes "YES" on the
output.

If it gets as an input an instance for which the answer is No, then it
either halts and writes "NO" on the input, or does not halt and runs
forever.

It is obvious that for example HP (Halting Problem) is semidecidable.

Some problems are not even semidecidable.
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