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Lecturer

Name: doc. Ing. Zdeněk Sawa, Ph.D.

E-mail: zdenek.sawa@vsb.cz

Room: EA413

Web: http://www.cs.vsb.cz/sawa/uti/index-en.html

On these pages you will find:

Information about the course

Study texts

Slides from lectures

Exercises for tutorials

Recent news for the course

A link to a page with animations
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Requirements

Credit (22 points):

Written test (22 points) — it will be written on a tutorial

The minimal requirement for obtaining the credit is 7 points.

A correcting test for 14 points.

Exam (78 points)

A written exam consisting of three parts (26 points for each
part); it is necessary to obtain at least 10 points for each part.
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Theoretical Computer Science

Theoretical computer science — a scientific field on the border between
computer science and mathematics

investigation of general questions concerning algorithms and
computations

study of different kinds of formalisms for description of algorithms

study of different approaches for description of syntax and semantics
of formal languages (mainly programming languages)

a mathematical approach to analysis and solution of problems (proofs
of general mathematical propositions concerning algorithms)
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Theoretical Computer Science

Examples of some typical questions studied in theoretical computer science:

Is it possible to solve the given problem using some algorithm?

If the given problem can be solved by an algorithm, what is the
computational complexity of this algorithm?

Is there an efficient algorithm solving the given problem?

How to check that a given algorithm is really a correct solution of the
given problem?

What kinds instructions are sufficient for a given machine to perform
a given algorithm?
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An example of an algorithmic problem

Problem “’Finding the shortest path in an (undirected) graph’

Input: An undirected graph G = (V ,E ) with edges labelled with
numbers, and a pair of nodes u, v ∈ V .

Output: The shortest path from node u to node v .

Example:

u v

10

12
9

14

11
6

9

13 10

7

12

11

8
10

17
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Algorithms and Problems

Theoretical computer science overlaps with many other areas of
mathematics and computer science:

graph theory

number theory

computational geometry

searching in text

game theory

. . .
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Logic

Logic — study of reasoning and argumentation

it studies when a conclusion follows from given assumptions

it studies questions concerning proofs and provability

it provides a basic language for mathematics and all sciences based on
mathematics

it is connected with study of foundations of mathematics

it is used in computer science on many different levels
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Propositional Logic
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Logical Inference

- If the train arrives late and there are no taxis at the station, then

John is late for his meeting.

- John is not late for his meeting.

- The train did arrive late.

- There were taxis at the station.

- If it is raining and Jane does not have her umbrella with her, then

she will get wet.

- Jane is not wet.

- It is raining.

- Jane has her umbrella with her.
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Logical Inference

p The train is late. It is raining.
q There are taxis at the station. Jane has her umbrella with her.
r John is late for his meeting. Jane gets wet.

If p and not q, then r .
Not r .
p.

q.
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Propositions

Examples of propositions:

“Jane gets wet.”

“If it is raining and Jane does not have her umbrella with her, then

she will get wet.”

“Paris is the capital of Japan.”

“There are infinitely many primes.”

“1+ 1 = 3”

“Number
√
2 is irrational.”
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Logical Connectives

Atomic proposition — it cannot be decomposed into simpler propositions

“It is raining.”

Compound proposition — it is composed from some simpler propositions

“If it is raining and Jane does not have her umbrella with her,

then she will get wet.”

It consists of propositions:

“It is raining.”

“Jane has her umbrella with her.”

“Jane gets wet.”
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Logical Connectives

More complicated propositions can be constructed from simpler
propositions using logical connectives:

Symbol Log. connective Example of use Informal meaning

¬ negation ¬p “not p”

∧ conjunction p ∧ q “p and q”

∨ disjunction p ∨ q “p or q”

→ implication p → q “if p then q”

↔ equivalence p ↔ q “p if and only if q”

Atomic propositions — p, q, r , . . .
(possibly with indexes — p0, p1, p2, . . . )
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Logical Connectives

Propositions are represented using formulas — formulas have a precisely
defined syntax and semantics.

“If it is raining and Jane does not have her umbrella with her, then she will

get wet.”

The proposition written as a formula:

(p ∧ ¬q)→ r

Atomic propositions:

p — “It is raining.”

q — “Jane has her umbrella with her.”

r — “Jane gets wet.”
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Truth Values

1 0
true false
yes no

We will use 0 and 1 to denote the truth values.

The truth values are also called boolean values.
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Negation

The negation of a proposition ϕ is the proposition “not ϕ”, or the
proposition “it is not the case that ϕ”. For example, the negation of

“the number 5 is a prime”

is a proposition

“it is not true that the number 5 is a prime”

or
“the number 5 is not a prime”.

In formulas, negation is denoted by symbol “¬”.

Formally: ¬ϕ

ϕ ¬ϕ

0 1
1 0
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Conjunction

The conjunction of propositions ϕ and ψ is proposition “ϕ and ψ”.

Example: The conjuction of propositions
“Copenhagen is the capital of Denmark” and “2+ 2 = 4” is proposition

“Copenhagen is the capital of Denmark and 2+ 2 = 4.”

In formulas, conjuction is denoted by symbol “∧”.

p ∧ q

p — “Copenhagen is the capital of Denmark”

q — “2+ 2 = 4”
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Conjunction

ϕ ψ ϕ∧ψ

0 0 0
0 1 0
1 0 0
1 1 1

Examples of false propositions:

“Helsinki are the capital of Italy and Charles University was founded

in 1348.”

“Asia is the largest continent and 3+ 5 = 14.”

“There are only finitely many primes and Pilsen is the capital of

USA.”
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Disjunction

The disjunction of propositions ϕ and ψ is proposition “ϕ or ψ”.

Example: The disjunction of propositions “whales are mammals” and
“Czeck Republic is in Europe” is proposition

“whales are mammals or Czech Republic is in Europe”.

In formulas, disjunction is denoted by symbol “∨”.

p ∨ q

p — “whales are mammals”

q — “Czech Republic is in Europe”
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Disjunction

Disjunction is “or” in non-exclusive sense.

ϕ ψ ϕ∨ψ

0 0 0
0 1 1
1 0 1
1 1 1
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Implication

Implication — “if ϕ then ψ”

ϕ — assumption (hypothesis)

ψ — conclusion

Example:

“If Peter was well-prepared for the exam, he obtained a good

grade.”

Implication is denoted by symbol “→”.

p → q

p — “Peter was well-prepared for the exam”

q — “Peter obtained a good grade”
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Implication

ϕ ψ ϕ→ ψ

0 0 1
0 1 1
1 0 0
1 1 1

Remark: Formula p → q is true exactly in those cases where the following
formula is true:

¬p ∨ q
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Implication

Implication does not express causal dependence.

Example:

“If Washington is the capital of USA, then 1+ 1 = 2.”

“If Washington is the capital of USA, then 1+ 1 = 3.”

“If Tokyo is the capital of USA, then 1+ 1 = 2.”

“If Tokyo is the capital of USA, then 1+ 1 = 3.”
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Implication

Implication p → q can be expressed in a natural language in many
different ways:

“q if p”

“p only if q”

“p implies q”

“q provided that p”

“from p follows q”

“p is a sufficient condition for q”

“q is a necessary condition for p”

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 25 / 569



Implication

If ϕ→ ψ is true and also ϕ is true, we can infer from this that also ψ is
true.

Example: When it holds that

“if today is Tuesday, then tomorrow is Wednesday”

“today is Tuesday”

we can infer from this that

“tomorrow is Wednesday”
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Equivalence

Equivalence — “ϕ if and only if ψ”

Example:

“Triangle ABC has all three sides of the same length if and only

if it has all three angles of the same size.”

The logical connective equivalence is denoted by symbol “↔”

p ↔ q

p — “triangle ABC has all three sides of the same length”

q — “triangle ABC has all three angles of the same size”
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Equivalence

ϕ ψ ϕ↔ ψ

0 0 1
0 1 0
1 0 0
1 1 1

Remark: Formula p ↔ q says basically the same thing as

(p → q) ∧ (q → p)
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Equivalence

Alternatives for expressing equivalence p ↔ p:

“p is a necessary and sufficient condition for q”

“p iff q”

Equivalence is often used in definitions of new notions:

Example:

“A triangle is isoscele if and only if at least two of its sides are equal

in length.”

“A triangle is isoscele if at least two of its sides are equal in length.”
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Formulas of Propositional Logic

Syntax — what are well-formed formulas of propositional logic

Semantics — assigns meaning to formulas and to individual symbols
occurring in these formulas
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Syntax of Formulas of Propositional Logic

Formulas — sequences of symbols from a given alphabet:

atomic propositions — for example symbols “p”, “q”, “r”, etc.

logical connectives — symbols “¬”, “∧”, “∨” “→”, “↔”

parentheses — symbols “(” and “)”

Not every sequence of these symbols is a formula.

For example, this is not a formula:

∧∨)p¬((¬
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Syntax of Formulas of Propositional Logic

Definition

Well-formed formulas of propositional logic are sequences of symbols
constructed according to the following rules:

1 If p is an atomic proposition, then p is a well-formed formula.

2 If ϕ and ψ are well-formed formulas, then also (¬ϕ), (ϕ∧ψ),
(ϕ∨ψ), (ϕ→ ψ) a (ϕ↔ ψ) are well-formed formulas.

3 There are no other well-formed formulas than those constructed
according to two previous rules.
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Syntax of Formulas of Propositional Logic

Examples of well-formed formulas:

q

(¬q)

r

((¬q)→ r)

p

(p ↔ r)

(¬(p ↔ r))

(((¬q)→ r)∧ (¬(p ↔ r)))

An example of a sequnce of symbols, which is not a well-formed formula:

(p ∧∨q)
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Syntax of Formulas of Propositional Logic

Formula ψ is a subformula of formula ϕ if at least one of the following
possibilities holds:

Formula ψ is the same formula as formula ϕ.

If formula ϕ is of the form (¬χ), then ψ is a subformula of formula χ.

If formula ϕ is of the form (χ1 ∧ χ2), (χ1 ∨ χ2), (χ1 → χ2), or
(χ1 ↔ χ2), then ψ is a subformula of formula χ1 or a subformula of
formula χ2.

Example: Subformulas of formula ((¬(p ∧ q))↔ r):

p q r (p ∧ q) (¬(p ∧ q)) ((¬(p ∧ q))↔ r)
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Syntax of Formulas of Propositional Logic

Alternative symbols for logical connectives:

Connective Symbol Alternative symbols

negation ¬ ∼

conjunction ∧ &

implication → ⇒, ⊃
equivalence ↔ ⇔, ≡
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Syntax of Formulas of Propositional Logic

An abstract syntax tree of formula (((¬q)→ r)∧ (¬(p ↔ r))):

p
q

r

r¬

¬

∧

→

↔
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Syntax of Formulas of Propositional Logic

p (¬ψ1) (ψ1 ∧ψ2) (ψ1 ∨ψ2)

p

ψ1

ψ ¬

ψ1 ψ2

∧

ψ1 ψ2

∨

(ψ1 → ψ2) (ψ1 ↔ ψ2)

ψ1 ψ2

→

ψ1 ψ2

↔
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Syntax of Formulas of Propositional Logic

Arity of logical connectives:

unary connective (arity 1): ¬

binary connectives (arity 2): ∧, ∨, →, ↔
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Syntax of Formulas of Propositional Logic

Conventions for omitting parentheses:

Outermost pair of parentheses can be omitted.

Priority of logical connectives (from the highest to the lowest):

¬ ∧ ∨ → ↔

Instead of ¬(¬ϕ), it is possible to write ¬¬ϕ.

Example: Instead of ((¬p)∧ (r → (q ∨ s))), it is possible to write

¬p ∧ (r → q ∨ s)

Remark: Other conventions will be described later.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 39 / 569



Semantics of Propositional Logic

At — a set of atomic propositions

For example

At = {p, q, r }, or

At = {p0, p1, p2, . . .}

Definition

A truth valuation is an assignment of truth values (i.e., values from the
set {0, 1}) to all atomic propositions from the set At .
(Formally, a truth valuation can be defined as a function v : At → {0, 1}.)

Example: A truth valuation v for At = {p, q, r }, where

v(p) = 1 v(q) = 0 v(r) = 1
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Semantics of Propositional Logic

If set At is finite and contains n atomic propositions, then there are 2n

truth valuations.

Example: At = {p, q, r }

v0: v0(p) = 0, v0(q) = 0, v0(r) = 0
v1: v1(p) = 0, v1(q) = 0, v1(r) = 1
v2: v2(p) = 0, v2(q) = 1, v2(r) = 0
v3: v3(p) = 0, v3(q) = 1, v3(r) = 1
v4: v4(p) = 1, v4(q) = 0, v4(r) = 0
v5: v5(p) = 1, v5(q) = 0, v5(r) = 1
v6: v6(p) = 1, v6(q) = 1, v6(r) = 0
v7: v7(p) = 1, v7(q) = 1, v7(r) = 1
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Semantics of Propositional Logic

At truth valuation v , formula ϕ has truth value 1:

v |= ϕ

At truth valuation v , formula ϕ has truth value 0:

v 6|= ϕ
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Semantics of Propositional Logic

Definition

Truth values of formulas of propositional logic in a given truth
valuation v are defined as follows:

For atomic proposition p, v |= p iff v(p) = 1.
(So, if v(p) = 0, then v 6|= p.)

v |= ¬ϕ iff v 6|= ϕ.
v |= ϕ∧ψ iff v |= ϕ and v |= ψ.

v |= ϕ∨ψ iff v |= ϕ or v |= ψ.

v |= ϕ→ ψ iff v 6|= ϕ or v |= ψ.

v |= ϕ↔ ψ iff v |= ϕ and v |= ψ, or v 6|= ϕ and v 6|= ψ.
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Semantics of Propositional Logic

ϕ ¬ϕ

0 1
1 0

ϕ ψ ϕ∧ψ ϕ∨ψ ϕ→ ψ ϕ↔ ψ

0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1
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Semantics of Propositional Logic

Example: At = {p, q, r }

valuation v , where v(p) = 1, v(q) = 0, and v(r) = 1

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

ϕ := (¬q → r)∧ ¬(p ↔ r)
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Semantics of Propositional Logic

Example: At = {p, q, r }

valuation v , where v(p) = 1, v(q) = 0, and v(r) = 1

v |= p

v 6|= q

v |= r

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1

ϕ := (¬q → r)∧ ¬(p ↔ r)
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Semantics of Propositional Logic

Example: At = {p, q, r }

valuation v , where v(p) = 1, v(q) = 0, and v(r) = 1

v |= p

v 6|= q

v |= r

v |= ¬q

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1 1

ϕ := (¬q → r)∧ ¬(p ↔ r)
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Semantics of Propositional Logic

Example: At = {p, q, r }

valuation v , where v(p) = 1, v(q) = 0, and v(r) = 1

v |= p

v 6|= q

v |= r

v |= ¬q

v |= ¬q → r

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1 1 1

ϕ := (¬q → r)∧ ¬(p ↔ r)
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Semantics of Propositional Logic

Example: At = {p, q, r }

valuation v , where v(p) = 1, v(q) = 0, and v(r) = 1

v |= p

v 6|= q

v |= r

v |= ¬q

v |= ¬q → r

v |= p ↔ r

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1 1 1 1

ϕ := (¬q → r)∧ ¬(p ↔ r)
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Semantics of Propositional Logic

Example: At = {p, q, r }

valuation v , where v(p) = 1, v(q) = 0, and v(r) = 1

v |= p

v 6|= q

v |= r

v |= ¬q

v |= ¬q → r

v |= p ↔ r

v 6|= ¬(p ↔ r)

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1 1 1 1 0

ϕ := (¬q → r)∧ ¬(p ↔ r)
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Semantics of Propositional Logic

Example: At = {p, q, r }

valuation v , where v(p) = 1, v(q) = 0, and v(r) = 1

v |= p

v 6|= q

v |= r

v |= ¬q

v |= ¬q → r

v |= p ↔ r

v 6|= ¬(p ↔ r)

v 6|= (¬q → r)∧ ¬(p ↔ r)

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1 1 1 1 0 0

ϕ := (¬q → r)∧ ¬(p ↔ r)
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

0

1

1 1

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

0

1 1

1 1

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1 1
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

0

1 1

1

1 1

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1 1 1
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

0

1 1

1

1 1

1

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1 1 1 1
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

0

1 1

1

1 1

1

0

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1 1 1 1 0
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

0

1 1

1

1 1

1

0

0

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

1 0 1 1 1 1 0 0
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

0

1 0

0

0 0

1

0

0

v0(p) = 0 v0(q) = 0 v0(r) = 0
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

0

1 1

1

0 1

0

1

1

v1(p) = 0 v1(q) = 0 v1(r) = 1
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

1

0 0

1

0 0

1

0

0

v2(p) = 0 v2(q) = 1 v2(r) = 0
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

1

0 1

1

0 1

0

1

1

v3(p) = 0 v3(q) = 1 v3(r) = 1
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p
q

r

r¬

¬

∧

→

↔

=

0

1 0

0

1 0

0

1

0

v4(p) = 1 v4(q) = 0 v4(r) = 0
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Semantics of Propositional Logic

ϕ := (¬q → r)∧ ¬(p ↔ r)

p q r ¬q ¬q → r p ↔ r ¬(p ↔ r) ϕ

0 0 0 1 0 1 0 0
0 0 1 1 1 0 1 1
0 1 0 0 1 1 0 0
0 1 1 0 1 0 1 1
1 0 0 1 0 0 1 0
1 0 1 1 1 1 0 0
1 1 0 0 1 0 1 1
1 1 1 0 1 1 0 0

Those valuations, where the given formula is true, are called its models:

v1: v1(p) = 0, v1(q) = 0, v1(r) = 1,
v3: v3(p) = 0, v3(q) = 1, v3(r) = 1,
v6: v6(p) = 1, v6(q) = 1, v6(r) = 0,
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Formulas Represented as Directed Acyclic Graphs

ϕ := ((p ↔ r)∨ (p ∧ ¬q)) ∧ ((p ∧ ¬q)→ ¬r)

ppp qq rr

¬ ¬¬

∧ ∧

∧

∨ →

↔

In an abstract syntax tree, nodes correspond to occurrences of
subformulas.
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Formulas Represented as Directed Acyclic Graphs

ϕ := ((p ↔ r)∨ (p ∧ ¬q)) ∧ ((p ∧ ¬q)→ ¬r)

ppp qq rr

¬ ¬¬

∧ ∧

∧

∨ →

↔

Alternatively, a formula can be represented as a directed acyclic graph.
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Formulas Represented as Directed Acyclic Graphs

ϕ := ((p ↔ r)∨ (p ∧ ¬q)) ∧ ((p ∧ ¬q)→ ¬r)

ppp qq rr

¬ ¬¬

∧ ∧

∧

∨ →

↔

Edges are oriented from children to their parents.
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Formulas Represented as Directed Acyclic Graphs

Leafs labelled with the same atomic proposition are merged together.

Those nodes, which are labelled with the same symbol and which
have the same predecessors, can be merged.

∧∧∧

Such merging of nodes can be done repeatedly — when some nodes
are merged, merging of some other nodes may become possible.
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Formulas Represented as Directed Acyclic Graphs

ϕ := ((p ↔ r)∨ (p ∧ ¬q)) ∧ ((p ∧ ¬q)→ ¬r)

p q r

¬

¬

∧

∧

∨ →

↔
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Formulas Represented as Directed Acyclic Graphs

When we merge all nodes that can be possibly merged this way, we
obtain a graph where individual nodes correspond to different
subformulas of a given formula.

A directed acyclic graph representing a given formula can be viewed
as a logic circuit:

Inputs — nodes labelled with atomic propositions

Output — the node corresponding to the whole formula
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Formulas Represented as Directed Acyclic Graphs
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Formulas Represented as Directed Acyclic Graphs
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Tautologies

Definition

Formula ϕ is a tautology if v |= ϕ holds for every truth valuation v

(i.e., if ϕ is true in every valuation).

Example: “If it is raining, then it is raining.”

p → p

Example: “It is Friday today, or it is not Friday today.”

q ∨ ¬q

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 53 / 569



Tautologies

An example of a more complicated tautology:

(p → q)→ ((p → ¬q)→ ¬p)

p q p → q ¬q p → ¬q ¬p (p → ¬q)→ ¬p ϕ

0 0 1 1 1 1 1 1
0 1 1 0 1 1 1 1
1 0 0 1 1 0 0 1
1 1 1 0 0 0 1 1
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Tautologies

Quite important are tautologies of the form ϕ→ ψ or ϕ↔ ψ

— they can be used for logical inference:

If ϕ→ ψ holds and ϕ holds, then also ψ must hold.

In particular, if ϕ→ ψ is a tautology and ϕ holds, we can deduce
that also ψ holds.

Example: (p ∧ q)→ p is a tautology.

If p ∧ q holds, then also p holds.

Example: (p → q)→ (¬q → ¬p) is a tautology.

If p → q holds and ¬q holds, then ¬p holds.
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Tautologies

If ϕ↔ ψ holds and ϕ holds, then ψ must hold.

Similarly, if ϕ↔ ψ holds and ψ holds, then ϕ must hold.

Example: (¬p → q)↔ (q ∨ p) is a tautology.

If ¬p → q holds, then also q ∨ p must hold.

If q ∨ p holds, then also ¬p → q must hold.
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Tautologies

When we take a tautology ϕ and replace all atomic propositions by
arbitrary formulas, we obtain a tautology by this replacement.

Example: Formula p → (p ∨ q) is a tautology.

This means that

ψ→ (ψ∨ χ)

is a tautology for arbitrary formulas ψ and χ.

Replacement of atomic propositions:

p is replaced with q ∨ ¬(r → ¬s)

q is replaced with ¬¬(q ↔ p)

We obtain tautology

(q ∨ ¬(r → ¬s))→ ((q ∨ ¬(r → ¬s))∨ ¬¬(q ↔ p))
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Contradictions

Definition

A formula ϕ is a contradiction if v 6|= ϕ holds for every truth valuation v

(i.e., when ϕ is false in every valuation).

Example: “It is Wednesday today, and it is not Wednesday today.”

p ∧ ¬p

ϕ is a tautology iff ¬ϕ is a contradiction

ϕ is a contradiction iff ¬ϕ is a tautology
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Satisfiable Formulas

Definition

A formula ϕ is satisfiable if there is at least one truth valuation v such
that v |= ϕ.

A formula is satisfiable iff it is not a contradiction.

Every tautology is satisfiable but not every satisfiable formula is
a tautology.

Example: A formula, which is satisfiable but not a tautology:

(p ∨ q)→ p

For example in valuation v1, where v1(p) = 1 and v1(q) = 0, the
formula is true.

In valuation v2, where v2(p) = 0 and v2(q) = 1, it is false.
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Satisfiable Formulas

ϕ is a tautology iff ¬ϕ is not satisfiable

ϕ is satisfiable iff ¬ϕ is not a tautology

Satisfiable formulas:

To show that a formula is satisfiable, it is sufficient to find a valuation,
in which the formula is true.

To show that a formula is not satisfiable, it necessary to show that
there is no valuation, in which the formula is true.
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Tautologies and Contradictions

Tautologies:

To show that a formula is not a tautology, it is sufficient to find
a valuation, in which the formula is false.

To show that a formula is a tautology, it necessary to show that there
is no valuation, in which the formula is false.

Contradictions:

To show that formula is not a contradiction, it is sufficient to find
a valuation, in which the formula is true.

To show that a formula is a contradiction, it necessary to show that
there is no valuation, in which the formula is true.
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Truth Valuations

For decing whether a formula ϕ is or is not a tautology
(resp. a contradiction, satisfiable), the table method can be used:

To go through all possible truth valuations systematically.

It is usually not necessary to construct the whole table. It is sufficient to
concentrate on “interesting” cases.

We can draw a graph representing the given formula and try to assign
values 0 and 1 to its nodes in such a way that either we find an
example of a truth valuation we are looking for (e.g., some valuation
where the formula is false), or we find out that such valuation does
not exist.
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Truth Valuations

For example, for deciding if a formula is a tautology:

We need to find out whether there exists some valuation where the
formula is false.

In this valuation, the node corresponding to the whole formula should
have value 0.

So we try to assign value 0 to this node.

Then we try to assign values to other nodes in such a way that the
assigned values are consistent with values assigned previously.

If we succeed in labelling whole graph consistently, we have
a valuation, in which the formula is false.

In this case, it is clear that the formula is not a tautology.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 63 / 569



Truth Valuations

If some values were already assigned to some nodes, this assignment
can impose some constraints on values that can be assigned to other
nodes.

Examples where some previously assigned values enforce some
particular value at some other node (resp. nodes):

ϕ ψ ϕ∧ψ

0 0 0
0 1 0
1 0 0
1 1 1

∧

1

? ?
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Is a given formula a tautology?

Example: ϕ1 := (p → (q ∨ r))∨ (p → r)

pp q r r

∨

∨

→ →

↔
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Is a given formula a tautology?

Example: ϕ1 := (p → (q ∨ r))∨ (p → r)

p q r

∨

∨

→ →

0

0 0

1

0

0 0

Formula ϕ1 is not a tautology — it is false in valuation v where v(p) = 1,
v(q) = 0, v(r) = 0.
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Is a given formula a tautology?

Example: ϕ2 := (p ↔ (¬q ∨ r))→ (¬p → q)

p q r

¬
¬

∨

→

→

↔
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Is a given formula a tautology?

Example: ϕ2 := (p ↔ (¬q ∨ r))→ (¬p → q)

p q r

¬
¬

∨

→

→
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1,0 – contradition

Formula ϕ2 is a tautology.
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Semantic Contradiction

Semantic contradition — the case when we find out that in a valuation
with the given property we are looking for (e.g., a valuation where a given
formula is false), some formula should be true and false at the same time.

There could not exist a valuation where some formula would be true
and false at the same time.

This way we can justify for example that a given formula is
a tautology (and so always true), because by finding a semantic
contradiction we show there can not exist a valuation where this
formula is false.
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Is a given formula a tautology?

The approach from the previous example can described by the following
sequnce of arguments:

1. Let us assume that (p ↔ (¬q ∨ r))→ (¬p → q) is false. Then:
2. p ↔ (¬q ∨ r) is true - it follows from 1.
3. ¬p → q is false - it follows from 1.
4. ¬p is true - it follows from 3.
5. q is false - it follows from 3.
6. p is false - it follows from 4.
7. ¬q is true - it follows from 5.
8. ¬q ∨ r is true - it follows from 7.
9. ¬q ∨ r is false - it follows from 2. a 6.

10. It is not possible that (p ↔ (¬q ∨ r))→ (¬p → q) is false because if it
would be so, ¬q ∨ r would have to be true and false at the same time
in this case (see 8. a 9.).

Remark: Note that in this justification the graph representing the given
formula is not mentioned at all. We talk there only about truth and falsity
of subformulas of this formula.
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Is a given formula a tautology?

It is not always the case that values that could be assigned to some
nodes are uniquely determined by values previously assigned to some
other nodes.

When we are in a situation where it is not possible to assign a unique
value to a node, it is necessary to try several possibilities.

We choose some node and a value assigned to it. Then possibly some
values that must be assigned to some other nodes are determined.

If we do not succeed in finding a valuation we are looking for, we
must backtrack, assign a diffent value to the given node, and try this
new possibility.
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Is a given formula a tautology?

Example: ϕ3 := ((p ∧ q)∨ (¬p ∧ ¬q))∨ (¬p ∧ q)

p q

¬

¬

∧

∧

∧

∨

∨
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Is a given formula a tautology?

Example: ϕ3 := ((p ∧ q)∨ (¬p ∧ ¬q))∨ (¬p ∧ q)
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So node p must have value 1.
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Is a given formula a tautology?
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Is a given formula a tautology?

Example: ϕ3 := ((p ∧ q)∨ (¬p ∧ ¬q))∨ (¬p ∧ q)
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0

Formula ϕ3 is not a tautology — it is false in valuation v where v(p) = 1,
v(q) = 0.
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Equivalence of Formulas

Definition

Formulas ϕ and ψ are logically equivalent if for each truth valuation v it
holds that ϕ and ψ have the same truth value in valuation v , i.e.,

v |= ϕ iff v |= ψ.

The fact that formulas ϕ and ψ are logically equivalent is denoted

ϕ ⇔ ψ.

Formulas ϕ and ψ are logically equivalent iff ϕ↔ ψ is a tautology.
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Equivalence of Formulas

Example: ¬(p → q) ⇔ p ∧ ¬q

p q p → q ¬(p → q) ¬q p ∧ ¬q

0 0 1 0 1 0
0 1 1 0 0 0
1 0 0 1 1 1
1 1 1 0 0 0
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Equivalence of Formulas

To show that formulas ϕ and ψ are not equivalent, it is sufficient to find
a valuation v such that:

v |= ϕ and v 6|= ψ, or
v 6|= ϕ and v |= ψ.

Example: p ∨ (q ∧ r) is not equivalent to (p ∨ q)∧ r

Valuation v , where:

v(p) = 1

v(q) = 1

v(r) = 0

In this valuation, p ∨ (q ∧ r) holds but (p ∨ q)∧ r does not hold.
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Some Important Equivalences

– Equivalences for negation:

¬¬p ⇔ p double negation

– Equivalences for conjunction:

(p ∧ q)∧ r ⇔ p ∧ (q ∧ r) associativity

p ∧ q ⇔ q ∧ p commutativity

p ∧ p ⇔ p idempotence

– Equivalences for disjunction:

(p ∨ q)∨ r ⇔ p ∨ (q ∨ r) associativity

p ∨ q ⇔ q ∨ p commutativity

p ∨ p ⇔ p idempotence
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Some Important Equivalences

– Distributivity of ∧ and ∨:

p ∧ (q ∨ r) ⇔ (p ∧ q)∨ (p ∧ r)

p ∨ (q ∧ r) ⇔ (p ∨ q)∧ (p ∨ r)

– De Morgan’s laws:

¬(p ∧ q) ⇔ ¬p ∨ ¬q

¬(p ∨ q) ⇔ ¬p ∧ ¬q

– Equivalences for implication:

p → q ⇔ ¬p ∨ q

¬(p → q) ⇔ p ∧ ¬q
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Some Important Equivalences

– Equivalences for ↔:

(p ↔ q)↔ r ⇔ p ↔ (q ↔ r) associativity

p ↔ q ⇔ q ↔ p commutativity

p ↔ q ⇔ (p → q)∧ (q → p)

p ↔ q ⇔ (p ∨ ¬q)∧ (¬p ∨ q)

p ↔ q ⇔ (p ∧ q)∨ (¬p ∧ ¬q)
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Equivalence of Formulas

Let us assume that formulas ϕ and ψ are logically equivalent, i.e.,

ϕ ⇔ ψ .

If we replace atomic propositions in ϕ and ψ by arbitrary formulas, we
obtain again a pair of equivalent formulas.

Example: ¬(p ∨ q) ⇔ ¬p ∧ ¬q

Therefore, for arbitrary formulas χ1 and χ2 is

¬(χ1 ∨ χ2) ⇔ ¬χ1 ∧ ¬χ2
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Equivalence of Formulas

¬(p ∨ q) ⇔ ¬p ∧ ¬q

Replacement of atomic propositions:

p replaced by q ∨ ¬(r → ¬s)

q replaced by ¬(q ↔ p)

We obtain

¬((q ∨ ¬(r → ¬s))∨ ¬(q ↔ p)) ⇔ ¬(q ∨ ¬(r → ¬s))∧ ¬¬(q ↔ p)
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Equivalence of Formulas

Let us assume that ϕ is a formula and ψ its subformula.

If we replace some occurrence of subformula ψ in formula ϕ with
a formula ψ ′ such that ψ ⇔ ψ ′, we obtain a formula ϕ ′ such that

ϕ ⇔ ϕ ′ .

Example: In formula

¬((p → q)∨ (¬(p → q)→ r))

we replace the second occurrence of subformula p → q with an equivalent
formula ¬p ∨ q.

We obtain
¬((p → q)∨ (¬(¬p ∨ q)→ r))
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Equivalent Transformations

For arbitrary formulas ϕ, ψ, and χ, it holds:

ϕ ⇔ ϕ.

If ϕ ⇔ ψ, then ψ⇔ ϕ.

If ϕ ⇔ ψ and ψ⇔ χ, then ϕ ⇔ χ.

When we try to prove equivalence of formulas, we can proceed by smaller
steps:

For example, if it holds that ϕ1 ⇔ ϕ2, ϕ2 ⇔ ϕ3, ϕ3 ⇔ ϕ4, and
ϕ4 ⇔ ϕ5, we can conclude that

ϕ1 ⇔ ϕ5 .

This can be written as

ϕ1 ⇔ ϕ2 ⇔ ϕ3 ⇔ ϕ4 ⇔ ϕ5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 80 / 569



Equivalent Transformations

Example: The proof that

(p ∧ q)→ r ⇔ p → (q → r)

(p ∧ q)→ r ⇔ ¬(p ∧ q)∨ r

⇔ (¬p ∨ ¬q)∨ r

⇔ ¬p ∨ (¬q ∨ r)

⇔ ¬p ∨ (q → r)

⇔ p → (q → r)
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Equivalent Transformations

Every formula can be transformed to an equivalent formula that uses only
“¬”, “∧”, and “∨” as logical connectives.

The connective “↔” can be replaced by other connectives using the
following equivalences:

p ↔ q ⇔ (p → q)∧ (q → p)

p ↔ q ⇔ (p ∨ ¬q)∧ (¬p ∨ q)

p ↔ q ⇔ (p ∧ q)∨ (¬p ∧ ¬q)

The connective “→” can be replaced by “¬” and “∨” using the
following equivalence:

p → q ⇔ ¬p ∨ q

Example:

(¬q → r)∧ ¬(p ↔ r) ⇔ (¬¬q ∨ r)∧ ¬(p ↔ r)

⇔ (¬¬q ∨ r)∧ ¬((p ∧ r)∨ (¬p ∧ ¬r))
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Equivalent Transformations

Every formula can be transformed to an equivalent formula, which
contains only logical connectives “¬”, “∧” and “∨”, and where negations
are applied only to atomic propositions.

We can assume that formula contains only “¬”, “∧” and “∨”.

Negations can be “pushed” to atomic propositions using the following
equivalences:

¬¬p ⇔ p

¬(p ∧ q) ⇔ ¬p ∨ ¬q

¬(p ∨ q) ⇔ ¬p ∧ ¬q
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Equivalent Transformations

Example:

(¬¬q ∨ r)∧ ¬((p ∧ r)∨ (¬p ∧ ¬r))

⇔ (q ∨ r)∧ ¬((p ∧ r)∨ (¬p ∧ ¬r))

⇔ (q ∨ r)∧ (¬(p ∧ r)∧ ¬(¬p ∧ ¬r))

⇔ (q ∨ r)∧ ((¬p ∨ ¬r)∧ ¬(¬p ∧ ¬r))

⇔ (q ∨ r)∧ ((¬p ∨ ¬r)∧ (¬¬p ∨ ¬¬r))

⇔ (q ∨ r)∧ ((¬p ∨ ¬r)∧ (p ∨ ¬¬r))

⇔ (q ∨ r)∧ ((¬p ∨ ¬r)∧ (p ∨ r))
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Logical Constants

For some purposes it can be useful to introduce the following special
formulas:

⊤ — a formula, which is always true

⊥ — a formula, which is always false

For every truth valuation v it holds:

v |= ⊤ (⊤ has always truth value 1)

v 6|= ⊥ (⊥ has always truth value 0)
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Logical Constants

Symbols ⊤ and ⊥ can be viewed as abbreviations:

⊤ stands for an arbitrary tautology (e.g., p → p)

⊥ stands for an arbitrary contradiction (e.g., p ∧ ¬p)

Alternatively, we could extend the definition of syntax and semantics of
propositional logic.

Symbols ⊤ and ⊥ can be viewed as logical connectives with arity 0.
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Logical Constants

Examples of equivalences that hold for ⊤ and ⊥ (and for arbitrary p):

⊤ ⇔ p ∨ ¬p ⊥ ⇔ p ∧ ¬p

¬⊤ ⇔ ⊥ ¬⊥ ⇔ ⊤
p ∧⊤ ⇔ p p ∨⊥ ⇔ p

p ∨⊤ ⇔ ⊤ p ∧⊥ ⇔ ⊥
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Equivalence of Formulas

It is not necessary for equivalent formulas to contain the same atomic
propositions.

Example: (q → ¬¬q)∧ ¬p ⇔ p → (r ∧ ¬r)

(q → ¬¬q)∧ ¬p ⇔ (q → q)∧ ¬p

⇔ ⊤∧ ¬p

⇔ ¬p

⇔ ¬p ∨⊥
⇔ p → ⊥
⇔ p → (r ∧ ¬r)

For example, also all tautologies are logically equivalent.
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Conjunctions and Disjunctions of Several Formulas

Due to associativity of conjunction, it holds for example:

p ∧ ((q ∧ r)∧ (s ∧ t)) ⇔ (p ∧ q)∧ ((r ∧ s)∧ t)

Both these formulas are also equivalent to formulas

p ∧ (q ∧ (r ∧ (s ∧ t)))

(((p ∧ q)∧ r)∧ s)∧ t

All these formulas are true iff all propositions p, q, r , s, and t are true.

Convention: Due to associativity of conjunction, the parentheses can be
omitted and we can write

p ∧ q ∧ r ∧ s ∧ t
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Conjunctions and Disjunctions of Several Formulas

Because conjunction is not only associative but also commutative, the
order of members of such more complicated conjunction is not important.
For example:

r ∧ t ∧ q ∧ s ∧ p ⇔ p ∧ q ∧ r ∧ s ∧ t

Due to idempotence, also the number of occurrences of each member is
not important.
For example:

p ∧ q ∧ p ⇔ q ∧ p ∧ q ∧ q
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Conjunctions and Disjunctions of Several Formulas

The same holds also for disjunction, e.g.:

(p ∨ q)∨ (r ∨ q) ⇔ q ∨ (p ∨ (r ∨ (r ∨ r)))

Convention: Instead of (p ∨ q)∨ (r ∨ (s ∨ t)) we can write

p ∨ q ∨ r ∨ s ∨ t

All this holds not only for atomic propositions but also for arbitrary
formulas, e.g.:

Instead of (ϕ1 ∧ϕ2)∧ (ϕ3 ∧ (ϕ4 ∧ϕ5)) we can write

ϕ1 ∧ϕ2 ∧ϕ3 ∧ϕ4 ∧ϕ5
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Konjunkce a disjunkce v́ıce formuĺı

Conjunction of n formulas ϕ1, ϕ2, . . . , ϕn, where n ≥ 0, is the formula

ϕ1 ∧ϕ2 ∧ · · ·∧ϕn

In particular:

For n = 0, the conjunction is the formula ⊤.

For n = 1, the conjunction is the formula ϕ1.

Disjunction of n formulas ϕ1, ϕ2, . . . , ϕn, where n ≥ 0, is the formula

ϕ1 ∨ϕ2 ∨ · · ·∨ϕn

In particular:

For n = 0, the disjunction is the formula ⊥.

For n = 1, the disjunction is the formula ϕ1.
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Conjunctions and Disjunctions of Several Formulas

Conjunction ϕ1 ∧ϕ2 ∧ · · ·∧ϕn:

The whole formula is true iff all formulas ϕ1, ϕ2, . . . , ϕn are true.

If some formula ϕi is equivalent to ⊥, then the whole formula is
equivalent to ⊥.

If some formula ϕi is equivalent to a negation of some formula ϕj

(i.e., ϕi ⇔ ¬ϕj), then the whole formula is equivalent to ⊥.

If some formula ϕi is equivalent to ⊤, then it is possible to omit the
formula ϕi from the whole formula.
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Konjunkce a disjunkce v́ıce formuĺı

Disjunction ϕ1 ∨ϕ2 ∨ · · ·∨ϕn:

The whole formula is true iff at least one of formulas ϕ1, ϕ2, . . . , ϕn

is true.

If some formula ϕi is equivalent to ⊤, then the whole formula is
equivalent to ⊤.

If some formula ϕi is equivalent to a negation of some formula ϕj

(i.e., ϕi ⇔ ¬ϕj), then the whole formula is equivalent to ⊤.

If some formula ϕi is equilvalent to ⊥, then it is possible to omit the
formula ϕi from the whole formula.
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Normal Forms of Fomulas

Literal — an atomic proposition or its negation, e.g.,

p ¬q ¬r

An elementary conjunction — a conjunction of one or more literals,
e.g.,

(p ∧ ¬q) (r) (q ∧ ¬r ∧ p)

An elementary disjunction (clause) — a disjunction of one or more
literals, e.g.,

(p ∨ ¬q) (r) (q ∨ ¬r ∨ p)
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Normal Forms of Fomulas

Example:

Elementary conjunction

(p ∧ ¬q ∧ r ∧ ¬s ∧ ¬t)

is true in exactly those truth valuations v where

v(p) = 1 v(q) = 0 v(r) = 1 v(s) = 0 v(t) = 0

Elementary disjunction

(p ∨ ¬q ∨ r ∨ ¬s ∨ ¬t)

is false in exactly those truth valuations v where

v(p) = 0 v(q) = 1 v(r) = 0 v(s) = 1 v(t) = 1
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Normal Forms of Fomulas

Disjunctive normal form (DNF) — a disjunction of zero or more
elementary conjunctions, e.g.,

(p ∧ ¬q) ∨ (¬r) ∨ (¬r ∧ ¬p ∧ ¬q)

Conjunctive normal form (CNF) — a conjunction of zero or more
elementary disjunctions (clauses), e.g.,

(p ∨ ¬q) ∧ (¬r) ∧ (¬r ∨ ¬p ∨ ¬q)

Remark: So formula ⊥ is a special case of a formula in DNF, and
formula ⊤ is a special case of a formula in CNF.
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Normal Forms of Fomulas

A formula in CNF is a tautology iff for each elemetary disjunction there is
some atomic proposition p such that literals p and ¬p occur in the
elemetary disjunction.

Example: (p ∨ q ∨ ¬r ∨ ¬q) ∧ (¬p ∨ ¬s ∨ s) ∧ (t ∨ ¬r ∨ s ∨ ¬t ∨ q)

A formula in DNF is a contradiction iff for each elemetary conjunction
there is some atomic proposition p such that literals p and ¬p occur in the
elemetary conjunction.

Example: (p ∧ q ∧ ¬r ∧ ¬q) ∨ (¬p ∧ ¬s ∧ s) ∨ (t ∧ ¬r ∧ s ∧ ¬t ∨ q)
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Normal Forms of Fomulas

Transformation of a formula to DNF and CNF:

We can assume that the formula contains only atomic propositions,
connectives “¬” applied to atomic propositions, and connectives “∧”
and “∨”.

The required form of the formula can be obtained by use of the
following equivalences:

p ∧ (q ∨ r) ⇔ (p ∧ q)∨ (p ∧ r) — for transformation to DNF

p ∨ (q ∧ r) ⇔ (p ∨ q)∧ (p ∨ r) — for transformation to CNF
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Normal Forms of Fomulas

Example: Transformation of formula q ∧ ((¬p ∨ ¬r)∧ (p ∨ r)) to DNF:

q ∧ ((¬p ∨ ¬r)∧ (p ∨ r))

⇔ (q ∧ (¬p ∨ ¬r))∧ (p ∨ r)

⇔ ((q ∧ ¬p)∨ (q ∧ ¬r))∧ (p ∨ r)

⇔ (((q ∧ ¬p)∨ (q ∧ ¬r))∧ p) ∨ (((q ∧ ¬p)∨ (q ∧ ¬r))∧ r)

⇔ (((q ∧ ¬p)∧ p)∨ ((q ∧ ¬r)∧ p)) ∨ (((q ∧ ¬p)∨ (q ∧ ¬r))∧ r)

⇔ (q ∧ ¬p ∧ p) ∨ (q ∧ ¬r ∧ p) ∨ (((q ∧ ¬p)∨ (q ∧ ¬r))∧ r)

⇔ (q ∧⊥) ∨ (q ∧ ¬r ∧ p) ∨ (((q ∧ ¬p)∨ (q ∧ ¬r))∧ r)

⇔ ⊥ ∨ (q ∧ ¬r ∧ p) ∨ (((q ∧ ¬p)∨ (q ∧ ¬r))∧ r)

⇔ (q ∧ ¬r ∧ p) ∨ (((q ∧ ¬p)∨ (q ∧ ¬r))∧ r)

⇔ (p ∧ q ∧ ¬r) ∨ (((q ∧ ¬p)∨ (q ∧ ¬r))∧ r)

⇔ . . .
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Normal Forms of Fomulas

. . .

⇔ (p ∧ q ∧ ¬r) ∨ (((q ∧ ¬p)∨ (q ∧ ¬r))∧ r)

⇔ (p ∧ q ∧ ¬r) ∨ (((q ∧ ¬p)∧ r) ∨ ((q ∧ ¬r)∧ r))

⇔ (p ∧ q ∧ ¬r) ∨ (q ∧ ¬p ∧ r) ∨ (q ∧ ¬r ∧ r)

⇔ (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ (q ∧ ¬r ∧ r)

⇔ (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ (q ∧⊥)

⇔ (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ ⊥
⇔ (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r)
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Normal Forms of Fomulas

It is easy to construct a formula in CNF or DNF for a given truth table:

p q r ϕ

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

DNF:
(¬p ∧ ¬q ∧ r)∨ (¬p ∧ q ∧ ¬r)∨ (p ∧ ¬q ∧ r)

CNF:
(p∨q∨ r)∧(p∨¬q∨¬r)∧(¬p∨q∨ r)∧(¬p∨¬q∨ r)∧(¬p∨¬q∨¬r)
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Normal Forms of Fomulas

When we consider a fixed finite set of atomic propositions At :

Complete disjunctive normal form (CDNF) — a formula in DNF,
where every elementary conjunction contains every atomic proposition
from At exactly once.

Example: (p ∧ ¬q ∧ ¬r)∨ (p ∧ q ∧ ¬r)∨ (¬p ∧ q ∧ ¬r)

Complete conjunctive normal form (CCNF) — a formula in CNF,
where every clause contains every atomic proposition from At exactly
once.

Example: (p ∨ ¬q ∨ ¬r)∧ (p ∨ q ∨ ¬r)∧ (¬p ∨ q ∨ ¬r)

Remark: In the examples is At = {p, q, r }.
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Minimal Sets of Logical Connectives

We can see from the previous discussion that connectives “¬”, “∧”, and
“∨” suffice for contructing a formula for every truth table.

In fact, some smaller sets of logical connectives are sufficient for this
purpose:

“¬”, “∧”:
ϕ∨ψ can be expressed as ¬(¬ϕ∧ ¬ψ)

“¬”, “∨”:
ϕ∧ψ can be expressed as ¬(¬ϕ∨ ¬ψ)

“¬”, “→”:
ϕ∨ψ can be expressed as ¬ϕ→ ψ

ϕ∧ψ can be expressed as ¬(ϕ→ ¬ψ)
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Minimal Sets of Logical Connectives

“→”, “⊥”:
¬ϕ can be expressed as ϕ→ ⊥
ϕ∨ψ can be expressed as (ϕ→ ⊥)→ ψ

ϕ∧ψ can be expressed as (ϕ→ (ψ→ ⊥))→ ⊥

“ | ” — NAND — Sheffer stroke (also denoted by “↑”):

ϕ ψ ϕ |ψ

0 0 1
0 1 1
1 0 1
1 1 0

¬ϕ can be expressed as ϕ |ϕ

ϕ∨ψ can be expressed as (ϕ |ϕ) | (ψ |ψ)

ϕ∧ψ can be expressed as (ϕ |ψ) | (ϕ |ψ)
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Minimal Sets of Logical Connectives

“↓” — NOR — Peirce’s arrow:

ϕ ψ ϕ ↓ ψ
0 0 1
0 1 0
1 0 0
1 1 0

¬ϕ can be expressed as ϕ ↓ ϕ
ϕ∨ψ can be expressed as (ϕ ↓ ψ) ↓ (ϕ ↓ ψ)
ϕ∧ψ can be expressed as (ϕ ↓ ϕ) ↓ (ψ ↓ ψ)
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Logical Entailment

Definition

Formula ψ logically follows from assumptions ϕ1, ϕ2, . . . , ϕn if
formula ψ is true in every truth valuation v where all these assumptions
are true.

The fact the ψ logically follows from ϕ1, ϕ2, . . . , ϕn is denoted

ϕ1, ϕ2, . . . , ϕn |= ψ.

ϕ1, ϕ2, . . . , ϕn — assumptions

ψ — conclusion
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Logical Entailment

Example: Conclusion r → p logically follows from assumption
p ∨ (q ∧ ¬r), i.e.,

p ∨ (q ∧ ¬r) |= r → p

p q r p ∨ (q ∧ ¬r) r → p

0 0 0 0 1
0 0 1 0 0

∗ 0 1 0 1 1
0 1 1 0 0

∗ 1 0 0 1 1
∗ 1 0 1 1 1
∗ 1 1 0 1 1
∗ 1 1 1 1 1
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Logical Entailment

Example:
- If the train arrives late and there are no taxis at the station, then

John is late for his meeting.

- John is not late for his meeting.

- The train did arrive late.

- There were taxis at the station.

(p ∧ ¬q)→ r , ¬r , p |= q
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Logical Entailment

(p ∧ ¬q)→ r , ¬r , p |= q

p q r (p ∧ ¬q)→ r ¬r p q

0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 0 1 1 0 1
0 1 1 1 0 0 1
1 0 0 0 1 1 0
1 0 1 1 0 1 0

∗ 1 1 0 1 1 1 1
1 1 1 1 0 1 1
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Logical Entailment

To find out whether ψ logically follows from assumptions ϕ1, ϕ2, . . . , ϕn,
the table method can be used:

If, in all lines corresponding to valuations where all assumptions
ϕ1, ϕ2, . . . , ϕn have value 1, ψ also have value 1 then the
conclusion ψ logically follows from assumptions ϕ1, ϕ2, . . . , ϕn.

If there exists at least one valuation in the table where ϕ1, ϕ2, . . . , ϕn

have value 1 and conclusion ψ has value 0 then this conclusion does
not logically follow from the assumptions.

Remark: Those valuations where at least one of assumptions
ϕ1, ϕ2, . . . , ϕn has value 0 are not important with respect to logical
entailment — the conclusion ψ can be true or false in these valuations.
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Logical Entailment

To find out whether ψ logically follows from assumptions ϕ1, ϕ2, . . . , ϕn,
also semantic contradiction can be used:

A directed acyclic graph common for all formular ϕ1, ϕ2, . . . , ϕn

and ψ is created.

Values 1 are assigned to nodes corresponding to assumptions
ϕ1, ϕ2, . . . , ϕn and value 0 to the node corresponding to
conclusion ψ.

If it is possible to assign values to all remaining nodes of the graph,
we have an example of a valuation where the assumptions are true
but the conclusion is false — i.e., the conclusion does not logically
follow from the assumptions.

If we show that there is no such valuation (because every attempt to
assign remaining values to nodes leads to a contradiction), the
conclusion logically follows from the assumptions.
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Logical Entailment

If a formula ψ is a tautology then it logically follows from every set of
assumptions, i.e., for every set of assumptions ϕ1, ϕ2, . . . , ϕn it holds that

ϕ1, ϕ2, . . . , ϕn |= ψ

In particular, if ψ is a tautology then it follows from the empty set of
assumptions:

|= ψ

Tautologies are the only formulas that logically follow from the empty set
of assumptions.
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Logical Entailment

The question whether a given conclusion logically follows from given
assumptions can be reformulated as a question whether a certain formula
is a tautology:

ϕ1, ϕ2, ϕ3, . . . , ϕn |= ψ

iff

ϕ1 → (ϕ2 → (ϕ3 → (· · ·→ (ϕn → ψ) · · · ))) is a tautology

Example:

ϕ1, ϕ2, ϕ3, ϕ4 |= ψ

iff

ϕ1 → (ϕ2 → (ϕ3 → (ϕ4 → ψ))) is a tautology
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Logical Entailment

The following two formulas are logically equivalent:

ϕ1 → (ϕ2 → (ϕ3 → (· · ·→ (ϕn → ψ) · · · )))
(ϕ1 ∧ϕ2 ∧ · · ·∧ϕn)→ ψ

For example

ϕ1 → (ϕ2 → (ϕ3 → (ϕ4 → ψ))) ⇔ (ϕ1 ∧ϕ2 ∧ϕ3 ∧ϕ4)→ ψ

(This can be easily checked by equivalent transformations using the
following equivalence: p → (q → r) ⇔ (p ∧ q)→ r)

So it also holds that

ϕ1, ϕ2, . . . , ϕn |= ψ

iff

(ϕ1 ∧ϕ2 ∧ · · ·∧ϕn)→ ψ is a tautology
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Logical Entailment

One more possibility how to characterize when a conclusion follows from
given assumptions, is provided by the following equivalence:

ϕ1, ϕ2, . . . ϕn |= ψ

iff

ϕ1 ∧ϕ2 ∧ · · ·∧ϕn ⇔ ϕ1 ∧ϕ2 ∧ · · ·∧ϕn ∧ψ

When some conclusion ψ, which logically follows from given assumptions
ϕ1, ϕ2, . . . ϕn, to these assumptions as new additional assumption, it does
not change the set of truth valuations where the assutions are true.
(The sets of assumptions ϕ1, ϕ2, . . . , ϕn and ϕ1, ϕ2, . . . , ϕn, ψ are true
at the same truth valuations.)
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Logical Entailment

So when an assumption ψ that logically follows from given assumption is
added to these assumptions, the set of all conclusions that follow the
assumptions is not affected:

ϕ1, ϕ2, . . . ϕn |= ψ

iff

it holds for each formula χ that:

ϕ1, ϕ2, . . . ϕn |= χ iff ϕ1, ϕ2, . . . ϕn, ψ |= χ
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Logical Entailment

If some concluctions logically follow from given assumptions and some
other concluction follows from these concluctions, then this concluction
logically follows also from the original assumptions.

Let us assume that

ϕ1, ϕ2, . . . , ϕn |= χ1 ϕ1, ϕ2, . . . , ϕn |= χ2

and also χ1, χ2 |= ψ.

Then ϕ1, ϕ2, . . . , ϕn |= ψ.

Example:

If ϕ1, ϕ2, ϕ3 |= (q ∨ ¬p) and ϕ1, ϕ2, ϕ3 |= ¬s then

ϕ1, ϕ2, ϕ3 |= (q ∨ ¬p)∧ ¬s

because q ∨ ¬p, ¬s |= (q ∨ ¬p)∧ ¬s.
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Logical Entailment

Example:

If ϕ1, ϕ2, ϕ3 |= p → q and ϕ1, ϕ2, ϕ3 |= p then

ϕ1, ϕ2, ϕ3 |= q

because p → q, p |= q.

Example:

If ϕ1, ϕ2, ϕ3, ϕ4 |= ¬p → ¬q then

ϕ1, ϕ2, ϕ3, ϕ4 |= q → p

because ¬p → ¬q |= q → p.
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Logical Entailment

When we try to prove that ψ logically follows from assumptions
ϕ1, ϕ2, . . . , ϕn, we can proceed via smaller steps.

We start we the assumptions, for example:

ϕ1, ϕ2, ϕ3

Then we gradually add other formulas in such a way that every newly
added formula logically follows from the previous formulas. For example:

ϕ1, ϕ2, ϕ3, χ1, χ2, χ3, χ4, χ5, χ6, χ7, χ8, ψ
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Logical Entailment

Assumptions ϕ1, ϕ2, . . . , ϕn are inconsistent (contradictory) if there is
no truth valuation v , in which all these assumptions would be true.

Assumptions ϕ1, ϕ2, . . . , ϕn are inconsistent iff

ϕ1 ∧ϕ2 ∧ · · ·∧ϕn

is a contradiction.

Example: Assumptions p → q, r → p, r , ¬q are inconsistent.
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Logical Entailment

From inconsistent assumptions, any conclusion logically follows.

If assumptions ϕ1, ϕ2, . . . , ϕn are inconsistent then it holds for every
formula ψ that

ϕ1, ϕ2, . . . , ϕn |= ψ.

So for example also the following conclusions follow from inconsistent
assumptions:

⊥
formulas χ and ¬χ, where χ is an arbitrary formula
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Logical Entailment

Formula ⊥ cannot be true and it is also not possible that formulas χ and
¬χ are both true at some truth valuation.

So when we find out that

⊥ or,

χ and also ¬χ,

logically follow from assumptions ϕ1, ϕ2, . . . , ϕn, this means that the
assumptions ϕ1, ϕ2, . . . , ϕn are inconsistent and anything follows from
them.

Remark: Note that the following formulas are tautologies:

⊥→ ψ

χ→ (¬χ→ ψ)

So ⊥ |= ψ and χ,¬χ |= ψ.
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Logical Entailment

The principle of proof by contradiction

ϕ1, ϕ2, . . . , ϕn |= ψ

iff

assumptions ϕ1, ϕ2, . . . , ϕn,¬ψ are inconsistent

So in a proof by contradiction, justification that a given conclusion follows
from given assumptions is transformed to justification that it is not
possible that the assumptions and the negation of the conclusion would be
true at the same time.

The question whether ϕ1, ϕ2, . . . , ϕn |= ψ can be transformed to the
question whether

ϕ1 ∧ϕ2 ∧ · · ·∧ϕn ∧ ¬ψ

is a contradiction.
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Resolution Method

The resolution method is one of algorithms for finding out whether
a given conclusion follows from given assumptions.

It solves the following problem:

Input: Formulas ϕ1, ϕ2, . . . , ϕn, ψ.

Question: Is it true that ϕ1, ϕ2, . . . , ϕn |= ψ ?

Remark: The method can be used for finding out whether a given formula
is a tautology, a contradiction, or satisfiable.

Different variants of the resolution method are used for example in some
systems for automatic theorem proving and also in implementations of
logic programming languages such as Prolog.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 125 / 569



Resolution Method

It works with formulas in CNF.

It constructs a proof that the given conclusion follows from the
assumptions.

It is a proof by contradiction — the algorithm generates successively
formulas following from the assumptions

ϕ1, ϕ2, . . . , ϕn,¬ψ

A computation can finish in two different ways:

A contradiction is found, i.e., formula ⊥ is derived — then the
conclusion ψ logically follows from assumptions ϕ1, ϕ2, . . . , ϕn.

The algorithm does not succeed in deriving formula ⊥ and no other
new formulas can be added — then the conclusion ψ does not follow
from the assumptions.
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Resolution Method

The resolution method works with formulas that have the form of
elementary disjunctions, e.g.,

(¬p ∨ q ∨ ¬s ∨ ¬t)

These formulas are called clauses.

A special case of clause is the empty clause ⊥ that represents
a found contradiction.

The algorithm starts the computation by transforming formulas

ϕ1, ϕ2, . . . , ϕn,¬ψ

to CNF. Then it takes all clauses from the transformed formulas as
the initial set of assumptions

χ1, χ2, . . . , χm.
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Resolution Method

For generating other clauses, which are added to already constructed
clauses, the algorithm uses so called resolution rule (or resolution
principle):

For each formulas ϕ, ψ and χ it holds that

ϕ∨ψ, ¬ϕ∨ χ |= ψ∨ χ

In the resolution method, this principle is used only for clauses.
In the resolution method, ϕ∨ψ, ¬ϕ∨ χ and ψ∨ χ are always clauses,
and ϕ is always an atomic proposition.

Example: From clauses

p ∨ ¬q ∨ r ∨ s a ¬r ∨ t ∨ ¬u

we can derive the following clause by the resolution rule:
p ∨ ¬q ∨ s ∨ t ∨ ¬u.
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Resolution Method

Remarks:

An order of literals in a clause is not important.

Multiple occurrences of the same literals in one clause can be
eliminated.

If a currently generated clause is the same as some previously
generated clause (and differs only in the order of literals), it makes no
sense to add it.

Clauses containing both literals p and ¬p are equivalent to ⊤ and can
be eliminated.

Clauses can be used for the application of the resolution rule
repeatedly (with other clauses).
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Resolution Method

Some special cases of the use of the resolution rule:

One of clauses contains just one literal and the other more than one
literal:

From clauses

¬q p ∨ q ∨ ¬t

we can derive clause p ∨ ¬t.

Both clauses contain just one literal:

From clauses

p ¬p

we can derive the empty clause ⊥, i.e., the contradiction.
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Resolution Method

We want to check validity of the following deduction:

- It is not true that Jane is at school and Peter is not at home.

- Jane is not at school or it’s a working day or it’s raining.

- If it’s a working day then Peter is not at home.

- If Jane is at school then it’s raining.

At first, we formalize the individual propositions by formulae of
propositional logic:

¬(j ∧ ¬p)

¬j ∨ d ∨ r

d → ¬p

j → r

j – Jane is at school
p – Peter is at home
d – it’s a working day
r – it’s raining
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Resolution Method

¬(j ∧ ¬p)

¬j ∨ d ∨ r

d → ¬p

j → r

We transform the individual assumptions into CNF:

¬(j ∧ ¬p) ⇔ ¬j ∨ p

¬j ∨ d ∨ r

d → ¬p ⇔ ¬d ∨ ¬p

We negate the conclusion and transform it into CNF:

¬(j → r) ⇔ j ∧ ¬r
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Resolution Method

Let us write down the individual clauses:

1. ¬j ∨ p – assumption 1
2. ¬j ∨ d ∨ r – assumption 2
3. ¬d ∨ ¬p – assumption 3
4. j – clause 1 of the negated conclusion
5. ¬r – clause 2 of the negated conclusion
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Resolution Method

Let us write down the individual clauses:

1. ¬j ∨ p – assumption 1
2. ¬j ∨ d ∨ r – assumption 2
3. ¬d ∨ ¬p – assumption 3
4. j – clause 1 of the negated conclusion
5. ¬r – clause 2 of the negated conclusion

6. p – resolution: 1,4
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Resolution Method

Let us write down the individual clauses:

1. ¬j ∨ p – assumption 1
2. ¬j ∨ d ∨ r – assumption 2
3. ¬d ∨ ¬p – assumption 3
4. j – clause 1 of the negated conclusion
5. ¬r – clause 2 of the negated conclusion

6. p – resolution: 1,4
7. d ∨ r – resolution: 2,4
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Resolution Method

Let us write down the individual clauses:

1. ¬j ∨ p – assumption 1
2. ¬j ∨ d ∨ r – assumption 2
3. ¬d ∨ ¬p – assumption 3
4. j – clause 1 of the negated conclusion
5. ¬r – clause 2 of the negated conclusion

6. p – resolution: 1,4
7. d ∨ r – resolution: 2,4
8. ¬d – resolution: 3,6
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Resolution Method

Let us write down the individual clauses:

1. ¬j ∨ p – assumption 1
2. ¬j ∨ d ∨ r – assumption 2
3. ¬d ∨ ¬p – assumption 3
4. j – clause 1 of the negated conclusion
5. ¬r – clause 2 of the negated conclusion

6. p – resolution: 1,4
7. d ∨ r – resolution: 2,4
8. ¬d – resolution: 3,6
9. r – resolution: 7,8
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Resolution Method

Let us write down the individual clauses:

1. ¬j ∨ p – assumption 1
2. ¬j ∨ d ∨ r – assumption 2
3. ¬d ∨ ¬p – assumption 3
4. j – clause 1 of the negated conclusion
5. ¬r – clause 2 of the negated conclusion

6. p – resolution: 1,4
7. d ∨ r – resolution: 2,4
8. ¬d – resolution: 3,6
9. r – resolution: 7,8
10. ⊥ – resolution: 5,9

A contradition was derived, so the conclusion really follows from the given
assumptions.
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Resolution Method

Remarks:

The resolution method can be viewed as a construction of one “big”
formula in CNF, which is equivalent to

ϕ1 ∧ϕ2 ∧ · · ·∧ϕn ∧ ¬ψ,

and which is constructed by a successive addition of clauses.

If a contradiction can not be generated, then the derived clauses can
be used for finding a truth valuation v where the assumptions
ϕ1, ϕ2, . . . , ϕn are true and the conclusion ψ is false.
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Resolution Method

It is also possible to proceed by a direct method, where the algorithm
starts only with assumptions

ϕ1, ϕ2, . . . , ϕn

and tries to generate all clauses of the conclusion ψ.

In this approach, it is not guaranteed that the algorithm succeeds in
all cases when a conclusion ψ logically follows from assumptions
ϕ1, ϕ2, . . . , ϕn.

Example: Clause p ∨ q cannot be generated this way from the
assumption p, although it holds that

p |= p ∨ q.
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Predicate Logic

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 136 / 569



Predicate Logic

- Fish are vertebrates living in water.

- Carps are fish.

- There exists at least one carp.

- There exists at least one vertebrate living in water.

- Triangles are convex polygons.

- Equilateral triangles are triangles.

- There exists at least one equilateral triangle.

- There exists at least one convex polygon.
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Predicate Logic

- Fish are vertebrates living in water.

- Carps are fish.

- There exists at least one carp.

- There exists at least one vertebrate living in water.

The use of variables:

- For each x it holds that if x is a fish then x is a vertebrate and

x lives in water.

- For each x it holds that if x is a carp then x is a fish.

- There exists at least one x such that x is a carp.

- There exists at least one x such that x is a vertebrate and x lives in

water.
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Predicate Logic

- Triangles are convex polygons.

- Equilateral triangles are triangles.

- There exists at least one equilateral triangle.

- There exists at least one convex polygon.

The use of variables:

- For each x it holds that if x is a triangle then x is a polygon and x

is convex.

- For each x it holds that if x is an equilateral triangle then x is

a triangle.

- There exists at least one x such that x is an equilateral triangle.

- There exists at least one x such that x is a polygon and x is convex.
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Predicate Logic

- For each x it holds that if x has property P then x has property Q

and x has property R.

- For each x it holds that if x has property S then x has property P.

- There exists at least one x such that x has property S.

- There exists at least one x such that x has property Q and x has

property R.

P is a fish is a triangle
Q is a vertebrate is a polygon
R lives in water is convex
S is a carp is an equilateral triangle
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Predicate Logic

- For each x it holds that if P(x) then Q(x) and R(x).

- For each x it holds that if S(x) then P(x).

- There exists x such that S(x).

- There exists x such that Q(x) and R(x).

P(x) x is a fish x is a triangle
Q(x) x is a vertebrate x is a polygon
R(x) x lives in water x is convex
S(x) x is a carp x is an equilateral triangle
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Predicate Logic

- For each x, (P(x)→ (Q(x)∧ R(x))).

- For each x, (S(x)→ P(x)).

- There exists x such that S(x).

- There exists x such that (Q(x)∧ R(x)).

P(x) x is a fish x is a triangle
Q(x) x is a vertebrate x is a polygon
R(x) x lives in water x is convex
S(x) x is a carp x is an equilateral triangle
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Predicate Logic

- ∀x(P(x)→ (Q(x)∧ R(x)))

- ∀x(S(x)→ P(x))

- ∃x S(x)
- ∃x(Q(x)∧ R(x))

P(x) x is a fish x is a triangle
Q(x) x is a vertebrate x is a polygon
R(x) x lives in water x is convex
S(x) x is a carp x is an equilateral triangle

∀ — universal quantifier (“for all”)

∃ — existential quantifier (“there exists”)
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Predicate Logic

Formulas of propositional logic express propositions about objects with
some properties and which can be in some relationships.

Interpretation or interpretation structure — a particular set of these
objects, their properties and relationships.

Universe — the set of all objects in a given interpretation

An arbitrary non-empty set can be the universe.

Objects in a given universe are called the elements of the universe.

Valuation — an assignment of elements of the universe to variables

The truth values of formulas depend on a given interpretation and
valuation.
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Predicate Logic

An example of a universe:
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Predicate Logic

Other examples of universes:

Some precisely specified set of people, for example, the set of people
that live in some specified house (“John Smith”, “John Doe”, . . . )

The set of all books in a given library.

The set of natural numbers N = {0, 1, 2, 3, . . .}.

The set of all points in a plane.

The set {a, b, c , d , e}.

The set {a}.
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Variables

Variables — x , y , z , . . . , possibly with indexes — x0, x1, x2, . . .

It is assumed that there are infinitely many variables.

Valuation — an assignment of elements of the universe to the variables

Example:

Universe — a set of people; valuation v , where:

v(x) = “John Doe”

v(y) = “Mary Smith”

. . .

Universe — the set of natural numbers N = {0, 1, 2, . . .};
valuation v , where

v(x) = 57 v(y) = 3 v(z) = 57 . . .
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Predicates

Predicates — P , Q, R , . . .

Unary predicates — they represent properties of elements of the
universe

Example: Predicate P representing the property “to be blue”:

P(x) — “x is blue”

A unary predicate assigns truth values to the elements of the universe.

E.g., the value of P(x) can be:

1 — the element assigned to variable x has property P (i.e., it is blue)

0 — the element assigned to variable x does not have this property P

(i.e., it is not blue)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 146 / 569



Predicates

Binary predicates — they represent relationships between pairs of
elements of the universe

Example: Predicate R representing the relationship “to be a parent

of”:

R(x , y) — “x is a parent of y”

A binary predicate assigns truth values to pair of elements of the
universe.

E.g., the value of R(x , y) can be:

1 — when x and y are in the given relationship (i.e., when x is
a parent of y)

0 — when x and y are not in the given relationship (i.e., when x is not
a parent of y)
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Predicates

We can consider predicates of arbitrary arities.

For example:

Ternary predicate T (i.e., predicate of arity 3) representing the
relationship between parents and their child:

T (x , y , z)

— x and y are parents of child z , and x is his/her mother and y is
his/her father

Nulary predicates (i.e., precates of arity 0) can be viewed as atomic
propositions, not related to the elements of the universe.
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Formulas of Predicate Logic

Atomic formula — a predicate applied on some variables

Example:

P — a unary predicate representing property “to be blue”

Q — a unary predicate representing propery “to be a square”

R — a binary predicate representing relationships “overlaps”

P(x) — “x is blue”

P(y) — “y is blue”

Q(y) — “y is a square”

R(z , x) — “z overlaps x”

R(y , y) — “y overlaps itself”

Remark: Later, we will extend the notion of an atomic formula a little bit.
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Formulas of Predicate Logic

Using logical connectives (“¬”, “∧”, “∨”, “→”, “↔”), more
complicated formulas can be created from simpler formulas, similarly as in
propositional logic.

Example:

P — unary predicate representing property “is blue”

Q — unary predicate representing property “is a square”

R — binary predicate representing relationship “overlaps”

“If x is a blue square or y does not overlap x, then z is not a square.”

(

(P(x) ∧ Q(x)) ∨ ¬R(y , x)
)

→ ¬Q(z)
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Formulas of Predicate Logic

Using logical connectives (“¬”, “∧”, “∨”, “→”, “↔”), more
complicated formulas can be created from simpler formulas, similarly as in
propositional logic.

Example:

P — unary predicate representing property “is a woman”

Q — unary predicate representing property “has dark hair”

R — binary predicate representing relationship “is a parent of”

“If x is a woman with dark hair or y is not a parent of x, then z does not

have dark hair.”

(

(P(x) ∧ Q(x)) ∨ ¬R(y , x)
)

→ ¬Q(z)
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Formulas of Predicate Logic

Using logical connectives (“¬”, “∧”, “∨”, “→”, “↔”), more
complicated formulas can be created from simpler formulas, similarly as in
propositional logic.

Example:

P — unary predicate representing property “is even”

Q — unary predicate representing property “is a prime”

R — binary predicate representing relationship “is greater than”

“If x is an even prime or y is not greater than x, then z is not a prime.”

(

(P(x) ∧ Q(x)) ∨ ¬R(y , x)
)

→ ¬Q(z)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 150 / 569



Quantifiers

Universal quantifier — symbol “ ∀ ”

If ϕ is a formula representing some proposition then

∀xϕ
is a formula representing proposition

“for every x ϕ holds”.

Example: P — “to be a square”

∀x P(x)

“For every x it holds that x is a square.”

“Every x is a square.”

“All elements are squares.”
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Quantifiers

Example:

“For every x it holds that if x is a square then x is green.”

“For each x it holds that if x is a square then x is green.”

“For all x it holds that if x is a square then x is green.”

“All squares are green.”

∀x(P(x)→ Q(x))

P — “to be a square” (arity 1)

Q — “to be green” (arity 1)
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Quantifiers

Example:

“If it holds for all x that x is a square or x is green then it holds for

all y that y is a triangle.”

“If every object is a square or is green then all objects are triangles.”

∀x(P(x)∨ Q(x))→ ∀yT (y)

P — “to be a square” (arity 1)

Q — “to be green” (arity 1)

T — “to be a triangle” (arity 1)
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Quantifiers

There is a big difference between the following formulas:

P(x) — “x is a square”

It claims something about one particular element assigned to
variable x .

The truth value of this claim depends on the particular element
assigned to variable x , i.e., on the particular valuation.

∀xP(x) — “every x is a square” (i.e., “all elements are squares”)

It claims something about all elements of the universe.

The truth value of this claim does not depend on a valuation.
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Quantifiers

Example:

“If x is a prime then x is odd.”

P(x)→ L(x)

“For every x it holds that if x is a prime then it is odd”. (I.e., “all
primes are odd”.)

∀x(P(x)→ L(x))

Predicates:

P — “to be a prime” (arity 1)

L — “to be odd” (arity 1)
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Quantifiers

Example:

“It holds for every y that if y is green then x overlaps y .”

“Object x overlaps all green objects.”

∀y(G (y)→ R(x , y))

Predicates:

R — “overlaps” (arity 2)

G — “to be green” (arity 1)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 156 / 569



Quantifiers

Example:

“It holds for every x that it holds for every y that if x is a parent of y

then x loves y .”

“It holds for each x and y that if x is a parent of y then x loves y .”

“For every pair of elements x and y it holds that if x is a parent of y

then x loves y .”

∀x∀y(R(x , y)→ S(x , y))

Predicates:

R — “is a parent” (arity 2)

S — “loves” (arity 2)
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Quantifiers

Existential quantifier — symbol “ ∃ ”

If ϕ is a formula representing some proposition then

∃xϕ
is a formula representing proposition

“there exists x, for which ϕ holds”.

Example: P — “to be a square”

∃x P(x)

“There exists x, for which it holds that x is a square.”

“There is x such that x is a square.”

“There exists at least one square.”

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 158 / 569



Quantifiers

Example:

“There exists x, for which it holds that x is a square and x is green.”

“There is x such that x is a square and x is green.”

“For some x it holds that x is a square and x is green.”

“There exists a green square.”

“Some squares are green.”

“At least one x is a green square.”

∃x(P(x)∧ Q(x))

Predicates:

P — “to be a square” (arity 1)

Q — “to be green” (arity 1)
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Quantifiers

Example:

“There exists x such that for each y it holds that x is greater than y.”

∃x∀y P(x , y)

“For each y there is x such that x is greater than y.”

∀y∃x P(x , y)

P — “to be greater than” (arity 2)
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Syntax of Formulas of Predicate Logic

Alphabet:

logical connectives — “¬”, “∧”, “∨” “→”, “↔”

quantifiers — “∀”, “∃”
auxiliary symbols — “(”, “)”, “,”

variables — “x”, “y”, “z”, . . . , “x0”, “x1”, “x2”, . . .

predicate symbols — for example symbols “P”, “Q”, “R”, etc.
(for each symbol, its arity must be specified)

. . .

Remark: Other types of symbols will be described later.
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Syntax of Formulas of Predicate Logic

Definition

Well-formed atomic formulas of predicate logic are formulas of the form:

P(x1, x2, . . . , xn), where P is a predicate symbol of arity n and
x1, x2, . . . , xn are (not necessarily different) variables.

. . .

Remark: This is not the whole definition. Later, it will be generalized
a little bit and some additional items will be added.

Example:

P(x , y) R(z , z , z) S(y)
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Syntax of Formulas of Predicate Logic

Definition

Well-formed formulas of predicate logic are sequences of symbols
constructed according to the following rules:

1 Well-formed atomic formulas are well-formed formulas.

2 If ϕ and ψ are well-formed formulas, then also (¬ϕ), (ϕ∧ψ),
(ϕ∨ψ), (ϕ→ ψ) a (ϕ↔ ψ) are well-formed formulas.

3 If ϕ is a well-formed formula and x is a variable, then ∀xϕ and ∃xϕ
are well-formed formulas.

4 There are no other well-formed formulas than those constructed
according to the previous rules.
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Syntax of Formulas of Predicate Logic

Notions like

subformulas

an abstract syntax tree

are introduced in a similar way like in propositional logic (they are only
extended with the additional constructions not present in propositional
logic).

Convention for omitting parentheses:

The same conventions as in propositional logic.

Quantifiers (“∀” and “∃”) have the same priority as negation (“¬”),
i.e., the highest priority.
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Syntax of Formulas of Predicate Logic

An abstract syntax tree of formula

∀x∃y(R(y , z)∨ P(x))→ ¬∀y¬Q(y , x , y)

P QR

x x

x

y yy

yy

z

¬

¬

∨

→

∀

∀

∃
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Free and Bound Occurrences of Variables

Every occurrence of variable x in a subformula of the form ∃xϕ or ∀xϕ is
bound.

An occurrence of a variable, which is not bound, is free.

Example: Formula

∀x∃y(R(y , z)∨ P(x))→ ¬∀y¬Q(y , x , y)

y in subformula R(y , z) — the bound occurrence (∃y)
z in subformula R(y , z) — the free occurrence

x in subformula P(x) — the bound occurrence (∀x)
both occurrences of y in subformula Q(y , x , y) — the bound
occurrences (∀y)
x in subformula Q(y , x , y) — the free occurrence
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Free and Bound Occurrences of Variables

The set of those variables, which occur as free variables in formula ϕ, will
be denoted free(ϕ).

Example:

If ϕ is formula P(x , y), then free(ϕ) = {x , y }.

If ψ is formula ∃x∃yP(x , y), then free(ψ) = ∅.

If χ is formula

∀x∃y(R(y , z)∨ P(x))→ ¬∀y¬Q(y , x , y)

then free(χ) = {x , z}.
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Free and Bound Occurrences of Variables

The set of free variables free(ϕ) can be described by the following
inductive definition:

free(P(x1, x2, . . . , xn)) = {x1, x2, . . . , xn}

(where P is a predicate symbol)

free(¬ϕ) = free(ϕ)

free(ϕ∧ψ) = free(ϕ) ∪ free(ψ)

(it is similar for formulas of the form ϕ∨ψ, ϕ→ ψ, and ϕ↔ ψ)

free(∀xϕ) = free(ϕ) − {x} (where x is a variable)

free(∃xϕ) = free(ϕ) − {x} (where x is a variable)
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Free and Bound Occurrences of Variables

A formula ϕ is closed if it contains no free occurrences of variables
(i.e., when free(ϕ) = ∅).
A formula ϕ is open if it is not closed (i.e., when free(ϕ) 6= ∅).

Remark: Closed formulas are sometimes also called sentences.

Example:

Formula ∃x∃yP(x , y) is closed.
Formula ∀x∃y(R(y , z)∨ P(x))→ ¬∀y¬Q(y , x , y) is open (because
it contains free occurrences of variables z and x).

Truth values of closed formulas do not depend on a valuation, only on an
interpretation.
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Semantics of Predicate Logic

Formulas are evaluated in a given interpretation (interpretation
structure) and valuation.

The fact that formula ϕ holds (i.e., it has truth value 1) in
interpretation A and valuation v , is denoted

A, v |= ϕ

The fact that formula ϕ does not hold (i.e., it has truth value 0) in
interpretation A and valuation v , is denoted A, v 6|= ϕ.
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Semantics of Predicate Logic

An interpretation A is a structure consisting of the following items:

Universe A — an arbitraty non-empty set

Some subset of the set A is assigned to every unary predicate
symbol P — it is denoted PA.

(And so PA ⊆ A.)

Some binary relation on A is assigned to every binary predicate
symbol Q — it is denoted QA.

(And so QA ⊆ A× A.)

It is similar for predicate symbols with other arities (3, 4, 5, . . . ).

Remark: This definition is not complete yet, and it will be later extended
by other items.
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Semantics of Predicate Logic

An example of an interpretation A:

universe A
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Semantics of Predicate Logic

An example of an interpretation A:

universe A

PA
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Semantics of Predicate Logic

An example of an interpretation A:

universe A

PA

QA
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Semantics of Predicate Logic

An example of an interpretation A:

universe A

PA

QA RA
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Semantics of Predicate Logic

Other example of an interpretation A:

universe A = {a, b, c , d , e, f , g }

PA = {b, d , e}

QA = {a, b, e, g }

RA = {(a, b), (a, e), (a, g), (b, b), (c , e), (f , c), (f , g), (g , a), (g , g)}
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Semantics of Predicate Logic

Let Var be the set of all variables, i.e.,

Var = {x , y , z , . . . , x0, x1, x2, . . . }

For a given interpretation A with a universe A, a valuation v is an
arbitrary function

v : Var → A

that assignes elements of the universe to the variables.

Remark: As we will see, in fact, only values assigned by the valuation v to
variables in free(ϕ) are important for determining the truth value of
formula ϕ.

Values assigned by valuation v to the other variables are not important
from this point of view.
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Semantics of Predicate Logic

Let us consider an interpretation A with universe A and a valuation v .

Lets assume that (i.e., x ∈ Var) and a is an element of the universe
(i.e., a ∈ A).

Notation
v [x 7→ a]

denotes the valuation v ′ : Var → A, which assignes to every variable the
same value as valuation v , except that it assignes value a to variable x .

I.e., for every variable y (where y ∈ Var) is

v ′(y) =

{
a if y = x

v(y) otherwise
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Semantics of Predicate Logic

Example:

universe A = {a, b, c , d , e, f , g , . . . }

valuation v :

v(x0) = c v(x1) = e v(x2) = b v(x3) = e . . .

valuation v [x2 7→ g ]:

v(x0) = c v(x1) = e v(x2) = g v(x3) = e . . .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 176 / 569



Semantics of Predicate Logic

Definition

Let us assume an interpretation A with universe A and a valuation v ,
assigning elements of the universe A to the variables.

The truth values of formulas of predicate logic in interpretation A and
valuation v are defined as follows:

For a predicate P of arity n, A, v |= P(x1, x2, . . . , xn) iff
(v(x1), v(x2), . . . , v(xn)) ∈ PA.

A, v |= ¬ϕ iff A, v 6|= ϕ.
A, v |= ϕ∧ψ iff A, v |= ϕ and A, v |= ψ.

A, v |= ϕ∨ψ iff A, v |= ϕ or A, v |= ψ.

A, v |= ϕ→ ψ iff A, v 6|= ϕ or A, v |= ψ.

A, v |= ϕ↔ ψ iff A, v |= ϕ and A, v |= ψ, or A, v 6|= ϕ and
A, v 6|= ψ.
. . .
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Semantics of Predicate Logic

Definition (cont.)

. . .

A, v |= ∀xϕ iff for every a ∈ A it holds that A, v [x 7→ a] |= ϕ.

A, v |= ∃xϕ iff there exists some a ∈ A such that A, v [x 7→ a] |= ϕ.
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Semantics of Predicate Logic

A closed formula ϕ is true (i.e., it has truth value 1) in interpretation A if
it holds for each valuation v that A, v |= ϕ.

The fact that formula ϕ is true in interpretation A is denoted

A |= ϕ .

Remark: A truth value of a closed formula in a given interpretation does
not depend on a valuation.

Consider a closed formula ϕ.
A model of the formula ϕ is an arbitrary interpretation A such that že
A |= ϕ.
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Evaluation of Truth of Formulas as a Game

Let us consider a formula of the form

∃x1∀x2∃x3∀x4 · · · ∃xn−1∀xnϕ,

where quantifiers alternate in some arbitrary way, and where ϕ does not
contain quantifiers.

The evaluation of truth values of formulas of this form (in a given
interpretation A and a valuation v) can be viewed as a game:

It is played by a pair of players — Player I and Player II.

Player I wants to show that the formula is true.

Player II wants to show that the formula is false.

Player I chooses values of those variables, which are bound by an
existential quantifier (∃).
Player II chooses values of those variables, which are bound by an
universal quantifier (∀).
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Evaluation of Truth of Formulas as a Game

Example: Formula ∃x∀y∃z(P(x , y)→ Q(y , z))

universe A = {a, b, c}

Player I chooses x

Player II chooses y

Player I
chooses z
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bbbbbbbbb
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b
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Evaluation of Truth of Formulas as a Game

Formula ϕ is true iff Player I has a winning strategy in this game.

Formula ϕ is false iff Player II has a winning strategy.

Strategy — determines how a player should play in every situation, i.e., it
determines moves of the player for all possible moves of the other player.

Winning strategy — a strategy that guarantees a win of the given player
in every play, not matter what the other player does.
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Evaluation of Truth of Formulas as a Game

Example: Interpretation where universe is the set of real numbers R and
binary predicate symbol R represents relation “greater or equal”

(i.e., R(x , y) iff x ≥ y).

Formula ∃x∀yR(x , y) — a winning strategy of Player II:

Player I chooses number x .

Player II chooses number y = x + 1 — Player II wins since it is
obviously not true that x ≥ x + 1.

Formula ∀y∃xR(x , y) — a winning strategy of Player I:

Player II chooses number y .

Player I chooses number x = y — Player I wins since it is obviously
true that x ≥ x .
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Logically Valid Formulas

A formula ϕ is logically valid if it has truth value 1 in every interpretation
and valuation, i.e., if for every interpretation A and valuation v is

A, v |= ϕ.

Example:

∃xP(x)→ ∃yP(y)

∀xP(x)∧ ¬∃yQ(y) → ∀z(P(z)∧ ¬Q(z))

∀xP(x)→ ∃xP(x)
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Logically Valid Formulas

If we take an arbitrary tautology of propositional logic and replace in it all
atomic propositions with arbitrary formulas of predicate logic, we obtain
a logically valid formula.

Example: Tautology p → (q ∨ p)

p is replaced with ∀z(P(x , z)↔ ¬Q(z , y))

q is replaced with R(x)

We obtain a logically valid formula

∀z(P(x , z)↔ ¬Q(z , y)) → (R(x) ∨ ∀z(P(x , z)↔ ¬Q(z , y)))
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Logically Equivalent Formulas

Formulas ϕ and ψ are logically equivalent if they have the same truth
values in every interpretation and valuation, i.e., if for every
interpretation A and valuation v is

A, v |= ϕ iff A, v |= ψ.

The fact that ϕ and ψ are logically equivalent is denoted

ϕ⇔ ψ.

Similarly as in propositional logic, we can do equivalent
transformations in predicate logic.

All equivalences that hold in propositional logic also hold in predicate
logic.
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Logically Equivalent Formulas

There are other equivalences in predicate logic that have no analogy
in propositional logic.

Examples of some important equivalences:

¬∀xϕ ⇔ ∃x¬ϕ
¬∃xϕ ⇔ ∀x¬ϕ

∀x∀yϕ ⇔ ∀y∀xϕ
∃x∃yϕ ⇔ ∃y∃xϕ

When x 6∈ free(ϕ):

∀xϕ ⇔ ϕ

∃xϕ ⇔ ϕ
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Logically Equivalent Formulas

Some other important equivalences:

(∀xϕ)∧ (∀xψ) ⇔ ∀x(ϕ∧ψ)

(∃xϕ)∨ (∃xψ) ⇔ ∃x(ϕ∨ψ)

When x 6∈ free(ψ):

(∀xϕ)∧ψ ⇔ ∀x(ϕ∧ψ)

(∀xϕ)∨ψ ⇔ ∀x(ϕ∨ψ)

(∃xϕ)∧ψ ⇔ ∃x(ϕ∧ψ)

(∃xϕ)∨ψ ⇔ ∃x(ϕ∨ψ)
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Renaming of Bound Variables

If we rename a bound variable in a formula, we obtain an equvalent
formula.

Example: ∀xP(x , y) ⇔ ∀zP(z , y)

If we rename for example x to y in formula ∀xϕ or ∃xϕ, the
variable y must not occur in formula ϕ as a free variable.

∃xP(x , y) is not equivalent to ∃yP(y , y)

Free occurrences of variables in a subformula must not become
bound after renaming. E.g.,

∃x∀yP(x , y) is not equivalent to ∃y∀yP(y , y)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 189 / 569



Substitution

Let us say that we want replace free occurrences of variable x with
variable y (i.e., we want to substitute y for x).

This operation on formulas is called substitution and the resulting
formula is denoted

ϕ[y/x ].

Remark: In general, formulas ϕ and ϕ[y/x ] are not equivalent.

Example:

P(x , z) is not equivalent to P(y , z)
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Renaming of Bound Variables

With the operation of substitution, the renaming of bound variables can
be described by the following equivalences.

When y 6∈ free(∀xϕ):

∀xϕ ⇔ ∀y(ϕ[y/x ])

When y 6∈ free(∃xϕ):

∃xϕ ⇔ ∃y(ϕ[y/x ])

Example:

∃x∀yP(x , y) ⇔ ∃x∀zP(x , z) ⇔ ∃y∀zP(y , z) ⇔ ∃y∀xP(y , x)
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Logical Entailment

Definition

Conclusion ψ logically follows from assumptions ϕ1, ϕ2, . . . , ϕn, which is
denoted

ϕ1, ϕ2, . . . , ϕn |= ψ,

if in every interpretation A and valuation v where assumption
ϕ1, ϕ2, . . . , ϕn are true, also the conclusion ψ is true.

All, what was said about the logical entailment in propositional logic,
holds all analogously in predicate logic.
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Logical Entailment

If we want to show that a given conclusion ψ does not follow from
assumptions ϕ1, ϕ2, . . . , ϕn, it is sufficient to find an example of one
particular interpretation A and valuation v , where the assumptions are
true and the conclusion ψ is false.

Example:

- There exists an aquatic animal, which is meat-eating.

- All fish are aquatic animals.

- There exists a meat-eating fish.

∃x(P(x)∧ Q(x))

∀x(R(x)→ P(x))

∃x(R(x)∧ Q(x))

P(x) — “x is an aquatic animal”

Q(x) — “x is meat-eating”

R(x) — “x is a fish”

An interpretation A with universe A = {a, b}

PA = {a, b} QA = {a} RA = {b}
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Venn Diagrams

In general, it is difficult to find out whether a conclusion does or does not
follow from given assumptions.

In cases when we have only unary predicates and there is only a small
number of them (e.g., 3), we use so called Venn diagrams as an aid for
the reasoning.

Q

P

R

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 194 / 569



Venn Diagrams

Example:

- Fish are vertebrates.

- Fish live in water.

- There exists at least one fish.

- There exists a vertebrate living in water.

∀x(P(x)→ Q(x))

∀x(P(x)→ R(x))

∃xP(x)
∃x(Q(x)∧ R(x))

P(x) — “x is a fish”

Q(x) — “x is a vertebrate”

R(x) — “x lives in water”

〈a solution on a whiteboard〉
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An Example of a Proof

∀x(¬R(x , x))
∀x∀y∀z(R(x , y)∧ R(y , z)→ R(x , z))

∀x∀y(R(x , y)→ ¬R(y , x))

1. ∀x(¬R(x , x)) - assumption 1
2. ∀x∀y∀z(R(x , y)∧ R(y , z)→ R(x , z)) - assumption 2
3. Lets assume arbitrary elements x and y :
4. Lets assume R(x , y):
5. Lets assume R(y , x):
6. R(x , y)∧ R(y , x)→ R(x , x) - from 2.
7. R(x , x) - from 4., 5., 6.
8. ¬R(x , x) - from 1.
9. ¬R(y , x) - contradiction of 7. and 8.,

so 5. does not hold
10. R(x , y)→ ¬R(y , x) - from 4., 9.
11. ∀x∀y(R(x , y)→ ¬R(y , x)) - from 3., 10.
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Equality

One of the most important relations is equality (identity).

Elements x and y are equal, written

x = y ,

if they are the same element.

Equality can be expressed as a predicate, e.g., we can choose that P(x , y)
represents proposition “x and y are equal”.

But P(x , y) can be true in some interpretations even when x and y are
distinct elements, and in some interpretations, P(x , x) can be false for
some element x .
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Equality

Example: We would like to describe relationship “x is a sibling of y”

using a binary predicate R , where R(x , y) means “x is a parent of y”.

An attempt for a possible solution:

“x is a sibling of y”

iff

∃z(R(z , x)∧ R(z , y))

Problem: If for a given x there is an element z such that R(z , x), then it
is true that

∃z(R(z , x)∧ R(z , x)),

and so it is also true that “x is a sibling of x”.
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Equality

Alphabet:

. . .

Symbol for equality: “=”

. . .

Atomic formulas (cont.)
. . .

If x and y are variables then x = y is a well-formed atomic formula.

. . .

Symbol “=” is interpreted as equality in every interpretation, i.e., in every
interpretation A and valuation v is:

A, v |= x = y iff v(x) = v(y).
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Equality

Example: The relationship “x is a sibling of y” can be expressed by
formula

¬(x = y) ∧ ∃z(R(z , x)∧ R(z , y)),

where R(x , y) means that “x is a parent of y”.

Remark: The notation x 6= y is often used instead of ¬(x = y).
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Equality

“There exists exactly one x such that P(x)”:

∃x(P(x) ∧ ∀y(P(y) → x = y))

“There exist at least two elements x such that P(x)”:

∃x∃y(P(x) ∧ P(y) ∧ ¬(x = y))

“There exist exactly two elements x such that P(x)”:

∃x∃y(P(x) ∧ P(y) ∧ ¬(x = y) ∧ ∀z(P(z) → (z = x ∨ z = y)))

“There exists exactly one x, for which ϕ holds”:

∃x(ϕ ∧ ∀y(ϕ[y/x ] → x = y))
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Constants

Sometimes we want to talk about some particular element of the universe.

Example: “There exists at least one x such that John Smith is a parent

of x and x is a woman.” (I.e., “John Smith has at least one daughter.”)

If the value assigned to variable y is “John Smith”:

∃x(R(y , x)∧ S(x))

R(x , y) — “x is a parent of y”

S(x) — “x is a woman”

We could introduce an unary predicate N representing property “to be

John Smith”:

∀y(N(y) → ∃x(R(y , x)∧ S(x)))
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Constants

If we have some unary predicate N where we are interested only in those
interpretations where exists exactly one element x , for which N(x) holds,
it would be convenient to have some way to name this element and refer
to it directly instead of using of the predicate N.

Constant symbols (constants) can be used for this purpose.

Alphabet:

. . .

constant symbols: “a”, “b”, “c”, “d”, . . .

. . .
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Constants

In atomic formulas, constants can occur at the same places as variables:

P(c , x) Q(d) R(a, a) x = a

Constants must not be used in quantifiers — e.g., ∃cP(x , c) is not
a well-formed formula.

Values assigned to constant symbols are determined by a given
interpretation:

A given interpretation A (with universe A) assigns to every constant
symbol c some element of the universe A.

This element is denoted cA. So cA ∈ A.
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Constants

Example: “There exists at least one x such that John Smith is a parent

of x and x is a woman.”

∃x(R(a, x)∧ S(x))

R(x , y) — “x is a parent of y”

S(x) — “x is a woman”

a — constant symbol representing “John Smith”
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Constants

Example: “Every prime is greater than one.”

∀x(P(x)→ R(x , e))

P(x) — “x is a prime”

R(x , y) — “x is greater than y”

e — constant symbol representing value 1
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Functions

A binary relation R is a (unary) function if for each x there exists at most
one y such that

(x , y) ∈ R .

This function is total if for each x there exists exactly one such y .

Example: Binary relation R on the set of natural numbers N where

(x , y) ∈ R iff y = x + 1

We have

R = {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), . . . }
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Functions

Similarly, a ternary relation T is a (binary) function if for every pair of
elements x1 and x2 there exists at most one (resp., exactly one for total
function) y such that

(x1, x2, y) ∈ T .

Example: Addition on the set of real numbers R can be viewed as
a ternary relation S (i.e., as a set of triples of real numbers) where

(x1, x2, y) ∈ S iff x1 + x2 = y
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Functions

In predicate logic, functions can be expressed using predicates representing
the corresponding relations — this is not very straightforward nor
convenient.

Example: “For each x and y it holds that x + y ≥ y + x.”

∀x∀y∃z∃w(S(x , y , z) ∧ S(y , x ,w) ∧ P(z ,w))

S(x , y , z) — “z is the sum of values x and y”

P(x , y) — “x greater than or equal to y”

Remark: Moreover, we must assume that for every pair of elements x
and y there exists exactly one element z such that S(x , y , z).
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Functions

In predicate logic, functions can be represented by function symbols.

Alphabet:

. . .

function symbols: “f ”, “g”, “h”, . . .

. . .

Every function symbol must have a specified arity corresponding to the
arity of a function represented by this symbol (i.e., the number of
arguments of this function).
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Terms

Terms — expressions, consisting of variables, constant symbols, and
function symbols; values of terms are elements of the universe

Example:

Let us say that we have a predicate F where we assume that for
every x there exists exactly one y such that

F (x , y).

Instead of binary predicate F , we can use unary function symbol f .

Term

f (x)

represents this one particular element y , for which F (x , y) holds.

Instead of ∃y(F (x , y)∧ P(y)), we can write P(f (x)).
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Terms

Example:

Let us say that we have a ternary predicate G where we assume that
for every pair of elements x1 and x2 there exists exactly one y such
that

G (x1, x2, y).

Instead of ternary predicate G , we can use binary function symbol g .

Term

g(x1, x2)

represents this one particular element y , for which G (x1, x2, y) holds.
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Terms

Example: “For each x and y it holds that x + y ≥ y + x.”

∀x∀yP(f (x , y), f (y , x))

f — binary function symbol where f (x , y) represents the sum of
values x and y

P — binary predicate symbol where P(x , y) represents relation “x is

greater than or equal to y”
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Terms

Variables, constant symbols and function symbols can be composed in
terms in arbitrary way — it is only necessary to comply with the arity of
the symbols (to apply each function symbol to a correct number of
arguments).

Example:

c — constant symbol

f — unary function symbol

g — binary function symbol

h — binary function symbol

Examples of terms:

x f (y) g(c , x) g(h(x , x), f (c))

g(h(x , f (x)), g(f (c), g(y , f (f (z)))))
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Terms

The syntactic tree of term g(h(x , f (x)), g(f (c), g(y , f (f (z)))))

c f

f

ff g

g

g

h

x

x

y

z
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Terms in Formulas

The syntactic tree of formula
∃x(∀y(R(f (x), f (g(c , y))) ∨ y = f (y)) → ∃z(P(g(x , f (z))) ∧ ¬Q(z)))

P

Q

R

c

f f f

fg

g

x x

x

y

y

y

y

z

z

z

¬

∧∨

→

∀

∃

∃

=
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Terms in Formulas

Example:

For each x , y , and z it holds that (x + y) + z = x + (y + z):

∀x∀y∀z(f (f (x , y), z) = f (x , f (y , z)))

For each x it holds that x + 0 = x and 0+ x = x :

∀x(f (x , e) = x ∧ f (e, x) = x)

For each x there exists y such that x + y = 0:

∀x∃y(f (x , y) = e)

Constant and function symbols:

f — binary function symbol representing “addition” (operation “+”)

e — constant symbol representing element “0”

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 217 / 569



Terms in Formulas

Example:

For each x , y , and z it holds that x · (y + z) = x · y + x · z :
∀x∀y∀z(g(x , f (y , z)) = f (g(x , y), g(x , z)))

For each x and y such that x ≤ y it holds that x + z ≤ y + z :

∀x∀y(R(x , y) → ∀zR(f (x , y), f (y , z)))

Constant and function symbols:

f — binary function symbol representing “addition” (operation “+”)

g — binary function symbol representing “multiplication”

(operation “·”)
R — binary predicate symbol representing relation “less than or equal

to” (relation “≤”)
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Syntax of Formulas of Predicate Logic

Alphabet:

logical connectives — “¬”, “∧”, “∨”, “→”, “↔”

quantifiers — “∀” and “∃”
equality — “=”

auxiliary symbols — “(”, “)”, and “,”

variables — “x”, “y”, “z”, . . . , “x0”, “x1”, “x2”, . . .

predicate symbols — for example symbols “P”, “Q”, “R”, etc. (for
each symbols, there must be specified its arity)

function symbols — for example symbols “f ”, “g”, “h”, etc. (for
each symbol, there must be specified its arity)

constant symbols — for example symbols “a”, “b”, “c”, etc.

Remark: Constant symbols can be viewed as function symbols of arity 0.
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Syntax of Formulas of Predicate Logic

Definition

Well-formed terms are defined as follows:

1 If x is a variable then x is a well-formed term.

2 If c is a constant symbol then c is a well-formed term.

3 If f is a function symbol of arity n and t1, t2, . . . , tn are well-formed
terms then

f (t1, t2, . . . , tn)

is a well-formed term.

4 There are no other well-formed terms than those constructed
according to the previous rules.
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Syntax of Formulas of Predicate Logic

Definition

Well-formed atomic formulas are defined as follows:

1 If P is a predicate symbol of arity n and t1, t2, . . . , tn are well-formed
terms then

P(t1, t2, . . . , tn)

is a well-formed atomic formula.

2 If t1 and t2 are well-formed terms then

t1 = t2

is a well-formed atomic formula.

3 There are no other well-formed atomic formulas than those
constructed according to the previous rules.
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Syntax of Formulas of Predicate Logic

Definition (a previously stated definition repeated)

Well-formed formulas of predicate logic are sequences of symbols
constructed according to the following rules:

1 Well-formed atomic formulas are well-formed formulas.

2 If ϕ and ψ are well-formed formulas, then also (¬ϕ), (ϕ∧ψ),
(ϕ∨ψ), (ϕ→ ψ) a (ϕ↔ ψ) are well-formed formulas.

3 If ϕ is a well-formed formula and x is a variable, then ∀xϕ and ∃xϕ
are well-formed formulas.

4 There are no other well-formed formulas than those constructed
according to the previous rules.
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Semantics of Predicate Logic

Interpretation A:

universe A

to every predicate symbol P of arity n, an n-ary relation PA is
assigned, where PA ⊆ A× A× · · · × A

to every function symbol f of arity n, an n-ary function f A is
assigned, where f A : A× A× · · · × A→ A

to every constant symbol c , an element of the universe cA is
assigned, i.e., cA ∈ A

Remark: In interpretations, only total functions, i.e., functions whose
values are defined for all possible values of arguments, are assigned to
function symbols.
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Semantics of Predicate Logic

The value of a term in interpretation A and valuation v :

Term x , where x is a variable — the value of this term is an element
a ∈ A such that v(x) = a.

Term c , where c is a constant symbol — the value of this term is the
element cA ∈ A.

Term f (t1, t2, . . . , tn), where f is a function symbol with arity n and
t1, t2, . . . , tn are terms — the value of this term is the element b ∈ A

such that

b = f A(a1, a2, . . . , an),

where a1, a2, . . . , an are values of terms t1, t2, . . . , tn in
interpretation A and valuation v .
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Semantics of Predicate Logic

Example: Interpretation A where the universe is the set of natural
numbers N = {0, 1, 2, . . . }.

aA = 0

f A is the function “successor”, i.e., f A(x) = x + 1

gA is the function “sum”, i.e., gA(x , y) = x + y

Valuation v where v(x) = 5, v(y) = 13, v(z) = 2, . . .

Values of terms in interpretation A and valuation v :

Term x — value 5

Term a — value 0

Term f (a) — value 1 (0+ 1 = 1)

Term f (f (a)) — value 2 (1+ 1 = 2)

Term g(x , f (f (a))) — value 7 (5+ 2 = 7)

Term g(z , y) — value 15 (2+ 13 = 15)

Term f (g(z , y)) — value 16 (15+ 1 = 16)
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Semantics of Predicate Logic

Truth values of atomic formulas in interpretation A and valuation v :

A, v |= P(t1, t2, . . . , tn), where P is a predicate symbol of arity n and
where t1, t2, . . . , tn are terms, holds iff

(a1, a2, . . . , an) ∈ PA,

where a1, a2, . . . , an are values of terms t1, t2, . . . , tn in
interpretation A and valuation v .

A, v |= t1 = t2, where t1 and t2 are terms, holds iff

a1 = a2,

where a1 and a2 are values of terms t1 and t2 in interpretation A and
valuation v .
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Semantics of Predicate Logic

Example: Interpretation A where the universe is the set of natural
numbers N = {0, 1, 2, . . . }.

f A is the function “successor”, i.e., f A(x) = x + 1

gA is the function “sum”, i.e., gA(x , y) = x + y

PA is the set of all primes

QA is the binary relation “<” i.e., (x , y) ∈ QA iff x < y

Valuation v where v(x) = 5, v(y) = 13, v(z) = 2, . . .

A, v |= P(x) (5 is a prime)

A, v 6|= Q(y , z) (it is not the case that 13 < 2)

A, v |= Q(f (f (z)), g(x , y)) ((2+ 1) + 1 < 5+ 13)

A, v 6|= P(f (g(z , x))) ((2+ 5) + 1 = 8 and 8 is not a prime)
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Predicate Logic — Additional Comments

The logic described here is the first order predicate logic — it is
possible to quantify only over the elements of the universe (in the
second order predicate logic, it is possible to quantify over relations).
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Predicate Logic — Additional Comments

As commonly used in mathematics, it is ofter the case that formulas are
not written according to the precise syntax of predicate logic but many
kinds of conventions and abbreviations are used.

For binary function and predicate symbols, it is common to use infix
notation:

For example, f (x , y) and R(x , y) can be written as

x f y x R y

To denote predicate, function and constant symbols, many different
kinds of symbols are used:

For example, R(f (x , y), g(z)) can be written as

x + δ ≤ |ε| or for example as x ◦ y ⊐ G (z)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 229 / 569



Predicate Logic — Additional Comments

Examples of formulas representing propositions from set theory:

x is an elements of set A:

x ∈ A

“∈” — binary predicate symbol representing the relation “to be an

element of”

“x”, “A” — variables

If we would do the following changes:

instead of symbol “∈”, we would use binary predicate symbol E ,

instead of variable A we would use variable y ,

then the formula would look as follows:

E (x , y)
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Predicate Logic — Additional Comments

Two sets are equal iff they contain the same elements:

A = B ↔ ∀x(x ∈ A ↔ x ∈ B)

If we use predicate E instead of “∈”, and y and z instead of A
and B , the formula would look as follows:

y = z ↔ ∀x(E (x , y) ↔ E (x , z))

The definition of relation “to be a subset” (denoted by symbol “⊆”):

A ⊆ B ↔ ∀x(x ∈ A → x ∈ B)

If we use binary predicate symbol S instead of “⊆”:

S(y , z) ↔ ∀x(E (x , y) → E (x , z))
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Predicate Logic — Additional Comments

The definition of operation “union” (denoted by symbol “∪”):
∀x(x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B))

If we use binary function symbol f instead of “∪”:
∀x(E (x , f (y , z)) ↔ (E (x , y) ∨ E (x , z)))
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Predicate Logic — Additional Comments

Sometimes

∃x(x ∈ A ∧ . . . )

is written in an abbreviated way as

(∃x ∈ A)( . . . )

I.e., instead of

“there exists x such that x ∈ A and . . . ”

we can say

“there exists x ∈ A such that . . . ”

Similarly, ∃x(x ≥ 1 ∧ . . .) can be written in an abbreviated way as

(∃x ≥ 1)( . . . )
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Predicate Logic — Additional Comments

Sometimes

∀x(x ∈ A → . . . )

is written in an abbreviated way as

(∀x ∈ A)( . . . )

I.e., instead of

“for each x, for which x ∈ A holds, we have . . . ”

we can say

“for each x ∈ A we have . . . ”

Similarly, ∀x(x ≥ 1 → . . .) can be written in an abbreviated way
as

(∀x ≥ 1)( . . . )
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Formal Languages
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Alphabet and Word

Definition

Alphabet is a nonempty finite set of symbols.

Remark: An alphabet is often denoted by the symbol Σ (upper case
sigma) of the Greek alphabet.

Definition

A word over a given alphabet is a finite sequence of symbols from this
alphabet.

Example 1:

Σ = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

Words over alphabet Σ: HELLO ABRACADABRA ERROR
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Alphabet and Word

Example 2:

Σ2 = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z,  }

A word over alphabet Σ2: HELLO WORLD

Example 3:

Σ3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Words over alphabet Σ3: 0, 31415926536, 65536

Example 4:

Words over alphabet Σ4 = {0, 1}: 011010001, 111, 1010101010101010

Example 5:

Words over alphabet Σ5 = {a, b}: aababb, abbabbba, aaab

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 237 / 569



Alphabet and Word

Example 6:

Alphabet Σ6 is the set of all ASCII characters.

Example of a word:

class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, world!");

}

}

class HelloWorld { ←֓     public static void main(Str · · ·
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Theory of Formal Languages – Motivation

Language — a set of (some) words of symbols from a given alphabet

Examples of problem types, where theory of formal languages is useful:

Construction of compilers:

Lexical analysis
Syntactic analysis

Searching in text:

Searching for a given text pattern
Seaching for a part of text specified by a regular expression
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Representation of Formal Languages

To describe a language, there are several possibilities:

We can enumerate all words of the language (however, this is possible
only for small finite languages).

Example: L = {aab, babba, aaaaaa}

We can specify a property of the words of the language:

Example: The language over alphabet {0, 1} containing all words
with even number of occurrences of symbol 1.
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Representation of Formal Languages

In particular, the following two approaches are used in the theory of formal
languages:

To describe an (idealized) machine, device, algorithm, that recognizes
words of the given language – approaches based on automata.

To describe some mechanism that allows to generate all words of the
given language – approaches based on grammars or regular
expressions.
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Some Basic Concepts

The length of a word is the number of symbols of the word.

For example, the length of word abaab is 5.

The length of a word w is denoted |w |.

For example, if w = abaab then |w | = 5.

We denote the number of occurrences of a symbol a in a word w by |w |a.

For word w = ababb we have |w |a = 2 and |w |b = 3.

An empty word is a word of length 0, i.e., the word containing no
symbols.

The empty word is denoted by the letter ε (epsilon) of the Greek alphabet.

(Remark: In literature, sometimes λ (lambda) is used to denote the empty
word instead of ε .)

|ε| = 0
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Concatenation of Words

One of operations we can do on words is the operation of concatenation:

For example, the concatenation of words OST and RAVA is the word
OSTRAVA.

The operation of concatenation is denoted by symbol · (similarly to
multiplication). It is possible to omit this symbol.

OST · RAVA = OSTRAVA

Concatenation is associative, i.e., for every three words u, v , and w we
have

(u · v) · w = u · (v · w)

which means that we can omit parenthesis when we write multiple
concatenations. For example, we can write w1 · w2 · w3 · w4 · w5 instead of
(w1 · (w2 · w3)) · (w4 · w5).
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Concatenation of Words

Concatenation is not commutative, i.e., the following equality does not
hold in general

u · v = v · u

Example:
OST · RAVA 6= RAVA · OST

It is obvious that the following holds for any words v and w :

|v · w | = |v |+ |w |

For every word w we also have:

ε · w = w · ε = w
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Prefixes, Suffixes, and Subwords

Definition

A word x is a prefix of a word y , if there exists a word v such that y = xv .

A word x is a suffix of a word y , if there exists a word u such that y = ux .

A word x is a subword of a word y , if there exist words u and v such that
y = uxv .

Example:

Prefixes of the word abaab are ε, a, ab, aba, abaa, abaab.

Suffixes of the word abaab are ε, b, ab, aab, baab, abaab.

Subwords of the word abaab are ε, a, b, ab, ba, aa, aba, baa, aab,
abaa, baab, abaab.
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Language

The set of all words over alphabet Σ is denoted Σ∗.

Definition

A (formal) language L over an alphabet Σ is a subset of Σ∗, i.e., L ⊆ Σ∗.

Example 1: The set {00, 01001, 1101} is a language over alphabet {0, 1}.

Example 2: The set of all syntactically correct programs in the C
programming language is a language over the alphabet consisting of all
ASCII characters.

Example 3: The set of all texts containing the sequence hello is a
language over alphabet consisting of all ASCII characters.
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Set Operations on Languages

Since languages are sets, we can apply any set operations to them:

Union – L1 ∪ L2 is the language consisting of the words belonging to
language L1 or to language L2 (or to both of them).

Intersection – L1 ∩ L2 is the language consisting of the words belonging
to language L1 and also to language L2.

Complement – L1 is the language containing those words from Σ∗ that
do not belong to L1.

Difference – L1 − L2 is the language containing those words of L1 that do
not belong to L2.

Remark: It is assumed the languages involved in these operations use the
same alphabet Σ.
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Set Operations on Languages

Formally:

Union: L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 ∨ w ∈ L2}

Intersection: L1 ∩ L2 = {w ∈ Σ∗ | w ∈ L1 ∧ w ∈ L2}

Complement: L1 = {w ∈ Σ∗ | w 6∈ L1}

Difference: L1 − L2 = {w ∈ Σ∗ | w ∈ L1 ∧ w 6∈ L2}

Remark: We assume that L1, L2 ⊆ Σ∗ for some given alphabet Σ.
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Set Operations on Languages

Example:

Consider languages over alphabet {a, b}.

L1 — the set of all words containing subword baa

L2 — the set of all words with an even number of occurrences of
symbol b

Then

L1 ∪ L2 — the set of all words containing subword baa or an even
number of occurrences of b

L1 ∩ L2 — the set of all words containing subword baa and an even
number of occurrences of b

L1 — the set of all words that do not contain subword baa

L1 − L2 — the set of all words that contain subword baa but do not
contain an even number of occurrences of b
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Concatenation of Languages

Definition

Concatenation of languages L1 and L2, where L1, L2 ⊆ Σ∗, is the
language L ⊆ Σ∗ such that for each w ∈ Σ∗ it holds that

w ∈ L ↔ (∃u ∈ L1)(∃v ∈ L2)(w = u · v)

The concatenation of languages L1 and L2 is denoted L1 · L2.

Example:
L1 = {abb, ba}

L2 = {a, ab, bbb}

The language L1 · L2 contains the following words:

abba abbab abbbbb baa baab babbb
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Iteration of a Language

Definition

The iteration (Kleene star) of language L, denoted L∗, is the language
consisting of words created by concatenation of some arbitrary number of
words from language L.
I.e. w ∈ L∗ iff

∃n ∈ N : ∃w1,w2, . . . ,wn ∈ L : w = w1w2 · · ·wn

Example: L = {aa, b}

L∗ = {ε, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaab, aabaa, aabb, . . .}

Remark: The number of concatenated words can be 0, which means that
ε ∈ L∗ always holds (it does not matter if ε ∈ L or not).
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Iteration of a Language – Alternative Definition

At first, for a language L and a number k ∈ N we define the language Lk :

L0 = {ε}, Lk = Lk−1 · L for k ≥ 1

This means
L0 = {ε}

L1 = L

L2 = L · L
L3 = L · L · L
L4 = L · L · L · L
L5 = L · L · L · L · L

. . .

Example: For L = {aa, b}, the language L3 contains the following words:

aaaaaa aaaab aabaa aabb baaaa baab bbaa bbb
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Iteration of a Language – Alternative Definition

Alternative definition

The iteration (Kleene star) of language L is the language

L∗ =
⋃

k≥0

Lk

Remark:
⋃

k≥0

Lk = L0 ∪ L1 ∪ L2 ∪ L3 ∪ · · ·
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Iteration of a Language

Remark: Sometimes, notation L+ is used as an abbreviation for L · L∗, i.e.,

L+ =
⋃

k≥1

Lk
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Reverse

The reverse of a word w is the word w written from backwards (in the
opposite order).

The reverse of a word w is denoted wR .

Example: w = HELLO wR = OLLEH

Formally, for w = a1a2 · · · an (where ai ∈ Σ) is wR = anan−1 · · · a1.
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Reverse

The reverse of a language L is the language consisting of reverses of all
words of L.

Reverse of a language L is denoted LR .

LR = {wR | w ∈ L}

Example: L = {ab, baaba, aaab}

LR = {ba, abaab, baaa}
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Order on Words

Let us assume some (linear) order < on the symbols of alphabet Σ, i.e., if
Σ = {a1, a2, . . . , an} then

a1 < a2 < . . . < an .

Example: Σ = {a, b, c} with a < b < c .

The following (linear) order <L can be defined on Σ∗:
x <L y iff:

|x | < |y |, or

|x | = |y | there exist words u, v ,w ∈ Σ∗ and symbols a, b ∈ Σ such that

x = uav y = ubw a < b

Informally, we can say that in order <L we order words according to their
length, and in case of the same length we order them lexicographically.
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Order on Words

All words over alphabet Σ can be ordered by <L into a sequence

w0,w1,w2, . . .

where every word w ∈ Σ∗ occurs exactly once, and where for each i , j ∈ N

it holds that wi <L wj iff i < j .

Example: For alphabet Σ = {a, b, c} (where a < b < c) , the initial part of
the sequence looks as follows:

ε, a, b, c , aa, ab, ac , ba, bb, bc , ca, cb, cc , aaa, aab, aac , aba, abb, abc , . . .

For example, when we talk about the first ten words of a language L ⊆ Σ∗,
we mean ten words that belong to language L and that are smallest of all
words of L according to order <L.
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Regular Expressions
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Regular Expressions

Regular expressions describing languages over an alphabet Σ:

∅, ε, a (where a ∈ Σ) are regular expressions:

∅ . . . denotes the empty language
ε . . . denotes the language {ε}

a . . . denotes the language {a}

If α, β are regular expressions then also (α+ β), (α · β), (α∗) are
regular expressions:

(α+ β) . . . denotes the union of languages denoted α and β
(α · β) . . . denotes the concatenation of languages denoted α

and β
(α∗) . . . denotes the iteration of a language denoted α

There are no other regular expressions except those defined in the two
points mentioned above.
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Regular Expressions

Example: alphabet Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.
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Regular Expressions

Example: alphabet Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.

Since 0 and 1 are regular expression, (0+ 1) is also a regular
expression.
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Regular Expressions

Example: alphabet Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.

Since 0 and 1 are regular expression, (0+ 1) is also a regular
expression.

Since 0 is a regular expression, (0∗) is also a regular expression.
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Regular Expressions

Example: alphabet Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.

Since 0 and 1 are regular expression, (0+ 1) is also a regular
expression.

Since 0 is a regular expression, (0∗) is also a regular expression.

Since (0+ 1) and (0∗) are regular expressions, ((0+ 1) · (0∗)) is also
a regular expression.
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Regular Expressions

Example: alphabet Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.

Since 0 and 1 are regular expression, (0+ 1) is also a regular
expression.

Since 0 is a regular expression, (0∗) is also a regular expression.

Since (0+ 1) and (0∗) are regular expressions, ((0+ 1) · (0∗)) is also
a regular expression.

Remark: If α is a regular expression, by [α] we denote the language
defined by the regular expression α.

[((0+ 1) · (0∗))] = {0, 1, 00, 10, 000, 100, 0000, 1000, 00000, . . . }
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Regular Expressions

The structure of a regular expression can be represented by an abstract
syntax tree:

+

·

·

∗

·

0 1

1

·

1 1

∗

+

·

0 0

1

(((((0 · 1)∗) · 1) · (1 · 1)) + (((0 · 0) + 1)∗))
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Regular Expressions

The formal definition of semantics of regular expressions:

[∅] = ∅
[ε] = {ε}

[a] = {a}

[α∗] = [α]∗

[α · β] = [α] · [β]
[α+ β] = [α] ∪ [β]
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Regular Expressions

To make regular expressions more lucid and succinct, we use the following
conventions:

The outward pair of parentheses can be omitted.

We can omit parentheses that are superflous due to associativity of
operations of union (+) and concatenation (·).
We can omit parentheses that are superflous due to the defined
priority of operators (iteration (∗) has the highest priority,
concatenation (·) has lower priority, and union (+) has the lowest
priority).

A dot denoting concatenation can be omitted.

Example: Instead of

(((((0 · 1)∗) · 1) · (1 · 1)) + (((0 · 0) + 1)∗))

we usually write

(01)∗111+ (00+ 1)∗
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Regular Expressions

Examples: In all examples Σ = {0, 1}.

0 . . . the language containing the only word 0
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Regular Expressions

Examples: In all examples Σ = {0, 1}.

0 . . . the language containing the only word 0

01 . . . the language containing the only word 01
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Regular Expressions

Examples: In all examples Σ = {0, 1}.

0 . . . the language containing the only word 0

01 . . . the language containing the only word 01

0+ 1 . . . the language containing two words 0 and 1
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Regular Expressions

Examples: In all examples Σ = {0, 1}.

0 . . . the language containing the only word 0

01 . . . the language containing the only word 01

0+ 1 . . . the language containing two words 0 and 1

0∗ . . . the language containing words ε, 0, 00, 000, . . .
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Regular Expressions

Examples: In all examples Σ = {0, 1}.

0 . . . the language containing the only word 0

01 . . . the language containing the only word 01

0+ 1 . . . the language containing two words 0 and 1

0∗ . . . the language containing words ε, 0, 00, 000, . . .

(01)∗ . . . the language containing words ε, 01, 0101, 010101, . . .
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Regular Expressions

Examples: In all examples Σ = {0, 1}.

0 . . . the language containing the only word 0

01 . . . the language containing the only word 01

0+ 1 . . . the language containing two words 0 and 1

0∗ . . . the language containing words ε, 0, 00, 000, . . .

(01)∗ . . . the language containing words ε, 01, 0101, 010101, . . .

(0+ 1)∗ . . . the language containing all words over the alphabet
{0, 1}
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Regular Expressions

Examples: In all examples Σ = {0, 1}.
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(0+ 1)∗ . . . the language containing all words over the alphabet
{0, 1}

(0+ 1)∗00 . . . the language containing all words ending with 00

(01)∗111(01)∗ . . . the language containing all words that contain a
subword 111 preceded and followed by an arbitrary number
of copies of the word 01
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Regular Expressions

(0+ 1)∗00+ (01)∗111(01)∗ . . . the language containing all words that
either end with 00 or contain a subwords 111 preceded and
followed with some arbitrary number of words 01
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either end with 00 or contain a subwords 111 preceded and
followed with some arbitrary number of words 01

(0+ 1)∗1(0+ 1)∗ . . . the language of all words that contain at least one
occurrence of symbol 1
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Regular Expressions

(0+ 1)∗00+ (01)∗111(01)∗ . . . the language containing all words that
either end with 00 or contain a subwords 111 preceded and
followed with some arbitrary number of words 01

(0+ 1)∗1(0+ 1)∗ . . . the language of all words that contain at least one
occurrence of symbol 1

0∗(10∗10∗)∗ . . . the language containg all words with an even number of
occurrences of symbol 1
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Finite Automata
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Recognition of a Language

Example: Consider words over alphabet {0, 1}.

We would like to recognize a language L consisting of words with even
number of symbols 1.

We want to design a device that reads a word and then tells us if the word
belongs to the language L or not.

0 1 0 1 1 1 0 1 0 0 1
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Recognition of a Language

Example: Consider words over alphabet {0, 1}.

We would like to recognize a language L consisting of words with even
number of symbols 1.

We want to design a device that reads a word and then tells us if the word
belongs to the language L or not.

YES
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Recognition of a Language

The first idea: To count the number of occurrences of symbol 1.

0

0 1 0 1 1 1 0 1 0 0 1
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Recognition of a Language

The first idea: To count the number of occurrences of symbol 1.
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Recognition of a Language

The first idea: To count the number of occurrences of symbol 1.
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Recognition of a Language

The first idea: To count the number of occurrences of symbol 1.
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Recognition of a Language

The first idea: To count the number of occurrences of symbol 1.

6

0 1 0 1 1 1 0 1 0 0 1

YES – 6 is an even number
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Recognition of a Language

The second idea: In fact, we just need to remember if the number of
symbols 1 read so far is even or odd (i.e., it is sufficient to remember only
the last bit of the number).
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Recognition of a Language

The second idea: In fact, we just need to remember if the number of
symbols 1 read so far is even or odd (i.e., it is sufficient to remember only
the last bit of the number).
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Recognition of a Language

The behaviour of the device can be described by the following graph:
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Deterministic Finite Automaton

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

A deterministic finite automaton consists of states and transitions.
One of the states is denoted as an initial state and some of states are
denoted as accepting.
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Deterministic Finite Automaton

Formally, a deterministic finite automaton (DFA) is defined as a tuple

(Q, Σ, δ, q0,F )

where:

Q is a nonempty finite set of states

Σ is an alphabet (a nonempty finite set of symbols)

δ : Q × Σ→ Q is a transition function

q0 ∈ Q is an initial state

F ⊆ Q is a set of accepting states
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Deterministic Finite Automaton

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

Q = {1, 2, 3, 4, 5}

Σ = {a, b}

q0 = 1

F = {1, 4, 5}

δ(1, a) = 2 δ(1, b) = 1
δ(2, a) = 4 δ(2, b) = 5
δ(3, a) = 1 δ(3, b) = 4
δ(4, a) = 1 δ(4, b) = 3
δ(5, a) = 4 δ(5, b) = 5
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Deterministic Finite Automaton

Instead of

δ(1, a) = 2 δ(1, b) = 1
δ(2, a) = 4 δ(2, b) = 5
δ(3, a) = 1 δ(3, b) = 4
δ(4, a) = 1 δ(4, b) = 3
δ(5, a) = 4 δ(5, b) = 5

we rather use a more succinct representation as a table or a depicted
graph:

δ a b

↔ 1 2 1
2 4 5
3 1 4

← 4 1 3
← 5 4 5
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Deterministic Finite Automaton
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a b a b b
1
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Deterministic Finite Automaton
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2

a b a b b
1

a−→ 2
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Deterministic Finite Automaton

Definition

Let us have a DFA A = (Q, Σ, δ, q0,F ).

By q
w−→ q ′, where q, q ′ ∈ Q and w ∈ Σ∗, we denote the fact that the

automaton, starting in state q goes to state q ′ by reading word w .

Remark: −→⊆ Q × Σ∗ × Q is a ternary relation.

Instead of (q,w , q ′) ∈−→ we write q
w−→ q ′.

It holds for a DFA that for each state q and each word w there is exactly
one state q ′ such that q

w−→ q ′.
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Deterministic Finite Automaton

Relation −→ can be formally defined by the following inductive definition:

q
ε−→ q for each q ∈ Q

For a ∈ Σ and w ∈ Σ∗:

q
aw−→ q ′ iff there is q ′′ ∈ Q such that δ(q, a) = q ′′ and q ′′ w−→ q ′.
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Deterministic Finite Automaton

A word w ∈ Σ∗ is accepted by a deterministic finite automaton
A = (Q, Σ, δ, q0,F ) iff there exists a state q ∈ F such that q0

w−→ q.

Definition

A language accepted by a given deterministic finite automaton
A = (Q, Σ, δ, q0,F ), denoted L(A), is the set of all words accepted by the
automaton, i.e.,

L(A) = {w ∈ Σ∗ | ∃q ∈ F : q0
w−→ q}
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Regular languages

Definition

A language L is regular iff there exists some deterministic finite
automaton accepting L, i.e., DFA A such that L(A) = L.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 280 / 569



Equivalence of Automata

1 2 3
a a

a

b b b

1 2 3a

a

a

b b b

1 2
a

a

b b

All 3 automata accept the language of all words with an even number of
a’s.
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Equivalence of Automata

Definition

We say automata A1,A2 are equivalent if L(A1) = L(A2).
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Unreachable States of an Automaton

1 2 3

4 5 6

a

b

b

a

a

b

b

b

a

a
a, b

The automaton accepts the language
L = {w ∈ {a, b}∗ | w contains subword ab}

There is no input sequence such that after reading it, the automaton
gets to states 3, 4, or 5.

.
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Unreachable States of an Automaton

1 2

6

a

b

b

a

a, b

The automaton accepts the language
L = {w ∈ {a, b}∗ | w contains subword ab}

There is no input sequence such that after reading it, the automaton
gets to states 3, 4, or 5.

If we remove these states, the automaton still accepts the same
language L.
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Unreachable States of an Automaton

Definition

A state q of a finite automaton A = (Q, Σ, δ, q0,F ) is reacheable if there
exists a word w such that q0

w−→ q.

Otherwise the state is unreachable.

There is no path in a graph of an automaton going from the initial
state to some unreachable state.

Unreachable states can be removed from an automaton (together
with all transitions going to them and from them). The language
accepted by the automaton is not affected.
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An Automaton for Intersection of Languages

Let us have the following two automata:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Do both of them accept the word ababb?
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An Automaton for Intersection of Languages

Formally, the construction can be described as follows:

We assume we have two deterministic finite automata
A1 = (Q1, Σ, δ1, q01,F1) and A2 = (Q2, Σ, δ2, q02,F2).

We construct DFA A = (Q, Σ, δ, q0,F ) where:

Q = Q1 × Q2

δ( (q1, q2), a ) = ( δ1(q1, a), δ2(q2, a) ) for each q1 ∈ Q1, q2 ∈ Q2,
a ∈ Σ
q0 = (q01, q02)

F = F1 × F2

It is not difficult to check that for each word w ∈ Σ∗ we have w ∈ L(A) iff
w ∈ L(A1) and w ∈ L(A2), i.e.,

L(A) = L(A1) ∩ L(A2)
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Intersection of Regular Languages

Theorem

If languages L1, L2 ⊆ Σ∗ are regular then also the language L1 ∩ L2 is
regular.

Proof: Let us assume that A1 and A2 are deterministic finite automata
such that

L1 = L(A1) L2 = L(A2)

Using the described construction, we can construct a deterministic finite
automaton A such that

L(A) = L(A1) ∩ L(A2) = L1 ∩ L2
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An Automaton for the Union of Languages
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Union of Regular Languages

The construction of an automaton A that accepts the union of languages
accepted by automata A1 and A2, i.e., the language

L(A1) ∪ L(A1)

is almost identical as in the case of the automaton accepting
L(A1) ∩ L(A2).

The only difference is the set of accepting states:

F = (F1 × Q2) ∪ (Q1 × F2)
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An Automaton for the Complement of a Language
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An Automaton for the Complement of a Language
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Complement of a Regular Language

Given a DFA A = (Q, Σ, δ, q0,F ) we construct DFA
A ′ = (Q, Σ, δ, q0,Q − F ).

It is obvious that for each word w ∈ Σ∗ we have w ∈ L(A ′) iff w 6∈ L(A),
i.e.,

L(A ′) = L(A)
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Nondeterministic Finite Automaton
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The number of transitions going from one state and labelled with the
same symbol can be arbitrary (including zero).

There can be more than one initial state in the automaton.
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Nondeterministic Finite Automaton

A nondeterministic finite automaton accepts a given word if there exists
at least one computation of the automaton that accepts the word.

YESYESYES YES NONONONONO

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 295 / 569



Nondeterministic Finite Automaton

A nondeterministic finite automaton accepts a given word if there exists
at least one computation of the automaton that accepts the word.

YESYESYES YES NONONONONO

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 295 / 569



Nondeterministic Finite Automaton

a b

↔ 1 2, 3, 4 1
2 − 5

→ 3 − 4
4 2 3, 5

← 5 − 5

1 3

2 3 4

5 4 3 5

5 3 5 4 5

a
a

a

b b b b

b b b b b

Example: A forest representing all possible computations over the
word abb.
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Nondeterministic Finite Automaton

Formally, a nondeterministic finite automaton (NFA) is defined as
a tuple

(Q, Σ, δ, I ,F )

where:

Q is a finite set of states

Σ is a finite alphabet

δ : Q × Σ→ P(Q) is a transition fuction

I ⊆ Q is a set of initial states

F ⊆ Q is a set of accepting states
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Transformation of NFA to DFA
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Transformation of NFA to DFA

Remark: When a nondeterministic automaton with n states is transformed
into a deterministic one, the resulting automaton can have 2n states.

For example when we transform an automaton with 20 states, the
resulting automaton can have 220 = 1048576 states.

It is often the case that the resulting automaton has far less than 2n

states. However, the worst cases are possible.
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Generalized Nondeterministic Finite Automaton
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Generalized Nondeterministic Finite Automaton

Compared to a nondeterministic finite automaton, a generalized
nondeterministic finite automaton has the so called ε-transitions, i.e.,
transitions labelled with symbol ε.

When ε-transition is performed, only the state of the control unit is
changed but the head on the tape is not moved.

Remark: The computations of a generalized nondeterministic automaton
can be of an arbitrary length, even infinite (if the graph of the automaton
contains a cycle consisting only of ε-transitions) regardless of the length of
the word on the tape.
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Generalized Nondeterministic Finite Automaton

Formally, a generalized nondeterministic finite automaton (GNFA) is
defined as a tuple

(Q, Σ, δ, I ,F )

where:

Q is a finite set of states

Σ is a finite alphabet

δ : Q × (Σ ∪ {ε})→ P(Q) is a transition function

I ⊆ Q is a set of initial states

F ⊆ Q is a set of accepting states

Remark: NFA can be viewed as a special case of GNFA, where δ(q, ε) = ∅
for all q ∈ Q.
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Transformation to a Deterministic Finite Automaton

A generalized nondeterministic finite automaton can be transformed into
a deterministic one using a similar construction as a nondeterministic finite
automaton with the difference that we add to sets of states also all states
that are reachable from already added states by some sequence of
ε-transitions.
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Transformation of GNFA to DFA

Before formally describing the transition of GNFA to DFA, let us introduce
some auxiliary definitions.

Let us assume some given GNFA A = (Q, Σ, δ, I ,F ).

Let us define the function δ̂ : P(Q)× (Σ∪ {ε})→ P(Q) so that for K ⊆ Q

and a ∈ Σ ∪ {ε} there is

δ̂(K , a) =
⋃

q∈K

δ(q, a)
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Transformation of GNFA to DFA

For K ⊆ Q, let Clε(K ) be the all states reachable from the states from
the set K by some arbitrary sequence of ε-transitions.

This means that the function Clε : P(Q)→ P(Q) is defined so that for
K ⊆ Q is Clε(K ) the smallest (with respect to inclusion) set satisfying the
following two conditions:

K ⊆ Clε(K )

For each q ∈ Clε(K ) it holds that δ(q, ε) ⊆ Clε(K ).

Remark: Let us note that Clε(Clε(K )) = Clε(K ) for arbitrary K .

Let us also note that in the case of NFA (where δ(q, ε) = ∅ for each
q ∈ Q) is Clε(K ) = K .
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Transformation of GNFA to DFA

For a given GNFA A = (Q, Σ, δ, I ,F ) we can now construct DFA
A ′ = (Q ′, Σ, δ ′, q ′

0,F
′), where:

Q ′ = P(Q) (so K ∈ Q ′ means that K ⊆ Q)

δ ′ : Q ′ × Σ→ Q ′ is defined so that for K ∈ Q ′ and a ∈ Σ:

δ ′(K , a) = Clε(δ̂(Clε(K ), a))

q ′
0 = Clε(I )

F ′ = {K ∈ Q ′ | Clε(K ) ∩ F 6= ∅}

It is not difficult to verify that L(A) = L(A ′).
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Concatenation of Languages

Σ = {a, b, c, d}

a

b
A1:

c

d
A2:
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Concatenation of Languages

Σ = {a, b, c, d}
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An incorrect construction:

a
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d
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acdbac ∈ L(A) but acdbac 6∈ L(A1) · L(A2)
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Concatenation of Languages
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Concatenation of Languages
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Iteration of a Language

A1
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Iteration of a Language
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Union of Languages

An alternative construction for the union of languages:

A1

A2
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Closure Properties of the Class of Regular Languages

The set of (all) regular languages is closed with respect to:

union

intersection

complement

concatenation

iteration

. . .
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Transformation of a Regular Expression to a Finite
Automaton

Proposition

Every language that can be represented by a regular expression is regular
(i.e., it is accepted by some finite automaton).

Proof: It is sufficient to show how to construct for a given regular
expression α a finite automaton accepting the language [α].

The construction is recursive and proceeds by the structure of the
expression α:

If α is a elementary expression (i.e., ∅, ε or a):
We construct the corresponding automaton directly.

If α is of the form (β+ γ), (β · γ) or (β∗):
We construct automata accepting languages [β] and [γ] recursively.
Using these two automata, we construct the automaton accepting the
language [α].
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Transformation of a Regular Expression to a Finite
Automaton

The automata for the elementary expressions:

∅ ε a

a
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Transformation of a Regular Expression to a Finite
Automaton

The construction for the concatenation:
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Transformation of a Regular Expression to a Finite
Automaton

Example: The construction of an automaton for expression ((0+ 1) · 1)∗:
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Transformation of a Regular Expression to a Finite
Automaton

If an expression α consists of n symbols (not counting parenthesis) then
the resulting automaton has:

at most 2n states,

at most 4n transitions.

Remark: By transforming the generalized nondeterministic automaton
into a deterministic one, the number of states can grow exponentially,
i.e., the resulting automaton can have up to 22n = 4n states.
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Transformation of an Automaton to a Regular Expression

Proposition

Every regular language can be represented by some regular expression.

Proof: It is sufficient to show how to construct for a given finite
automaton A a regular expression α such that [α] = L(A).

We modify A in such a way that ensures it has exactly one initial and
exactly one accepting state.

Its states will be removed one by one.

Its transitions will be labelled with regular expressions.

The resulting automaton will have only two states – the initial and
the accepting, and only one transition labelled with the resulting
regular expression.
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Transformation of an Automaton to a Regular Expression

The main idea: If a state q is removed, for every pair of remaining states
qj , qk we extend the label on a transition from qj to qk by a regular
expression representing paths from qj to qk going through q.

qj qk

q

α

β

γ

δ

After removing of the state q:

qj qk
α+ βγ∗δ
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Transformation of an Automaton to a Regular Expression

Example:
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1 2

3

s f

a

b

a

b

b

a

ε ε

ε
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Transformation of an Automaton to a Regular Expression

Example:

2

3

s f

b+ aa

a+ ba

ε

ε

a

b

ab

bb
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Transformation of an Automaton to a Regular Expression

Example:

3

s f

ε+ (a+ ba)(b+ aa)∗b+ a(b+ aa)∗ab

bb+ (a+ ba)(b+ aa)∗ab

a(b+ aa)∗
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Transformation of an Automaton to a Regular Expression

Example:

s f

a(b+ aa)∗+

(b+ a(b+ aa)∗ab)

(bb+ (a+ ba)(b+ aa)∗ab)∗

(ε+ (a+ ba)(b+ aa)∗)
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Equivalence of Finite Automata and Regular Expressions

Theorem

A language is regular iff it can be represented by a regular expression.
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Context-Free Grammars
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Context-Free Grammars

Example: We would like to describe a language of arithmetic expressions,
containing expressions such as:

175 (9+15) (((10-4)*((1+34)+2))/(3+(-37)))

For simplicity we assume that:

Expressions are fully parenthesized.

The only arithmetic operations are “+”, “-”, “*”, “/”and unary “-”.

Values of operands are natural numbers written in decimal —
a number is represented as a non-empty sequence of digits.

Alphabet: Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (, )}
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Context-Free Grammars

Example (cont.): A description by an inductive definition:

Digit is any of characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Number is a non-empty sequence of digits, i.e.:

If α is a digit then α is a number.

If α is a digit and β is a number then also αβ is a number.

Expression is a sequence of symbols constructed according to the
following rules:

If α is a number then α is an expression.
If α is an expression then also (-α) is an expression.
If α and β are expressions then also (α+β) is an expression.
If α and β are expressions then also (α-β) is an expression.
If α and β are expressions then also (α*β) is an expression.
If α and β are expressions then also (α/β) is an expression.
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Context-Free Grammars

Example (cont.): The same information that was described by the
previous inductive definition can be represented by a context-free
grammar:

New auxiliary symbols, called nonterminals, are introduced:

D — stands for an arbitrary digit

C — stands for an arbitrary number

E — stands for an arbitrary expression

D → 0

D → 1

D → 2

D → 3

D → 4

D → 5

D → 6

D → 7

D → 8

D → 9

C → D

C → DC

E → C

E → (-E)

E → (E+E)

E → (E-E)

E → (E*E)

E → (E/E)
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Context-Free Grammars

Example (cont.): Written in a more succinct way:

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

C → D | DC

E → C | (-E) | (E+E) | (E-E) | (E*E) | (E/E)
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Context-Free Grammars

Example: A language where words are (possibly empty) sequences of
expressions described in the previous example, where individual expressions
are separated by commas (the alphabet must be extended with
symbol “,”):

S → T | ε

T → E | E,T

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

C → D | DC

E → C | (-E) | (E+E) | (E-E) | (E*E) | (E/E)
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Context-Free Grammars

Example: Statements of some programming language (a fragment of
a grammar):

S → E; | T | if (E) S | if (E) S else S

| while (E) S | do S while (E); | for (F; F; F) S

| return F;

T → { U }
U → ε | SU

F → ε | E

E → . . .

Remark:

S — statement

T — block of statements

U — sequence of statements

E — expression

F — optional expression that can be omitted
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Context-Free Grammars

Formally, a context-free grammar is a tuple

G = (Π,Σ, S ,P)

where:

Π is a finite set of nonterminal symbols (nonterminals)

Σ is a finite set of terminal symbols (terminals),
where Π ∩ Σ = ∅
S ∈ Π is an initial nonterminal

P ⊆ Π× (Π ∪ Σ)∗ is a finite set of rewrite rules
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Context-Free Grammars

Remarks:

We will use uppercase letters A, B , C , . . . to denote nonterminal
symbols.

We will use lowercase letters a, b, c , . . . or digits 0, 1, 2, . . . to
denote terminal symbols.

We will use lowercase Greek letters α, β, γ, . . . do denote strings
from (Π ∪ Σ)∗.

We will use the following notation for rules instead of (A, α)

A→ α

A – left-hand side of the rule
α – right-hand side of the rule
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Context-Free Grammars

Example: Grammar G = (Π,Σ, S ,P) where

Π = {A,B ,C }

Σ = {a, b}

S = A

P contains rules
A → aBBb

A → AaA

B → ε

B → bCA

C → AB

C → a

C → b
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Context-Free Grammars

Remark: If we have more rules with the same left-hand side, as for
example

A → α1 A → α2 A → α3

we can write them in a more succinct way as

A → α1 | α2 | α3

For example, the rules of the grammar from the previous slide can be
written as

A → aBBb | AaA

B → ε | bCA

C → AB | a | b
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Context-Free Grammars

Grammars are used for generating words.

Example: G = (Π,Σ,A,P) where Π = {A,B ,C }, Σ = {a, b}, and P

contains rules
A → aBBb | AaA

B → ε | bCA

C → AB | a | b

For example, the word abbabb can be in grammar G generated as follows:
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Context-Free Grammars

On strings from (Π ∪ Σ)∗ we define relation ⇒⊆ (Π ∪ Σ)∗ × (Π ∪ Σ)∗ such
that

α⇒ α ′

iff α = β1Aβ2 and α ′ = β1γβ2 for some β1, β2, γ ∈ (Π ∪ Σ)∗ and A ∈ Π
where (A → γ) ∈ P .

Example: If (B → bCA) ∈ P then

aCBbA⇒ aCbCAbA

Remark: Informally, α⇒ α ′ means that it is possible to derive α ′ from α

by one step where an occurrence of some nonterminal A in α is replaced
with the right-hand side of some rule A → γ with A on the left-hand side.
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Context-Free Grammars

A derivation of length n is a sequence β0, β1, β2, · · · , βn, where
βi ∈ (Π ∪ Σ)∗, and where βi−1 ⇒ βi for all 1 ≤ i ≤ n, which can be
written more succinctly as

β0 ⇒ β1 ⇒ β2 ⇒ . . .⇒ βn−1 ⇒ βn

The fact that for given α,α ′ ∈ (Π ∪ Σ)∗ and n ∈ N there exists some
derivation β0 ⇒ β1 ⇒ β2 ⇒ . . .⇒ βn−1 ⇒ βn, where α = β0 and
α ′ = βn, is denoted

α⇒n α ′

The fact that α⇒n α ′ for some n ≥ 0, is denoted

α⇒∗ α ′

Remark: Relation ⇒∗ is the reflexive and transitive closure of relation ⇒
(i.e., the smallest reflexive and transitive relation containing relation ⇒).
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Context-Free Grammars

Sentential forms are those α ∈ (Π ∪ Σ)∗, for which

S ⇒∗ α

where S is the initial nonterminal.
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Context-Free Grammars

A language L(G ) generated by a grammar G = (Π,Σ, S ,P) is the set of
all words over alphabet Σ that can be derived by some derivation from the
initial nonterminal S using rules from P , i.e.,

L(G ) = {w ∈ Σ∗ | S ⇒∗ w }
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Context-Free Grammars

Example: We want to construct a grammar generating the language

L = {anbn | n ≥ 0}
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Context-Free Grammars

Example: We want to construct a grammar generating the language

L = {anbn | n ≥ 0}

Grammar G = (Π,Σ, S ,P) where Π = {S}, Σ = {a, b}, and P contains

S → aSb | ε

S ⇒ ε

S ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaaaSbbbb ⇒ aaaabbbb

· · ·
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Context-Free Grammars

Example: We want to construct a grammar generating the language
consisting of all palindroms over the alphabet {a, b}, i.e.,

L = {w ∈ {a, b}∗ | w = wR }

Remark: wR denotes the reverse of a word w , i.e., the word w written
backwards.
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Example: We want to construct a grammar generating the language
consisting of all palindroms over the alphabet {a, b}, i.e.,

L = {w ∈ {a, b}∗ | w = wR }

Remark: wR denotes the reverse of a word w , i.e., the word w written
backwards.

Solution:

S → aSa | bSb | a | b | ε
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Context-Free Grammars

Example: We want to construct a grammar generating the language
consisting of all palindroms over the alphabet {a, b}, i.e.,

L = {w ∈ {a, b}∗ | w = wR }

Remark: wR denotes the reverse of a word w , i.e., the word w written
backwards.

Solution:

S → aSa | bSb | a | b | ε

S ⇒ aSa⇒ abSba⇒ abaSaba⇒ abaaaba
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Context-Free Grammars

Example: We want to construct a grammar generating the language L

consisting of all correctly parenthesised sequences of symbols ‘(’ and ‘)’.

For example (()())(()) ∈ L but )()) 6∈ L.
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Example: We want to construct a grammar generating the language L

consisting of all correctly parenthesised sequences of symbols ‘(’ and ‘)’.

For example (()())(()) ∈ L but )()) 6∈ L.

Solution:

S → ε | (S) | SS

S ⇒ SS ⇒ (S)S ⇒ (S)(S)⇒ (SS)(S)⇒ ((S)S)(S)⇒
(()S)(S)⇒ (()(S))(S)⇒ (()())(S)⇒ (()())((S))⇒
(()())(())
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Context-Free Grammars

Example: We want to construct a grammar generating the language L

consisting of all correctly constructed arithmetic experessions where
operands are always of the form ‘a’ and where symbols + and ∗ can be
used as operators.

For example (a + a) ∗ a + (a ∗ a) ∈ L.
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Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B B b

A⇒ aBBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B B b

A⇒ aBBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B B b

A⇒ aBBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C A

B b

A⇒ aBBb ⇒ abCABb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C A

B b

A⇒ aBBb ⇒ abCABb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C A

B b

A⇒ aBBb ⇒ abCABb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C A

a B B b

B b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C A

a B B b

B b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C A

a B B b

B b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C A

a B B

ε

b

B b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C A

a B B

ε

b

B b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C A

a B B

ε

b

B b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C

b

A

a B B

ε

b

B b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C

b

A

a B B

ε

b

B b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C

b

A

a B B

ε

b

B b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C

b

A

a B B

ε

b

B

ε

b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒
abbaBbb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C

b

A

a B B

ε

b

B

ε

b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒
abbaBbb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C

b

A

a B B

ε

b

B

ε

b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒
abbaBbb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C

b

A

a B

ε

B

ε

b

B

ε

b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒
abbaBbb ⇒ abbabb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

A → aBBb | AaA

B → ε | bCA

C → AB | a | b

A

a B

b C

b

A

a B

ε

B

ε

b

B

ε

b

A⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒
abbaBbb ⇒ abbabb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 344 / 569



Derivation Tree

For each derivation there is some derivation tree:

Nodes of the tree are labelled with terminals and nonterminals.

The root of the tree is labelled with the initial nonterminal.

The leafs of the tree are labelled with terminals or with symbols ε.

The remaining nodes of the tree are labelled with nonterminals.

If a node is labelled with some nonterminal A then its children are
labelled with the symbols from the right-hand side of some rewriting
rule A → α.
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Left and Right Derivation

E → E + E | E ∗ E | (E ) | a

A left derivation is a derivation where in every step we always replace the
leftmost nonterminal.

E ⇒ E + E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a + E ⇒ a ∗ a + a

A right derivation is a derivation where in every step we always replace
the rightmost nonterminal.

E ⇒ E + E ⇒ E + a⇒ E ∗ E + a⇒ E ∗ a + a⇒ a ∗ a + a

A derivation need not be left or right:

E ⇒ E + E ⇒ E ∗ E + E ⇒ E ∗ a + E ⇒ E ∗ a + a⇒ a ∗ a + a
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Left and Right Derivation

There can be several different derivations corresponding to one
derivation tree.

For every derivation tree, there is exactly one left and exactly one
right derivation corresponding to the tree.
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Equvalence of Grammars

Grammars G1 and G2 are equivalent if they generate the same language,
i.e., if L(G1) = L(G2).

Remark: The problem of equivalence of context-free grammars is
algorithmically undecidable. It can be shown that it is not possible to
construct an algorithm that would decide for any pair of context-free
grammars if they are equivalent or not.

Even the problem to decide if a grammar generates the language Σ∗ is
algorithmically undecidable.
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Ambiguous Grammars

A grammar G is ambiguous if there is a word w ∈ L(G ) that has two
different derivation trees, resp. two different left or two different right
derivations.

Example:
E ⇒ E + E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a + E ⇒ a ∗ a + a

E ⇒ E ∗ E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a + E ⇒ a ∗ a + a

E

E

E

a

∗ E

a

+ E

a

E

E

a

∗ E

E

a

+ E

a
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Ambiguous Grammars

Sometimes it is possible to replace an ambiguous grammar with a
grammar generating the same language but which is not ambiguous.

Example: A grammar

E → E + E | E ∗ E | (E ) | a

can be replaced with the equivalent grammar

E → T | T + E

T → F | F ∗ T
F → a | (E )

Remark: If there is no unambiguous grammar equivalent to a given
ambiguous grammar, we say it is inherently ambiguous.
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Context-Free Languages

Definition

A language L is context-free if there exists some context-free grammar G
such that L = L(G ).

The class of context-free languages is closed with respect to:

concatenation

union

iteration

The class of context-free languages is not closed with respect to:

complement

intersection

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 351 / 569



Context-Free Languages

We have two grammars G1 = (Π1, Σ, S1,P1) and G2 = (Π2, Σ, S2,P2), and
can assume that Π1 ∩ Π2 = ∅ and S 6∈ Π1 ∪ Π2.

Grammar G such that L(G ) = L(G1)L(G2):

G = (Π1 ∪ Π2 ∪ {S}, Σ, S , P1 ∪ P2 ∪ {S → S1S2})

Grammar G such that L(G ) = L(G1) ∪ L(G2):

G = (Π1 ∪ Π2 ∪ {S}, Σ, S , P1 ∪ P2 ∪ {S → S1, S → S2})

Grammar G such that L(G ) = L(G1)
∗:

G = (Π1 ∪ {S}, Σ, S , P1 ∪ {S → ε, S → S1S})
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Lexical and Syntactic Analysis — an example

Example: We would like to recognize a language of arithmetic expressions
containing expressions such as:

34 x+1 -x * 2 + 128 * (y - z / 3)

The expressions can contain number constants — sequences of digits
0, 1, . . . , 9.

The expressions can contain names of variables — sequences
consisting of letters, digits, and symbol “ ”, which do not start with
a digit.

The expressions can contain basic arithmetic operations — “+”, “-”,
“*”, “/”, and unary “-”.

It is possible to use parentheses — “(” and “)”, and to use
a standard priority of arithmetic operations.
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Lexical and Syntactic Analysis — an example

Input: a sequence of characters (e.g., a string, a text file, etc.)

Output: an abstract syntax tree representing the structure of a given
expression, or an information about a syntax error in the expression
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Lexical and Syntactic Analysis — an example

Construction of an abstract syntax tree:

An enumerated type representing binary arithmetic operations:

enum Bin op { Add, Sub, Mul, Div }

An enumerated type representing unary arithmetic operations:

enum Un op { Un minus }

Functions for creation of different kinds of nodes of an abstract
syntax tree:

mk-var(ident) — creates a leaf representing a variable

mk-num(num) — creates a leaf representing a number constant

mk-unary(op, e) — creates a node with one child e, on which
a unary operation op (of type Un op) is applied

mk-binary(op, e1, e2) — creates a node with two children e1 and e2,
on which a binary operation op (of type Bin op) is applied
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Lexical Analysis

Enumerated type Token kind representing different kinds of tokens:

T EOF — the end of input
T Ident — identifier
T Number — number constant
T LParen — “(”
T RParen — “)”
T Plus — “+”
T Minus — “-”
T Star — “*”
T Slash — “/”
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Lexical Analysis

Variable c : a currently processed character (resp. a special value 〈eof 〉
representing the end of input):

at the beginning, the first character in the input is read to variable c

function next-char() returns a next charater from the input

Some helper functions:

error() — outputs an information about a syntax error and aborts
the processing of the expression

is-ident-start-char(c) — tests whether c is a charater that can occur
at the beginning of an identifier

is-ident-normal-char(c) — tests whether c is a character that can
occur in an identifier (on other positions except beginning)

is-digit(c) — tests whether c is a digit
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Lexical Analysis

Some other helper functions:

create-ident(s) — creates an identifier from a given string s

create-number(s) — creates a number from a given string s

Auxiliary variables:

last-ident — the last processed identifier

last-num — the last processed number constant

Function next-token() — the main part of the lexical analyser, it
returns the following token from the input
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1 next-token ():

2 begin
3 while c ∈ {“ ”,“\t”} do
4 c := next-char();
5 end
6 if c == 〈eof 〉 then
7 return T EOF
8 else
9 switch c do

10 case “(”: do c := next-char(); return T LParen
11 case “)”: do c := next-char(); return T RParen
12 case “+”: do c := next-char(); return T Plus
13 case “–”: do c := next-char(); return T Minus
14 case “*”: do c := next-char(); return T Star
15 case “/”: do c := next-char(); return T Slash
16 otherwise do
17 if is-ident-start-char(c) then
18 return scan-ident()
19 else if is-digit(c) then
20 return scan-number()
21 else error()

22 end

23 end

24 end

25 end
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Lexical Analysis

1 scan-ident ():

2 begin
3 s := c

4 c := next-char()
5 while is-ident-normal-char(c) do
6 s := s · c
7 c := next-char()

8 end
9 last-ident := create-ident(s)

10 return T Ident

11 end
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Lexical Analysis

1 scan-number ():

2 begin
3 s := c

4 c := next-char()
5 while is-digit(c) do
6 s := s · c
7 c := next-char()

8 end
9 last-num := create-number(s)

10 return T Number

11 end
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Syntactic Analysis

Variable t :

the last processed token

A helper function:

init-scanner():

initializes the lexical analyser

reads the first character from the input into variable c
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Syntactic Analysis

The context-free grammar for the given language:

S → E 〈eof 〉
E → T G

G → ε | AT G

A → + | -

T → F U

U → ε | M F U

M → * | /

F → -F | (E ) | 〈ident〉 | 〈num 〉
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Syntactic Analysis

One of the often used methods of syntactic analysis is recursive descent:

For each nonterminal there is a corresponding function — the
function corresponding to nonterminal A implements all rules with
nonterminal A on the left-hand side.

In a given function, the next token is used to select between
corresponding rules.

Instructions in the body of a function correspond to processing of
right-hand sides of the rules:

an occurrence of nonterminal B — the function corresponding to
nonterminal B is called

an occurrence of terminal a — it is checked that the following token
corresponds to terminal a, when it does, the next token is read,
otherwise an error is reported

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 364 / 569



Syntactic Analysis

S → E 〈eof 〉

1 Parse ():

2 begin
3 init-scanner()
4 t := next-token()
5 e := Parse-E()
6 if t == T EOF then return e

7 else error()

8 end
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E → T G

1 Parse-E ():

2 begin
3 e1 := Parse-T()

4 return Parse-G(e1)

5 end

G → ε | AT G

1 Parse-G (e1):

2 begin
3 if t ∈ {T Plus,T Minus} then
4 op := Parse-A()

5 e2 := Parse-T()

6 return Parse-G(mk-binary(op, e1, e2))

7 else return e1

8 end
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T → F U

1 Parse-T ():

2 begin
3 e1 := Parse-F()
4 return Parse-U(e1)

5 end

U → ε | M F U

1 Parse-U (e1):

2 begin
3 if t ∈ {T Star,T Slash} then
4 op := Parse-M()

5 e2 := Parse-F()
6 return parse-U(mk-binary(op, e1, e2))

7 else return e1

8 end
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Syntactic Analysis

A → + | -

1 Parse-A ():

2 begin
3 if t == T Plus then
4 t := next-token()
5 return Add

6 else if t == T Minus then
7 t := next-token()
8 return Sub

9 else error()

10 end
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Syntactic Analysis

M → * | /

1 Parse-M ():

2 begin
3 if t == T Star then
4 t := next-token()
5 return Mul

6 else if t == T Slash then
7 t := next-token()
8 return Div

9 else error()

10 end
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F → -F

| (E )

| 〈ident〉
| 〈num 〉

1 Parse-F ():

2 begin
3 switch t do
4 case T Minus: do
5 t := next-token()
6 e := Parse-F()
7 return mk-unary(Un minus, e)

8 case T LParen: do
9 t := next-token()

10 e := Parse-E()
11 if t == T RParen then
12 t := next-token()
13 return e

14 else error()

15 case T Ident: do
16 e := mk-var(last-ident)
17 t := next-token()
18 return e

19 case T Number: do
20 e := mk-num(last-num)

21 t := next-token()
22 return e

23 otherwise do error()

24 end

25 end
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Syntactic Analysis

If a function ends with a recursive call of itself, as for example
function Parse-G(), it is possible to replace this recursion with an
iteration.

Functions Parse-E() and Parse-G() can be merged into one
function.

Similarly, it is possible to replace a recursion with an iteration in
function Parse-U(), and functions Parse-T() and Parse-U() can
be merged into one function.
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1 Parse-E ():

2 begin
3 e1 := Parse-T()

4 while t ∈ {T Plus,T Minus} do
5 op := Parse-A()

6 e2 := Parse-T()

7 e1 := mk-binary(op, e1, e2)

8 end
9 return e1

10 end

1 Parse-T ():

2 begin
3 e1 := Parse-F()
4 while t ∈ {T Star,T Slash} do
5 op := Parse-M()

6 e2 := Parse-F()
7 e1 := mk-binary(op, e1, e2)

8 end
9 return e1

10 end
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Algorithms
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Algorithms

Example: An algorithm described by pseudocode:

Algorithm 1: An algorithm for finding the maximal element in an array

1 Find-Max (A, n):

2 begin
3 k := 0
4 for i := 1 to n − 1 do
5 if A[i ] > A[k ] then
6 k := i

7 end

8 end
9 return A[k ]

10 end
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Algorithms

Algorithm

processes an input

generates an output

From the point of view of an analysis how a given algorithm works, it
usually makes only a little difference if the algorithm:

reads input data from some input device (e.g., from a file, from
a keyboard, etc.)

writes data to some output device (e.g., to a file, on a screen, etc.)

or

reads input data from a memory (e.g., they are given to it as
parameters)

writes data somewhere to memory (e.g., it returns them as a return
value)
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Control Flow

Intructions can be roughly devided into two groups:

instructions working directly with data:

assignment
evaluation of values of expressions in conditions
reading input, writing output
. . .

instruction affecting the control flow — they determine, which
instructions will be executed, in what order, etc.:

branching (if, switch, . . . )
cycles (while, do .. while, for, . . . )
organisation of intructions into blocks
returns from subprograms (return, . . . )
. . .
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Control Flow Graph

k := 0

i := 1

[i < n]

[i ≥ n]

[A[i ] > A[k]]

[A[i ] ≤ A[k]]

k := i

i := i + 1
result := A[k]

0
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Some Basic Constructions of Structured Programming

S1

S2

[B ] [¬B ]

S1 S2

[B ] [¬B ]

S

S1; S2 if B then S1 else S2 if B then S
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Some Basic Constructions of Structured Programming

[B ][¬B ]

S
[B ]

[¬B ]

S

while B do S do S while B

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 379 / 569



Some Basic Constructions of Structured Programming

[i ≤ b][i > b]

i := a

i := i + 1S

for i := a to b do S

i := a

while i ≤ b do
S

i := i + 1

end
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Some Basic Constructions of Structured Programming

Short-circuit evaluation of compound conditions, e.g.:

while i < n and A[i ] > x do . . .

[B1]

[¬B1]

[B2]
[¬B2]

S1 S2

[B1]

[¬B1]

[B2]
[¬B2]

S1 S2

if B1 and B2 then S1 else S2 if B1 or B2 then S1 else S2
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Control-flow Realized by GOTO

goto ℓ — unconditional jump

if B then goto ℓ — conditional jump

Example:

0: k := 0
1: i := 1
2: goto 6

3: if A[i ] ≤ A[k ] then goto 5

4: k := i

5: i := i + 1
6: if i < n then goto 3

7: return A[k ]

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 382 / 569



Control-flow Realized by GOTO

goto ℓ — unconditional jump

if B then goto ℓ — conditional jump

Example:

start: k := 0
i := 1
goto L3

L1: if A[i ] ≤ A[k ] then goto L2

k := i

L2: i := i + 1
L3: if i < n then goto L1

return A[k ]
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Evaluation of Complicated Expressions

Evaluation of a complicated expression such as

A[i + s] := (B [3 ∗ j + 1] + x) ∗ y + 8

can be replaced by a sequence of simpler intructions on the lower level,
such as

t1 := i + s

t2 := 3 ∗ j
t2 := t2 + 1
t3 := B [t2]

t3 := t3 + x

t3 := t3 ∗ y
t3 := t3 + 8
A[t1] := t3
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Computation of an Algorithm

An algorithm is execuded by a machine — it can be for example:

real computer — executes intructions of a machine code

virtual machine — executes instructions of a bytecode

some idealized mathematical model of a computer

. . .

The machine can be:

specialized — executes only one algorithm

universal — can execute arbitrary algorithm, given in a form of
program

The machine performs steps.

The algorithm processes a particular input during its computation.
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Computation of an Algorithm

During a computation, the machine must remember:

the current instruction

the content of its working memory

It depends on the type of the machine:

what is the type of data, with which the machine works

how this data are organized in its memory

Depending on the type of the algorithm and the type of analysis, which we
want to do, we can decide if it makes sense to include in memory also the
places

from which the input data are read

where the output data are written
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Computation of an Algorithm

Configuration — the description of the global state of the machine in
some particular step during a computation

Example: A configuration of the form

(q,mem)

where

q — the current control state

mem — the current content of memory of the machine — the values
assigned currently to variables.

An example of a content of memory mem:

〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k : 0, result : ?〉
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Computation of an Algorithm

An example of a configuration:

(2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k : 0, result : ?〉)

A computation of a machine M executing an algorithm Alg , where it
processes an input w , in a sequence of configurations.

It starts in an initial configuration.

In every step, it goes from one configuration to another.

The computation ends in a final configuration.
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Computation of an Algorithm

k := 0

i := 1

[i < n]

[i ≥ n]

[A[i ] > A[k]]

[A[i ] ≤ A[k]]

k := i

i := i + 1
result := A[k]
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α13: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α13: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α14: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α13: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α14: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α15: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α13: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α14: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α15: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result : ?〉)
α16: (6, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result : ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result : ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result : ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result : ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result : ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result : ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result : ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α13: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α14: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result : ?〉)
α15: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result : ?〉)
α16: (6, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result : ?〉)
α17: (7, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result : 8〉)
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Computation of an Algorithm

By executing an instruction I , the machine goes from configuration α to
configuration α ′:

α
I−→ α ′

A computation can be:

Finite:

α0
I0−→ α1

I1−→ α2
I2−→ α3

I3−→ α4
I4−→ · · · It−2−→ αt−1

It−1−→ αt

where αt is a final configuration

Infinite:
α0

I0−→ α1
I1−→ α2

I2−→ α3
I3−→ α4

I4−→ · · ·
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Computation of an Algorithm

A computation can be described in two different ways:

as a sequence of configurations α0, α1, α2, . . .

as a sequence of executed instructions I0, I1, I2, . . .
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Correctness of Algorithms

Algorithms are used for solving problems.

Problem — a specification what should be computed by
an algorithm:

Description of inputs
Description of outputs
How outputs are related to inputs

Algorithm — a particular procedure that describes how to compute
an output for each possible input
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Correctness of Algorithms

Example: The problem of finding a maximal element in an array:

Input: An array A indexed from zero and a number n representing
the number of elements in array A. It is assumed that n ≥ 1.

Output: A value result of a maximal element in the array A, i.e., the
value result such that:

A[j ] ≤ result for all j ∈ N, where 0 ≤ j < n, and

there exists j ∈ N such that 0 ≤ j < n and A[j ] = result .

An instance of a problem — concreate input data, e.g.,

A = [ 3, 8, 1, 3, 6 ], n = 5.

The output for this instance is value 8.
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Correctness of Algorithms

Definition

An algorithm Alg solves a given problem P , if for each instance w of
problem P , the following conditions are satisfied:

(a) The computation of algorithm Alg on input w halts after finite
number of steps.

(b) Algorithm Alg generates a correct output for input w according to
conditions in problem P .

An algorithm that solves problem P is a correct solution of this problem.
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Correctness of Algorithms

Algorithm Alg is not a correct solution of problem P if there exists an
input w such that in the computation on this input, one of the following
incorrect behaviours occurs:

some incorrect illegal operation is performed (an access to an element
of an array with index out of bounds, division by zero, . . . ),

the generated output does not satisfy the conditions specified in
problem P ,

the computation never halts.

Testing — running the algorithm with different inputs and checking
whether the algorithm behaves correctly on these inputs.

Testing can be used to show the presence of bugs but not to show that
algorithm behaves correctly for all inputs.
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Correctness of Algorithms

Generally, it is reasonable to divide a proof of correctness of an algorithm
into two parts:

Showing that the algorithm never does anything “wrong” for any
input:

no illegal operation is performed during a computation
if the program halts, the generated output will be “correct”

Showing that for every input the algorithm halts after a finite number
of steps.
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Correctness of Algorithms

Invariant — a condition that must be always satisfied in a given position
in a code of the algorithm (i.e., in all possible computations for all allowed
inputs) whenever the algorithm goes through this position.

We say that a configuration α is reachable if there exists an input w such
that α is one of configurations through which the algorithm goes in the
computation on input w .

If an algorithm is represented by a control-flow graph, for a given control
state q (i.e., a node of the graph) we can specify invariants that hold in
every reachable configuration with control state q.
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Invariants

Invariants can be written as formulas of predicate logic:

free variables correspond to variables of the program

a valuation is determined by values of program variables in a given
configuration

Example: Formula

(1 ≤ i)∧ (i ≤ n)

holds for example in a configuration where variable i has value 5 and
variable n has value 14.
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Invariants

k := 0

i := 1

[i < n]

[i ≥ n]

[A[i ] > A[k]]

[A[i ] ≤ A[k]]

k := i

i := i + 1
result := A[k]
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Invariants

Examples of invariants:

an invariant in a control state q is represented by a formula ϕq

Invariants for individual control states (so far only hypotheses):

ϕ0: (n ≥ 1)

ϕ1: (n ≥ 1)∧ (k = 0)

ϕ2: (n ≥ 1)∧ (1 ≤ i ≤ n)∧ (0 ≤ k < i)

ϕ3: (n ≥ 1)∧ (1 ≤ i < n)∧ (0 ≤ k < i)

ϕ4: (n ≥ 1)∧ (1 ≤ i < n)∧ (0 ≤ k < i)

ϕ5: (n ≥ 1)∧ (1 ≤ i < n)∧ (0 ≤ k ≤ i)

ϕ6: (n ≥ 1)∧ (i = n)∧ (0 ≤ k < n)

ϕ7: (n ≥ 1)∧ (i = n)∧ (0 ≤ k < n)
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Invariants

Examples of invariants:

an invariant in a control state q is represented by a formula ϕq

Invariants for individual control states (so far only hypotheses):

ϕ0: n ≥ 1

ϕ1: n ≥ 1, k = 0

ϕ2: n ≥ 1, 1 ≤ i ≤ n, 0 ≤ k < i

ϕ3: n ≥ 1, 1 ≤ i < n, 0 ≤ k < i

ϕ4: n ≥ 1, 1 ≤ i < n, 0 ≤ k < i

ϕ5: n ≥ 1, 1 ≤ i < n, 0 ≤ k ≤ i

ϕ6: n ≥ 1, i = n, 0 ≤ k < n

ϕ7: n ≥ 1, i = n, 0 ≤ k < n
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Invariants

Checking that the given invariants really hold:

It is necessary to check for each instruction of the algorithm that
under the assumption that a specified invariant holds before an
execution of the instruction, the other specified invariant holds after
the execution of the instruction.

Let us assume the algorithm is represented as a control-flow graph:

edges correspond to instructions
consider an edge from state q to state q ′ labelled with instruction I

let us say that (so far non-verified) invariants for states q and q ′ are
expressed by formulas ϕ and ϕ ′

for this edge we must check that for every configurations

α = (q,mem) and α ′ = (q ′,mem ′) such that α
I−→ α ′, it holds that

if
ϕ holds is configuration α,

then
ϕ ′ holds in configuration α ′
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Invariants

Checking instructions, which are conditional tests:

an edge labelled with a conditional test [B ]

A content of memory is not modified.
It is sufficient to check that the following implication holds

(ϕ∧ B)→ ϕ ′

Remark: The given implication must hold for all possible values of
variables.

Example: Let us assume that formulas contain only variables n, i , k , and
that values of these variables are integers:

(∀n ∈ Z)(∀i ∈ Z)(∀k ∈ Z) (ϕ∧ B → ϕ ′)
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Invariants

Checking those instructions that assign values to variables (they modify
a content of memory):

an edge labelled with assignment x := E

ϕ ′′ — a formula obtained from formula ϕ ′ by renaming of all free
occurrences of variable x to x ′

It is necessary to check the validity of implication

(ϕ∧ (x ′ = E ))→ ϕ ′′

Example: Assignment k := 3 ∗ k + i + 1:

(∀n ∈ Z)(∀i ∈ Z)(∀k ∈ Z)(∀k ′ ∈ Z) (ϕ∧ (k ′ = 3 ∗ k + i + 1)→ ϕ ′′)
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Invariants

Finishing the checking that the algorithm for finding maximal element in
an array returns a correct result (under assumption that it halts):

ψ0: ϕ0

ψ1: ϕ1 ∧ (∀j ∈ N)(0 ≤ j < 1→ A[j ] ≤ A[k ])

ψ2: ϕ2 ∧ (∀j ∈ N)(0 ≤ j < i → A[j ] ≤ A[k ])

ψ3: ϕ3 ∧ (∀j ∈ N)(0 ≤ j < i → A[j ] ≤ A[k ])

ψ4: ϕ4 ∧ (∀j ∈ N)(0 ≤ j < i → A[j ] ≤ A[k ])∧ (A[i ] > A[k ])

ψ5: ϕ5 ∧ (∀j ∈ N)(0 ≤ j ≤ i → A[j ] ≤ A[k ])

ψ6: ϕ6 ∧ (∀j ∈ N)(0 ≤ j < n→ A[j ] ≤ A[k ])

ψ7: ϕ7 ∧ (result = A[k ])∧ (∀j ∈ N)(0 ≤ j < n→ A[j ] ≤
result)∧ (∃j ∈ N)(0 ≤ j < n ∧ A[j ] = result)
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Invariants

Usually it is not necessary to specify invariants in all control states but
only in some “important” states — in particular, in states where the
algorithm enters or leaves loops:

It is necessary to verify:

That the invariant holds before entering the loop.

That if the invariant holds before an iteration of the loop then it
holds also after the iteration.

That the invariant holds when the loop is left.
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Invariants

Example: In algorithm Find-Max, state 2 is such “important” state.

In state 2, the following holds:

n ≥ 1

1 ≤ i ≤ n

0 ≤ k < i

For each j such that 0 ≤ j < i it holds that A[j ] ≤ A[k ].
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Finiteness of a Computation

Two possibilities how an infinite computation can look:

some configuration is repeated — then all following configurations are
also repeated

all configurations in a computation are different but a final
configuration is never reached
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Finiteness of a Computation

One of standard ways of proving that an algorithm halts for every input
after a finite number of steps:

to assign a value from a set W to every (reachable) configuration

to define an order ≤ on set W such that there are no infinite
(strictly) decreasing sequences of elements of W

to show that the values assigned to configuration decrease with every

execution of each instruction, i.e., if α
I−→ α ′ then

f (α) > f (α ′)

(f (α), f (α ′) are values from set W assigned to configurations α
and α ′)
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Finiteness of a Computation

As a set W , we can use for example:

The set of natural numbers N = {0, 1, 2, 3, . . . } with ordering ≤.

The set of vectors of natural numbers with lexicographic ordering,
i.e., the ordering where vector (a1, a2, . . . , am) is smaller than
(b1, b2, . . . , bn), if

there exists i such that 1 ≤ i ≤ m and i ≤ n, where ai < bi and for
all j such that 1 ≤ j < i it holds that aj = bj , or

m < n and for all j such that 1 ≤ j ≤ m is aj = bj .

For example, (5, 1, 3, 6, 4) < (5, 1, 4, 1) and (4, 1, 1) < (4, 1, 1, 3).

Remark: The number of elemets in vectors must be bounded by
some constant.
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Finiteness of a Computation

k := 0

i := 1

[i < n]

[i ≥ n]

[A[i ] > A[k]]

[A[i ] ≤ A[k]]

k := i

i := i + 1
result := A[k]
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Finiteness of a Computation

Example: Vectors assigned to individual configurations:

State 0: f (α) = (4)

State 1: f (α) = (3)

State 2: f (α) = (2, n − i , 3)

State 3: f (α) = (2, n − i , 2)

State 4: f (α) = (2, n − i , 1)

State 5: f (α) = (2, n − i , 0)

State 6: f (α) = (1)

State 7: f (α) = (0)
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Computational Complexity of Algorithms
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Complexity of an Algorithm

Computers work fast but not infinitely fast. Execution of each
instruction takes some (very short) time.

The same problem can be solved by several different algorithms. The
time of a computation (determined mostly by the number of executed
instructions) can be different for different algorithms.

We can implement the algorithms and then measure the time of their
computation. By this we find out how long the computation takes on
particular data on which we test the algorithm.

We would like to have a more precise idea how long the computation
takes on all possible input data.
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Complexity of an Algorithm

A running time is affected by many factors, e.g.:

the algorithm that is used
the amount of input data
used hardware (e.g., the frequency at which a CPU is running can be
important)
the used programming language — its implementation
(compiler/interpreter)
. . .

If we need to solve problem for “small” input data, the running time
is usually negligible.

With increasing amount of input data (the size of input), the running
time can grow, sometimes significantly.
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Complexity of an Algorithm

Time complexity of an algorithm — how the running time of the
algorithm depends on the amount of input data

Space complexity of an algorithm — how the amount of a memory
used during a computation grows with respect to the size of input

Remark: The precise definitions will be given later.

Remark:

There are also other types of computational complexity, which we will
not discuss here (e.g., communication complexity).
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Complexity of an Algorithm

To determine the precise running time or the precise amount of used
memory just by an analysis of an algorithm can be extremely difficult.

Usually the analysis of complexity of an algorithm involves many
simplifications:

It is usually not analysed how the running time or the amount of used
memory depends precisely on particular input data but how they
depend on the size of the input.

Functions expressing how the running time or the amount of used
memory grows depending on the size of the input are not computed
precisely — instead estimations of these functions are computed.

Estimations of these functions are usually expressed using asymptotic
notation — e.g., it can be said that the running time of MergeSort is
O(n log n), and that the running time of BubbleSort is O(n2).
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Size of Input

Size of the input — a value describing how “big” is an input instance

In most cases, the size of an input is just one number — it is usually
denoted n or N.

Sometimes it is more appropriate to express the size of an input by
pair (sometimes even with three, four, etc.) of parameters — in this
case, they are ofted denoted n and m (or N and M).

We can choose what should be considered as the size of an input.
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Size of Input

Examples, what the size of an input can be:

An input is a sequence of some values, an array of elements, etc.
(e.g., in problems like sorting, searching in an array, finding the
maximal element, etc.):

n — the number of elements in this sequence or array

An input is a string of characters (a word from some alphabet):

n — the number of characters in this string

An input consists of two strings, e.g., a (long) text that will be
searched through, and a (shorter) searched pattern:

n — the number of characters in the text
m — the number of characters in the searched pattern
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Size of Input

An input is a set of strings:

One possibility:
n — the sum of lengths of all strings

Other variant:
n — the sum of lengths of all strings, m — the number of strings

The input is a graph:

n — the number of nodes, m — the number of edges
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Size of Input

The input is one number (e.g., in the primarity testing):

One possibility:
n — the number of bits of the number — e.g., the size of input
962261 is 20

Other variant:
n — the value of the number — the size of input 962261 is 962261

The input is a sequence of numbers, and the running time is affected
by the values of the numbers (e.g., in the problem where the goal is
to compute the greatest common divisor of all numbers in a given
sequence):

n — the sum of numbers of bits of all numbers in the given sequence
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Running Time

Let us say that we have:

an algorithm Alg solving a problem P (resp. a particular
implementation of algorithm Alg),

a machine M executing the algorithm Alg ,

an input w from the set In, which is a set of all inputs of problem P

An example:

a particular implementation of Quicksort in C++ solving the problem
of sorting,

a computer with some particular type of processor working on some
particular frequency, with some particular amount of memory,
operating system, etc.

input: array [6, 13, 1, 8, 4, 5, 8]
(remark: a more realistic example would be an array with one million
elements)
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Running Time

t(w) — the running time of the algorithm Alg on input w on machine M

What units should be used for expressing time? (As we will see, this is not
important when asymptotic notation is used.)

in seconds — it depends on too many details of implementation, it is
difficult to determine it in other way than by measurement

(even on the same computer with the same data the running time can
fluctuate)

the number of steps — it must be specified what is considered as
one step, for example:

one statement of a high level programming language
one instruction of machine code or bytecode
one tick of a processor
one operation of some particular type — e.g., a comparison, an
arithmetic operation, etc. (while all other operations are ignored)
. . .
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Running Time

Let us say that an algorithm is represented by a control-flow graph:

To every instruction (i.e., to every edge) we assign a value specifying
how long it takes to perform this instruction once.

The execution time of different instructions can be different.

For simplicity we assume that an execution of the same instruction
takes always the same time — the value assigned to an instruction is
a number from the set R+ (the set of nonnegative real numbers).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 423 / 569



Running Time

k := 0

i := 1

[i < n]

[i ≥ n]

[A[i ] > A[k]]

[A[i ] ≤ A[k]]

k := i

i := i + 1
result := A[k]
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Instr. time

k := 0 c0
i := 1 c1
[i < n] c2
[i ≥ n] c3

[A[i ] ≤ A[k]] c4
[A[i ] > A[k]] c5

k := i c6
i := i + 1 c7

result := A[k] c8
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Running Time

Example: The execution times of individual instructions could be for
example:

Instr. symbol time

k := 0 c0 4
i := 1 c1 4
[i < n] c2 10
[i ≥ n] c3 12

[A[i ] ≤ A[k ]] c4 14
[A[i ] > A[k ]] c5 12

k := i c6 5
i := i + 1 c7 6

result := A[k ] c8 5

For a particular input w , e.g., for w = ([3, 8, 4, 5, 2], 5), we could simulate
the computation and determine the precise running time t(w).
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Time Complexity of an Algorithm

Let us say that:

For a given algorithm Alg and machine M, and for every input w
from the set of all inputs In, the running time t(w) is precisely
defined.

To each input w from set In, a number size(w) describing the size of
the input w is assigned .

(Formally, it is a function size : In → N.)

Definition

The time complexity of algorithm Alg in the worst case is the
function T : N→ R

+that assigns to each natural number n the maximal
running time of the algorithm Alg on an input of size n.
So for each n ∈ N we have:

For each input w ∈ In such that size(w) = n is t(w) ≤ T (n).

There exists an input w ∈ In such that size(w) = n and
t(w) = T (n).
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Time Complexity of an Algorithm

It is obvious from this definition that the time complexity of an algorithm
is a function whose precise values depend not only on the given
algorithm Alg but also on the following things:

on a machine M, on which the algorithm Alg runs,

on the precise definition of the running time t(w) of algorithm Alg on
machine M with input w ∈ In,

on the precise definition of the size of an input (i.e., on the definition
of function size).
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Time Complexity of an Algorithm

Sometimes, the time complexity in the average case is also analyzed:

Some particular probabilistic distribution on the set of inputs must
be assumed.

Instead of the maximal running time on inputs of size n, the expected
value of the running times is considered.

Usually, the analysis of the avarage case is much more complicated
than the analysis of the worst case.

Often, these two functions are not very different but sometimes the
difference is significant.

Remark: It usually makes little sense to analyze the time complexity in
the best case.
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Time Complexity of an Algorithm

An example of an analysis of the time complexity of algorithm Find-Max
without the use of asymptotic notation:

Such precise analysis is almost never done in practice — it is too
tedious and complicated.

This illustrates what things are ignored in an analysis where
asymptotic notation is used and how much the analysis is simplified
by this.

We will compute with constants c0, c1, . . . , c8, which specify the
execution time of individual instructions — we won’t compute with
concrete numbers.
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Time Complexity of an Algorithm

The inputs are of the form (A, n), where A is an array and n is the number
of elements in this array (where n ≥ 1).

We take n as the size of input (A, n).

Consider now some particular input w = (A, n) of size n:

The running time t(w) on input w can be expressed as

t(w) = c0m0 + c1m1 + · · · + c8m8,

where m0,m1, . . . ,m8 are numbers specifying how many times is each
instruction performed in the computation on input w .
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Time Complexity of an Algorithm

Instr. time occurences value of mi

k := 0 c0 m0 1
i := 1 c1 m1 1
[i < n] c2 m2 n − 1
[i ≥ n] c3 m3 1

[A[i ] ≤ A[k ]] c4 m4 n − 1− ℓ
[A[i ] > A[k ]] c5 m5 ℓ

k := i c6 m6 ℓ

i := i + 1 c7 m7 n − 1
result := A[k ] c8 m8 1

ℓ — the number of iterations of the cycle where A[i ] > A[k ]

(obviously 0 ≤ ℓ < n)
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Time Complexity of an Algorithm

By assigning values to

t(w) = c0m0 + c1m1 + · · · + c8m8,

we obtain

t(w) = d1 + d2 · (n − 1) + d3 · (n − 1− ℓ) + d4 · ℓ,

where

d1 = c0 + c1 + c3 + c8 d3 = c4
d2 = c2 + c7 d4 = c5 + c6

After simplification we have

t(w) = (d2 + d3) · n + (d4 − d3) · ℓ + (d1 − d2 − d3)

Remark: t(w) is not the time complexity but the running time for
a particular input w
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Time Complexity of an Algorithm

For example, if the execution times of instructions will be:

Instr. symb. time

k := 0 c0 4
i := 1 c1 4
[i < n] c2 10
[i ≥ n] c3 12

[A[i ] ≤ A[k]] c4 14
[A[i ] > A[k]] c5 12

k := i c6 5
i := i + 1 c7 6

result := A[k] c8 5

then d1 = 25, d2 = 16, d3 = 14, and d4 = 17.

In this case is t(w) = 30n + 3ℓ− 5.

For the input w = ([3, 8, 4, 5, 2], 5) is n = 5 and ℓ = 1, therefore
t(w) = 30 · 5+ 3 · 1− 5 = 148.
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Time Complexity of an Algorithm

It can depend on details of implementation and on the precise values of
constants, for which inputs of size n the compution takes the longest time
(i.e., which are the worst cases):

The running time of algorithm Find-Max for an input w = (A, n) of
size n:

t(w) = (d2 + d3) · n + (d4 − d3) · ℓ + (d1 − d2 − d3)

If d3 ≥ d4 — the worst cases are those where ℓ has the smallest value

ℓ = 0 — for example inputs of the form [0, 0, . . . , 0] or of the form
[n, n − 1, n − 2, . . . , 2, 1]

If d3 ≤ d4 — the worst are those cases where ℓ has the greatest value

ℓ = n − 1 — for example inputs of the form [0, 1, . . . , n − 1]
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Time Complexity of an Algorithm

The time complexity T (n) of algorithm Find-Max in the worst case is
given as follows:

If d3 ≥ d4:

T (n) = (d2 + d3) · n + (d1 − d2 − d3)

If d3 ≤ d4:

T (n) = (d2 + d3) · n + (d4 − d3) · (n − 1) + (d1 − d2 − d3)

= (d2 + d4) · n + (d1 − d2 − d4)

Example: For d1 = 25, d2 = 16, d3 = 14, d4 = 17 is

T (n) = (16+ 17) · n + (25− 16− 17)

= 33n − 8
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Time Complexity of an Algorithm

In both cases (when d3 ≥ d4 or when d3 ≤ d4), the time complexity of the
algorithm Find-Max is a function

T (n) = an + b

where a and b are some constants whose precise values depend on the
execution time of individual instructions.

Remark: These constants could be expressed as

a = d2 +max{d3, d4} b = d1 − d2 −max{d3, d4}

For example

T (n) = 33n − 8
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Time Complexity of an Algorithm

If it would be sufficient to find out that the time complexity of the
algorithm Find-Max is some function of the form

T (n) = an + b,

where the precise values of constants a and b would not be important for
us, the whole analysis could be considerably simpler.

In fact, we usually do not want to know precisely how function T (n)

look (in general, it can be a very complicated function), and it would
be sufficient to know that values of the function T (n)

“approximately” correspond to values of a function S(n) = an + b,
where a and b are some constants.
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Time Complexity of an Algorithm

For a given function T (n) expressing the time or space complexity, it is
usually sufficient to express it approximately — to have an estimation
where

we ignore the less important parts

(e.g., in function T (n) = 15n2 + 40n − 5 we can ignore 40n and −5,
and to consider function T (n) = 15n2 instead of the original
function),

we ignore multiplication constants

(e.g., instead of function T (n) = 15n2 we will consider
function T (n) = n2)

we won’t ignore constants in exponents — for example there is a big
difference between functions T1(n) = n2 and T2(n) = n3.

we will be interested how function T (n) behaves for “big” values
of n, we can ignore its behaviour on small values
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Growth of Functions

A program works on an input of size n.
Let us assume that for an input of size n, the program performs T (n)

operations and that an execution of one operation takes 1µs (10−6 s).

n

T (n) 20 40 60 80 100 200 500 1000

n 20µs 40µs 60µs 80µs 0.1ms 0.2ms 0.5ms 1ms

n log n 86µs 0.213ms 0.354ms 0.506ms 0.664ms 1.528ms 4.48ms 9.96ms

n2 0.4ms 1.6ms 3.6ms 6.4ms 10ms 40ms 0.25 s 1 s

n3 8ms 64ms 0.216 s 0.512 s 1 s 8 s 125 s 16.7min.

n4 0.16 s 2.56 s 12.96 s 42 s 100 s 26.6min. 17.36 hours 11.57 days

2n 1.05 s 12.75 days 36560 years 38.3·109 years 40.1·1015 years 50·1045 years 10.4·10136 years –

n! 77147 years 2.59·1034 years 2.64·1068 years 2.27·10105 years 2.96·10144 years – – –
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Growth of Functions

Let us consider 3 algorithms with complexities
T1(n) = n,T2(n) = n3,T3(n) = 2n. Our computer can do in a reasonable
time (the time we are willing to wait) 1012 steps.

Complexity Input size

T1(n) = n 1012

T2(n) = n3 104

T3(n) = 2n 40
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Growth of Functions

Let us consider 3 algorithms with complexities
T1(n) = n,T2(n) = n3,T3(n) = 2n. Our computer can do in a reasonable
time (the time we are willing to wait) 1012 steps.

Complexity Input size

T1(n) = n 1012

T2(n) = n3 104

T3(n) = 2n 40

Now we speed up our computer 1000 times, meaning it can do 1015 steps.

Complexity Input size Growth

T1(n) = n 1015 1000×
T2(n) = n3 105 10×
T3(n) = 2n 50 +10
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Asymptotic Notation

In the following, we will consider functions of the form f : N→ R, where:

The values of f (n) need not to be defined for all values of n ∈ N but
there must exist some constant n0 such that the value of f (n) is
defined for all n ∈ N such that n ≥ n0.

Example: Function f (n) = log2(n) is not defined for n = 0 but it is
defined for all n ≥ 1.

There must exist a constant n0 such that for all n ∈ N, where n ≥ n0,
is f (n) ≥ 0.

Example: It holds for function f (n) = n2 − 25 that f (n) ≥ 0 for all
n ≥ 5.
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Asymptotic Notation

Let us take an arbitrary function f : N→ R. Expressions O(f ), Ω(f ), and
Θ(f ) denote sets of functions of the type N→ R, where:

O(f ) – the set of all functions that grow at most as fast as f

Ω(f ) – the set of all functions that grow at least as fast as f

Θ(f ) – the set of all functions that grow as fast as f

Remark: These are not definitions! The definitions will follow on the next
slides.

O – big “O”

Ω – uppercase Greek letter “omega”

Θ – uppercase Greek letter “theta”
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Asymptotic Notation – Symbol O

nn0

cg(n)

f (n)

Definition

Let us consider an arbitrary function g : N→ R. For a function f : N→ R

we have f ∈ O(g) iff

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0)
(

f (n) ≤ c g(n)
)

.
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Asymptotic Notation – Symbol O

Remarks:

c is a posive real number (i.e., c ∈ R and c > 0)

n0 and n are natural numbers (i.e., n0 ∈ N and n ∈ N)
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Asymptotic Notation – Symbol O

Example: Let us consider functions f (n) = 2n2 + 3n + 7 and g(n) = n2.

We want to show that f ∈ O(g), i.e., f ∈ O(n2):

Approach 1:

Let us take for example c = 3.

cg(n) = 3n2 = 2n2 + 1
2n

2 + 1
2n

2

We need to find some n0 such that for all n ≥ n0 it holds that

2n2 ≥ 2n2 1
2n

2 ≥ 3n 1
2n

2 ≥ 7

We can easily check that for example n0 = 6 satisfies this.

For each n ≥ 6 we have cg(n) ≥ f (n):

cg(n) = 3n2 = 2n2 + 1
2n

2 + 1
2n

2 ≥ 2n2 + 3n + 7 = f (n)
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Asymptotic Notation – Symbol O

The example where f (n) = 2n2 + 3n + 7 and g(n) = n2:

Approach 2:

Let us take c = 12.

cg(n) = 12n2 = 2n2 + 3n2 + 7n2

We need to find some n0 such that for all n ≥ n0 we have

2n2 ≥ 2n2 3n2 ≥ 3n 7n2 ≥ 7

These inequalities obviously hold for n0 = 1, and so for each n ≥ 1 we
have cg(n) ≥ f (n):

cg(n) = 12n2 = 2n2 + 3n2 + 7n2 ≥ 2n2 + 3n + 7 = f (n)
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Asymptotic Notation – Symbol O

Proposition

Let us assume that a and b are constants such that a > 0 and b > 0,
and k and ℓ are some arbitrary constants where k ≥ 0, ℓ ≥ 0 and k < ℓ.

Let us consider functions

f (n) = a · nk g(n) = b · nℓ

For each such functions f and g it holds that f ∈ O(g):

Proof: Let us take c = a
b
.

Because for n ≥ 1 we obviously have nk ≤ nℓ (since k ≤ l), for n ≥ 1 we
have

c · g(n) = a
b
· g(n) = a

b
· b · nℓ = a · nℓ ≥ a · nk = f (n)
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Asymptotic Notation – Symbol Ω

nn0

cg(n)

f (n)

Definition

Let us consider an arbitrary function g : N→ R. For a function f : N→ R

we have f ∈ Ω(g) iff

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0)
(

c g(n) ≤ f (n)
)

.
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Asymptotic Notation – Symbol Ω

It is not difficult to prove the following proposition:

For arbitrary functions f and g we have:

f ∈ O(g) iff g ∈ Ω(f )
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Asymptotic Notation – Symbol Θ

nn0

c2g(n)

f (n)

c1g(n)

Definition

Let us consider an arbitrary function g : N→ R. For a function f : N→ R

we have f ∈ Θ(g) iff

(∃c1 > 0)(∃c2 > 0)(∃n0 ≥ 0)(∀n ≥ n0)
(

c1 g(n) ≤ f (n) ≤ c2 g(n)
)

.
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Asymptotic Notation – Symbol Θ

For arbitrary functions f and g we have:

f ∈ Θ(g) iff f ∈ O(g) a f ∈ Ω(g)

f ∈ Θ(g) iff f ∈ O(g) a g ∈ O(f )

f ∈ Θ(g) iff g ∈ Θ(f )
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Asymptotic Notation

For arbitrary functions f , g , and h we have:

if f ∈ O(g) and g ∈ O(h) then f ∈ O(h)

if f ∈ Ω(g) and g ∈ Ω(h) then f ∈ Ω(h)

if f ∈ Θ(g) and g ∈ Θ(h) then f ∈ Θ(h)
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Asymptotic Notation

Examples:

n ∈ O(n2) n3 ∈ O(n4)

1000n ∈ O(n) 0.00001n2 − 1010n ∈ Θ(1010n2)
2log2 n ∈ Θ(n) n3 − n2 log32 n + 1000n − 10100 ∈ Θ(n3)
n3 6∈ O(n2) n3 + 1000n − 10100 ∈ O(n3)

n2 6∈ O(n) n3 + n2 6∈ Θ(n2)
n3 + 2n 6∈ O(n2) n! 6∈ O(2n)
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Asymptotic Notation

There are pairs of functions f and g such that

f 6∈ O(g) and g 6∈ O(f ),

for example

f (n) = n g(n) = n1+sin(n).

O(1) is the set of all bounded functions, i.e., functions whose
function values can be bounded from above by a constant.
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Asymptotic Notation

For any pair of functions f , g we have:

max(f , g) ∈ Θ(f + g)

if f ∈ O(g) then f + g ∈ Θ(g)

For any functions f1, f2, g1, g2 we have:

if f1 ∈ O(f2) and g1 ∈ O(g2) then f1 + g1 ∈ O(f2 + g2) and
f1 · g1 ∈ O(f2 · g2)
if f1 ∈ Θ(f2) and g1 ∈ Θ(g2) then f1 + g1 ∈ Θ(f2 + g2) and
f1 · g1 ∈ Θ(f2 · g2)
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Asymptotic Notation

A function f is called:

logarithmic, if f (n) ∈ Θ(log n)
linear, if f (n) ∈ Θ(n)
quadratic, if f (n) ∈ Θ(n2)
cubic, if f (n) ∈ Θ(n3)
polynomial, if f (n) ∈ O(nk) for some k > 0

exponential, if f (n) ∈ O(cn
k
) for some c > 1 and k > 0

Exponential functions are often written in the form 2O(nk ) when the
asymptotic notation is used, since then we do not need to consider
different bases.
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Asymptotic Notation

As mentioned before, expressions O(g), Ω(g), and Θ(g) denote certain
sets of functions.

In some texts, these expressions are sometimes used with a slightly
different meaning:

an expression O(g), Ω(g) or Θ(g) does not represent the
corresponding set of functions but some function from this set.

This convention is often used in equations and inequations.

Example: 3n3 + 5n2 − 11n + 2 = 3n3 + O(n2)

When using this convention, we can for example write f = O(g) instead of
f ∈ O(g).
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Complexity of Algorithms

Let us say we would like to analyze the time complexity T (n) of some
algorithm consisting of instructions I1, I2, . . . , Ik :

If m1,m2, . . . ,mk are the numbers of executions of individual
instructions for some input w (i.e., the instruction Ii is performed
mi times for the input w), then the total number of executed
instructions for input w is

T (n) = c1m1 + c2m2 + · · ·+ ckmk .

Let us consider functions f1, f2, . . . , fk , where fi : N→ R, and where
fi (n) is the maximum of numbers of executions of instruction Ii for all
inputs of size n.

Obviously, T ∈ Ω(fi ) for any function fi .

It is also obvious that T ∈ O(f1 + f2 + · · ·+ fk).
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Complexity of Algorithms

Let us recall that if f ∈ O(g) then f + g ∈ O(g).

If there is a function fi such that for all fj , where j 6= i , we have
fj ∈ O(fi ), then

T ∈ O(fi ).

This means that in an analysis of the time complexity T (n), we can
restrict our attention to the number of executions of the instruction
that is performed most frequently (and which is performed at most
fi (n) times for an input of size n), since we have

T ∈ Θ(fi ).
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Complexity of Algorithms

Example: In the analysis of the complexity of the searching of a number
in a sequence we obtained

f (n) = an + b .

If we would not like to do such a detailed analysis, we could deduce that
the time complexity of the algorithm is Θ(n), because:

The algorithm contains only one cycle, which is performed
(n − 1) times for an input of size n, the number of iterations of the
cycle is in Θ(n).

Several instructions are performed in one iteration of the cycle. The
number of these instructions is bounded from both above and below
by some constant independent on the size of the input.

Other instructions are performed at most once, and so they
contribute to the total running time by adding a constant.
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Complexity of Algorithms

Let us try to analyze the time complexity of the following algorithm:

Algorithm 2: Insertion sort

1 Insertion-Sort (A, n):

2 begin
3 for j := 1 to n − 1 do
4 x := A[j ]

5 i := j − 1
6 while i ≥ 0 and A[i ] > x do
7 A[i + 1] := A[i ]

8 i := i − 1

9 end
10 A[i + 1] := x

11 end

12 end

I.e., we want to find a function T (n) such that the time complexity of the
algorithm Insertion-Sort in the worst case is in Θ(T (n)).
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Complexity of Algorithms

Let us consider inputs of size n:

The outer cycle for is performed at most n − 1 times.

The inner cycle while is performed at most (j − 1) times for a given
value j .

There are inputs such that the cycle while is performed exactly
(j − 1) times for each value j from 2 to n.

So in the worst case, the cycle while is performed exactly m times,
where

m = 1+ 2+ · · ·+ (n − 1) = (1+ (n − 1)) · n−1
2 = 1

2n
2 − 1

2n

This means that the total running time of the algorithm
Insertion-Sort in the worst case is Θ(n2).
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Complexity of Algorithms

In the previous case, we have computed the total number of executions of
the cycle while accurately.

This is not always possible in general, or it can be quite complicated. It is
also not necessary, if we only want an asymptotic estimation.
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Complexity of Algorithms

For example, if we were not able to compute the sum of the arithmetic
progression, we could proceed as follows:

The outer cycle for is not performed more than n times and the inner
cycle while is performed at most n times in each iteration of the
outer cycle.

So we have T ∈ O(n2).

For some inputs, the cycle while is performed at least ⌈n/2⌉ times in
the last ⌊n/2⌋ iterations of the cycle for.

So the cycle while is performed at least ⌊n/2⌋ · ⌈n/2⌉ times for some
inputs.

⌊n/2⌋ · ⌈n/2⌉ ≥ (n/2− 1) · (n/2) = 1
4n

2 − 1
2n

This implies T ∈ Ω(n2).
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Space Complexity of Algorithms

So far we have considered only the time necessary for a computation

Sometimes the size of the memory necessary for the computation is
more critical.

The amount of memory used by machine M in a computation
on input w can be for example:

the maximal number of bits necessary for storing all data for each
configuration

the maximal number of memory cells used during the computation

Definition

A space complexity of algorithm Alg running on machine M is the
function S : N→ N, where S(n) is the maximal amount of memory used
by M for inputs of size n.
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Space Complexity of Algorithms

There can be two algorithms for a particular problem such that one of
them has a smaller time complexity and the other a smaller space
complexity.

If the time-complexity of an algorithm is in O(f (n)) then also the
space complexity is in O(f (n)) (note that the number of memory cells
used in one instruction is bounded by some constant that does not
depend on the size of an input).

The space complexity can be much smaller than the time complexity
— the space complexity of Insertion-Sort is Θ(n), while its time
complexity is Θ(n2).
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Complexity of Algorithms

Some typical values of the size of an input n, for which an algorithm with
the given time complexity usually computes the output on
a “common PC” within a fraction of a second or at most in seconds.

(Of course, this depends on particular details. Moreover, it is assumed
here that no big constants are hidden in the asymptotic notation)

O(n) O(n log n) O(n2) O(n3)

1 000 000 – 100 000 000 100 000 – 1 000 000 1000 – 10 000 100 – 1000

2O(n) O(n!)

20 – 30 10 – 15
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Complexity of Algorithms

When we use asymptotic estimations of the complexity of algorithms, we
should be aware of some issues:

Asymptotic estimations describe only how the running time grows
with the growing size of input instance.

They do not say anything about exact running time. Some big
constants can be hidden in the asymptotic notation.

An algorithm with better asymptotic complexity than some other
algorithm can be in reality faster only for very big inputs.

We usually analyze the time complexity in the worst case. For some
algorithms, the running time in the worst case can be much higher
than the running time on “typical” instances.
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Complexity of Algorithms

This can be illustrated on algorithms for sorting.

Algorithm Worst-case Average-case

Bubblesort Θ(n2) Θ(n2)

Heapsort Θ(n log n) Θ(n log n)

Quicksort Θ(n2) Θ(n log n)

Quicksort has a worse asymptotic complexity in the worst case than
Heapsort and the same asymptotic complexity in an average case but
it is usually faster in practice.
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Complexity of Algorithms

Polynomial — an expression of the form

akn
k + ak−1n

k−1 + · · · + a2n
2 + a1n + a0

where a0, a1, . . . , ak are constants.

Examples of polynomials:

4n3 − 2n2 + 8n + 13 2n + 1 n100

Function f is called polynomial if it is bounded from above by some
polynomial, i.e., if there exists a constant k such that f ∈ O(nk).

For example, the functions belonging to the following classes are
polynomial:

O(n) O(n log n) O(n2) O(n5) O(
√
n) O(n100)
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Complexity of Algorithms

Function such as 2n or n! are not polynomial — for arbitrarily big
constant k we have

2n ∈ Ω(nk) n! ∈ Ω(nk)

Polynomial algorithm — an algorithm whose time complexity is
polynomial (i.e., bounded from above by some polynomial)

Roughly we can say that:

polynomial algorithms are effiecient algorithms that can be used in
practice for inputs of considerable size

algorithms, which are not polynomial, can be used in practice only for
rather small inputs
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Complexity of Algorithms

The division of algorithms on polynomial and non-polynomial is very rough
— we cannot claim that polynomial algorithms are always efficient and
non-polynomial algorithms are not:

an algorithm with the time complexity Θ(n100) is probably not very
useful in practice,

some algorithms, which are non-polynomial, can still work very
efficiently for majority of inputs, and can have a time complexity
bigger than polynomial only due to some problematic inputs, on
which the computation takes long time.

Remark: Polynomial algorithms where the constant in the exponent is
some big number (e.g., algorithms with complexity Θ(n100)) almost never
occur in practice as solutions of usual algorithmic problems.
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Complexity of Algorithms

For most of common algorithmic problems, one of the following three
possibilities happens:

A polynomial algorithm with time complexity O(nk) is known, where
k is some very small number (e.g., 5 or more often 3 or less).

No polynomial algorithm is known and the best known algorithms
have complexities such as 2Θ(n), Θ(n!), or some even bigger.

In some cases, a proof is known that there does not exist a polynomial
algorithm for the given problem (it cannot be constructed).

No algorithm solving the given problem is known (and it is possibly
proved that there does not exist such algorithm)
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Complexity of Algorithms

A typical example of polynomial algorithm — matrix multiplication with
time complexity Θ(n3) and space complexity Θ(n2):

Algorithm 3: Matrix multiplication

1 Matrix-Mult (A,B ,C , n):

2 begin
3 for i := 1 to n do
4 for j := 1 to n do
5 x := 0
6 for k := 1 to n do
7 x := x + A[i ][k ] ∗ B [k ][j ]
8 end
9 C [i ][j ] := x

10 end

11 end

12 end
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Complexity of Algorithms

For a rough estimation of complexity, it is often sufficient to count
the number of nested loops — this number then gives the degree of
the polynomial

Example: Three nested loops in the matrix multiplication — the
time complexity of the algorithm is O(n3).

If it is not the case that all the loops go from 0 to n but the number
of iterations of inner loops are different for different iterations of an
outer loops, a more precise analysis can be more complicated.

It is often the case, that the sum of some sequence (e.g., the sum of
arithmetic or geometric progression) is then computed in the analysis.

The results of such more detailed analysis often does not differ from
the results of a rough analysis but in many cases the time complexity
resulting from a more detailed analysis can be considerably smaller
than the time complexity following from the rough analysis.
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Complexity of Algorithms

Arithmetic progression — a sequence of numbers a0, a1, . . . , an−1, where

ai = a0 + i · d ,

where d is some constant independent on i .

Remark: So in an arithmetic progression, we have ai+1 = ai + d for each i .

The sum of an arithmetic progression:

n−1∑

i=0

ai = a0 + a1 + · · ·+ an−1 =
1

2
n (an−1 + a0)
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Complexity of Algorithms

Example:

1+ 2+ · · ·+ n =
1

2
n(n + 1) =

1

2
n2 +

1

2
n = Θ(n2)

For example, for n = 100 we have

1+ 2+ · · ·+ 100 = 50 · 101 = 5050.

Remark: To see this, we can note that

1+ 2+ · · ·+ 100 = (1+ 100) + (2+ 99) + · · ·+ (50+ 51),

where we compute the sum of 50 pairs of number, where the sum of each
pair is 101.
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Complexity of Algorithms

Geometric progression — a sequence of numbers a0, a1, . . . , an, where

ai = a0 · qi ,

where q is some constant independent on i .

Remark: So in a geometric progression we have ai+1 = ai · q.

The sum of a geometic progression (where q 6= 1):

n∑

i=0

ai = a0 + a1 + · · ·+ an = a0
qn+1 − 1

q − 1
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Complexity of Algorithms

Example:

1+ q + q2 + · · ·+ qn =
qn+1 − 1

q − 1

In particular, for q = 2:

1+ 21 + 22 + 23 + · · ·+ 2n =
2n+1 − 1

2− 1
= 2 · 2n − 1 = Θ(2n)
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Complexity of Algorithms

An exponential function: a function of the form cn, where c is a constant
— e.g., function 2n

Logarithm — the inverse function to an exponential function: for
a given n,

logc n

is the value x such that cx = n.
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Complexity of Algorithms

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536
17 131072
18 262144
19 524288
20 1048576

n ⌈log2 n⌉
0 —
1 0
2 1
3 2
4 2
5 3
6 3
7 3
8 3
9 4
10 4
11 4
12 4
13 4
14 4
15 4
16 4
17 5
18 5
19 5
20 5

n log2 n
1 0
2 1
4 2
8 3
16 4
32 5
64 6
128 7
256 8
512 9
1024 10
2048 11
4096 12
8192 13
16384 14
32768 15
65536 16
131072 17
262144 18
524288 19
1048576 20
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Complexity of Algorithms

Proposition

For any a, b > 1 and any n > 0 we have

loga n =
logb n

logb a

Proof: From n = aloga n it follows that logb n = logb(a
loga n).

Since logb(a
loga n) = loga n · logb a, we obtain logb n = loga n · logb a, from

which the above mentioned conclusion follows directly.

Due to this observation, the base of a logarithm is often omited in the
asymptotic notation: for example, instead of Θ(n log2 n) we can write
Θ(n log n).
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Complexity of Algorithms

Examples where exponential functions and logarithms can appear in an
analysis of algorithms:

Some value is repeatedly decreased to one half or is repeatedly
doubled.

For example, in the binary search, the size of an interval halves in
every iteration of the loop.

Let us assume that an array has size n.

What is the minimal size of an array n, for which the algorithm
performs at least k iterations?

The answer: 2k

So we have k = log2(n). The time complexity of the algorithm is
then Θ(log n).
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Complexity of Algorithms

Using n bits we can represent numbers from 0 to 2n − 1.

The minimal numbers of bits, which are sufficient for representing
a natural number x in binary is

⌈log2(x + 1)⌉.

A perfectly balanced tree of height h has 2h+1 − 1 nodes, and 2h of
these nodes are leaves.

The height of a perfectly balanced binary tree with n nodes is log2 n.

An illustrating example: If we would draw a balanced tree
with n = 1 000 000 nodes in such a way that the distance between
neighbouring nodes would be 1 cm and the height of each layer of
nodes would be also 1 cm, the width of the tree would be 10 km and
its height would be approximately 20 cm.
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Complexity of Algorithms

A perfectly balanced binary tree of height h:

h
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Complexity of Algorithms

A perfectly balanced binary tree of height h:

h

20

21

22

23

24
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Complexity of Algorithms

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

34 42 58 61

10 11 53 67

=⇒
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Example: Algorithm Merge-Sort.
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If both sequences have together n elements then this operation can be
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11 53 67
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Complexity of Algorithms

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

34 42 58 61
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Complexity of Algorithms

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

42 58 61

53 67

=⇒ 10 11 34
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Complexity of Algorithms

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

58 61

53 67

=⇒ 10 11 34 42
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Complexity of Algorithms

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

58 61

67

=⇒ 10 11 34 42 53
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Complexity of Algorithms

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

61

67

=⇒ 10 11 34 42 53 58
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Complexity of Algorithms

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

67

=⇒ 10 11 34 42 53 58 61
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Complexity of Algorithms

Example: Algorithm Merge-Sort.

The main idea of the algorithm: Two sorted sequences can be easily
merged into one sorted sequence.
If both sequences have together n elements then this operation can be
done in n steps.

=⇒ 10 11 34 42 53 58 61 67
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Complexity of Algorithms

Algorithm 4: Merge sort

1 Merge-Sort (A, p, r):

2 begin
3 if r − p > 1 then
4 q := ⌊(p + r) / 2⌋
5 Merge-Sort(A, p, q)
6 Merge-Sort(A, q, r)
7 Merge(A, p, q, r)

8 end

9 end

To sort an array A containing elements A[0],A[1], · · · ,A[n − 1] we call
Merge-Sort(A, 0, n).

Remark: Procedure Merge(A, p, q, r) merges sorted sequences stored
in A[p . . q − 1] and A[q . . r − 1] into one sequence stored in A[p . . r − 1].

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 487 / 569



Complexity of Algorithms

Input: 58, 42, 34, 61, 67, 10, 53, 11

42 58 34 61 10 67 11 53

34 42 6158 10 11 53 67

10 11 34 42 67615853

58 42 34 61 67 10 53 11

The tree of recursive calls has Θ(log n) layers. On each layer, Θ(n)
operations are performed. The time complexity of Merge-Sort is
Θ(n log n).
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Complexity of Algorithms

Representations of a graph:

1 2 3

4 5 6

5

4

3

2

1 42

2

4

6 5

6 6

5

1

0 1 0

0 1

0 0

0 1 0

10 0

3

5

4

2

1

1 2 3 4 5

6

6

1 0 0

0 0 0 0

10 10

0 0 0

0 0 0

0 0 0 0 0
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Complexity of Algorithms

Representations of a graph:

1

5 4

2

3

5

4

3

2

1 5

5

2

1 3 4

2 3

4

2 4

5

1 2

5

0 1 0 0 1

1 0 1 1 1

0 1 0 1 0

0 1 1 0 1

1 1 10 0

3

5

4

2

1

1 2 3 4
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Complexity of Algorithms

Finding the shortest path in a graph where edges are not weighted:

Breadth-first search

The input is a graph G (with a set of nodes V ) and an initial node s.

The algorithm finds the shortest paths from node s for all nodes.

For a graph with n nodes and m edges, the running time of the
algorithm is Θ(n +m).
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Complexity of Algorithms

Algorithm 5: Breadth-first search

1 Bfs (G , s):

2 begin
3 Bfs-Init(G , s)
4 Enqueue(Q, s)
5 while Q 6= ∅ do
6 u := Dequeue(Q)

7 for each v ∈ edges[u] do
8 if color[v ] = white then
9 color[v ] := gray

10 d [v ] := d [u] + 1
11 pred[v ] := u

12 Enqueue(Q, v)
13 end

14 end
15 color[u] := black

16 end

17 end

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 492 / 569



Complexity of Algorithms

Algorithm 6: Breadth-first search — initialization

1 Bfs-Init (G , s):

2 begin
3 for each u ∈ V − {s} do
4 color[u] := white
5 d [u] :=∞
6 pred[u] := nil

7 end
8 color[s] := gray
9 d [s] := 0

10 pred[s] := nil
11 Q := ∅
12 end
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Other Examples of Problems

Problem “Primality”

Input: A natural number x .

Output: Yes if x is a prime, No otherwise.

Remark: A natural number x is a prime if it is greater than 1 and is
divisible only by numbers 1 and x .

Few of the first primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .
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Decision Problems

The problems, where the set of outputs is {Yes,No} are called decision
problems.

Decision problems are usually specified in such a way that instead of
describing what the output is, a question is formulated.

Example:

Problem “Primality”

Input: A natural number x .

Question: Is x a prime?
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Primality Test

A simple algorithm solvint the “Primality” problem can work like this:

Test the trivial cases (e.g., if x ≤ 2 or if x is even).

Try to divide x successively by all odd numbers in interval
3, . . . , ⌊√x⌋.

Let n be the number of bits in the representation of number x ,
e.g., n = ⌈log2(x + 1)⌉.
This value n will be considered as the size of the input.

Note that the number ⌊√x⌋ has approximately n/2 bits.

There are approximately 2(n/2)−1 odd numbers in the interval 3, . . . , ⌊√x⌋,
and so the time complexity of this simple algorithm is in 2Θ(n).
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Primality Test

This simple algorithm with an exponential running time (resp. also
different improved versions of this) are applicable to numbers with
thousands of bits in practice.
A primality test of such big numbers plays an important role for example
in cryptography.

Only since 2003, a polynomial time algorithm is known. The time
complexity of the original version of the algorithm was O(n12+ε), later it
was improved to (O(n7.5)). The currently fastest algorithm has time
complexity O(n6).

In practice, randomized algorithms are used for primality testing:

Solovay–Strassen

Miller–Rabin

(The time complexity of both algorithms is O(n3).)
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Primality Test

A randomized algorithm:

It uses a random-number generator during a computation.

It can produce different outputs in different runs with the same input.

The output need not be always correct but the probability of
producing an incorrect output is bounded.

For example, both above mentioned randomized algorithms for primality
testing behave as follows:

If x is a prime, the answer Yes is always returned.

If x is not a prime, the probability of the answer No is at least 50%
but there is at most 50% probability that the program returns the
incorrect answer Yes.
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Primality Test

The program can be run repeatedly (k times):

If the program returns at least once the answer No, we know (with
100% probability) that x is not a prime.

If the program always returns Yes, the probability that x is not
a prime is at most 1

2k
.

For sufficiently large values of k , the probability of an incorrect answer is
negligible.

Remark: For example for k = 100, the probability of this error is smaller
than the probability that a computer, on which the program is running, will
be destroyed by a falling meteorite (assuming that at least once in every
1000 years at least 100m2 of Earth surface is destroyed by a meteorite).
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Primality Test

At first sight, the following problem looks very similar as the primality test:

Problem “Factorization”

Input: A natural number x , where x > 1.

Output: Primes p1, p2, . . . , pm such that x = p1 · p2 · · · · · pm.

In fact, this problem is (supposed to be) much harder than primality
testing.
No efficient (polynomial) algorithm is known for this problem (nor
a randomized algorithm).
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Other Examples of Problems

Independent set (IS) problem

Input: An undirected graph G , a number k .

Question: Is there an independent set of size k in the graph G?

k = 4

Remark: An independent set in a graph is a subset of nodes of the
graph such that no pair of nodes from this set is connected by an edge.
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Other Examples of Problems

An example of an instance where the answer is Yes:

k = 4

An example of an instance where the answer is No:

k = 5
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Other Examples of Problems

A set containing n elements has 2n subsets.

Consider for example an algorithm solving a given problem by brute
force where it tests the required property for each subset of a given
set.

It is sufficient to consider only subsets of size k . The total number of
such subsets is

(

n

k

)

For some values of k , the total number of these subsets is not much
smaller than 2n:

For example, it is not too difficult to show that
(

n

⌊n/2⌋

)

≥ 2n

n
.
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Other Examples of Problems

Let us have an algorithm solving the independent set problem by brute
force in such a way that it tests for each subset with k elements of the set
of nodes (with n nodes), if it forms an independent set. The time
complexity of the algorithm is 2Θ(n).
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Undecidable Problems
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Algorithmically Solvable Problems

Let us assume we have a problem P .

If there is an algorithm solving the problem P then we say that the
problem P is algorithmically solvable.

If P is a decision problem and there is an algorithm solving the problem P

then we say that the problem P is decidable (by an algorithm).

If we want to show that a problem P is algorithmically solvable, it is
sufficient to show some algorithm solving it (and possibly show that the
algorithm really solves the problem P).
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Algorithmically Unsolvable Problems

A problem that is not algorithmically solvable is algorithmically
unsolvable.

A decision problem that is not decidable is undecidable.

Surprisingly, there are many (exactly defined) problems, for which it was
proved that they are not algorithmically solvable.
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Halting Problem

Let us consider some general programming language L.
Futhermore, let us assume that programs in language L run on some
idealized machine where a (potentially) unbounded amount of memory is
available — i.e., the allocation of memory never fails.

Example: The following problem called the Halting problem is
undecidable:

Halting problem

Input: A source code of a L program P , input data x .

Question: Does the computation of P on the input x halt after some
finite number of steps?
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Halting Problem

Let us assume that there is a program that can decide the Halting problem.

So we could construct a subroutine H, declared as

Bool H(String code, String input)

where H(P , x) returns:

true if the program P halts on the input x ,

false if the program P does not halt on the input x .

Remark: Let us say that subroutine H(P , x) returns false if P is not
a syntactically correct program.
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Halting Problem

Using the subroutine H we can construct a program D that performs the
following steps:

It reads its input into a variable x of type String.

It calls the subroutine H(x , x).

If subroutine H returns true, program D jumps into an infinite loop

loop: goto loop

In case that H returns false, program D halts.

What does the program D do if it gets its own code as an input?
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Halting Problem

If D gets its own code as an input, it either halts or not.

If D halts then H(D,D) returns true and D jumps into the infinite
loop. A contradiction!

If D does not halt then H(D,D) returns false and D halts.
A contradiction!

In both case we obtain a contradiction and there is no other possibility. So
the assumption that H solves the Halting problem must be wrong.
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Reduction between Problems

If we have already proved a (decision) problem to be undecidable, we can
prove undecidability of other problems by reductions.

Problem P1 can be reduced to problem P2 if there is an algorithm Alg

such that:

It can get an arbitrary instance of problem P1 as an input.

For an instance of a problem P1 obtained as an input (let us denote it
as w) it produces an instance of a problem P2 as an output.

It holds i.e., the answer for the input w of problem P1 is Yes iff the
answer for the input Alg(w) of problem P2 is Yes.
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Reductions between Problems

Inputs of problem P1 Inputs of problem P2

Yes Yes

No
No
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Reductions between Problems

Let us say there is some reduction Alg from problem P1 to problem P2.

If problem P2 is decidable then problem P1 is also decidable.

Solution of problem P1 for an input x :

Call Alg with x as an input, it returns a value Alg(x).

Call the algorithm solving problem P2 with input Alg(x).

Write the returned value to the output as the result.

It is obvious that if P1 is undecidable then P2 cannot be decidable.
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Other Undecidable Problems

By reductions from the Halting problem we can show undecidability of
many other problems dealing with a behaviour of programs:

Is for some input the output of a given program Yes?

Does a given program halt for an arbitrary input?

Do two given programs produce the same outputs for the same
inputs?

. . .
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Models of Computation

For the use in proofs and in reductions between problems, it is convenient
to have the language L and the machine running programs in this
language as simple as possible:

the number of kinds of instructions as small as possible

instructions as primitive as possible

the datatypes, with which the algorithm works, as simple as possible

it is irrelevant how difficult is to write programs in the given language
(it can be extremly user-unfriently)

On the other hand, such language (resp. machine) must be general enough
so that any program written in an arbitrary programming language can be
compiled to it.
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Models of Computation

Such languages (resp. machines), which are general enough, so that
programs written in any other programming language can be translated to
them, are called Turing complete.

Examples of such Turing complete models of computation (languages or
machines) often used in proofs:

Turing machine (Alan Turing)

Lambda calculus (Alonzo Church)

Minsky machine (Marvin Minsky)

. . .
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Models of Computation

Turing machine:

Let us extend a deterministic finite automaton in the following way:

the reading head can move in both directions
it is possible to write symbols on the tape
the tape is extended into infinity

q5

� � a b a b b a b � � � �
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Church-Turing Thesis

Church-Turing thesis

Every algorithm can be implemented as a Turing machine.

It is not a theorem that can be proved in a mathematical sense – it is not
formally defined what an algorithm is.

The thesis was formulated in 1930s independently by Alan Turing and
Alonzo Church.
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Halting Problem

For purposes of proofs, the following version of Halting problem is often
used:

Halting problem

Input: A description of a Turing machine M and a word w .

Question: Does the computation of the machine M on the word w halt
after some finite number of steps?
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Other Undecidable Problems

We have already seen the following example of an undecidable problem:

Problem

Input: Context-free grammars G1 and G2.

Question: Is L(G1) = L(G2)?

respectively

Problem

Input: A context-free grammar generating a language over an
alphabet Σ.

Question: Is L(G ) = Σ∗?
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Other Undecidable Problems

An input is a set of types of tiles, such as:

The question is whether it is possible to cover every finite area of an
arbitrary size using the given types of tiles in such a way that the colors of
neighboring tiles agree.

Remark: We can assume that we have an infinite number of tiles of all
types.

The tiles cannot be rotated.
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Other Undecidable Problems
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Other Undecidable Problems

An input is a set of types of cards, such as:

a

aa

abb

bbab

bab

ab

baba

aa

aba

a

The question is whether it is possible to construct from the given types of
cards a non-empty finite sequence such that the concatenations of the
words in the upper row and in the lower row are the same. Every type of a
card can be used repeatedly.

a

aa

abb

bbab

abb

bbab

baba

aa

abb

bbab

aba

a

In the upper and in the lower row we obtained the word
aabbabbbabaabbaba.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 524 / 569



Other Undecidable Problems

Undecidability of several other problems dealing with context-free
grammars can be proved by reductions from the previous problem:

Problem

Input: Context-free grammars G1 and G2.

Question: Is L(G1) ∩ L(G2) = ∅?

Problem

Input: A context-free grammar G .

Question: Is G ambiguous?
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Other Undecidable Problems

Problem

Input: A closed formula of the first order predicate logic where the
only predicate symbols are = and <, the only function
symbols are + and ∗, and the only constant symbols are 0
and 1.

Question: Is the given formula true in the domain of natural numbers
(using the natural interpretation of all function and predicate
symbols)?

An example of an input:

∀x∃y∀z((x ∗ y = z)∧ (y + 1 = x))

Remark: There is a close connection with Gödel’s incompleteness
theorem.
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Other Undecidable Problems

It is interesting that an analogous problem, where real numbers are
considered instead of natural numbers, is decidable (but the algorithm for
it and the proof of its correctness are quite nontrivial).

Also when we consider natural numbers or integers and the same formulas
as in the previous case but with the restriction that it is not allowed to use
the multiplication function symbol ∗, the problem is algorithmically
decidable.
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Other Undecidable Problems

If the function symbol ∗ can be used then even the very restricted case is
undecidable:

Hilbert’s tenth problem

Input: A polynomial f (x1, x2, . . . , xn) constructed from variables
x1, x2, . . . , xn and integer constants.

Question: Are there some natural numbers x1, x2, . . . , xn such that
f (x1, x2, . . . , xn) = 0 ?

An example of an input: 5x2y − 8yz + 3z2 − 15

I.e., the question is whether

∃x∃y∃z(5 ∗ x ∗ x ∗ y + (−8) ∗ y ∗ z + 3 ∗ z ∗ z + (−15) = 0)

holds in the domain of natural numbers.
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Other Undecidable Problems

Also the following problem is algorithmically undecidable:

Problem

Input: A closed formula ϕ of the first-order predicate logic.

Question: Is |= ϕ ?

Remark: Notation |= ϕ denotes that formula ϕ is logically valid, i.e., it is
true in all interpretations.
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NP-Complete Problems
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Polynomial Reductions between Problems

There is a polynomial reduction of problem P1 to problem P2 if there
exists an algorithm Alg with a polynomial time complexity that reduces
problem P1 to problem P2.
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Polynomial Reductions between Problems

Inputs of problem P1 Inputs of problem P2

Yes Yes

No
No
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Polynomial Reductions between Problems

Let us say that problem A can be reduced in polynomial time to
problem B , i.e., there is a (polynomial) algorithm P realizing this
reduction.

If problem B is in the class PTIME then problem A is also in the class
PTIME.

A solution of problem A for an input x :

Call P with input x and obtain a returned value P(x).

Call a polynomial time algorithm solving problem B with the
input P(x).
Write the returned value as the answer for A.

That means:

If A is not in PTIME then also B can not be in PTIME.
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Polynomial Reductions between Problems

There is a big class of algorithmic problems called NP-complete problems
such that:

these problems can be solved by exponential time algorithms

no polynomial time algorithm is known for any of these problems

on the other hand, for any of these problems it is not proved that
there cannot exist a polynomial time algorithm for the given problem

every NP-complete problem can be polynomially reduced to any other
NP-complete problem

Remark: This is not a definition of NP-complete problems. The precise
definition will be described later.
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Problem SAT

A typical example of an NP-complete problem is the SAT problem:

SAT (boolean satisfiability problem)

Input: Boolean formula ϕ.

Question: Is ϕ satisfiable?

Example:
Formula ϕ1 = x1 ∧ (¬x2 ∨ x3) is satisfiable:
e.g., for valuation v where v(x1) = 1, v(x2) = 0, v(x3) = 1, the
formula ϕ1 is true.

Formula ϕ2 = (x1 ∧ ¬x1)∨ (¬x2 ∧ x3 ∧ x2) is not satisfiable:
it is false for every valuation v .
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Problem 3-SAT

3-SAT is a variant of the SAT problem where the possible inputs are
restricted to formulas of a certain special form:

3-SAT

Input: Formula ϕ is a conjunctive normal form where every clause
contains exactly 3 literals.

Question: Is ϕ satisfiable?
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Problem 3-SAT

Recalling some notions:

A literal is a formula of the form x or ¬x where x is an atomic
proposition.

A clause is a disjuction of literals.

Examples: x1 ∨ ¬x2 ¬x5 ∨ x8 ∨ ¬x15 ∨ ¬x23 x6

A formula is in a conjuctive normal form (CNF) if it is a conjuction
of clauses.

Example: (x1 ∨ ¬x2) ∧ (¬x5 ∨ x8 ∨ ¬x15 ∨ ¬x23) ∧ x6

So in the 3-SAT problem we require that a formula ϕ is in a CNF and
moreover that every clause of ϕ contains exactly three literals.

Example:
(x1 ∨¬x2 ∨ x4)∧ (¬x1 ∨ x3 ∨ x3)∧ (¬x1 ∨¬x3 ∨¬x4)∧ (x2 ∨¬x3 ∨ x4)
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Problem 3-SAT

The following formula is satisfiable:

(x1 ∨¬x2 ∨ x4)∧ (¬x1 ∨ x3 ∨ x3)∧ (¬x1 ∨¬x3 ∨¬x4)∧ (x2 ∨¬x3 ∨ x4)

It is true for example for valuation v where

v(x1) = 0
v(x2) = 1
v(x3) = 0
v(x4) = 1

On the other hand, the following formula is not satisfiable:

(x1 ∨ x1 ∨ x1)∧ (¬x1 ∨ ¬x1 ∨ ¬x1)
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Polynomial Reductions between Problems

As an example, a polynomial time reduction from the 3-SAT problem to
the independent set problem (IS) will be described.

Remark: Both 3-SAT and IS are examples of NP-complete problems.
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Independent Set (IS) Problem

Independent set (IS) problem

Input: An undirected graph G , a number k .

Question: Is there an independent set of size k in the graph G?

k = 4

Remark: An independent set in a graph is a subset of nodes of the
graph such that no pair of nodes from this set is connected by an edge.
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Independent Set (IS) Problem

Independent set (IS) problem

Input: An undirected graph G , a number k .

Question: Is there an independent set of size k in the graph G?

k = 4

Remark: An independent set in a graph is a subset of nodes of the
graph such that no pair of nodes from this set is connected by an edge.
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Independent Set (IS) Problem

An example of an instance where the answer is Yes:

k = 4

An example of an instance where the answer is No:

k = 5
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A Reduction from 3-SAT to IS

We describe a (polynomial-time) algorithm with the following properties:

Input: An arbitrary instance of 3-SAT, i.e., a formula ϕ in a
conjunctive normal form where every clause contains exactly three
literals.

Output: An instance of IS, i.e., an undirected graph G and a number
k .

Moreover, the following will be ensured for an arbitrary input (i.e., for
an arbitrary formula ϕ in the above mentioned form):

There will be an independent set of size k in graph G iff formula ϕ
will be satisfiable.
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

For each occurrence of a literal we add a node to the graph.
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

We connect with edges the nodes corresponding to occurrences of literals
belonging to the same clause.
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

For each pair of nodes corresponding to literals xi and ¬xi we add an edge
between them.
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

We put k to be equal to the number of clauses.
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

The constructed graph and number k are the output of the algorithm.
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

v(x1) = 1
v(x2) = 1
v(x3) = 0
v(x4) = 1

If the formula ϕ is satisfiable then there is a valuation v where every
clause contains at least one literal with value 1.
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

v(x1) = 1
v(x2) = 1
v(x3) = 0
v(x4) = 1

We select one literal that has a value 1 in the valuation v , and we put the
corresponding node into the independent set.
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

v(x1) = 1
v(x2) = 1
v(x3) = 0
v(x4) = 1

We can easily verify that the selected nodes form an independent set.
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A Reduction from 3-SAT to IS

The selected nodes form an independent set because:

One node has been selected from each triple of nodes corresponding
to one clause.

Nodes denoted xi and ¬xi could not be selected together.
(Exactly of them has the value 1 in the given valuation v .)
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A Reduction from 3-SAT to IS

On the other hand, if there is an independent set of size k in graph G ,
then it surely has the following properties:

At most one node is selected from each triple of nodes corresponding
to one clause.

But because there are k clauses and k nodes are selected, exactly one
node must be selected from each triple.

Nodes denoted xi and ¬xi cannot be selected together.

We can choose a valuation according to the selected nodes, since it follows
from the previous discussion that it must exist.
(Arbitrary values can be assigned to the remaining variables.)

For the given valuation, the formula ϕ has surely the value 1, since in each
clause there is at least one literal with value 1.
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A Reduction from 3-SAT to IS

It is obvious that the running time of the described algorithm polynomial:

Graph G and number k can be constructed for a formula ϕ in time O(n2),
where n is the size of formula ϕ.

We have also seen that there is an independent set of size k in the
constructed graph G iff the formula ϕ is satisfiable.

The described algorithm shows that 3-SAT can be reduced in polynomial
time to IS.
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Complexity Classes

PTIME — the class of all algorithmic problems that can solve by
a (deterministic) algorithm in polynomial time

NPTIME — the class of algorithmic problems that can be solved by
a nondetermistic algorithm in polynomial time
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NP-Complete Problems

Let us consider a set of all decision problems.
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NP-Complete Problems

By an arrow we denote that a problem A can be reduced in polynomial
time to a problem B .

A B
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NP-Complete Problems

For example 3-SAT can be reduced in polynomial time to IS.

3-SAT IS
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NP-Complete Problems

Let us consider now the class NPTIME and a problem P .

P

NPTIME
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NP-Complete Problems

A problem P is NP-hard if every problem from NPTIME can be reduced
in polynomial time to P .

P

NPTIME
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NP-Complete Problems

A problem P is NP-complete if it is NP-hard and it belongs to the class
NPTIME.

P

NPTIME
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NP-Complete Problems

If we have found a polynomial time algorithm for some NP-hard
problem P , then we would have polynomial time algorithms for all
problems P ′ from NPTIME:

At first we would apply an algorithm for the reduction from P ′ to P

on an input of a problem P ′.

Then we would use a polynomial algorithm for P on the constructed
instance of P and returned its result as the answer for the original
instance of P ′.

Is such case, PTIME = NPTIME would hold, since for every problem from
NPTIME there would be a polynomial-time (deterministic) algorithm.
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NP-Complete Problems

On the other hand, if there is at least one problem from NPTIME for
which a polynomial-time algorithm does not exist, then it means that for
none of NP-hard problems there is a polynomial-time algorithm.

It is an open question whether the first or the second possibility holds.
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NP-Complete Problems

It is not difficult to see that:

If a problem A can be reduced in a polynomial time to a problem B and
problem B can be reduced in a polynomial time to a problem C , then
problem A can be reduced in a polynomial time to problem C .

So if we know about some problem P that it is NP-hard and that P can
be reduced in a polynomial time to a problem P ′, then we know that the
problem P ′ is also NP-hard.
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NP-Complete Problems

Theorem

Problem SAT is NP-complete.

It can be shown that SAT can be reduced in a polynomial time to 3-SAT
and we have seen that 3-SAT can be reduced in a polynomial time to IS.

This means that problems 3-SAT and IS are NP-hard.

It is not difficult to show that 3-SAT and IS belong to the class NPTIME.

Problems 3-SAT and IS are NP-complete.
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NP-Complete Problems

By a polynomial reductions from problems that are already known to be
NP-complete, NP-completeness of many other problems can be shown:

IS

3−SAT

3−CG

SUBSET−SUM

ILP

SAT

VC

CLIQUE

HC TSPHK
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Examples of Some NP-Complete Problems

The following previously mentioned problems are NP-complete:

SAT (boolean satisfiability problem)

3-SAT

IS — independent set problem

On the following slides, examples of some other NP-complete problems are described:

CG — graph coloring (remark: it is NP-complete even in the special case where we
have 3 colors)

VC — vertex cover

CLIQUE — clique problem

HC — Hamiltonian cycle

HK — Hamiltonian circuit

TSP — traveling salesman problem

SUBSET-SUM

ILP — integer linear programming
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Graph Coloring

Graph coloring

Input: An undirected graph G , a natural number k .

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: k = 3
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Graph Coloring

Graph coloring

Input: An undirected graph G , a natural number k .

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: k = 3

Answer: YesZ. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 4, 2016 555 / 569
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Graph Coloring

Graph coloring

Input: An undirected graph G , a natural number k .

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: k = 3

Answer: No
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VC – Vertex Cover

VC – vertex cover

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
edge has at least one of its nodes in this subset?

Example: k = 6
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VC – Vertex Cover

VC – vertex cover

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
edge has at least one of its nodes in this subset?

Example: k = 6

Answer: Yes
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CLIQUE

CLIQUE

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
two nodes from this subset are connected by an edge?

Example: k = 4
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CLIQUE

CLIQUE

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
two nodes from this subset are connected by an edge?

Example: k = 4

Answer: Yes
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:

Answer: No
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:

Answer: Yes
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Hamiltonian Circuit

HK – Hamiltonian circuit

Input: An undirected graph G .

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:

Answer: No
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Hamiltonian Circuit

HK – Hamiltonian circuit

Input: An undirected graph G .

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:

Answer: Yes
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Traveling Salesman Problem

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers and a number k .

Question: Is there a closed tour going through all nodes of the graph G

such that the sum of labels of edges on this tour is at
most k?

Example: k = 70

8

18 16

20

1

5 1

2

10
3

4

5

13

6
14

4
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Traveling Salesman Problem

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers and a number k .

Question: Is there a closed tour going through all nodes of the graph G

such that the sum of labels of edges on this tour is at
most k?

Example: k = 70
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Answer: Yes, since there is a tour with the sum 69.
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SUBSET-SUM

Problem SUBSET-SUM

Input: A sequence a1, a2, . . . , an of natural numbers and a natural
number s.

Question: Is there a set I ⊆ {1, 2, . . . , n} such that
∑

i∈I ai = s ?

In other words, the question is whether it is possible to select a subset
with sum s of a given (multi)set of numbers.

Example: For the input consisting of numbers 3, 5, 2, 3, 7 and number
s = 15 the answer is Yes, since 3+ 5+ 7 = 15.

For the input consisting of numbers 3, 5, 2, 3, 7 and number s = 16 the
answer is No, since no subset of these numbers has sum 16.
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SUBSET-SUM

Remark:
The order of numbers a1, a2, . . . , an in an input is not important.

Note that this is not exactly the same as if we have formulated the
problem so that the input is a set {a1, a2, . . . , an} and a number s —
numbers cannot occur multiple times in a set but they can in a sequence.
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SUBSET-SUM

Problem SUBSET-SUM is a special case of a knapsack problem:

Knapsack problem

Input: Sequence of pairs of natural numbers
(a1, b1), (a2, b2), . . . , (an, bn) and two natural numbers s
and t.

Question: Is there a set I ⊆ {1, 2, . . . , n} such that
∑

i∈I ai ≤ s and∑
i∈I bi ≥ t ?
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SUBSET-SUM

Informally, the knapsack problem can be formulated as follows:

We have n objects, where the i-th object weights ai grams and its price
is bi dollars.

The question is whether there is a subset of these objects with total
weight at most s grams (s is the capacity of the knapsack) and with total
price at least t dollars.

Remark:
Here we have formulated this problem as a decision problem.

This problem is usually formulated as an optimization problem where the
aim is to find such a set I ⊆ {1, 2, . . . , n}, where the value

∑
i∈I bi is

maximal and where the condition
∑

i∈I ai ≤ s is satisfied, i.e., where the
capacity of the knapsack is not exceeded.
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SUBSET-SUM

That SUBSET-SUM is a special case of the Knapsack problem can be
seen from the following simple construction:

Let us say that a1, a2, . . . , an, s1 is an instance of SUBSET-SUM.
It is obvious that for the instance of the knapsack problem where we have
the sequence (a1, a1), (a2, a2), . . . , (an, an), s = s1 and t = s1, the answer
is the same as for the original instance of SUBSET-SUM.
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SUBSET-SUM

If we want to study the complexity of problems such as SUBSET-SUM or
the knapsack problem, we must clarify what we consider as the size of an
instance.

Probably the most natural it is to define the size of an instance as the
total number of bits needed for its representation.

We must specify how natural numbers in the input are represented – if in
binary (resp. in some other numeral system with a base at least 2 (e.g.,
decimal or hexadecimal) or in unary.

If we consider the total number of bits when numbers are written in
binary as the size of an input, no polynomial time algorithm is known
for SUBSET-SUM.

If we consider the total number of bits when numbers are written in
unary as the size of an input, SUBSET-SUM can be solved by an
algorithm whose time complexity is polynomial.
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ILP – Integer Linear Programming

Problem ILP (integer linear programming)

Input: An integer matrix A and an integer vector b.

Question: Is there an integer vector x such that Ax ≤ b?

An example of an instance of the problem:

A =





3 −2 5
1 0 1
2 1 0



 b =





8
−3
5





So the question is if the following system of inequations has some integer
solution:

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3

2x1 + x2 ≤ 5
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ILP – Integer Linear Programming

One of solutions of the system

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3

2x1 + x2 ≤ 5

is for example x1 = −4, x2 = 1, x3 = 1, i.e.,

x =





−4
1
1





because
3 · (−4) − 2 · 1+ 5 · 1 = −9 ≤ 8

−4+ 1 = −3 ≤ −3
2 · (−4) + 1 = −7 ≤ 5

So the answer for this instance is Yes.
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ILP – Integer Linear Programming

Remark: A similar problem where the question for a given system of linear
inequations is whether it has a solution in the set of real numbers, can be
solved in a polynomial time.
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