
Úvod do teoretické informatiky

Zdeněk Sawa

Katedra informatiky, FEI,
Vysoká škola báňská – Technická univerzita Ostrava

17. listopadu 2172/15, Ostrava-Poruba 708 00
Česká republika

11. února 2026

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 1 / 674

Přednášej́ıćı

Jméno: doc. Ing. Zdeněk Sawa, Ph.D.

E-mail: zdenek.sawa@vsb.cz

Mı́stnost: EA413

Web: https://www.cs.vsb.cz/sawa/uti

Na těchto stránkách najdete:

Informace o p̌redmětu

Učebńı texty

Slidy z p̌rednášek

Zadáńı p̌ŕıkladů na cvičeńı

Aktuálńı informace

Odkaz na stránku s animacemi

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 2 / 674

https://www.cs.vsb.cz/sawa/uti

Požadavky

Zápočet (30 bodů):

Zápočtová ṕısemka (24 bodů) — bude se psát na cvičeńı
Minimum pro źıskáńı zápočtu je 12 bodů.
Možnost opravy za 20 bodů.

Aktivita na cvičeńı (6 bodů)
Minimum pro źıskáńı zápočtu jsou 3 body.

Zkouška (70 bodů)

Ṕısemná zkouška skládaj́ıćı se ze dvou část́ı po 35 bodech,
p̌ričemž z každé části je nutné źıskat nejméně 12 bodů.

Celkově je ťreba źıskat minimálně 30 bodů.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 3 / 674

Teoretická informatika

Teoretická informatika — vědńı obor na pomeźı mezi informatikou
a matematikou

zkoumáńı obecných otázek týkaj́ıćıch se algoritmů a výpočt̊u

zkoumáńı r̊uzných formalismů pro popis algoritmů

zkoumáńı r̊uzných prosťredk̊u pro popis syntaxe a sémantiky
formálńıch jazyk̊u (zejména s důrazem na programovaćı jazyky)

matematický p̌ŕıstup k analýze a řešeńı problémů (dokazováńı obecně
platných matematických tvrzeńı týkaj́ıćıch se algoritmů)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 4 / 674

Teoretická informatika

Př́ıklady některých typických otázek studovaných v teoretické informatice:

Je možné daný problém řešit pomoćı nějakého algoritmu?

Pokud je možné daný problém řešit pomoćı algoritmu, jaká je
výpočetńı složitost tohoto algoritmu?

Existuje pro daný problém nějaký efektivńı algoritmus, který ho řeš́ı?

Jak se p̌resvědčit o tom, že daný algoritmus je skutečně korektńım
řešeńım daného problému?

Jaké instrukce muśı umět vykonat stroj, který by mohl provádět daný
algoritmus?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 5 / 674

Algoritmy a problémy

Algoritmus — mechanický postup, jak něco spoč́ıtat (může být
vykonáván poč́ıtačem)

Algoritmy slouž́ı k řešeńı r̊uzných problémů.

Př́ıklad algoritmického problému:

Vstup: Přirozená č́ısla x a y .

Výstup: Přirozené č́ıslo z takové, že z = x + y .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 6 / 674

Algoritmy a problémy

Algoritmus — mechanický postup, jak něco spoč́ıtat (může být
vykonáván poč́ıtačem)

Algoritmy slouž́ı k řešeńı r̊uzných problémů.

Př́ıklad algoritmického problému:

Vstup: Přirozená č́ısla x a y .

Výstup: Přirozené č́ıslo z takové, že z = x + y .

Konkrétńı vstup nějakého problému se nazývá instance problému.

Př́ıklad: Instanćı výše uvedeného problému je nap̌ŕıklad dvojice č́ısel
728 a 34.

Výstupem pro tuto instanci je č́ıslo 762.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 6 / 674

Problémy

Problém

V zadáńı problému muśı být určeno:

co je množinou možných vstupů

co je množinou možných výstupů

jaký je vztah mezi vstupy a výstupy

vstupy výstupy

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 7 / 674

Př́ıklady problémů

Problém
”
Tř́ıděńı“

Vstup: Sekvence prvk̊u a1, a2, . . . , an.

Výstup: Prvky sekvence a1, a2, . . . , an sěrazené od nejmenš́ıho po
nejvěťśı.

Př́ıklad:

Vstup: 8, 13, 3, 10, 1, 4

Výstup: 1, 3, 4, 8, 10, 13

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 8 / 674

Př́ıklad algoritmického problému

Problém
”
Hledáńı nejkraťśı cesty v (neorientovaném) grafu“

Vstup: Neorientovaný graf G = (V ,E) s ohodnoceńım hran
a dvojice vrchol̊u u, v ∈ V .

Výstup: Nejkraťśı cesta z vrcholu u do vrcholu v .
(Nebo informace, že žádná taková cesta neexistuje.)

Př́ıklad:

u v

10

12
9

14

11
6

9

13 10

7

12

11

8
10

17

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 9 / 674

Algoritmy a problémy

Algoritmus řeš́ı daný problém pokud:

Se pro každý vstup po konečném počtu krok̊u zastav́ı.

Pro každý vstup vydá správný výstup.

Korektnost algoritmu — ově̌reńı toho, že daný algoritmus skutečně řeš́ı
daný problém

Výpočetńı složitost algoritmu:

časová složitost — jak záviśı doba výpočtu na velikosti vstupu

pamět’ová (nebo též prostorová) složitost — jak záviśı množstv́ı
použité paměti na velikosti vstupu

Poznámka: Pro jeden problém může existovat celá řada algoritmů, které
jej korektně řeš́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 10 / 674

Daľśı p̌ŕıklady problémů

Problém
”
Prvoč́ıselnost“

Vstup: Přirozené č́ıslo n.

Výstup: Ano pokud je n prvoč́ıslo, Ne v opačném p̌ŕıpadě.

Poznámka: Přirozené č́ıslo n je prvoč́ıslo, pokud je věťśı než 1 a je
dělitelné beze zbytku pouze č́ısly 1 a n.

Prvńıch několik prvoč́ısel: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 11 / 674

Rozhodovaćı problémy

Problémům, kde množina výstupů je {Ano,Ne} se ř́ıká rozhodovaćı
problémy.

Rozhodovaćı problémy jsou věťsinou specifikovány tak, že ḿısto popisu
toho, co je výstupem, je uvedena otázka.

Př́ıklad:

Problém
”
Prvoč́ıselnost“

Vstup: Přirozené č́ıslo n.

Otázka: Je n prvoč́ıslo?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 12 / 674

Optimalizačńı problémy

Problémům, kde je pro daný vstup určena nějaká množina p̌ŕıpustných
řešeńı a kde je úkolem mezi těmito p̌ŕıpustnými řešeńımi vybrat takové,
které je v nějakém ohledu minimálńı nebo maximálńı (p̌ŕıpadně zjistit, že
žádné p̌ŕıpustné řešeńı neexistuje), se ř́ıká optimalizačńı problémy.

Př́ıklad:

Problém
”
Hledáńı nejkraťśı cesty v (neorientovaném) grafu“

Vstup: Neorientovaný graf G = (V ,E) s ohodnoceńım hran, a
dvojice vrchol̊u u, v ∈ V .

Výstup: Nejkraťśı cesta z vrcholu u do vrcholu v .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 13 / 674

Optimalizačńı problémy

Problém
”
Barveńı grafu“

Vstup: Neorientovaný graf G .

Výstup: Minimálńı počet barev, kterými je možné obarvit vrcholy
grafu G tak, aby žádné dva vrcholy spojené hranou neměly
stejnou barvu, a konkrétńı p̌ŕıklad obarveńı vrchol̊u
použ́ıvaj́ıćı tento minimálńı počet barev.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 14 / 674

Optimalizačńı problémy

Problém
”
Barveńı grafu“

Vstup: Neorientovaný graf G .

Výstup: Minimálńı počet barev, kterými je možné obarvit vrcholy
grafu G tak, aby žádné dva vrcholy spojené hranou neměly
stejnou barvu, a konkrétńı p̌ŕıklad obarveńı vrchol̊u
použ́ıvaj́ıćı tento minimálńı počet barev.

Barvy: 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 14 / 674

Optimalizačńı problémy p̌reformulované jako rozhodovaćı

Problém
”
Barveńı grafu k barvami“

Vstup: Neorientovaný graf G a p̌rirozené č́ıslo k .

Otázka: Je možné obarvit vrcholy grafu G k barvami tak, aby žádné
dva vrcholy spojené hranou neměly stejnou barvu?

k = 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 15 / 674

Optimalizačńı problémy p̌reformulované jako rozhodovaćı

Problém
”
Barveńı grafu k barvami“

Vstup: Neorientovaný graf G a p̌rirozené č́ıslo k .

Otázka: Je možné obarvit vrcholy grafu G k barvami tak, aby žádné
dva vrcholy spojené hranou neměly stejnou barvu?

k = 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 15 / 674

Algoritmicky řešitelné problémy

Předpokládejme, že máme dán nějaký problém P .

Jestliže existuje nějaký algoritmus, který řeš́ı problém P , pak ř́ıkáme, že
problém P je algoritmicky řešitelný.

Jestliže P je rozhodovaćı problém a jestliže existuje nějaký algoritmus,
který problém P řeš́ı, pak ř́ıkáme, že problém P je (algoritmicky)
rozhodnutelný.

Když chceme ukázat, že problém P je algoritmicky řešitelný, stač́ı ukázat
nějaký algoritmus, který ho řeš́ı (a p̌ŕıpadně ukázat, že daný algoritmus
problém P skutečně řeš́ı).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 16 / 674

Algoritmicky něrešitelné problémy

Problém, který neńı algoritmicky řešitelný, je algoritmicky něrešitelný.

Rozhodovaćı problém, který neńı rozhodnutelný, je nerozhodnutelný.

Kupodivu existuje řada algoritmických problémů (p̌resně definovaných),
o kterých je dokázáno, že nejsou algoritmicky řešitelné.

Teorie vyč́ıslitelnosti — oblast teoretické informatiky, která se zabývá
zkoumáńım toho, které problémy jsou a které nejsou algoritmicky řešitelné.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 17 / 674

Teorie složitosti

Řada problémů je algoritmicky řešitelných, ale neexistuj́ı (nebo nejsou
známy) efektivńı algoritmy, které by je řešily:

TSP - Problém obchodńıho cestuj́ıćıho

Vstup: Neorientovaný graf G s hranami ohodnocenými p̌rirozenými
č́ısly.

Výstup: Nejkraťśı uzav̌rená cesta, která projde všemi vrcholy a skonč́ı
v tom vrcholu, kde zač́ıná.

8

18 16

20

1

5 1

2

10
3

4

5

13

614

4

12

11

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 18 / 674

Teoretická informatika

Některé daľśı oblasti teoretické informatiky:

teorie složitosti

teorie formálńıch jazyk̊u

výpočetńı modely

paralelńı a distribuované algoritmy

. . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 19 / 674

Teorie formálńıch jazyk̊u

Oblast teoretické informatiky zabývaj́ıćı se otázkami týkaj́ıćımi se syntaxe.

Jazyk — množina slov

Slovo — sekvence symbol̊u z určité abecedy

Abeceda — množina symbol̊u (nebo též znak̊u)

Slova a jazyky se v informatice objevuj́ı na mnoha ḿıstech:

Reprezentace vstupńıch a výstupńıch dat

Reprezentace kódu programů

Manipulace s řetězci znak̊u nebo se soubory

. . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 20 / 674

Teorie formálńıch jazyk̊u – motivace

Př́ıklady typů problémů, p̌ri jejichž řešeńı se využ́ıvá poznatk̊u z teorie
formálńıch jazyk̊u:

Tvorba p̌rekladač̊u:

lexikálńı analýza
syntaktická analýza

Vyhledáváńı v textu:

hledáńı zadaného vzorku
hledáńı textu zadaného regulárńım výrazem

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 21 / 674

Abeceda, slovo

Abeceda — libovolná neprázdná konečná množina symbol̊u (znak̊u)

Př́ıklad: Σ = {a, b, c, d}
Slovo — libovolná konečná posloupnost symbol̊u z dané abecedy

Př́ıklad: cabcbba

Množina všech slov nad abecedou Σ se označuje zápisem Σ
∗
.

Pro proměnné, jejichž hodnoty jsou slova, budeme použ́ıvat názvy
w , u, v , x , y , z , apod., p̌ŕıpadně s indexy (nap̌r. w1, w2)

Zápis w = cabcbba tedy znamená, že hodnotou proměnné w je
slovo cabcbba.

Podobně zápis w ∈ Σ
∗
znamená, že hodnotou proměnné w je nějaké

slovo tvǒrené symboly z abecedy Σ.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 22 / 674

Formálńı jazyky

Definice

(Formálńı) jazyk L v abecedě Σ je nějaká libovolná podmnožina
množiny Σ

∗
, tj. L ⊆ Σ

∗
.

Př́ıklad: Předpokládejme, že Σ = {a, b, c}:
Jazyk L1 = { aab, bcca, aaaaa }
Jazyk L2 = {w ∈ Σ

∗ ∣ počet výskyt̊u symbol̊u b ve slově w je sudý }

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 23 / 674

Formálńı jazyky

Př́ıklad:

Abeceda Σ je množina všech ASCII znak̊u.

Př́ıklad slova:

#include <stdio.h>

int main()

{

printf("Hello, world!\n");

return 0;

}

#include <stdio.h> ↩↩ int main() ↩ { ↩ printf("He⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 24 / 674

Formálńı jazyky

Prosťredky použ́ıvané pro popis formálńıch jazyk̊u:

automaty

gramatiky

regulárńı výrazy

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 25 / 674

Kódováńı vstupu a výstupu

U algoritmických problémů často p̌redpokládáme, že vstupy i výstupy jsou
kódovány jako slova v nějaké abecedě Σ.

Př́ıklad: Nap̌ŕıklad u problému
”
Tř́ıděńı“ bychom mohli zvolit jako

abecedu Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ,}.
Vstupem by pak mohlo být nap̌ŕıklad slovo

826,13,3901,128,562

a výstupem slovo
13,128,562,826,3901

Poznámka: Ne každé slovo ze Σ
∗
muśı reprezentovat nějaký vstup.

Kódováńı bychom ale měli zvolit tak, abychom byli schopni snadno poznat
ta slova, která nějaký vstup reprezentuj́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 26 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 ,

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 ,

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 ,

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6 ,

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6 , 3

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6 , 3 9

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6 , 3 9 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Činnost algoritmu

Předpokládáme, že algoritmus je vykonáván nějakým druhem stroje.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6 , 3 9 0 1

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 27 / 674

Kódováńı vstupu a výstupu

Př́ıklad: Pokud je vstupem nějakého problému nap̌ŕıklad graf, můžeme ho
reprezentovat jako seznam vrchol̊u a hran:

Nap̌ŕıklad následuj́ıćı graf

1 2

3 4

5

můžeme reprezentovat jako slovo

(1,2,3,4,5),((1,2),(2,4),(4,3),(3,1),(1,1),(2,5),(4,5),(4,1))

v abecedě Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ,, (,)}.
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 28 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Činnost algoritmu řeš́ıćıho rozhodovaćı problém

V p̌ŕıpadě algoritmu, který řeš́ı nějaký rozhodovaćı problém stač́ı, když
algoritmus vydá jako výstup vždy jen Ano nebo Ne.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

a b a a b b a a a a b a b a

Input

Ne

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 29 / 674

Vztah mezi rozpoznáváńım formálńıch jazyk̊u
a rozhodovaćımi problémy

Mezi rozpoznáváńım slov z daného jazyka a rozhodovaćımi problémy je
úzký vztah:

Každému jazyku L nad nějakou abecedou Σ odpov́ıdá následuj́ıćı
rozhodovaćı problém:

Vstup: Slovo w nad abecedou Σ.

Otázka: Paťŕı slovo w do jazyka L?

Ke každému rozhodovaćımu problému P , jehož vstupy jsou kódovány
jako slova nad abecedou Σ, existuje jemu odpov́ıdaj́ıćı jazyk:

Jazyk L obsahuj́ıćı právě ta slova w nad abecedou Σ, pro která je odpověd’

na p̌ŕıslušnou otázku specifikovanou v zadáńı problému P “Ano”.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 30 / 674

Vztah mezi rozpoznáváńım formálńıch jazyk̊u
a rozhodovaćımi problémy

Př́ıklad: Na následuj́ıćı rozhodovaćı problém se můžeme d́ıvat jako na ńıže
uvedený jazyk L a naopak.

Problém

Vstup: Slovo w nad abecedou {a, b}.
Otázka: Obsahuje slovo w sudý počet výskyt̊u symbol̊u b ?

Jazyk L = {w ∈ {a, b}∗ ∣ slovo w obsahuje sudý počet výskyt̊u symbol̊u b }

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 31 / 674

Výpočetńı modely

Můžeme uvažovat r̊uzné druhy stroj̊u, které mohou provádět nějaký
algoritmus.

Tyto r̊uzné druhy stroj̊u se mohou lǐsit v mnoha ohledech:

jaké instrukce jsou schopny provádět

jaký druh dat jsou schopny ukládat do své paměti a jak je tato pamět’

organizována

. . .

Různé druhy takovýchto stroj̊u se označuj́ı jako r̊uzné výpočetńı modely.

V p̌ŕıpadě velmi jednoduchých druhů stroj̊u se běžně tyto stroje v teorii
formálńıch jazyk̊u označuj́ı jako automaty.

V tomto p̌redmětu se seznáḿıme s několika druhy takovýchto automat̊u.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 32 / 674

Výpočetńı modely

Pro r̊uzné druhy výpočetńıch model̊u můžeme zkoumat nap̌ŕıklad:

jaké algoritmické problémy jsou schopny řešit či jaké jazyky jsou
schopny rozpoznávat.

jak efektivně jsou schopny realizovat r̊uzné algoritmy

jakým způsobem může určitý druh stroje simulovat činnost jiného
druhu stroje

jak p̌ri takové simulaci nar̊ustá počet instrukćı provedených daným
strojem

. . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 33 / 674

Formálńı jazyky

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 34 / 674

Abeceda a slovo

Definice

Abeceda je libovolná neprázdná konečná množina symbol̊u (znak̊u).

Poznámka: Abeceda se často označuje řeckým ṕısmenem Σ (velké sigma).

Definice

Slovo v dané abecedě je libovolná konečná posloupnost symbol̊u z této
abecedy.

Př́ıklad 1:

Σ = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}
Slova v abecedě Σ: AHOJ XYZZY COMPUTER

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 35 / 674

Abeceda a slovo

Př́ıklad 2:

Σ2 = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, }
Slovo v abecedě Σ2: HELLO WORLD

Př́ıklad 3:

Σ3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Slova v abecedě Σ3: 0, 31415926536, 65536

Př́ıklad 4:

Slova v abecedě Σ4 = {0, 1}: 011010001, 111, 1010101010101010

Př́ıklad 5:

Slova v abecedě Σ5 = {a, b}: aababb, abbabbba, aaab
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 36 / 674

Jazyk

Množina všech slov tvǒrených symboly z abecedy Σ se označuje Σ
∗
.

Definice

(Formálńı) jazyk L v abecedě Σ je nějaká libovolná podmnožina
množiny Σ

∗
, tj. L ⊆ Σ

∗
.

Př́ıklad 1: Množina {00, 01001, 1101} je jazyk v abecedě {0, 1}.
Př́ıklad 2: Množina všech syntakticky správných programů v jazyce C je
jazyk v abecedě tvǒrené množinou všech ASCII znak̊u.

Př́ıklad 3: Množina všech text̊u obsahuj́ıćıch sekvenci znak̊u ahoj je jazyk
v abecedě tvǒrené množinou všech ASCII znak̊u.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 37 / 674

Některé základńı pojmy

Délka slova je počet znak̊u ve slově.

Nap̌ŕıklad délka slova abaab je 5.

Délku slova w označujeme ∣w∣.
Pokud tedy nap̌r. w = abaab, pak ∣w∣ = 5.

Počet výskyt̊u znaku a ve slově w označujeme ∣w∣a.
Př́ıklad: Pokud w = cabcbba, pak ∣w∣ = 7, ∣w∣a = 2, ∣w∣b = 3, ∣w∣c = 2,∣w∣d = 0.

Prázdné slovo je slovo délky 0, tj. slovo neobsahuj́ıćı žádné znaky.

Prázdné slovo se označuje řeckým ṕısmenem ε (epsilon).

∣ε∣ = 0

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 38 / 674

Zřetězeńı slov

Se slovy je možné provádět operaci žretězeńı:

Nap̌ŕıklad žretězeńım slov cabc a bba vznikne slovo cabcbba.

Operace žretězeńı se označuje symbolem ⋅ (podobně jako násobeńı). Tento
symbol je možné vypouštět.

Pokud u, v ∈ Σ
∗
, pak žretězeńı slov u a v tedy zapisujeme bud’ jako u ⋅ v

nebo jen jako uv .

Př́ıklad: Pokud u = cabc a v = bba, pak

u ⋅ v = cabcbba

Poznámka: Z formálńıho hlediska je žretězeńı slov nad abecedou Σ funkćı
typu

Σ
∗
× Σ

∗
→ Σ

∗

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 39 / 674

Zřetězeńı slov

Zřetězeńı je asociativńı, tj. pro libovolná ťri slova u, v a w plat́ı

(u ⋅ v) ⋅ w = u ⋅ (v ⋅ w)
D́ıky tomu můžeme p̌ri zápisu v́ıce žretězeńı vypouštět závorky a psát
nap̌ŕıklad w1 ⋅ w2 ⋅ w3 ⋅ w4 ⋅ w5 ḿısto (w1 ⋅ (w2 ⋅ w3)) ⋅ (w4 ⋅ w5).
Slovo ε je pro operaci žretězeńı neutrálńım prvkem, pro libovolné slovo w

tedy plat́ı:
ε ⋅ w = w ⋅ ε = w

Poznámka: Je zjevné, že pokud daná abeceda obsahuje alespoň dva r̊uzné
symboly, tak operace žretězeńı neńı komutativńı, nap̌r.

a ⋅ b ≠ b ⋅ a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 40 / 674

Mocnina slova

Pro libovolné slovo w ∈ Σ
∗
a libovolné k ∈ N můžeme definovat slovo w

k

jako slovo, které vznikne žretězeńım k kopíı slova w .

Př́ıklad: Pro w = abb je w
4
= abbabbabbabb.

Př́ıklad: Zápis a
5
b
3
a
4
označuje slovo aaaaabbbaaaa.

Poněkud formálněǰśı induktivńı definice vypadá takto:

w
0
= ε, w

k+1
= w

k
⋅ w pro k ∈ N

To znamená
w

0
= ε

w
1

= w

w
2

= w ⋅ w

w
3

= w ⋅ w ⋅ w

w
4

= w ⋅ w ⋅ w ⋅ w

w
5

= w ⋅ w ⋅ w ⋅ w ⋅ w

. . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 41 / 674

Zrcadlový obraz slova

Zrcadlový obraz slova w je slovo w zapsané
”
pozpátku“.

Zrcadlový obraz slova w znač́ıme w
R
.

Př́ıklad: w = abbab w
R
= babba

Pokud tedy w = a1a2⋯an (kde ai ∈ Σ), pak w
R
= anan−1⋯a1.

Formálně můžeme definovat w
R
pomoćı následuj́ıćı induktivně definované

funkce rev ∶ Σ
∗
→ Σ

∗
jako hodnotu rev(w).

Funkce rev je definována následovně:

rev(ε) = ε
pro a ∈ Σ a w ∈ Σ

∗
je rev(a ⋅ w) = rev(w) ⋅ a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 42 / 674

Prefix slova

Definice

Slovo x je prefixem slova y , jestliže existuje slovo v takové, že y = xv .

x

y

v

Př́ıklad: Prefixy slova abaab jsou ε, a, ab, aba, abaa, abaab.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 43 / 674

Sufix slova

Definice

Slovo x je sufixem slova y , jestliže existuje slovo u takové, že y = ux .

x

y

u

Př́ıklad: Sufixy slova abaab jsou ε, b, ab, aab, baab, abaab.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 44 / 674

Podslovo

Definice

Slovo x je podslovem slova y , jestliže existuj́ı slova u a v taková, že
y = uxv .

x

y

u v

Př́ıklad: Podslova slova abaab jsou ε, a, b, ab, ba, aa, aba, baa, aab,
abaa, baab, abaab.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 45 / 674

Podsekvence

Definice

Slovo x je podsekvenćı slova y , jestliže existuje č́ıslo n

a slova u1, u2, . . . , un a v0, v1, . . . , vn taková, že x = u1u2⋯un
a y = v0u1v1u2v2⋯unvn.

y

u1 u2 u3 u4v0 v1 v2 v3 v4

Př́ıklad: Slovo cbab je podsekvenćı slova acabccabbaa.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 46 / 674

Uspǒrádáńı na slovech

Předpokládejme určité (lineárńı) uspǒrádáńı < symbol̊u abecedy Σ,
tj. pokud Σ = {a1, a2, . . . , an}, tak plat́ı

a1 < a2 < . . . < an .

Př́ıklad: Σ = {a, b, c}, p̌ričemž a < b < c.

Na množině Σ
∗
můžeme definovat následuj́ıćı (lineárńı) uspǒrádáńı <L:

x <L y právě tehdy, když:∣x∣ < ∣y∣, nebo∣x∣ = ∣y∣ a existuj́ı slova u, v ,w ∈ Σ
∗
a symboly a, b ∈ Σ takové, že

plat́ı
x = uav y = ubw a < b

Neformálně můžeme ř́ıct v uspǒrádáńı <L řad́ıme slova podle délky a
v rámci stejné délky lexikograficky (podle abecedy).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 47 / 674

Uspǒrádáńı na slovech

Všechna slova nad abecedou Σ můžeme pomoćı uspǒrádáńı <L sěradit do
posloupnosti

w0,w1,w2, . . .

ve které se každé slovo w ∈ Σ
∗
vyskytuje právě jednou a kde pro libovolná

i , j ∈ N plat́ı, že wi <L wj právě tehdy, když i < j .

Př́ıklad: Pro abecedu Σ = {a, b, c} (kde a < b < c) bude začátek
posloupnosti vypadat následovně:

ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, abc, . . .

Pokud budeme mluvit nap̌ŕıklad o prvńıch deseti slovech jazyka L ⊆ Σ
∗
,

máme t́ım na mysli deset slov, která paťŕı do jazyka L a jsou mezi všemi
slovy z jazyka L nejmenš́ı vzhledem k uspǒrádáńı <L.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 48 / 674

Uspǒrádáńı na slovech

ε

a

b

c

aa

ab

ac

ba

bb

bc

ca

cb

cc

aaa

aab

aac

aba

abb

abc
⋮

Př́ıklad:

Jazyk
L = {w ∈ {a, b, c}∗ ∣ ∣w∣b mod 2 = 0 }

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 49 / 674

Uspǒrádáńı na slovech

ε 1

a 2

b

c 3

aa 4

ab

ac 5

ba

bb 6

bc

ca 7

cb

cc 8

aaa 9

aab

aac 10

aba

abb 11

abc
⋮

Př́ıklad:

Jazyk
L = {w ∈ {a, b, c}∗ ∣ ∣w∣b mod 2 = 0 }

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 49 / 674

Operace na jazyćıch

Řekněme, že jsme nějaké jazyky již popsali. Z těchto jazyk̊u můžeme
vytvá̌ret daľśı nové jazyky pomoćı nejr̊uzněǰśıch operaćı na jazyćıch.

Popis nějakého komplikovaného jazyka můžeme tedy
”
dekomponovat“ t́ım

způsobem, že tento jazyk vyjáďŕıme jako výsledek aplikováńı nějakých
operaćı na nějaké jednoduš̌śı jazyky.

Př́ıklady důležitých operaćı na jazyćıch:

sjednoceńı

pr̊unik

doplněk

žretězeńı

iterace

. . .

Poznámka: Při operaćıch nad jazyky p̌redpokládáme, že jazyky, se
kterými operaci provád́ıme, použ́ıvaj́ı tutéž abecedu Σ.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 50 / 674

Množinové operace na jazyćıch

Vzhledem k tomu, že jazyky jsou množiny, můžeme s nimi provádět
množinové operace:

Sjednoceńı – L1 ∪ L2 je jazyk tvǒrený slovy, která paťŕı bud’ do jazyka L1
nebo do jazyka L2 (nebo do obou).

Pr̊unik – L1 ∩ L2 je jazyk tvǒrený slovy, která paťŕı současně do jazyka
L1 i do jazyka L2.

Doplněk – L1 je jazyk tvǒrený těmi slovy ze Σ
∗
, která nepaťŕı do L1.

Rozd́ıl – L1 − L2 je jazyk tvǒrený slovy, která paťŕı do L1, ale nepaťŕı
do L2.

Poznámka: Předpokládáme, že L1, L2 ⊆ Σ
∗
pro nějakou danou abecedu Σ.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 51 / 674

Množinové operace na jazyćıch

Formálně:

Sjednoceńı: L1 ∪ L2 = {w ∈ Σ
∗ ∣ w ∈ L1 ∨ w ∈ L2}

Pr̊unik: L1 ∩ L2 = {w ∈ Σ
∗ ∣ w ∈ L1 ∧ w ∈ L2}

Doplněk: L1 = {w ∈ Σ
∗ ∣ w /∈ L1}

Rozd́ıl: L1 − L2 = {w ∈ Σ
∗ ∣ w ∈ L1 ∧ w /∈ L2}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 52 / 674

Množinové operace na jazyćıch

Př́ıklad:

Uvažujme jazyky nad abecedou {a, b}.
L1 — množina všech slov obsahuj́ıćıch podslovo baa

L2 — množina všech slov se sudým počtem výskyt̊u symbolu b

Pak

L1 ∪ L2 — množina všech slov obsahuj́ıćıch podslovo baa nebo sudý
počet symbol̊u b

L1 ∩ L2 — množina všech slov obsahuj́ıćıch podslovo baa a sudý
počet symbol̊u b

L1 — množina všech slov, která neobsahuj́ı podslovo baa

L1 − L2 — množina všech slov, ve kterých se vyskytuje podslovo baa,
ale kde počet symbol̊u b neńı sudý

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 53 / 674

Zřetězeńı jazyk̊u

Definice

Zřetězeńı jazyk̊u L1 a L2, kde L1, L2 ⊆ Σ
∗
, je jazyk L ⊆ Σ

∗
takový, že

pro každé w ∈ Σ
∗
plat́ı

w ∈ L ⟺ (∃u ∈ L1)(∃v ∈ L2)(w = u ⋅ v)
Zřetězeńı jazyk̊u L1 a L2 označujeme zápisem L1 ⋅ L2.

w

u v

∈ L1 ∈ L2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 54 / 674

Zřetězeńı jazyk̊u

Př́ıklad:
L1 = {abb, ba}
L2 = {a, ab, bbb}

Jazyk L1 ⋅ L2 obsahuje slova:

abba abbab abbbbb baa baab babbb

Poznámka: Všimněte si, že žretězeńı jazyk̊u je asociativńı, tj. pro
libovolné jazyky L1, L2, L3 plat́ı:

L1 ⋅ (L2 ⋅ L3) = (L1 ⋅ L2) ⋅ L3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 55 / 674

Mocnina jazyka

Zápis L
k
, kde L ⊆ Σ

∗
a k ∈ N, označuje žretězeńı tvaru

L ⋅ L ⋅ ⋯ ⋅ L

kde se jazyk L vyskytuje k-krát, tj.

L
0

= {ε}
L
1

= L

L
2

= L ⋅ L

L
3

= L ⋅ L ⋅ L

L
4

= L ⋅ L ⋅ L ⋅ L

L
5

= L ⋅ L ⋅ L ⋅ L ⋅ L

. . .

Př́ıklad: Pokud L = {aa, b}, pak jazyk L
3
obsahuje následuj́ıćı slova:

aaaaaa aaaab aabaa aabb baaaa baab bbaa bbb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 56 / 674

Mocnina jazyka

Př́ıklad: Slovo w paťŕıćı do jazyka L
5
vznikne žretězeńım pěti slov

z jazyka L:

w

w1 w2 w3 w4 w5

∈ L∈ L∈ L∈ L∈ L

Formálně můžeme mocninu jazyka L
k
definovat pomoćı následuj́ıćı

induktivńı definice:

L
0
= {ε}, L

k+1
= L

k
⋅ L pro k ∈ N

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 57 / 674

Iterace jazyka

Iterace jazyka L, označovaná zápisem L
∗
, je jazyk tvǒrený slovy vzniklými

žretězeńım libovolného počtu slov z jazyka L.

Tj., slovo w paťŕı do L
∗
právě tehdy, když existuje posloupnost

w1,w2, . . . ,wn slov z jazyka L taková, že

w = w1w2⋯wn .

Př́ıklad: L = {aa, b}
L
∗
= {ε, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaab, aabaa, aabb, . . .}

Poznámka: Počet slov, která žretězujeme, může být i 0, což znamená, že
vždy plat́ı ε ∈ L

∗
(bez ohledu na to, zda ε ∈ L nebo ne).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 58 / 674

Iterace jazyka

Formálně můžeme definovat jazyk L
∗
jako sjednoceńı všech mocnin

jazyka L. Tj. slovo w paťŕı do jazyka L
∗
právě tehdy, když existuje k ∈ N

takové, že w ∈ L
k
:

Definice

Iterace jazyka L je jazyk

L
∗
= ⋃

k≥0

L
k

Poznámka:
⋃
k≥0

L
k
= L

0
∪ L

1
∪ L

2
∪ L

3
∪⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 59 / 674

Iterace jazyka

Zápis L
+
označuje jazyk tvǒrený právě těmi slovy, která vzniknou

žretězeńım nějakého nenulového počtu slov z jazyka L.

Plat́ı tedy

L
+
= ⋃

k≥1

L
k

tj.
L
+
= L

1
∪ L

2
∪ L

3
∪⋯

Formálně můžeme jazyk L
+
definovat též následuj́ıćım způsobem:

L
+
= L ⋅ L

∗

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 60 / 674

Zrcadlový obraz jazyka

Zrcadlový obraz jazyka L je jazyk tvǒrený zrcadlovými obrazy všech slov
z jazyka L.

Zrcadlový obraz jazyka L znač́ıme L
R
.

L
R
= {wR ∣ w ∈ L}

Př́ıklad: L = {ab, baaba, aaab}
L
R
= {ba, abaab, baaa}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 61 / 674

Některé vlastnosti operaćı na jazyćıch

L1 ∪ (L2 ∪ L3) = (L1 ∪ L2) ∪ L3
L1 ∪ L2 = L2 ∪ L1
L1 ∪ L1 = L1
L1 ∪∅ = L1

L1 ∩ (L2 ∩ L3) = (L1 ∩ L2) ∩ L3
L1 ∩ L2 = L2 ∩ L1
L1 ∩ L1 = L1
L1 ∩∅ = ∅

L1 ⋅ (L2 ⋅ L3) = (L1 ⋅ L2) ⋅ L3
L1 ⋅ {ε} = L1{ε} ⋅ L1 = L1
L1 ⋅ ∅ = ∅

∅ ⋅ L1 = ∅

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 62 / 674

Některé vlastnosti operaćı na jazyćıch

L1 ⋅ (L2 ∪ L3) = (L1 ⋅ L2) ∪ (L1 ⋅ L3)(L1 ∪ L2) ⋅ L3 = (L1 ⋅ L3) ∪ (L2 ⋅ L3)(L∗1)∗ = L
∗
1

∅
∗

= {ε}
L
∗
1 = {ε} ∪ (L1 ⋅ L∗1)

L
∗
1 = {ε} ∪ (L∗1 ⋅ L1)(L1 ∪ L2)∗ = L

∗
1 ⋅ (L2 ⋅ L∗1)∗

(L1 ⋅ L2)R = L
R
2 ⋅ L

R
1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 63 / 674

Regulárńı výrazy

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 64 / 674

Regulárńı výrazy

Regulárńı výrazy popisuj́ıćı jazyky nad abecedou Σ:

∅, ε, a (kde a ∈ Σ) jsou regulárńı výrazy:

∅ . . . označuje prázdný jazyk
ε . . . označuje jazyk {ε}
a . . . označuje jazyk {a}

Jestliže α, β jsou regulárńı výrazy, pak i (α + β), (α ⋅ β), (α∗) jsou
regulárńı výrazy:(α + β) . . . označuje sjednoceńı jazyk̊u označených α a β(α ⋅ β) . . . označuje žretězeńı jazyk̊u označených α a β(α∗) . . . označuje iteraci jazyka označeného α

Neexistuj́ı žádné daľśı regulárńı výrazy než ty definované podle
p̌redchoźıch dvou bodů.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 65 / 674

Regulárńı výrazy

Př́ıklad: abeceda Σ = {0, 1}
Podle definice jsou 0 i 1 regulárńı výrazy.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 66 / 674

Regulárńı výrazy

Př́ıklad: abeceda Σ = {0, 1}
Podle definice jsou 0 i 1 regulárńı výrazy.

Protože 0 i 1 jsou regulárńı výrazy, je i (0 + 1) regulárńı výraz.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 66 / 674

Regulárńı výrazy

Př́ıklad: abeceda Σ = {0, 1}
Podle definice jsou 0 i 1 regulárńı výrazy.

Protože 0 i 1 jsou regulárńı výrazy, je i (0 + 1) regulárńı výraz.

Protože 0 je regulárńı výraz, je i (0∗) regulárńı výraz.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 66 / 674

Regulárńı výrazy

Př́ıklad: abeceda Σ = {0, 1}
Podle definice jsou 0 i 1 regulárńı výrazy.

Protože 0 i 1 jsou regulárńı výrazy, je i (0 + 1) regulárńı výraz.

Protože 0 je regulárńı výraz, je i (0∗) regulárńı výraz.

Protože (0 + 1) i (0∗) jsou regulárńı výrazy, je i ((0 + 1) ⋅ (0∗))
regulárńı výraz.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 66 / 674

Regulárńı výrazy

Př́ıklad: abeceda Σ = {0, 1}
Podle definice jsou 0 i 1 regulárńı výrazy.

Protože 0 i 1 jsou regulárńı výrazy, je i (0 + 1) regulárńı výraz.

Protože 0 je regulárńı výraz, je i (0∗) regulárńı výraz.

Protože (0 + 1) i (0∗) jsou regulárńı výrazy, je i ((0 + 1) ⋅ (0∗))
regulárńı výraz.

Poznámka: Jestliže α je regulárńı výraz, zápisem L(α) označujeme jazyk
definovaný regulárńım výrazem α.

L(((0 + 1) ⋅ (0∗))) = {0, 1, 00, 10, 000, 100, 0000, 1000, 00000, . . . }

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 66 / 674

Regulárńı výrazy

Strukturu regulárńıho výrazu si můžeme znázornit abstraktńım
syntaktickým stromem:

+

⋅

⋅

∗

⋅

0 1

1

⋅

1 1

∗

+

⋅

0 0

1

(((((0 ⋅ 1)∗) ⋅ 1) ⋅ (1 ⋅ 1)) + (((0 ⋅ 0) + 1)∗))
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 67 / 674

Regulárńı výrazy

Formálńı definice sémantiky regulárńıch výraz̊u:

L(∅) = ∅
L(ε) = {ε}
L(a) = {a}
L(α∗) = L(α)∗
L(α ⋅ β) = L(α) ⋅ L(β)
L(α + β) = L(α) ∪ L(β)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 68 / 674

Regulárńı výrazy

Aby byl zápis regulárńıch výraz̊u p̌rehledněǰśı a stručněǰśı, použ́ıváme
následuj́ı pravidla:

Vynecháváme vněǰśı pár závorek.

Vynecháváme závorky, které jsou zbytečné vzhledem k asociativitě
operaćı sjednoceńı (+) a žretězeńı (⋅).

Vynecháváme závorky, které jsou zbytečné vzhledem k prioritě operaćı
(nejvyš̌śı prioritu má iterace (

∗
), menš́ı žretězeńı (⋅) a nejmenš́ı

sjednoceńı (+)).

Neṕı̌seme tečku pro žretězeńı.

Př́ıklad: Mı́sto

(((((0 ⋅ 1)∗) ⋅ 1) ⋅ (1 ⋅ 1)) + (((0 ⋅ 0) + 1)∗))
obvykle ṕı̌seme

(01)∗111 + (00 + 1)∗
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 69 / 674

Regulárńı výrazy

Př́ıklady: Ve všech p̌ŕıpadech Σ = {a, b}.
a . . . jazyk tvǒrený jediným slovem a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 70 / 674

Regulárńı výrazy

Př́ıklady: Ve všech p̌ŕıpadech Σ = {a, b}.
a . . . jazyk tvǒrený jediným slovem a

ab . . . jazyk tvǒrený jediným slovem ab

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 70 / 674

Regulárńı výrazy

Př́ıklady: Ve všech p̌ŕıpadech Σ = {a, b}.
a . . . jazyk tvǒrený jediným slovem a

ab . . . jazyk tvǒrený jediným slovem ab

a + b . . . jazyk tvǒrený dvěma slovy a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 70 / 674

Regulárńı výrazy

Př́ıklady: Ve všech p̌ŕıpadech Σ = {a, b}.
a . . . jazyk tvǒrený jediným slovem a

ab . . . jazyk tvǒrený jediným slovem ab

a + b . . . jazyk tvǒrený dvěma slovy a a b

a
∗

. . . jazyk tvǒrený slovy ε, a, aa, aaa, . . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 70 / 674

Regulárńı výrazy

Př́ıklady: Ve všech p̌ŕıpadech Σ = {a, b}.
a . . . jazyk tvǒrený jediným slovem a

ab . . . jazyk tvǒrený jediným slovem ab

a + b . . . jazyk tvǒrený dvěma slovy a a b

a
∗

. . . jazyk tvǒrený slovy ε, a, aa, aaa, . . .

(ab)∗ . . . jazyk tvǒrený slovy ε, ab, abab, ababab, . . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 70 / 674

Regulárńı výrazy

Př́ıklady: Ve všech p̌ŕıpadech Σ = {a, b}.
a . . . jazyk tvǒrený jediným slovem a

ab . . . jazyk tvǒrený jediným slovem ab

a + b . . . jazyk tvǒrený dvěma slovy a a b

a
∗

. . . jazyk tvǒrený slovy ε, a, aa, aaa, . . .

(ab)∗ . . . jazyk tvǒrený slovy ε, ab, abab, ababab, . . .

(a + b)∗ . . . jazyk tvǒrený všemi slovy nad abecedou {a, b}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 70 / 674

Regulárńı výrazy

Př́ıklady: Ve všech p̌ŕıpadech Σ = {a, b}.
a . . . jazyk tvǒrený jediným slovem a

ab . . . jazyk tvǒrený jediným slovem ab

a + b . . . jazyk tvǒrený dvěma slovy a a b

a
∗

. . . jazyk tvǒrený slovy ε, a, aa, aaa, . . .

(ab)∗ . . . jazyk tvǒrený slovy ε, ab, abab, ababab, . . .

(a + b)∗ . . . jazyk tvǒrený všemi slovy nad abecedou {a, b}
(a + b)∗aa . . . jazyk tvǒrený všemi slovy konč́ıćımi aa

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 70 / 674

Regulárńı výrazy

Př́ıklady: Ve všech p̌ŕıpadech Σ = {a, b}.
a . . . jazyk tvǒrený jediným slovem a

ab . . . jazyk tvǒrený jediným slovem ab

a + b . . . jazyk tvǒrený dvěma slovy a a b

a
∗

. . . jazyk tvǒrený slovy ε, a, aa, aaa, . . .

(ab)∗ . . . jazyk tvǒrený slovy ε, ab, abab, ababab, . . .

(a + b)∗ . . . jazyk tvǒrený všemi slovy nad abecedou {a, b}
(a + b)∗aa . . . jazyk tvǒrený všemi slovy konč́ıćımi aa

(ab)∗bbb(ab)∗ . . . jazyk tvǒrený všemi slovy obsahuj́ıćımi podslovo bbb

p̌redcházené i následované libovolným počtem slov ab

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 70 / 674

Regulárńı výrazy

(a + b)∗aa + (ab)∗bbb(ab)∗ . . . jazyk tvǒrený všemi slovy, která bud’

konč́ı aa nebo obsahuj́ı podslovo bbb p̌redcházené
i následované libovolným počtem slov ab

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 71 / 674

Regulárńı výrazy

(a + b)∗aa + (ab)∗bbb(ab)∗ . . . jazyk tvǒrený všemi slovy, která bud’

konč́ı aa nebo obsahuj́ı podslovo bbb p̌redcházené
i následované libovolným počtem slov ab

(a + b)∗b(a + b)∗ . . . jazyk tvǒrený všemi slovy obsahuj́ıćımi alespoň
jeden symbol b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 71 / 674

Regulárńı výrazy

(a + b)∗aa + (ab)∗bbb(ab)∗ . . . jazyk tvǒrený všemi slovy, která bud’

konč́ı aa nebo obsahuj́ı podslovo bbb p̌redcházené
i následované libovolným počtem slov ab

(a + b)∗b(a + b)∗ . . . jazyk tvǒrený všemi slovy obsahuj́ıćımi alespoň
jeden symbol b

a
∗(ba∗ba∗)∗ . . . jazyk tvǒrený všemi slovy obsahuj́ıćımi sudý počet

symbol̊u b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 71 / 674

Konečné automaty

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 72 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Př́ıklad: Uvažujme slova nad abecedou {a, b}.
Chtěli bychom rozpoznávat jazyk L, který je tvǒren slovy, ve kterých se
vyskytuje sudý počet symbol̊u b.

Chceme navrhnout zǎŕızeńı, které p̌rečte slovo, a sděĺı nám, zda toto slovo
paťŕı do jazyka L či ne.

ano

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 73 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

0

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

0

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

1

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

1

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

2

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

3

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

4

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

4

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

5

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

5

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

5

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Prvńı nápad: Poč́ıtat počet výskyt̊u symbol̊u b.

6

a b a b b b a b a a b

ano – 6 je sudé č́ıslo

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 74 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Druhý nápad: Ve skutečnosti nás zaj́ımá pouze, zda počet dosud
p̌rečtených symbol̊u b je sudý nebo lichý (tj. ḿısto č́ısla si stač́ı pamatovat
jen jeho posledńı bit).

S

a b a b b b a b a a b

ano

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 75 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

L

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Rozpoznáváńı jazyka

Chovańı tohoto zǎŕızeńı můžeme popsat grafem:

S L

a

b

a

b

S

a b a b b b a b a a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 76 / 674

Deterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

Deterministický konečný automat se skládá ze stav̊u a p̌rechod̊u.
Jeden ze stav̊u je označen jako počátečńı stav a některé ze stav̊u jsou
označeny jako p̌rij́ımaj́ıćı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 77 / 674

Deterministický konečný automat

Formálně je deterministický konečný automat (DKA) definován jako
pětice (Q,Σ, δ, q0,F)
kde:

Q je neprázdná konečná množina stav̊u

Σ je abeceda (neprázdná konečná množina symbol̊u)

δ ∶ Q × Σ → Q je p̌rechodová funkce

q0 ∈ Q je počátečńı stav

F ⊆ Q je množina p̌rij́ımaj́ıćıch stav̊u

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 78 / 674

Deterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

Q = {1, 2, 3, 4, 5}
Σ = {a, b}
q0 = 1

F = {1, 4, 5}

δ(1, a) = 2 δ(1, b) = 1
δ(2, a) = 4 δ(2, b) = 5
δ(3, a) = 1 δ(3, b) = 4
δ(4, a) = 1 δ(4, b) = 3
δ(5, a) = 4 δ(5, b) = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 79 / 674

Deterministický konečný automat

Mı́sto zápisu

δ(1, a) = 2 δ(1, b) = 1
δ(2, a) = 4 δ(2, b) = 5
δ(3, a) = 1 δ(3, b) = 4
δ(4, a) = 1 δ(4, b) = 3
δ(5, a) = 4 δ(5, b) = 5

budeme raději použ́ıvat stručněǰśı tabulku nebo grafické znázorněńı:

δ a b

↔ 1 2 1
2 4 5
3 1 4

← 4 1 3
← 5 4 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 80 / 674

Deterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

1

a b a b b
1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 81 / 674

Deterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

2

a b a b b
1

a
⟶ 2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 81 / 674

Deterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

5

a b a b b
1

a
⟶ 2

b
⟶ 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 81 / 674

Deterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

4

a b a b b
1

a
⟶ 2

b
⟶ 5

a
⟶ 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 81 / 674

Deterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

3

a b a b b
1

a
⟶ 2

b
⟶ 5

a
⟶ 4

b
⟶ 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 81 / 674

Deterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

a

b

a

b

4

a b a b b
1

a
⟶ 2

b
⟶ 5

a
⟶ 4

b
⟶ 3

b
⟶ 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 81 / 674

Deterministický konečný automat

Definice

Mějme DKA A = (Q,Σ, δ, q0,F).
Zápisem q

w
⟶ q

′
, kde q, q

′
∈ Q a w ∈ Σ

∗
, budeme označovat to, že

pokud je automat ve stavu q, tak p̌rečteńım slova w p̌rejde do stavu q
′
.

Poznámka: ⟶⊆ Q × Σ
∗
× Q je ternárńı relace.

Mı́sto (q,w , q′) ∈⟶ ṕı̌seme q
w

⟶ q
′
.

Pro DKA plat́ı, že pro libovolný stav q a libovolné slovo w existuje právě

jeden stav q
′
takový, že q

w
⟶ q

′
.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 82 / 674

Deterministický konečný automat

Relaci ⟶ můžeme formálně definovat následuj́ıćı induktivńı definićı:

q
ε

⟶ q pro libovolné q ∈ Q

Pro w ∈ Σ
∗
a a ∈ Σ:

q
wa
⟶ q

′
právě tehdy, když existuje q

′′
∈ Q takové, že

q
w

⟶ q
′′
a δ(q′′, a) = q

′

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 83 / 674

Deterministický konečný automat

a b

↔ 1 2 1
2 4 5
3 1 4

← 4 1 3
← 5 4 5

δ(1, a) = 2

δ(2, b) = 5

δ(5, a) = 4

δ(4, b) = 3

δ(3, b) = 4

1
ε

⟶ 1

1
a

⟶ 2

1
ab
⟶ 5

1
aba
⟶ 4

1
abab
⟶ 3

1
ababb
⟶ 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 84 / 674

Deterministický konečný automat

Slovo w ∈ Σ
∗
je p̌rij́ımáno deterministickým konečným automatem

A = (Q,Σ, δ, q0,F) právě tehdy, když existuje stav q ∈ F takový, že

q0
w

⟶ q.

Definice

Jazyk rozpoznávaný (p̌rij́ımaný) daným deterministickým konečným
automatem A = (Q,Σ, δ, q0,F), označovaný L(A), je množina všech slov
p̌rij́ımaných t́ımto automatem, tj.

L(A) = {w ∈ Σ
∗ ∣ ∃q ∈ F ∶ q0

w
⟶ q}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 85 / 674

Regulárńı jazyky

Definice

Jazyk L je regulárńı právě tehdy, když existuje nějaký deterministický
konečný automat A, který jej p̌rij́ımá, tj. DKA A takový, že L(A) = L.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 86 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk L nad abecedou {a, b} tvǒrený
slovy, která obsahuj́ı alespoň jeden výskyt symbolu b, tj.

L = {w ∈ {a, b}∗ ∣ ∣w∣b ≥ 1}

b

a a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 87 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk L nad abecedou {a, b} tvǒrený
slovy, která obsahuj́ı alespoň jeden výskyt symbolu b, tj.

L = {w ∈ {a, b}∗ ∣ ∣w∣b ≥ 1}

1 2
b

a a, b a b

→ 1 1 2
← 2 2 2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 87 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk L nad abecedou {a, b} tvǒrený
slovy, která obsahuj́ı právě ťri výskyty symbolu b, tj.

L = {w ∈ {a, b}∗ ∣ ∣w∣b = 3}

b b b b

a a a a a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 88 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk L nad abecedou {a, b} tvǒrený
slovy, která obsahuj́ı právě ťri výskyty symbolu b, tj.

L = {w ∈ {a, b}∗ ∣ ∣w∣b = 3}

0 1 2 3 4
b b b b

a a a a a, b

a b

→ 0 0 1
1 1 2
2 2 3

← 3 3 4
4 4 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 88 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk nad abecedou {0, 1} tvǒrený slovy,
kde každý výskyt symbolu 0 je bezprosťredně následován symbolem 1.

0 0

1 0, 1

1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 89 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk nad abecedou {0, 1} tvǒrený slovy,
kde každý výskyt symbolu 0 je bezprosťredně následován symbolem 1.

1 2 3
0 0

1 0, 1

1

0 1

↔ 1 2 1
2 3 1
3 3 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 89 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk nad abecedou {0, 1} tvǒrený slovy,
kde každá dvojice symbol̊u 0 je bezprosťredně následována symbolem 1.

0 0 0

1 0, 1

1

1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 90 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk

L = {w ∈ {a, b}∗ ∣ (∣w∣b mod 5) ∈ {0, 1, 3}}

0

1

23

4

b

b

b

b

b

a

a

aa

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 91 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk nad abecedou {a, b} tvǒrený slovy,
která zač́ınaj́ı prefixem ababb.

a b a b b

b

a b a a

a, b

a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 92 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk nad abecedou {a, b} tvǒrený slovy,
která konč́ı sufixem ababb.

0 1 2 3 4 5
a b a b b

b a

b a

a

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 93 / 674

Př́ıklady deterministických konečných automat̊u

Konstrukce tohoto automatu je založena na následuj́ıćı myšlence:

Předpokládejme, že chceme vyhledávat slovo u délky n (tj. ∣u∣ = n).
Stavy automatu jsou označeny č́ısly 0, 1, . . . , n.

Stav s č́ıslem i odpov́ıdá situaci, kdy i je délka nejdeľśıho slova, které
je zároveň:

prefixem hledaného vzorku u

sufixem té části vstupńıho slova, kterou automat zat́ım p̌rečetl

Nap̌ŕıklad pro slovo ababb stavy automatu odpov́ıdaj́ı následuj́ıćım slov̊um:

Stav 0 . . . ε

Stav 1 . . . a

Stav 2 . . . ab

Stav 3 . . . aba

Stav 4 . . . abab

Stav 5 . . . ababb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 94 / 674

Př́ıklady deterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk nad abecedou {a, b} tvǒrený slovy,
která obsahuj́ı podslovo ababb.

0 1 2 3 4 5
a b a b b

b a a, b

b a

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 95 / 674

Ekvivalence automat̊u

1 2 3
a a

a

b b b

1 2 3a

a

a

b b b

1 2
a

a

b b

Všechny ťri automaty p̌rij́ımaj́ı jazyk všech slov se sudým počtem a.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 96 / 674

Ekvivalence automat̊u

Definice

O konečných automatech A1, A2 řekneme, že jsou ekvivalentńı, jestliže
L(A1) = L(A2).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 97 / 674

Nedosažitelné stavy automatu

1 2 3

4 5 6

a

b

b

a

a

b

b

b

a

a
a, b

Automat p̌rij́ımá jazyk L = {w ∈ {a, b}∗ ∣ w obsahuje podslovo ab}
Pro žádnou posloupnost vstupńıch symbol̊u se automat nedostane do
stav̊u 3, 4 nebo 5.

.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 98 / 674

Nedosažitelné stavy automatu

1 2

6

a

b

b

a

a, b

Automat p̌rij́ımá jazyk L = {w ∈ {a, b}∗ ∣ w obsahuje podslovo ab}
Pro žádnou posloupnost vstupńıch symbol̊u se automat nedostane do
stav̊u 3, 4 nebo 5.

Pokud tyto stavy odstrańıme, pǒrád automat p̌rij́ımá stejný jazyk L.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 98 / 674

Nedosažitelné stavy automatu

Definice

Stav q konečného automatu A = (Q,Σ, δ, q0,F) je dosažitelný pokud

existuje nějaké slovo w takové, že q0
w

⟶ q.

V opačném p̌ŕıpadě stav nazýváme nedosažitelný.

Do nedosažitelných stav̊u nevede v grafu automatu žádná orientovaná
cesta z počátečńıho stavu.

Nedosažitelné stavy můžeme z automatu odstranit (spolu se všemi
p̌rechody vedoućımi do nich a z nich). Jazyk p̌rij́ımaný automatem se
nezměńı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 99 / 674

Automaty a operace na jazyćıch

Při konstrukci automat̊u může být obt́ıžné p̌ŕımo zkonstruovat automat
pro daný jazyk L.

Pokud je možné jazyk L popsat jako výsledek nějakých jazykových operaćı
(pr̊unik, sjednoceńı, doplněk, žretězeńı, iterace, . . .) aplikovaných na
nějaké jednoduš̌śı jazyky L1 a L2, může být výhodné postupovat
modulárńım způsobem:

Nejprve zkonstruovat automaty pro jazyky L1 a L2.

Poté použ́ıt některou z obecných konstrukćı, které umožňuj́ı k daným
automat̊um rozpoznávaj́ıćım jazyky L1 a L2 algoritmicky zkonstruovat
automat pro jazyk L, který je výsledkem aplikace dané jazykové
operace na jazyky L1 a L2.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 100 / 674

Automat pro pr̊unik jazyk̊u

Máme následuj́ıćı dva automaty:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Př́ıjmou oba slovo abbaaba?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 101 / 674

Automat pro pr̊unik jazyk̊u

Máme následuj́ıćı dva automaty:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Př́ıjmou oba slovo abbaaba?

0 A

a b b a a b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 101 / 674

Automat pro pr̊unik jazyk̊u

Máme následuj́ıćı dva automaty:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Př́ıjmou oba slovo abbaaba?

1 B

a b b a a b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 101 / 674

Automat pro pr̊unik jazyk̊u

Máme následuj́ıćı dva automaty:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Př́ıjmou oba slovo abbaaba?

2 B

a b b a a b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 101 / 674

Automat pro pr̊unik jazyk̊u

Máme následuj́ıćı dva automaty:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Př́ıjmou oba slovo abbaaba?

0 B

a b b a a b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 101 / 674

Automat pro pr̊unik jazyk̊u

Máme následuj́ıćı dva automaty:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Př́ıjmou oba slovo abbaaba?

1 A

a b b a a b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 101 / 674

Automat pro pr̊unik jazyk̊u

Máme následuj́ıćı dva automaty:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Př́ıjmou oba slovo abbaaba?

1 B

a b b a a b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 101 / 674

Automat pro pr̊unik jazyk̊u

Máme následuj́ıćı dva automaty:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Př́ıjmou oba slovo abbaaba?

2 B

a b b a a b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 101 / 674

Automat pro pr̊unik jazyk̊u

Máme následuj́ıćı dva automaty:

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Př́ıjmou oba slovo abbaaba?

3 A

a b b a a b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 101 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B
a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B
a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B

1A

a

b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B

1A

a

b

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B

1A

a

b

a a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B

2A 1A

a

b

a

b

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A

a

b

a

b

a

b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B

a

b

a

b

a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b aa

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 102 / 674

Automat pro pr̊unik jazyk̊u

Formálně můžeme popsat tuto konstrukci následovně:

Předpokládáme, že máme dva deterministické konečné automaty
A1 = (Q1,Σ, δ1, q01,F1) a A2 = (Q2,Σ, δ2, q02,F2).
K nim setroj́ıme DKA A = (Q,Σ, δ, q0,F) kde:

Q = Q1 × Q2

δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)) pro všechna q1 ∈ Q1, q2 ∈ Q2,
a ∈ Σ

q0 = (q01, q02)
F = F1 × F2

Neńı težké ově̌rit, že pro libovolné slovo w ∈ Σ
∗
plat́ı, že w ∈ L(A) právě

tehdy, když w ∈ L(A1) a w ∈ L(A2), tj.
L(A) = L(A1) ∩ L(A2)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 103 / 674

Pr̊unik regulárńıch jazyk̊u

Věta

Jestliže jazyky L1, L2 ⊆ Σ
∗
jsou regulárńı, pak také jazyk L1 ∩ L2 je

regulárńı.

Důkaz: Předpokládejme, že A1 a A2 jsou deterministické konečné
automaty takové, že

L1 = L(A1) L2 = L(A2)
Popsanou konstrukćı k nim můžeme sestrojit deterministický konečný
automat A takový, že

L(A) = L(A1) ∩ L(A2) = L1 ∩ L2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 104 / 674

Automat pro sjednoceńı jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 105 / 674

Automat pro sjednoceńı jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 105 / 674

Automat pro sjednoceńı jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 105 / 674

Automat pro sjednoceńı jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 105 / 674

Automat pro sjednoceńı jazyk̊u

0 1 2 3
a b a

b a

b

a, b

A B
a

a

b b

0A 1B 2B 3A

2A 1A 0B 3B

a

b

a

b

a

b a

b

a

b
a

b a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 105 / 674

Sjednoceńı regulárńıch jazyk̊u

Konstukce automatu A, který p̌rij́ımá sjednoceńı jazyk̊u p̌rij́ımaných
automaty A1 a A2, tj. jazyk

L(A1) ∪ L(A1)
je témě̌r stejná jako v p̌ŕıpadě automatu p̌rij́ımaj́ıćıho L(A1) ∩ L(A2).
Jediný rozd́ıl je v definici množiny p̌rij́ımaj́ıćıch stav̊u:

F = (F1 × Q2) ∪ (Q1 × F2)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 106 / 674

Sjednoceńı regulárńıch jazyk̊u

Konstukce automatu A, který p̌rij́ımá sjednoceńı jazyk̊u p̌rij́ımaných
automaty A1 a A2, tj. jazyk

L(A1) ∪ L(A1)
je témě̌r stejná jako v p̌ŕıpadě automatu p̌rij́ımaj́ıćıho L(A1) ∩ L(A2).
Jediný rozd́ıl je v definici množiny p̌rij́ımaj́ıćıch stav̊u:

F = (F1 × Q2) ∪ (Q1 × F2)

Věta

Jestliže jazyky L1, L2 ⊆ Σ
∗
jsou regulárńı, pak také jazyk L1 ∪ L2 je

regulárńı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 106 / 674

Automat pro doplněk jazyka

0 1 2 3
a b a

b a

b

a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 107 / 674

Automat pro doplněk jazyka

0 1 2 3
a b a

b a

b

a, b

0 1 2 3
a b a

b a

b

a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 107 / 674

Doplněk regulárńıho jazyka

K DKA A = (Q,Σ, δ, q0,F) sestroj́ıme DKA A
′
= (Q,Σ, δ, q0,Q − F).

Je očividné, že pro každé slovo w ∈ Σ
∗
plat́ı, že w ∈ L(A′) právě tehdy,

když w /∈ L(A), tj.
L(A′) = L(A)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 108 / 674

Doplněk regulárńıho jazyka

K DKA A = (Q,Σ, δ, q0,F) sestroj́ıme DKA A
′
= (Q,Σ, δ, q0,Q − F).

Je očividné, že pro každé slovo w ∈ Σ
∗
plat́ı, že w ∈ L(A′) právě tehdy,

když w /∈ L(A), tj.
L(A′) = L(A)

Věta

Jestliže jazyk L je regulárńı, pak také jeho doplněk L je regulárńı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 108 / 674

Nedeterministický konečný automat

1 2

3 4

5

a

b

b

a

a

b

a

b

a

b

Z jednoho stavu může vézt libovolný (i nulový) počet p̌rechodů
označených stejným symbolem.

V automatu může být v́ıc než jeden počátečńı stav.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 109 / 674

Nedeterministický konečný automat

1 2

3 4

5

a

b

b

a

a

b

a

b

a

b

1

a b b a b

1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 110 / 674

Nedeterministický konečný automat

1 2

3 4

5

a

b

b

a

a

b

a

b

a

b

3

a b b a b

1
a

⟶ 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 110 / 674

Nedeterministický konečný automat

1 2

3 4

5

a

b

b

a

a

b

a

b

a

b

4

a b b a b

1
a

⟶ 3
b

⟶ 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 110 / 674

Nedeterministický konečný automat

1 2

3 4

5

a

b

b

a

a

b

a

b

a

b

2

a b b a b

1
a

⟶ 3
b

⟶ 4
b

⟶ 2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 110 / 674

Nedeterministický konečný automat

1 2

3 4

5

a

b

b

a

a

b

a

b

a

b

5

a b b a b

1
a

⟶ 3
b

⟶ 4
b

⟶ 2
a

⟶ 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 110 / 674

Nedeterministický konečný automat

1 2

3 4

5

a

b

b

a

a

b

a

b

a

b

5

a b b a b

1
a

⟶ 3
b

⟶ 4
b

⟶ 2
a

⟶ 5
b

⟶ 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 110 / 674

Nedeterministický konečný automat

1 2

3 4

5

a

b

b

a

a

b

a

b

a

b

1

a b b a b

1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 110 / 674

Nedeterministický konečný automat

1 2

3 4

5

a

b

b

a

a

b

a

b

a

b

4

a b b a b

1
a

⟶ 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 110 / 674

Nedeterministický konečný automat

1 2

3 4

5

a

b

b

a

a

b

a

b

a

b

2

a b b a b

1
a

⟶ 4
b

⟶ 2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 110 / 674

Nedeterministický konečný automat

Nedeterministický konečný automat p̌rij́ımá dané slovo, jestliže existuje
alespoň jeden jeho výpočet, který vede k p̌rijet́ı tohoto slova.

NEANO NE NE NE NEANO ANONE

NE NE

NE

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 111 / 674

Nedeterministický konečný automat

Nedeterministický konečný automat p̌rij́ımá dané slovo, jestliže existuje
alespoň jeden jeho výpočet, který vede k p̌rijet́ı tohoto slova.

NEANO NE NE NE NEANO ANONE

NE NE

NE

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 111 / 674

Nedeterministický konečný automat

a b

↔ 1 2, 3, 4 1
2 5 −

→ 3 − 4
4 5 2, 3

← 5 − 5

1 3

1 4

1 2 3

2 3 4 5

b b

b b b

a
a a a

Př́ıklad: Les reprezentuj́ıćı všechny možné výpočty nad slovem bba.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 112 / 674

Nedeterministický konečný automat

Formálně je nedeterministický konečný automat (NKA) definován jako
pětice (Q,Σ, δ, I ,F)
kde:

Q je konečná množina stav̊u

Σ je konečná abeceda

δ ∶ Q × Σ → P(Q) je p̌rechodová funkce

I ⊆ Q je množina počátečńıch stav̊u

F ⊆ Q je množina p̌rij́ımaj́ıćıch stav̊u

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 113 / 674

Př́ıklady nedeterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk nad abecedou {a, b} tvǒrený slovy,
kde každému výskytu symbolu b bezprosťredně p̌redcháźı dva symboly a.

a a

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 114 / 674

Př́ıklady nedeterministických konečných automat̊u

Př́ıklad: Automaty rozpoznávaj́ıćı jazyky nad abecedou {a, b}:
slova zač́ınaj́ıćı prefixem ababb:

a b a b b

a, b

slova konč́ıćı sufixem ababb:

a b a b b

a, b

slova obsahuj́ıćı podslovo ababb:

a b a b b

a, b a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 115 / 674

Př́ıklady nedeterministických konečných automat̊u

Př́ıklad: Automat rozpoznávaj́ıćı jazyk nad abecedou {a, b} tvǒrený slovy,
kde pátý symbol od konce je a.

a a, b a, b a, b a, b

a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 116 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

a a b b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 117 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

1,2

a a b b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 117 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

2,3

a a b b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 117 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

1,2,3

a a b b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 117 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

2,3

a a b b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 117 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

3

a a b b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 117 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

1

a a b b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 117 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}

{1, 2, 3}

a, b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}

{1, 2, 3}

{3}a, b

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}

{1, 2, 3}

{3}a, b

a

b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}

{1, 2, 3}

{3}a, b

a

b

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}

{1, 2, 3}

{3}

{1}

a, b

a

b

a

b a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}

{1, 2, 3}

{3}

{1}

∅
a, b

a

b

a

b a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}

{1, 2, 3}

{3}

{1}

∅
a, b

a

b

a

b a

b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}

{1, 2, 3}

{3}

{1}

∅
a, b

a

b

a

b a

b

ab

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}

{1, 2, 3}

{3}

{1}

∅
a, b

a

b

a

b a

b

ab

a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

1

2 3

b
b

a

a, b

a

{1, 2} {2, 3}

{1, 2, 3}

{3}

{1}

∅
a, b

a

b

a

b a

b

ab

a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 118 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3}{2, 3}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3}
← {1, 2, 3}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3}{3}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3} {1, 2, 3}{3}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3} {1, 2, 3} {2, 3}{3}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3} {1, 2, 3} {2, 3}{3} {1}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3} {1, 2, 3} {2, 3}{3} {1}
← {1}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3} {1, 2, 3} {2, 3}{3} {1} ∅

← {1}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3} {1, 2, 3} {2, 3}{3} {1} ∅

← {1}
∅

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3} {1, 2, 3} {2, 3}{3} {1} ∅

← {1} ∅

∅

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3} {1, 2, 3} {2, 3}{3} {1} ∅

← {1} ∅ {2, 3}
∅

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3} {1, 2, 3} {2, 3}{3} {1} ∅

← {1} ∅ {2, 3}
∅ ∅ ∅

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −

a b

↔ {1, 2} {2, 3} {2, 3}{2, 3} {1, 2, 3} {3}
← {1, 2, 3} {1, 2, 3} {2, 3}{3} {1} ∅

← {1} ∅ {2, 3}
∅ ∅ ∅

a b

↔ 1 2 2
2 3 4

← 3 3 2
4 5 6

← 5 6 2
6 6 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 119 / 674

Převod NKA na DKA

Poznámka: Při p̌revodu nedeterministického automatu, který má n stav̊u,
může ḿıt výsledný deterministický automat až 2

n
stav̊u.

Nap̌ŕıklad p̌ri p̌revodu automatu, který má 20 stav̊u, může vzniknout
automat, který má 2

20
= 1048576 stav̊u.

Často má sice výsledný automat podstatně méně než 2
n
stav̊u, nicméně

tyto nejhořśı p̌ŕıpady občas nastávaj́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 120 / 674

Zobecněný nedeterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

ε

b

b

b

1

a b a b b

1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 121 / 674

Zobecněný nedeterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

ε

b

b

b

3

a b a b b

1
a

⟶ 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 121 / 674

Zobecněný nedeterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

ε

b

b

b

4

a b a b b

1
a

⟶ 3
b

⟶ 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 121 / 674

Zobecněný nedeterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

ε

b

b

b

1

a b a b b

1
a

⟶ 3
b

⟶ 4
ε

⟶ 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 121 / 674

Zobecněný nedeterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

ε

b

b

b

2

a b a b b

1
a

⟶ 3
b

⟶ 4
ε

⟶ 1
a

⟶ 2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 121 / 674

Zobecněný nedeterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

ε

b

b

b

5

a b a b b

1
a

⟶ 3
b

⟶ 4
ε

⟶ 1
a

⟶ 2
b

⟶ 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 121 / 674

Zobecněný nedeterministický konečný automat

1 2

3 4

5

a

b

a

b

a

b

ε

b

b

b

5

a b a b b

1
a

⟶ 3
b

⟶ 4
ε

⟶ 1
a

⟶ 2
b

⟶ 5
b

⟶ 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 121 / 674

Zobecněný nedeterministický konečný automat

Oproti nedeterministickému konečnému automatu má zobecněný
nedeterministický konečný automat tzv. ε-p̌rechody, tj. p̌rechody
označené symbolem ε.

Při prováděńı ε-p̌rechodu se měńı pouze stav ř́ıd́ıćı jednotky, ale hlava na
pásce se neposouvá.

Poznámka: Výpočty zobecněného nedeterministického automatu mohou
být libovolně dlouhé a dokonce i nekonečné (pokud graf obsahuje cyklus
tvǒrený ε-p̌rechody) bez ohledu na délku slova na pásce.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 122 / 674

Zobecněný nedeterministický konečný automat

Formálně je zobecněný nedeterministický konečný automat (ZNKA)
definován jako pětice (Q,Σ, δ, I ,F)
kde:

Q je konečná množina stav̊u

Σ je konečná abeceda

δ ∶ Q × (Σ ∪ {ε}) → P(Q) je p̌rechodová funkce

I ⊆ Q je množina počátečńıch stav̊u

F ⊆ Q je množina p̌rij́ımaj́ıćıch stav̊u

Poznámka: Na NKA můžeme nahĺıžet jako na speciálńı p̌ŕıpad ZNKA,
kde δ(q, ε) = ∅ pro všechna q ∈ Q.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 123 / 674

Převod na deterministický konečný automat

Zobecněný nedeterministický konečný automat je možné p̌revést na
deterministický podobnou konstrukćı jako nedeterministický konečný
automat, s t́ım rozd́ılem, že do množin stav̊u muśıme vždy p̌ridat nav́ıc i
všechny stavy dosažitelné z již p̌ridaných stav̊u nějakou sekvenćı
ε-p̌rechodů.

q

ε

ε

ε

ε

ε

ε

ε

ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 124 / 674

1

2 3

b
ε

a
a, b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}
a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2}

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

a

b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}
a

b

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

a

b

a

b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

a

b

a

b

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

a

b

a

b

a

b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

∅

a

b

a

b

a

b

a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

∅

a

b

a

b

a

b

a b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

∅

a

b

a

b

a

b

a b

a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

∅

a

b

a

b

a

b

a b

a

b

a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

1

2 3

b
ε

a
a, b

a

{1, 3}

{2} {2, 3}

{3}

{1, 2, 3}

∅

a

b

a

b

a

b

a b

a

b

a, b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 125 / 674

Převod ZNKA na DKA

Předt́ım, než formálně poṕı̌seme p̌revod ZNKA na DKA, zaved’me si
několik pomocných definic.

Předpokládejme nějaký daný ZNKA A = (Q,Σ, δ, I ,F).
Definujme funkci δ̂ ∶ P(Q) × (Σ ∪ {ε}) → P(Q) tak, že pro K ⊆ Q a
a ∈ Σ ∪ {ε} je

δ̂(K , a) = ⋃
q∈K

δ(q, a)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 126 / 674

Převod ZNKA na DKA

Pro K ⊆ Q označme Clε(K) množinu všech stav̊u dosažitelných ze stav̊u
z množiny K nějakou libovolnou sekvenćı ε-p̌rechodů.

To znamená, že funkce Clε ∶ P(Q) → P(Q) je definována tak, že pro
K ⊆ Q je Clε(K) nejmenš́ı (vzledem k inkluzi) množina splňuj́ıćı
následuj́ıćı dvě podḿınky:

K ⊆ Clε(K)
Pro každé q ∈ Clε(K) plat́ı, že δ(q, ε) ⊆ Clε(K).

Poznámka: Všimněme si, že pro libovolné K je Clε(Clε(K)) = Clε(K).
Všimněme si také, že v p̌ŕıpadě NKA (kde δ(q, ε) = ∅ pro každé q ∈ Q) je
Clε(K) = K .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 127 / 674

Převod ZNKA na DKA

K danému ZNKA A = (Q,Σ, δ, I ,F) nyńı můžeme sestrojit DKA
A
′
= (Q ′

,Σ, δ
′
, q
′
0,F

′), kde:
Q
′
= P(Q) (K ∈ Q

′
tedy znamená, že K ⊆ Q)

δ
′
∶ Q

′
× Σ → Q

′
je definová tak, že pro K ∈ Q

′
a a ∈ Σ je

δ
′(K , a) = Clε(δ̂(Clε(K), a))

q
′
0 = Clε(I)

F
′
= {K ∈ Q

′ ∣ Clε(K) ∩ F ≠ ∅}
Neńı težké ově̌rit, že L(A) = L(A′).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 128 / 674

Zřetězeńı jazyk̊u

Σ = {a, b, c, d}

a

b
A1:

c

d
A2:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 129 / 674

Zřetězeńı jazyk̊u

Σ = {a, b, c, d}

a

b
A1:

c

d
A2:

a

b

c

dε

A:

L(A) = L(A1) ⋅ L(A2)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 129 / 674

Zřetězeńı jazyk̊u

Σ = {a, b, c, d}

a

b
A1:

c

d
A2:

Chybná konstrukce:

a

b

c

d
A:

acdbac ∈ L(A), ale acdbac /∈ L(A1) ⋅ L(A2)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 129 / 674

Zřetězeńı jazyk̊u

A1 A2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 130 / 674

Zřetězeńı jazyk̊u

A1 A2

A

A1 A2

ε
ε
ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 130 / 674

Iterace jazyka

A1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 131 / 674

Iterace jazyka

A1

A

A1

ε
ε

ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 131 / 674

Sjednoceńı jazyk̊u

Alternativńı konstrukce pro sjednoceńı jazyk̊u:

A1

A2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 132 / 674

Sjednoceńı jazyk̊u

Alternativńı konstrukce pro sjednoceńı jazyk̊u:

A1

A2

A

A1

A2

ε

ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 132 / 674

Uzav̌renost ťŕıdy regulárńıch jazyk̊u

Množina (všech) regulárńıch jazyk̊u je uzav̌rená v̊uči operaćım:

sjednoceńı

pr̊unik

doplněk

žretězeńı

iterace

. . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 133 / 674

Převod regulárńıho výrazu na konečný automat

Tvrzeńı

Každý jazyk, který je možné vyjáďrit regulárńım výrazem, je regulárńı
(tj. rozpoznávaný nějakým konečným automatem).

Důkaz: Stač́ı ukázat, jak k danému regulárńımu výrazu α zkonstruovat
konečný automat, který rozpoznává jazyk L(α).
Konstrukce je rekurzivńı a postupuje podle struktury výrazu α:

Pokud je α elementárńı výraz (tj. ∅, ε nebo a):

Sestroj́ıme p̌ŕımo odpov́ıdaj́ıćı automat.

Pokud je α tvaru (β + γ), (β ⋅ γ) nebo (β∗):
Rekurzivně sestroj́ıme automaty rozpoznávaj́ıćı jazyky L(β) a L(γ).
Z nich sestroj́ıme automat rozpoznávaj́ıćı jazyk L(α).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 134 / 674

Převod regulárńıho výrazu na konečný automat

Automaty pro elementárńı výrazy:

∅

ε

ε

a

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 135 / 674

Převod regulárńıho výrazu na konečný automat

Automaty pro elementárńı výrazy:

∅

ε

ε

a

a

Konstrukce pro sjednoceńı:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 135 / 674

Převod regulárńıho výrazu na konečný automat

Automaty pro elementárńı výrazy:

∅

ε

ε

a

a

Konstrukce pro sjednoceńı:

ε

ε

ε

ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 135 / 674

Převod regulárńıho výrazu na konečný automat

Konstrukce pro žretězeńı:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 136 / 674

Převod regulárńıho výrazu na konečný automat

Konstrukce pro žretězeńı:

ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 136 / 674

Převod regulárńıho výrazu na konečný automat

Konstrukce pro žretězeńı:

ε

Konstrukce pro iteraci:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 136 / 674

Převod regulárńıho výrazu na konečný automat

Konstrukce pro žretězeńı:

ε

Konstrukce pro iteraci:

ε ε

ε

ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 136 / 674

Převod regulárńıho výrazu na konečný automat

Př́ıklad: Konstrukce automatu pro výraz ((a + b) ⋅ b)∗:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 137 / 674

Převod regulárńıho výrazu na konečný automat

Př́ıklad: Konstrukce automatu pro výraz ((a + b) ⋅ b)∗:
a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 137 / 674

Převod regulárńıho výrazu na konečný automat

Př́ıklad: Konstrukce automatu pro výraz ((a + b) ⋅ b)∗:
a

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 137 / 674

Převod regulárńıho výrazu na konečný automat

Př́ıklad: Konstrukce automatu pro výraz ((a + b) ⋅ b)∗:
a

b

ε

ε

ε

ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 137 / 674

Převod regulárńıho výrazu na konečný automat

Př́ıklad: Konstrukce automatu pro výraz ((a + b) ⋅ b)∗:
a

b

ε

ε

ε

ε

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 137 / 674

Převod regulárńıho výrazu na konečný automat

Př́ıklad: Konstrukce automatu pro výraz ((a + b) ⋅ b)∗:
a

b

ε

ε

ε

ε

bε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 137 / 674

Převod regulárńıho výrazu na konečný automat

Př́ıklad: Konstrukce automatu pro výraz ((a + b) ⋅ b)∗:
a

b

ε

ε

ε

ε

bεε ε

ε

ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 137 / 674

Převod regulárńıho výrazu na konečný automat

Pokud se výraz α skládá z n znak̊u (nepoč́ıtáme-li závorky), má výsledný
automat:

nejvýše 2n stav̊u,

nejvýše 4n p̌rechodů.

Poznámka: Převodem ze zobecněného nedeterministického automatu na
deterministický však může počet stav̊u vzr̊ust exponenciálně, tj. výsledný
automat pak může ḿıt až 2

2n
= 4

n
stav̊u.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 138 / 674

Převod konečného automatu na regulárńı výraz

Tvrzeńı

Každý regulárńı jazyk je možné popsat nějakým regulárńım výrazem.

Důkaz: Stač́ı ukázat, jak pro libovolný konečný automat A zkonstruovat
regulárńı výraz α takový, že L(α) = L(A).

A uprav́ıme tak, aby měl právě jeden počátečńı a právě jeden
p̌rij́ımaj́ıćı stav.

Budeme postupně odeb́ırat jednotlivé stavy.

Přechody budou označeny regulárńımi výrazy.

Zbude automat se dvěma stavy – počátečńım a koncovým, a jedńım
p̌rechodem ohodnoceným výsledným regulárńım výrazem.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 139 / 674

Převod konečného automatu na regulárńı výraz

Hlavńı myšlenka: Při odstraňováńı stavu q nahradit pro každou dvojici
zbylých stav̊u qj , qk cestu z qj do qk vedoućı p̌res q.

qj qk

q

α

β

γ

δ

Po odstraněńı stavu q:

qj qk
α + βγ

∗
δ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 140 / 674

Převod konečného automatu na regulárńı výraz

Př́ıklad:

1 2

3

a

b

a

b

b

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 141 / 674

Převod konečného automatu na regulárńı výraz

Př́ıklad:

1 2

3

s f

a

b

a

b

b

a

ε ε

ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 141 / 674

Převod konečného automatu na regulárńı výraz

Př́ıklad:

2

3

s f

b + aa

a + ba

ε

ε

a

b

ab

bb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 141 / 674

Převod konečného automatu na regulárńı výraz

Př́ıklad:

3

s f

ε + (a + ba)(b + aa)∗b + a(b + aa)∗ab
bb + (a + ba)(b + aa)∗ab

a(b + aa)∗

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 141 / 674

Převod konečného automatu na regulárńı výraz

Př́ıklad:

s f

a(b + aa)∗+(b + a(b + aa)∗ab)(bb + (a + ba)(b + aa)∗ab)∗(ε + (a + ba)(b + aa)∗)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 141 / 674

Ekvivalence konečných automat̊u a regulárńıch výraz̊u

Věta

Jazyk je regulárńı právě tehdy, když je ho možné popsat regulárńım
výrazem.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 142 / 674

Neregulárńı jazyky

Ne všechny jazyky jsou regulárńı.

Existuj́ı jazyky, pro které neexistuje žádný konečný automat, který by je
rozpoznával.

Př́ıklady neregulárńıch jazyk̊u:

L1 = {anbn ∣ n ≥ 0}
L2 = {ww ∣ w ∈ {a, b}∗}
L3 = {wwR ∣ w ∈ {a, b}∗}

Poznámka: Existence neregulárńıch jazyk̊u vyplývá již z faktu, že
automat̊u pracuj́ıćıch nad nějakou abecedou Σ je jen spočetně mnoho,
zat́ımco jazyk̊u nad abecedou Σ je nespočetně mnoho.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 143 / 674

Neregulárńı jazyky

Jak dokázat o nějakém jazyce L, že neńı regulárńı?

Jazyk neńı regulárńı, jestliže neexistuje (tj. neńı možné sestrojit) konečný
automat, který by ho rozpoznával.

Jak ale dokázat, že něco neexistuje?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 144 / 674

Neregulárńı jazyky

Jak dokázat o nějakém jazyce L, že neńı regulárńı?

Jazyk neńı regulárńı, jestliže neexistuje (tj. neńı možné sestrojit) konečný
automat, který by ho rozpoznával.

Jak ale dokázat, že něco neexistuje?

Odpověd’: Sporem.

Nap̌r. p̌redpokládat, že existuje nějaký automat A rozpoznávaj́ıćı jazyk L,
a ukázat, že tento p̌redpoklad vede k logickému sporu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 144 / 674

Neregulárńı jazyky

Ukážeme, že jazyk L = {anbn ∣ n ≥ 0} neńı regulárńı.

Důkaz sporem.

Předpokládejme, že existuje DKA A = (Q,Σ, δ, q0,F) takový, že
L(A) = L.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 145 / 674

Neregulárńı jazyky

Ukážeme, že jazyk L = {anbn ∣ n ≥ 0} neńı regulárńı.

Důkaz sporem.

Předpokládejme, že existuje DKA A = (Q,Σ, δ, q0,F) takový, že
L(A) = L.

Řekněme, že ∣Q∣ = n.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 145 / 674

Neregulárńı jazyky

Ukážeme, že jazyk L = {anbn ∣ n ≥ 0} neńı regulárńı.

Důkaz sporem.

Předpokládejme, že existuje DKA A = (Q,Σ, δ, q0,F) takový, že
L(A) = L.

Řekněme, že ∣Q∣ = n.

Vezměme si slovo z = a
n
b
n
.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 145 / 674

Neregulárńı jazyky

Ukážeme, že jazyk L = {anbn ∣ n ≥ 0} neńı regulárńı.

Důkaz sporem.

Předpokládejme, že existuje DKA A = (Q,Σ, δ, q0,F) takový, že
L(A) = L.

Řekněme, že ∣Q∣ = n.

Vezměme si slovo z = a
n
b
n
.

Protože z ∈ L, muśı existovat p̌rij́ımaj́ıćı výpočet automatu A

q0
a

⟶ q1
a

⟶ q2
a

⟶⋯
a

⟶ qn−1
a

⟶ qn
b

⟶ qn+1
b

⟶⋯
b

⟶ q2n−1
b

⟶ q2n

kde q0 je počátečńı stav a q2n ∈ F .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 145 / 674

Neregulárńı jazyky

Vezměme si nyńı prvńıch n + 1 stav̊u ve výpočtu

q0
a

⟶ q1
a

⟶ q2
a

⟶⋯
a

⟶ qn−1
a

⟶ qn
b

⟶ qn+1
b

⟶⋯
b

⟶ q2n−1
b

⟶ q2n

tj. posloupnost stav̊u q0, q1, . . . , qn.

Je žrejmé, že všechny stavy v této posloupnosti nemohou být navzájem
r̊uzné, protože ∣Q∣ = n a tato posloupnost má n + 1 prvk̊u.

To znamená, že existuje nějaký stav q ∈ Q, který se v této posloupnosti
vyskytuje (alespoň) dvakrát.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 146 / 674

Neregulárńı jazyky

Vezměme si nyńı prvńıch n + 1 stav̊u ve výpočtu

q0
a

⟶ q1
a

⟶ q2
a

⟶⋯
a

⟶ qn−1
a

⟶ qn
b

⟶ qn+1
b

⟶⋯
b

⟶ q2n−1
b

⟶ q2n

tj. posloupnost stav̊u q0, q1, . . . , qn.

Je žrejmé, že všechny stavy v této posloupnosti nemohou být navzájem
r̊uzné, protože ∣Q∣ = n a tato posloupnost má n + 1 prvk̊u.

To znamená, že existuje nějaký stav q ∈ Q, který se v této posloupnosti
vyskytuje (alespoň) dvakrát.

Jde o aplikaci tzv. holubńıkového principu (pigeonhole principle).

Holubńıkový princip

Jestliže mám n + 1 holubů rozḿıstěných do n klećı, pak jsou alespoň
v jedné kleci minimálně dva holubi.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 146 / 674

Neregulárńı jazyky

Vezměme si nyńı prvńıch n + 1 stav̊u ve výpočtu

q0
a

⟶ q1
a

⟶ q2
a

⟶⋯
a

⟶ qn−1
a

⟶ qn
b

⟶ qn+1
b

⟶⋯
b

⟶ q2n−1
b

⟶ q2n

tj. posloupnost stav̊u q0, q1, . . . , qn.

Je žrejmé, že všechny stavy v této posloupnosti nemohou být navzájem
r̊uzné, protože ∣Q∣ = n a tato posloupnost má n + 1 prvk̊u.

To znamená, že existuje nějaký stav q ∈ Q, který se v této posloupnosti
vyskytuje (alespoň) dvakrát.

Tj. existuj́ı indexy i , j takové, že 0 ≤ i < j ≤ n a

qi = qj

což znamená, že automat A p̌ri čteńı symbol̊u a ve slově z = a
n
b
n
projde

cyklem.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 146 / 674

Neregulárńı jazyky

a a a a a a

a

a

a

a

a b b bba
q0 q1 q2 qi−1 qi = qj

qi+1

qi+2

qi+3

qj−1

qj+1 qj+2 qn−1 qn qn+1 qn+2 q2n−1 q2n

u

v

w

Slovo z = a
n
b
n
můžeme rozdělit na ťri části u, v ,w takové, že z = uvw :

u = a
i

v = a
j−i

w = a
n−j

b
n

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 147 / 674

Neregulárńı jazyky

Pro slova u = a
i
, v = a

j−i
a w = a

n−j
b
n
plat́ı

q0
u

⟶ qi qi
v

⟶ qj qj
w

⟶ q2n

Označme r délku slova v , tj. r = j − i (zjevně r > 0, protože i < j).

Protože qi = qj , tak automat p̌rijme slovo uw = a
n−r

b
n
, které nepaťŕı do

jazyka L:

q0
u

⟶ qi
w

⟶ q2n

Rovněž slovo uvvw = a
n+r

b
n
, které také nepaťŕı do L, bude p̌rijato:

q0
u

⟶ qi
v

⟶ qi
v

⟶ qi
w

⟶ q2n

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 148 / 674

Neregulárńı jazyky

Podobně můžeme zdůvodnit, že každé slovo tvaru uvvvv⋯vvw , tj. tvaru
uv

k
w pro nějaké k ≥ 0, bude automatem A p̌rijato:

q0
u

⟶ qi
v

⟶ qi
v

⟶ qi
v

⟶⋯
v

⟶ qi
v

⟶ qi
w

⟶ q2n

Slovo tvaru uv
k
w vypadá následovně: a

n−r+rk
b
n
.

Protože r > 0, tak následuj́ıćı rovnost plat́ı jen pro k = 1:

n − r + rk = n

Pokud je tedy k ≠ 1, tak slovo uv
k
w nepaťŕı do jazyka L.

Automat A však každé takové slovo p̌rijme, což je spor s p̌redpokladem,
že L(A) = {anbn ∣ n ≥ 0}.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 149 / 674

Bezkontextové gramatiky

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 150 / 674

Bezkontextové gramatiky

Př́ıklad: Chtěli bychom popsat jazyk aritmetických výraz̊u obsahuj́ıćı
výrazy jako nap̌ŕıklad:

175 (9+15) (((10-4)*((1+34)+2))/(3+(-37)))

Pro jednoduchost p̌redpokládejme:

Výrazy jsou plně uzávorkované.

Jediné aritmetické operace jsou “+”, “-”, “*”, “/” a unárńı “-”.

Hodnoty operandů jsou p̌rirozená č́ısla zapsaná v deśıtkové soustavě
— zápis č́ısla je neprázdná posloupnost č́ıslic.

Abeceda jazyka: Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 151 / 674

Bezkontextové gramatiky

Př́ıklad (pokr.): Popis pomoćı induktivńı definice:

Č́ıslice je libovolný ze znak̊u 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Č́ıslo je neprázdná posloupnost č́ıslic, tj.:

Pokud je α č́ıslice, tak α je č́ıslo.

Pokud α je č́ıslice a β je č́ıslo, tak i αβ je č́ıslo.

Výraz je libovolná posloupnost symbol̊u vytvǒrená podle následuj́ıćıch
pravidel:

Pokud je α č́ıslo, tak α je výraz.
Pokud α je výraz, tak i (-α) je výraz.
Pokud α a β jsou výrazy, tak i (α+β) je výraz.
Pokud α a β jsou výrazy, tak i (α-β) je výraz.
Pokud α a β jsou výrazy, tak i (α*β) je výraz.
Pokud α a β jsou výrazy, tak i (α/β) je výraz.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 152 / 674

Bezkontextové gramatiky

Př́ıklad (pokr.): Způsob zápisu téže informace jako v p̌redchoźı induktivńı
definici pomoćı bezkontextové gramatiky:

Zavedeme následuj́ıćı pomocné symboly — těmto symbol̊um se ř́ıká
neterminály:

D — zastupuje libovolnou č́ıslici

C — zastupuje libovolné č́ıslo

E — zastupuje libovolný výraz

D → 0

D → 1

D → 2

D → 3

D → 4

D → 5

D → 6

D → 7

D → 8

D → 9

C → D

C → DC

E → C

E → (-E)

E → (E+E)

E → (E-E)

E → (E*E)

E → (E/E)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 153 / 674

Bezkontextové gramatiky

Př́ıklad (pokr.): Stručněǰśı způsob zápisu:

D → 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9
C → D ∣ DC
E → C ∣ (-E) ∣ (E+E) ∣ (E-E) ∣ (E*E) ∣ (E/E)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 154 / 674

Bezkontextové gramatiky

Př́ıklad: Jazyk, kde slova jsou (p̌ŕıpadně i prázdné) posloupnosti výraz̊u
popsaných v p̌redchoźım p̌ŕıkladě, kde jednotlivé výrazy jsou odděleny
čárkami (abecedu je ťreba rozš́ı̌rit o symbol “,”):

S → T ∣ ε
T → E ∣ E,T
D → 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9
C → D ∣ DC
E → C ∣ (-E) ∣ (E+E) ∣ (E-E) ∣ (E*E) ∣ (E/E)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 155 / 674

Bezkontextové gramatiky

Př́ıklad: Př́ıkazy nějakého programovaćıho jazyka (fragment gramatiky):

S → E; ∣ T ∣ if (E) S ∣ if (E) S else S∣ while (E) S ∣ do S while (E); ∣ for (F; F; F) S∣ return F;

T → { U }
U → ε ∣ SU
F → ε ∣ E
E → . . .

. . .

Poznámka:

S — p̌ŕıkaz

T — blok p̌ŕıkaz̊u

U — sekvence p̌ŕıkaz̊u

E — výraz

F — výraz, který je možno vynechat
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 156 / 674

Bezkontextové gramatiky

Formálně je bezkontextová gramatika definována jako čtvěrice

G = (Π,Σ, S ,P)
kde:

Π je konečná množina neterminálńıch symbol̊u (neterminál̊u)

Σ je konečná množina terminálńıch symbol̊u (terminál̊u),
p̌ričemž Π ∩ Σ = ∅

S ∈ Π je počátečńı neterminál

P ⊆ Π × (Π ∪ Σ)∗ je konečná množina p̌repisovaćıch pravidel

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 157 / 674

Bezkontextové gramatiky

Poznámky:

Pro označeńı neterminálńıch symbol̊u budeme použ́ıvat velká ṕısmena
A, B , C , . . .

Pro označeńı terminálńıch symbol̊u budeme použ́ıvat malá ṕısmena a,
b, c , . . . nebo č́ıslice 0, 1, 2, . . .

Pro označeńı řetězc̊u z (Π ∪ Σ)∗ budeme použ́ıvat malá ṕısmena
řecké abecedy α, β, γ, . . .

Mı́sto zápisu (A, α) budeme pro pravidla použ́ıvat zápis

A → α

A – levá strana pravidla
α – pravá strana pravidla

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 158 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika G = (Π,Σ, S ,P), kde
Π = {A,B ,C}
Σ = {a, b}
S = A

P obsahuje pravidla
A → aBBb

A → AaA

B → ε

B → bCA

C → AB

C → a

C → b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 159 / 674

Bezkontextové gramatiky

Poznámka: Pokud máme v́ıce pravidel se stejnou levou stranou, jako ťreba

A → α1 A → α2 A → α3

můžeme je stručněji zapsat jako

A → α1 ∣ α2 ∣ α3

Nap̌ŕıklad pravidla ďŕıve uvedené gramatiky můžeme zapsat jako

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 160 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒

abbaBbb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒

abbaBbb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒

abbaBbb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒

abbaBbb ⇒ abbabb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Gramatiky slouž́ı ke generováńı slov.

Př́ıklad: G = (Π,Σ,A,P), kde Π = {A,B ,C}, Σ = {a, b} a P obsahuje
pravidla

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Nap̌ŕıklad slovo abbabb je možné v gramatice G vygenerovat následuj́ıćım
způsobem:

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒

abbaBbb ⇒ abbabb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 161 / 674

Bezkontextové gramatiky

Na řetězćıch z (Π ∪ Σ)∗ definujeme relaci ⇒⊆ (Π ∪ Σ)∗ × (Π ∪ Σ)∗
takovou, že

α⇒ α
′

právě když α = β1Aβ2 a α
′
= β1γβ2 pro nějaká β1, β2, γ ∈ (Π ∪ Σ)∗ a

A ∈ Π, kde (A → γ) ∈ P .

Př́ıklad: Jestliže (B → bCA) ∈ P , pak

aCBbA ⇒ aCbCAbA

Poznámka: Neformálně řečeno zápis α⇒ α
′
znamená, že z α je možné

jedńım krokem odvodit α
′
, a to tak, že výskyt nějakého neterminálu A v α

nahrad́ıme pravou stranou nějakého pravidla A → γ, kde se A vyskytuje
na levé straně.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 162 / 674

Bezkontextové gramatiky

Na řetězćıch z (Π ∪ Σ)∗ definujeme relaci ⇒⊆ (Π ∪ Σ)∗ × (Π ∪ Σ)∗
takovou, že

α⇒ α
′

právě když α = β1Aβ2 a α
′
= β1γβ2 pro nějaká β1, β2, γ ∈ (Π ∪ Σ)∗ a

A ∈ Π, kde (A → γ) ∈ P .

Př́ıklad: Jestliže (B → bCA) ∈ P , pak

aCBbA ⇒ aCbCAbA

Poznámka: Neformálně řečeno zápis α⇒ α
′
znamená, že z α je možné

jedńım krokem odvodit α
′
, a to tak, že výskyt nějakého neterminálu A v α

nahrad́ıme pravou stranou nějakého pravidla A → γ, kde se A vyskytuje
na levé straně.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 162 / 674

Bezkontextové gramatiky

Derivace délky n je posloupnost β0, β1, β2, ⋯, βn, kde βi ∈ (Π ∪ Σ)∗ a
kde βi−1 ⇒ βi pro všechna 1 ≤ i ≤ n, což můžeme stručněji zapsat

β0 ⇒ β1 ⇒ β2 ⇒ . . .⇒ βn−1 ⇒ βn

Skutečnost, že pro dané α, α
′
∈ (Π∪Σ)∗ a n ∈ N existuje nějaká derivace

β0 ⇒ β1 ⇒ β2 ⇒ . . .⇒ βn−1 ⇒ βn, kde α = β0 a α
′
= βn, zapisujeme

α⇒
n
α
′

Skutečnost, že α⇒
n
α
′
pro nějaké n ≥ 0, zapisujeme

α⇒
∗
α
′

Poznámka: Relace ⇒
∗
je reflexivńım a tranzitivńım uzávěrem relace ⇒

(tj. nejmenš́ı reflexivńı a tranzitivńı relaćı obsahuj́ıćı relaci ⇒).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 163 / 674

Bezkontextové gramatiky

Větné formy jsou ty α ∈ (Π ∪ Σ)∗, pro které plat́ı

S ⇒
∗
α

kde S je počátečńı neterminál.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 164 / 674

Bezkontextové gramatiky

Jazyk L(G) generovaný gramatikou G = (Π,Σ, S ,P) je množina všech
slov v abecedě Σ, která lze odvodit nějakou derivaćı z počátečńıho
neterminálu S pomoćı pravidel z P , tj.

L(G) = {w ∈ Σ
∗ ∣ S ⇒

∗
w}

Definice

Jazyk L je bezkontextový, jestliže existuje bezkontextová gramatika G
taková, že L = L(G).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 165 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B B b

A ⇒ aBBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B B b

A ⇒ aBBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B B b

A ⇒ aBBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C A

B b

A ⇒ aBBb ⇒ abCABb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C A

B b

A ⇒ aBBb ⇒ abCABb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C A

B b

A ⇒ aBBb ⇒ abCABb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C A

a B B b

B b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C A

a B B b

B b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C A

a B B b

B b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C A

a B B

ε

b

B b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C A

a B B

ε

b

B b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C A

a B B

ε

b

B b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C

b

A

a B B

ε

b

B b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C

b

A

a B B

ε

b

B b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C

b

A

a B B

ε

b

B b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C

b

A

a B B

ε

b

B

ε

b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒

abbaBbb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C

b

A

a B B

ε

b

B

ε

b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒

abbaBbb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C

b

A

a B B

ε

b

B

ε

b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒

abbaBbb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C

b

A

a B

ε

B

ε

b

B

ε

b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒

abbaBbb ⇒ abbabb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

A → aBBb ∣ AaA
B → ε ∣ bCA
C → AB ∣ a ∣ b

A

a B

b C

b

A

a B

ε

B

ε

b

B

ε

b

A ⇒ aBBb ⇒ abCABb ⇒ abCaBBbBb ⇒ abCaBbBb ⇒ abbaBbBb ⇒

abbaBbb ⇒ abbabb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 166 / 674

Derivačńı strom

Každé derivaci odpov́ıdá nějaký derivačńı strom:

Vrcholy stromu jsou ohodnoceny terminály a neterminály.

Kǒren stromu je ohodnocen počátečńım neterminálem.

Listy stromu jsou ohodnoceny terminály nebo symboly ε.

Ostatńı vrcholy stromu jsou ohodnoceny neterminály.

Pokud je vrchol ohodnocen neterminálem A, pak jeho potomci jsou
ohodnoceni symboly pravé strany nějakého p̌repisovaćıho pravidla
A → α.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 167 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk

L = {anbn ∣ n ≥ 0}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 168 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk

L = {anbn ∣ n ≥ 0}
Gramatika G = (Π,Σ, S ,P), kde Π = {S}, Σ = {a, b} a P obsahuje

S → ε ∣ aSb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 168 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk

L = {anbn ∣ n ≥ 0}
Gramatika G = (Π,Σ, S ,P), kde Π = {S}, Σ = {a, b} a P obsahuje

S → ε ∣ aSb
S ⇒ ε

S ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaaaSbbbb ⇒ aaaabbbb

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 168 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L tvǒrený všemi palindromy nad
abecedou {a, b}, tj.

L = {w ∈ {a, b}∗ ∣ w = w
R}

Poznámka: w
R
označuje tzv. zrcadlový obraz slova w , tj. slovo w

zapsané pozpátku.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 169 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L tvǒrený všemi palindromy nad
abecedou {a, b}, tj.

L = {w ∈ {a, b}∗ ∣ w = w
R}

Poznámka: w
R
označuje tzv. zrcadlový obraz slova w , tj. slovo w

zapsané pozpátku.

Řešeńı:

S → ε ∣ a ∣ b ∣ aSa ∣ bSb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 169 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L tvǒrený všemi palindromy nad
abecedou {a, b}, tj.

L = {w ∈ {a, b}∗ ∣ w = w
R}

Poznámka: w
R
označuje tzv. zrcadlový obraz slova w , tj. slovo w

zapsané pozpátku.

Řešeńı:

S → ε ∣ a ∣ b ∣ aSa ∣ bSb

S ⇒ aSa ⇒ abSba ⇒ abaSaba ⇒ abaaaba

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 169 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L tvǒrený všemi dob̌re
uzávorkovanými sekvencemi symbol̊u ‘(’ a ‘)’.

Nap̌ŕıklad (()())(()) ∈ L, ale)()) /∈ L.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 170 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L tvǒrený všemi dob̌re
uzávorkovanými sekvencemi symbol̊u ‘(’ a ‘)’.

Nap̌ŕıklad (()())(()) ∈ L, ale)()) /∈ L.

Řešeńı:

A → ε ∣ (A) ∣ AA

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 170 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L tvǒrený všemi dob̌re
uzávorkovanými sekvencemi symbol̊u ‘(’ a ‘)’.

Nap̌ŕıklad (()())(()) ∈ L, ale)()) /∈ L.

Řešeńı:

A → ε ∣ (A) ∣ AA

A ⇒ AA ⇒ (A)A ⇒ (A)(A) ⇒ (AA)(A) ⇒ ((A)A)(A) ⇒

(()A)(A) ⇒ (()(A))(A) ⇒ (()())(A) ⇒ (()())((A)) ⇒

(()())(())

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 170 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L tvǒrený všemi dob̌re vytvǒrenými
aritmetickými výrazy, kde operandy jsou vždy tvaru ‘a’, a kde jako
operátory můžeme použ́ıvat symboly + a ∗.

Nap̌ŕıklad (a + a) ∗ a + (a ∗ a) ∈ L.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 171 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L tvǒrený všemi dob̌re vytvǒrenými
aritmetickými výrazy, kde operandy jsou vždy tvaru ‘a’, a kde jako
operátory můžeme použ́ıvat symboly + a ∗.

Nap̌ŕıklad (a + a) ∗ a + (a ∗ a) ∈ L.

Řešeńı:

E → a ∣ E + E ∣ E ∗ E ∣ (E)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 171 / 674

Bezkontextové gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L tvǒrený všemi dob̌re vytvǒrenými
aritmetickými výrazy, kde operandy jsou vždy tvaru ‘a’, a kde jako
operátory můžeme použ́ıvat symboly + a ∗.

Nap̌ŕıklad (a + a) ∗ a + (a ∗ a) ∈ L.

Řešeńı:

E → a ∣ E + E ∣ E ∗ E ∣ (E)

E ⇒ E + E ⇒ E ∗ E + E ⇒ (E) ∗ E + E ⇒ (E + E) ∗ E + E ⇒(a+E)∗E +E ⇒ (a+a)∗E +E ⇒ (a+a)∗a+E ⇒ (a+a)∗a+(E) ⇒(a + a) ∗ a + (E ∗ E) ⇒ (a + a) ∗ a + (a ∗ E) ⇒ (a + a) ∗ a + (a ∗ a)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 171 / 674

Levá a pravá derivace

E → a ∣ E + E ∣ E ∗ E ∣ (E)
Levá derivace je derivace, ve které v každém kroku nahrazujeme vždy
nejlevěǰśı neterminál.

E ⇒ E + E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a + E ⇒ a ∗ a + a

Pravá derivace je derivace, ve které v každém kroku nahrazujeme vždy
nejpravěǰśı neterminál.

E ⇒ E + E ⇒ E + a ⇒ E ∗ E + a ⇒ E ∗ a + a ⇒ a ∗ a + a

Derivace však nemuśı být ani levá ani pravá:

E ⇒ E + E ⇒ E ∗ E + E ⇒ E ∗ a + E ⇒ E ∗ a + a ⇒ a ∗ a + a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 172 / 674

Levá a pravá derivace

Jednomu derivačńımu stromu může odpov́ıdat v́ıce r̊uzných derivaćı.

Každému derivačńımu stromu odpov́ıdá právě jedna levá a právě
jedna pravá derivace.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 173 / 674

Ekvivalence gramatik

Gramatiky G1 a G2 jsou ekvivalentńı, jestliže generuj́ı tentýž jazyk,
tj. jestliže L(G1) = L(G2).
Poznámka: Problém ekvivalence bezkontextových gramatik je
algoritmicky nerozhodnutelný. Dá se dokázat, že neńı možné vytvǒrit
algoritmus, který by pro libovolné dvě bezkontextové gramatiky rozhodl,
zda jsou ekvivalentńı či ne.

Dokonce je algoritmicky nerozhodnutelný i problém, zda gramatika
generuje jazyk Σ

∗
.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 174 / 674

Nejednoznačné gramatiky

Gramatika G je nejednoznačná, jestliže existuje nějaké slovo w ∈ L(G),
kterému p̌ŕısluš́ı dva r̊uzné derivačńı stromy, resp. dvě r̊uzné levé či dvě
r̊uzné pravé derivace.

Př́ıklad:
E ⇒ E + E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a + E ⇒ a ∗ a + a

E ⇒ E ∗ E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a + E ⇒ a ∗ a + a

E

E

E

a

∗ E

a

+ E

a

E

E

a

∗ E

E

a

+ E

a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 175 / 674

Nejednoznačné gramatiky

Někdy je možné nejednoznačnou gramatiku nahradit gramatikou, která
generuje tentýž jazyk, ale neńı nejednoznačná.

Př́ıklad: Gramatiku

E → a ∣ E + E ∣ E ∗ E ∣ (E)
můžeme nahradit ekvivalentńı gramatikou

E → T ∣ T + E

T → F ∣ F ∗ T

F → a ∣ (E)
Poznámka: Pokud se nejednoznačná gramatika žádnou ekvivalentńı
jednoznačnou gramatikou nahradit nedá, ř́ıkáme, že je podstatně
nejednoznačná.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 176 / 674

Bezkontextové jazyky

Tř́ıda bezkontextových jazyk̊u je uzav̌rená v̊uči:

žretězeńı

sjednoceńı

iteraci

Tř́ıda bezkontextových jazyk̊u však neńı uzav̌rená v̊uči:

doplňku

pr̊uniku

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 177 / 674

Bezkontextové jazyky

Máme dány gramatiky G1 = (Π1,Σ, S1,P1) a G2 = (Π2,Σ, S2,P2),
p̌ričemž můžeme p̌redpokládat, že Π1 ∩ Π2 = ∅ a S /∈ Π1 ∪ Π2.

Gramatika G taková, že L(G) = L(G1) ⋅ L(G2):
G = (Π1 ∪ Π2 ∪ {S}, Σ, S , P1 ∪ P2 ∪ {S → S1S2})

Gramatika G taková, že L(G) = L(G1) ∪ L(G2):
G = (Π1 ∪ Π2 ∪ {S}, Σ, S , P1 ∪ P2 ∪ {S → S1, S → S2})

Gramatika G taková, že L(G) = L(G1)∗:
G = (Π1 ∪ {S}, Σ, S , P1 ∪ {S → ε, S → S1S})

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 178 / 674

Převod regulárńıho výrazu na bezkontextovou gramatiku

Př́ıklad: Konstrukce bezkontextové gramatiky k regulárńımu výrazu((a + b) ⋅ b)∗:
∗

⋅

+ b

a b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 179 / 674

Převod regulárńıho výrazu na bezkontextovou gramatiku

Př́ıklad: Konstrukce bezkontextové gramatiky k regulárńımu výrazu((a + b) ⋅ b)∗:
∗

⋅

+ b

a
S1

b

S1 → a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 179 / 674

Převod regulárńıho výrazu na bezkontextovou gramatiku

Př́ıklad: Konstrukce bezkontextové gramatiky k regulárńımu výrazu((a + b) ⋅ b)∗:
∗

⋅

+ b
S2

a
S1

b
S2

S2 → b

S1 → a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 179 / 674

Převod regulárńıho výrazu na bezkontextovou gramatiku

Př́ıklad: Konstrukce bezkontextové gramatiky k regulárńımu výrazu((a + b) ⋅ b)∗:
∗

⋅

+
S3

b
S2

a
S1

b
S2

S3 → S1 ∣ S2
S2 → b

S1 → a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 179 / 674

Převod regulárńıho výrazu na bezkontextovou gramatiku

Př́ıklad: Konstrukce bezkontextové gramatiky k regulárńımu výrazu((a + b) ⋅ b)∗:
∗

⋅
S4

+
S3

b
S2

a
S1

b
S2

S4 → S3S2
S3 → S1 ∣ S2
S2 → b

S1 → a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 179 / 674

Převod regulárńıho výrazu na bezkontextovou gramatiku

Př́ıklad: Konstrukce bezkontextové gramatiky k regulárńımu výrazu((a + b) ⋅ b)∗:
∗
S5

⋅
S4

+
S3

b
S2

a
S1

b
S2

S5 → ε ∣ S4S5
S4 → S3S2
S3 → S1 ∣ S2
S2 → b

S1 → a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 179 / 674

Převod konečného automatu na bezkontextovou gramatiku

Př́ıklad:

A B

C D

E

a

b

a

b

a

b

ε

b

b

b

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 180 / 674

Převod konečného automatu na bezkontextovou gramatiku

Př́ıklad:

A B

C D

E

a

b

a

b

a

b

ε

b

b

b

S → A ∣ C

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 180 / 674

Převod konečného automatu na bezkontextovou gramatiku

Př́ıklad:

A B

C D

E

a

b

a

b

a

b

ε

b

b

b

S → A ∣ C
A → aB ∣ aC ∣ bA
B → aD ∣ bE
C → bD

D → bC ∣ bE ∣ A
E → bE

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 180 / 674

Převod konečného automatu na bezkontextovou gramatiku

Př́ıklad:

A B

C D

E

a

b

a

b

a

b

ε

b

b

b

S → A ∣ C
A → aB ∣ aC ∣ bA
B → aD ∣ bE
C → bD

D → bC ∣ bE ∣ A
E → bE

A → ε

E → ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 180 / 674

Převod konečného automatu na bezkontextovou gramatiku

Př́ıklad:

A B

C D

E

a

b

a

b

a

b

ε

b

b

b

Alternativńı konstrukce:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 180 / 674

Převod konečného automatu na bezkontextovou gramatiku

Př́ıklad:

A B

C D

E

a

b

a

b

a

b

ε

b

b

b

Alternativńı konstrukce:

S → A ∣ E

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 180 / 674

Převod konečného automatu na bezkontextovou gramatiku

Př́ıklad:

A B

C D

E

a

b

a

b

a

b

ε

b

b

b

Alternativńı konstrukce:

S → A ∣ E
A → Ab ∣ D
B → Aa

C → Aa ∣ Db
D → Ba ∣ Cb
E → Bb ∣ Db ∣ Eb

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 180 / 674

Převod konečného automatu na bezkontextovou gramatiku

Př́ıklad:

A B

C D

E

a

b

a

b

a

b

ε

b

b

b

Alternativńı konstrukce:

S → A ∣ E
A → Ab ∣ D
B → Aa

C → Aa ∣ Db
D → Ba ∣ Cb
E → Bb ∣ Db ∣ Eb
A → ε

C → ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 180 / 674

Regulárńı gramatiky

Definice

Gramatika G = (Π,Σ, S ,P) je pravá regulárńı gramatika, jestliže
všechna pravidla v P jsou některého z následuj́ıćıch tvar̊u (kde A,B ∈ Π,
a ∈ Σ):

A → B

A → aB

A → ε

Definice

Gramatika G = (Π,Σ, S ,P) je levá regulárńı gramatika, jestliže všechna
pravidla v P jsou některého z následuj́ıćıch tvar̊u (where A,B ∈ Π, a ∈ Σ):

A → B

A → Ba

A → ε

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 181 / 674

Regulárńı gramatiky

Definice

Gramatika G je regulárńı, jestliže je pravá regulárńı nebo levá regulárńı.

Poznámka: Někdy se též uvád́ı poněkud obecněǰśı definice pravé
(resp. levé) regulárńı gramatiky, kde jsou povolena pravidla následuj́ıćıch
tvar̊u:

A → wB (resp. A → Bw)

A → w

kde A,B ∈ Π, w ∈ Σ
∗
.

Taková pravidla je možné snadno
”
rozložit“ na pravidla odpov́ıdaj́ı ďŕıve

uvedené definici.

Př́ıklad: Pravidlo A → abbB je možno nahradit pravidly

A → aX1 X1 → bX2 X2 → bB

kde X1, X2 jsou nové neterminály nepoužité nikde jinde v gramatice.
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 182 / 674

Regulárńı gramatiky

Tvrzeńı

Ke každému regulárńımu jazyku L existuje levá regulárńı gramatika G
taková, že L(G) = L, a pravá regulárńı gramatika G

′
taková, že L(G ′) = L.

Tvrzeńı

Ke každé regulárńı gramatice G existuje konečný automat A takový, že
L(A) = L(G).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 183 / 674

Zásobńıkové automaty

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 184 / 674

Zásobńıkový automat

Př́ıklad: Vezměme si jazyk nad abecedou Σ = {(,), [,], <, >} tvǒrený

”
správně uzávorkovanými“ sekvencemi, tj. sekvencemi, kde každá levá
závorka má odpov́ıdaj́ıćı pravou a naopak každá pravá má odpov́ıdaj́ıćı
levou, p̌ričemž se závorky

”
neǩŕıž́ı“ (jako ťreba ve slově <[>]).

Tento jazyk je možné popsat bezkontextovou gramatikou

A → ε ∣ (A) ∣ [A] ∣ <A> ∣ AA
Typický p̌ŕıklad slova, které paťŕı do tohoto jazyka:

<[](()[<>])>[]

Neńı těžké ukázat, že tento jazyk neńı regulárńı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 185 / 674

Zásobńıkový automat

Chtěli bychom navrhnout zǎŕızeńı podobné konečnému automatu, které by
bylo schopno rozpoznávat slova z tohoto jazyka.

Jako vhodná možnost se nab́ıźı využ́ıt p̌ri tomto rozpoznáváńı (neomezeně
velký) zásobńık.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 186 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ <

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ < [

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ <

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ < (

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ < ((

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ < (

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ < ([

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ < ([<

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ < ([

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ < (

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ <

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢ [

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

< [] (() [< >]) > []

q1

⊢

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>])>[] paťŕı do jazyka.

Automat p̌rečetl celé slovo a skončil s prázdným zásobńıkem, takže
slovo p̌rijal.

< [] (() [< >]) > []

q1 Ano

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 187 / 674

Zásobńıkový automat

Slovo <[](()[<>))>[] nepaťŕı do jazyka.

< [] (() [< >)) > []

q1

⊢

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 188 / 674

Zásobńıkový automat

Slovo <[](()[<>))>[] nepaťŕı do jazyka.

< [] (() [< >)) > []

q1

⊢ <

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 188 / 674

Zásobńıkový automat

Slovo <[](()[<>))>[] nepaťŕı do jazyka.

< [] (() [< >)) > []

q1

⊢ < [

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 188 / 674

Zásobńıkový automat

Slovo <[](()[<>))>[] nepaťŕı do jazyka.

< [] (() [< >)) > []

q1

⊢ <

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 188 / 674

Zásobńıkový automat

Slovo <[](()[<>))>[] nepaťŕı do jazyka.

< [] (() [< >)) > []

q1

⊢ < (

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 188 / 674

Zásobńıkový automat

Slovo <[](()[<>))>[] nepaťŕı do jazyka.

< [] (() [< >)) > []

q1

⊢ < ((

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 188 / 674

Zásobńıkový automat

Slovo <[](()[<>))>[] nepaťŕı do jazyka.

< [] (() [< >)) > []

q1

⊢ < (

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 188 / 674

Zásobńıkový automat

Slovo <[](()[<>))>[] nepaťŕı do jazyka.

< [] (() [< >)) > []

q1

⊢ < ([

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 188 / 674

Zásobńıkový automat

Slovo <[](()[<>))>[] nepaťŕı do jazyka.

< [] (() [< >)) > []

q1

⊢ < ([<

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 188 / 674

Zásobńıkový automat

Slovo <[](()[<>))>[] nepaťŕı do jazyka.

Automat narazil na neodpov́ıdaj́ıćı závorku, takže slovo nep̌rijal.

< [] (() [< >)) > []

q1

⊢ < ([

Ne

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 188 / 674

Zásobńıkový automat

Př́ıklad:

Chtěli bychom rozpoznávat jazyk L = {anbn ∣ n ≥ 1}
Opět se jedná o typický p̌ŕıklad neregulárńıho jazyka.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 189 / 674

Zásobńıkový automat

Př́ıklad:

Chtěli bychom rozpoznávat jazyk L = {anbn ∣ n ≥ 1}
Opět se jedná o typický p̌ŕıklad neregulárńıho jazyka.

Zásobńık můžeme použ́ıvat jako č́ıtač:

Budeme do něj ukládat symboly jednoho druhu (nazvěme ho nap̌r. I).

Počet těchto symbol̊u I na zásobńıku bude reprezentovat hodnotu
č́ıtače.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 189 / 674

Zásobńıkový automat

Slovo aaaabbbb paťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b b

O

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 190 / 674

Zásobńıkový automat

Slovo aaaabbbb paťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b b

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 190 / 674

Zásobńıkový automat

Slovo aaaabbbb paťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b b

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 190 / 674

Zásobńıkový automat

Slovo aaaabbbb paťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b b

I

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 190 / 674

Zásobńıkový automat

Slovo aaaabbbb paťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b b

I

I

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 190 / 674

Zásobńıkový automat

Slovo aaaabbbb paťŕı do jazyka L = {anbn ∣ n ≥ 1}

q2

a a a a b b b b

I

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 190 / 674

Zásobńıkový automat

Slovo aaaabbbb paťŕı do jazyka L = {anbn ∣ n ≥ 1}

q2

a a a a b b b b

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 190 / 674

Zásobńıkový automat

Slovo aaaabbbb paťŕı do jazyka L = {anbn ∣ n ≥ 1}

q2

a a a a b b b b

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 190 / 674

Zásobńıkový automat

Slovo aaaabbbb paťŕı do jazyka L = {anbn ∣ n ≥ 1}
Automat p̌rečetl celé slovo a skončil s prázdným zásobńıkem, takže
slovo p̌rijal.

q2

a a a a b b b b

Ano

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 190 / 674

Zásobńıkový automat

Slovo aaaabbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b

O

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 191 / 674

Zásobńıkový automat

Slovo aaaabbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 191 / 674

Zásobńıkový automat

Slovo aaaabbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 191 / 674

Zásobńıkový automat

Slovo aaaabbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b

I

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 191 / 674

Zásobńıkový automat

Slovo aaaabbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b

I

I

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 191 / 674

Zásobńıkový automat

Slovo aaaabbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q2

a a a a b b b

I

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 191 / 674

Zásobńıkový automat

Slovo aaaabbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q2

a a a a b b b

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 191 / 674

Zásobńıkový automat

Slovo aaaabbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}
Automat p̌rečetl celé slovo, ale nevyprázdnil zásobńık, takže slovo
nep̌rijal

q2

a a a a b b b

I

Ne

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 191 / 674

Zásobńıkový automat

Slovo aaaabbbbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b b b

O

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 192 / 674

Zásobńıkový automat

Slovo aaaabbbbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b b b

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 192 / 674

Zásobńıkový automat

Slovo aaaabbbbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b b b

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 192 / 674

Zásobńıkový automat

Slovo aaaabbbbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b b b

I

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 192 / 674

Zásobńıkový automat

Slovo aaaabbbbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a a a b b b b b

I

I

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 192 / 674

Zásobńıkový automat

Slovo aaaabbbbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q2

a a a a b b b b b

I

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 192 / 674

Zásobńıkový automat

Slovo aaaabbbbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q2

a a a a b b b b b

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 192 / 674

Zásobńıkový automat

Slovo aaaabbbbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q2

a a a a b b b b b

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 192 / 674

Zásobńıkový automat

Slovo aaaabbbbb nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}
Automat čte b, má smazat symbol na zásobńıku a tam žádný neńı,
takže slovo nep̌rijal.

q2

a a a a b b b b b

Ne

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 192 / 674

Zásobńıkový automat

Slovo aababbab nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a b a b b a b

O

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 193 / 674

Zásobńıkový automat

Slovo aababbab nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a b a b b a b

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 193 / 674

Zásobńıkový automat

Slovo aababbab nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q1

a a b a b b a b

I

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 193 / 674

Zásobńıkový automat

Slovo aababbab nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}

q2

a a b a b b a b

I

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 193 / 674

Zásobńıkový automat

Slovo aababbab nepaťŕı do jazyka L = {anbn ∣ n ≥ 1}
Automat p̌rečetl a, ale již byl ve stavu, kdy maže, takže slovo nep̌rijal.

q2

a a b a b b a b

I

Ne

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 193 / 674

Zásobńıkový automat

Zásobńıkový automat může být nedeterministický a může ḿıt
ε-p̌rechody.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 194 / 674

Zásobńıkový automat

Zásobńıkový automat může být nedeterministický a může ḿıt
ε-p̌rechody.

Př́ıklad:

Uvažujme jazyk L = {w ∈ {a, b}∗ ∣ w = w
R}.

Prvńı polovinu slova můžeme uložit na zásobńık.

Při čteńı druhé poloviny mažeme symboly ze zásobńıku, pokud jsou
stejné jako na vstupu.

Pokud bude zásobńık prázdný po p̌rečteńı celého slova, byla druhá
polovina stejná jako prvńı.

Mı́sto, kde se nacháźı
”
hranice“ mezi prvńı a druhou polovinou slova

může automat nedeterministicky uhodnout. Výpočty, p̌ri kterých bude
hádat chybně, nepovedou k p̌rijet́ı slova.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 194 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q1

a b b a b a b a b b a

X

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q1

a b b a b a b a b b a

X

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q1

a b b a b a b a b b a

X

A

B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q1

a b b a b a b a b b a

X

A

B

B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q1

a b b a b a b a b b a

X

A

B

B

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q1

a b b a b a b a b b a

X

A

B

B

A

B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q2

a b b a b a b a b b a

X

A

B

B

A

B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q2

a b b a b a b a b b a

X

A

B

B

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q2

a b b a b a b a b b a

X

A

B

B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q2

a b b a b a b a b b a

X

A

B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q2

a b b a b a b a b b a

X

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q2

a b b a b a b a b b a

X

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Slovo abbabababba paťŕı do jazyka L = {w ∈ {a, b}∗ ∣ w = w
R}

q2

a b b a b a b a b b a

Ano

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 195 / 674

Zásobńıkový automat

Definice

Zásobńıkový automat (ZA) je uspǒrádaná šestice
M = (Q,Σ, Γ, δ, q0,X0), kde

Q je konečná neprázdná množina stav̊u

Σ je konečná neprázdná množina zvaná vstupńı abeceda

Γ je konečná neprázdná množina zvaná zásobńıková abeceda

δ ∶ Q × (Σ ∪ {ε}) × Γ → P(Q × Γ
∗) je (nedeterministická)

p̌rechodová funkce

q0 ∈ Q je počátečńı stav

X0 ∈ Γ je počátečńı zásobńıkový symbol

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 196 / 674

Zásobńıkový automat

Př́ıklad: L = { anbn ∣ n ≥ 1 }
M = (Q,Σ, Γ, δ, q1,O), kde

Q = {q1, q2}
Σ = {a, b}
Γ = {O, I}
δ(q1, a,O) = {(q1, I)} δ(q1, b,O) = ∅
δ(q1, a, I) = {(q1, II)} δ(q1, b, I) = {(q2, ε)}
δ(q2, a, I) = ∅ δ(q2, b, I) = {(q2, ε)}
δ(q2, a,O) = ∅ δ(q2, b,O) = ∅

Poznámka: Často se uvád́ı jen ty hodnoty p̌rechodové funkce, které
p̌rǐrazuj́ı dané trojici něco jiného než prázdnou množinu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 197 / 674

Zásobńıkový automat

Pro zápis p̌rechodové funkce budeme též použ́ıvat způsob zápisu, kdy se
na p̌rechodovou funkci d́ıváme jako na sadu pravidel:

Každému q, q
′
∈ Q, a ∈ Σ ∪ {ε}, X ∈ Γ a α ∈ Γ

∗
, kde(q′, α) ∈ δ(q, a,X)

odpov́ıdá jedno pravidlo

qX
a

⟶ q
′
α .

Př́ıklad: Pokud

δ(q5, b,C) = {(q3,ACC), (q5,BB), (q13, ε)}
můžeme to reprezentovat jako ťri pravidla:

q5C
b

⟶ q3ACC q5C
b

⟶ q5BB q5C
b

⟶ q13

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 198 / 674

Zásobńıkový automat

Př́ıklad: Dř́ıve popsaný zásobńıkový automat rozpoznávaj́ıćı jazyk
L = { anbn ∣ n ≥ 1 }:
M = (Q,Σ, Γ, δ, q1,O), kde

Q = {q1, q2}
Σ = {a, b}
Γ = {O, I}
q1O

a
⟶ q1I

q1I
a

⟶ q1II

q1I
b

⟶ q2

q2I
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 199 / 674

Zásobńıkový automat

Př́ıklad: L = {w ∈ {a, b}∗ ∣ w = w
R }

M = (Q,Σ, Γ, δ, q1,X), kde
Q = {q1, q2}
Σ = {a, b}
Γ = {X ,A,B}
δ(q1, a,X) = {(q1,AX), (q2,X)} δ(q1, b,X) = {(q1,BX), (q2,X)}
δ(q1, a,A) = {(q1,AA), (q2,A)} δ(q1, b,A) = {(q1,BA), (q2,A)}
δ(q1, a,B) = {(q1,AB), (q2,B)} δ(q1, b,B) = {(q1,BB), (q2,B)}
δ(q1, ε,X) = {(q2,X)} δ(q2, ε,X) = {(q2, ε)}
δ(q1, ε,A) = {(q2,A)} δ(q2, ε,A) = ∅
δ(q1, ε,B) = {(q2,B)} δ(q2, ε,B) = ∅
δ(q2, a,A) = {(q2, ε)} δ(q2, b,A) = ∅
δ(q2, a,B) = ∅ δ(q2, b,B) = {(q2, ε)}
δ(q2, a,X) = ∅ δ(q2, b,X) = ∅

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 200 / 674

Zásobńıkový automat

Př́ıklad: L = {w ∈ {a, b}∗ ∣ w = w
R }

M = (Q,Σ, Γ, δ, q1,X), kde
Q = {q1, q2}
Σ = {a, b}
Γ = {X ,A,B}
q1X

a
⟶ q1AX q1X

b
⟶ q1BX q2X

ε

⟶ q2

q1A
a

⟶ q1AA q1A
b

⟶ q1BA q2A
a

⟶ q2

q1B
a

⟶ q1AB q1B
b

⟶ q1BB q2B
b

⟶ q2

q1X
a

⟶ q2X q1X
b

⟶ q2X q1X
ε

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A q1A
ε

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B q1B
ε

⟶ q2B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 200 / 674

Výpočet zásobńıkového automatu

Vezměme si zásobńıkový automat M = (Q,Σ, Γ, δ, q0,X0).
Konfigurace automatu M:

Konfigurace ZA je trojice

(q,w , α)
kde q ∈ Q, w ∈ Σ

∗
a α ∈ Γ

∗
.

Počátečńı kofiguraćı je kofigurace (q0,w ,X0), kde w ∈ Σ
∗
.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 201 / 674

Výpočet zásobńıkového automatu

Kroky vykonané automatem M:

Binárńı relace ⟶ na konfiguraćıch M reprezentuje možné kroky
výpočtu, které může ZA M provést.

To, že M může p̌rej́ıt jedńım krokem z konfigurace (q,w , α) do
konfigurace (q′,w ′

, α
′), zapisujeme

(q,w , α) ⟶ (q′,w ′
, α

′) .
Tato relace ⟶ je definována následovně:(q, aw ,Xβ) ⟶ (q′,w , αβ) ⟺ (q′, α) ∈ δ(q, a,X)
kde q, q

′
∈ Q, a ∈ (Σ ∪ {ε}), w ∈ Σ

∗
, X ∈ Γ, α, β ∈ Γ

∗
.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 202 / 674

Výpočet zásobńıkového automatu

Výpočty M:

Na konfiguraćıch M definujeme binárńı relaci ⟶
∗
jako reflexivńı

a tranzitivńı uzávěr relace ⟶, tj.,

(q,w , α) ⟶
∗ (q′,w ′

, α
′)

jestliže existuje posloupnost konfiguraćı

(q0,w0, α0), (q1,w1, α1), . . . , (qn,wn, αn)
taková, že(q,w , α) = (q0,w0, α0),(q′,w ′

, α
′) = (qn,wn, αn),(qi ,wi , αi) ⟶ (qi+1,wi+1, αi+1) pro každé i = 0, 1, . . . , n − 1, tj.

(q0,w0, α0) ⟶ (q1,w1, α1) ⟶ ⋯ ⟶ (qn,wn, αn)
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 203 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X) q1X

a
⟶ q1AX q1X

b
⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)
⟶ (q1, abababba, BBAX)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)
⟶ (q1, abababba, BBAX)
⟶ (q1, bababba, ABBAX)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)
⟶ (q1, abababba, BBAX)
⟶ (q1, bababba, ABBAX)
⟶ (q1, ababba, BABBAX)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)
⟶ (q1, abababba, BBAX)
⟶ (q1, bababba, ABBAX)
⟶ (q1, ababba, BABBAX)
⟶ (q2, babba, BABBAX)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)
⟶ (q1, abababba, BBAX)
⟶ (q1, bababba, ABBAX)
⟶ (q1, ababba, BABBAX)
⟶ (q2, babba, BABBAX)
⟶ (q2, abba, ABBAX)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)
⟶ (q1, abababba, BBAX)
⟶ (q1, bababba, ABBAX)
⟶ (q1, ababba, BABBAX)
⟶ (q2, babba, BABBAX)
⟶ (q2, abba, ABBAX)
⟶ (q2, bba, BBAX)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)
⟶ (q1, abababba, BBAX)
⟶ (q1, bababba, ABBAX)
⟶ (q1, ababba, BABBAX)
⟶ (q2, babba, BABBAX)
⟶ (q2, abba, ABBAX)
⟶ (q2, bba, BBAX)
⟶ (q2, ba, BAX)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)
⟶ (q1, abababba, BBAX)
⟶ (q1, bababba, ABBAX)
⟶ (q1, ababba, BABBAX)
⟶ (q2, babba, BABBAX)
⟶ (q2, abba, ABBAX)
⟶ (q2, bba, BBAX)
⟶ (q2, ba, BAX)
⟶ (q2, a, AX)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)
⟶ (q1, abababba, BBAX)
⟶ (q1, bababba, ABBAX)
⟶ (q1, ababba, BABBAX)
⟶ (q2, babba, BABBAX)
⟶ (q2, abba, ABBAX)
⟶ (q2, bba, BBAX)
⟶ (q2, ba, BAX)
⟶ (q2, a, AX)
⟶ (q2, ε, X)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}
(q1, abbabababba, X)
⟶ (q1, bbabababba, AX)
⟶ (q1, babababba, BAX)
⟶ (q1, abababba, BBAX)
⟶ (q1, bababba, ABBAX)
⟶ (q1, ababba, BABBAX)
⟶ (q2, babba, BABBAX)
⟶ (q2, abba, ABBAX)
⟶ (q2, bba, BBAX)
⟶ (q2, ba, BAX)
⟶ (q2, a, AX)
⟶ (q2, ε, X)
⟶ (q2, ε, ε)

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 204 / 674

Výpočet zásobńıkového automatu

V p̌redchoźı definici byla množina konfiguraćı definována jako

Conf = Q × Σ
∗
× Γ

∗

a relace ⟶ byla podmnožinou množiny Conf × Conf .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 205 / 674

Výpočet zásobńıkového automatu

Alternativně bychom mohli definovat konfigurace tak, že by nezahrnovaly
vstupńı slovo:

Conf = Q × Γ
∗

Relaci ⟶ bychom pak definovali jako podmnožinu množiny
Conf × (Σ ∪ {ε}) × Conf , p̌ričemž zápis

qα
a

⟶ q
′
α
′

by označoval, že p̌rečteńım symbolu a (nebo nep̌rečteńım ničeho,
pokud a = ε) může p̌rej́ıt daný zásobńıkový automat z konfigurace (q, α)
do konfigurace (q′, α′), tj.

qXβ
a

⟶ q
′
γβ ⟺ (q′, γ) ∈ δ(q, a,X)

kde q, q
′
∈ Q, a ∈ Σ ∪ {ε}, X ∈ Γ a β, γ ∈ Γ

∗
.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 206 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
q1X

a
⟶ q1AX q1X

b
⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
b

⟶ q1BBAX

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
b

⟶ q1BBAX
a

⟶ q1ABBAX

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
b

⟶ q1BBAX
a

⟶ q1ABBAX
b

⟶ q1BABBAX

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
b

⟶ q1BBAX
a

⟶ q1ABBAX
b

⟶ q1BABBAX
a

⟶ q2BABBAX

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
b

⟶ q1BBAX
a

⟶ q1ABBAX
b

⟶ q1BABBAX
a

⟶ q2BABBAX
b

⟶ q2ABBAX

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
b

⟶ q1BBAX
a

⟶ q1ABBAX
b

⟶ q1BABBAX
a

⟶ q2BABBAX
b

⟶ q2ABBAX
a

⟶ q2BBAX

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
b

⟶ q1BBAX
a

⟶ q1ABBAX
b

⟶ q1BABBAX
a

⟶ q2BABBAX
b

⟶ q2ABBAX
a

⟶ q2BBAX
b

⟶ q2BAX

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
b

⟶ q1BBAX
a

⟶ q1ABBAX
b

⟶ q1BABBAX
a

⟶ q2BABBAX
b

⟶ q2ABBAX
a

⟶ q2BBAX
b

⟶ q2BAX
b

⟶ q2AX

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
b

⟶ q1BBAX
a

⟶ q1ABBAX
b

⟶ q1BABBAX
a

⟶ q2BABBAX
b

⟶ q2ABBAX
a

⟶ q2BBAX
b

⟶ q2BAX
b

⟶ q2AX
a

⟶ q2X

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Výpočet zásobńıkového automatu

Př́ıklad: M = (Q,Σ, Γ, δ, q1,X), kde Q = {q1, q2}, Σ = {a, b},
Γ = {X ,A,B}

q1X
a

⟶ q1AX
b

⟶ q1BAX
b

⟶ q1BBAX
a

⟶ q1ABBAX
b

⟶ q1BABBAX
a

⟶ q2BABBAX
b

⟶ q2ABBAX
a

⟶ q2BBAX
b

⟶ q2BAX
b

⟶ q2AX
a

⟶ q2X
ε

⟶ q2

q1X
a

⟶ q1AX q1X
b

⟶ q1BX

q1A
a

⟶ q1AA q1A
b

⟶ q1BA

q1B
a

⟶ q1AB q1B
b

⟶ q1BB

q1X
a

⟶ q2X q1X
b

⟶ q2X

q1A
a

⟶ q2A q1A
b

⟶ q2A

q1B
a

⟶ q2B q1B
b

⟶ q2B

q1X
ε

⟶ q2X

q1A
ε

⟶ q2A

q1B
ε

⟶ q2B

q2X
ε

⟶ q2

q2A
a

⟶ q2

q2B
b

⟶ q2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 207 / 674

Zásobńıkový automat — p̌rij́ımáńı slov

Použ́ıvaj́ı se dvě r̊uzné definice toho, kdy automat p̌rij́ımá dané slovo:

Jestliže zásobńıkový automat M p̌rij́ımá prázdným zásobńıkem,
p̌ŕıjme slovo w tehdy, jestliže existuje výpočet automatu M nad
slovem w takový, že automat p̌rečte celé slovo w a po jeho p̌rečteńı
má prázdný zásobńık.

Jestliže zásobńıkový automat M p̌rij́ımá pomoćı p̌rij́ımaj́ıćıch stav̊u,
p̌ŕıjme slovo w tehdy, jestliže existuje výpočet automatu M nad
slovem w takový, že automat p̌rečte celé slovo w a po jeho p̌rečteńı
je ř́ıd́ıćı jednotka automatu M v některém z p̌rij́ımaj́ıćıch stav̊u
z množiny F .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 208 / 674

Zásobńıkový automat — p̌rij́ımáńı slov

Slovo w ∈ Σ
∗
je p̌rij́ımáno ZA M prázdným zásobńıkem právě

tehdy, když (q0,w ,X0) ⟶
∗ (q, ε, ε)

pro nějaké q ∈ Q.

Definice

Jazyk L(M) p̌rij́ımaný ZA M prázdným zásobńıkem je definován jako
množina všech slov p̌rij́ımaných ZA M prázdným zásobńıkem, tj.

L(M) = {w ∈ Σ
∗ ∣ (∃q ∈ Q)((q0,w ,X0) ⟶∗ (q, ε, ε)) } .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 209 / 674

Zásobńıkový automat — p̌rij́ımáńı slov

Rozšǐrme definici ZA M o množinu p̌rij́ımaj́ıćıch stav̊u F (kde F ⊆ Q).

Slovo w ∈ Σ
∗
je p̌rij́ımáno ZA M p̌rij́ımaj́ıćım stavem právě tehdy,

když (q0,w ,X0) ⟶
∗ (q, ε, α)

pro nějaké q ∈ F a α ∈ Γ
∗
.

Definice

Jazyk L(M) p̌rij́ımaný ZA M p̌rij́ımaj́ıćım stavem je definován jako

L(M) = {w ∈ Σ
∗ ∣ (∃q ∈ F)(∃α ∈ Γ

∗)((q0,w ,X0) ⟶∗ (q, ε, α)) } .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 210 / 674

Druhy zásobńıkových automat̊u

V p̌ŕıpadě nedeterministických zásobńıkových automat̊u neńı z hlediska
jazyk̊u, jaké jsou schopny tyto automaty rozpoznávat, rozd́ıl mezi
rozpoznáváńım prázdným zásobńıkem a rozpoznáváńım p̌rij́ımaj́ıćım
stavem.

Snadno sestroj́ıme:

K danému (nedeterministickému) zásobńıkovému automatu
rozpoznávaj́ıćımu nějaký jazyk L prázdným zásobńıkem ekvivalentńı
(nedeterministický) zásobńıkový automat rozpoznávaj́ıćı jazyk L

pomoćı p̌rij́ımaj́ıćıch stav̊u.

K danému (nedeterministickému) zásobńıkovému automatu
rozpoznávaj́ıćımu nějaký jazyk L pomoćı p̌rij́ımaj́ıćıch stav̊u
ekvivalentńı (nedeterministický) zásobńıkový automat rozpoznávaj́ıćı
jazyk L prázdným zásobńıkem.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 211 / 674

Deterministické zásobńıkové automaty

Zásobńıkový automat M = (Q,Σ, Γ, δ, q0,X0) je deterministický, jestliže:

Pro každé q ∈ Q, a ∈ (Σ ∪ {ε}) a X ∈ Γ plat́ı:∣δ(q, a,X)∣ ≤ 1

Pro každé q ∈ Q a X ∈ Γ plat́ı nejvýše jedna z následuj́ıćıch dvou
možnost́ı:

Existuje pravidlo qX
ε

⟶ q
′
α pro nějaké q

′
∈ Q a α ∈ Γ

∗
.

Existuje pravidlo qX
a

⟶ q
′
α pro nějaké a ∈ Σ, q

′
∈ Q a α ∈ Γ

∗
.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 212 / 674

Deterministické zásobńıkové automaty

Všimněme si, že deterministické zásobńıkové automaty p̌rij́ımaj́ıćı
prázdným zásobńıkem jsou schopny rozpoznávat jen bezprefixové jazyky,
tj. jazyky L, kde:

pokud w ∈ L, pak neexistuje žádné slovo w
′
∈ L takové, že w je

vlastńım prefixem slova w
′
.

Poznámka: Mı́sto jazyka L ⊆ Σ
∗
, který může a nemuśı být bezprefixový,

můžeme vźıt bezprefixový jazyk

L
′
= L ⋅ {⊣}

nad abecedou Σ ∪ {⊣}, kde ⊣/∈ Σ je speciálńı
”
zarážka“ označuj́ıćı konec

slova.
Tj. ḿısto zjǐst’ováńı, zda w ∈ L, kde w ∈ Σ

∗
, můžeme zjǐst’ovat, zda(w ⊣) ∈ L

′
.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 213 / 674

Deterministické zásobńıkové automaty

Ke každému deterministickému zásobńıkovému automatu
p̌rij́ımaj́ıćımu prázdným zásobńıkem je možné snadno sestrojit
ekvivalentńı deterministický zásobńıkový automat p̌rij́ımaj́ıćı pomoćı
p̌rij́ımaj́ıćıch stav̊u.

Ke každému deterministickému zásobńıkovému automatu
p̌rij́ımaj́ıćımu jazyk L (kde L ⊆ Σ

∗
) pomoćı p̌rij́ımaj́ıćıch stav̊u je

možné snadno sestrojit deterministický zásobńıkový automat p̌rimaj́ıćı
prázdným zásobńıkem jazyk L ⋅ {⊣}, kde ⊣/∈ Σ.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 214 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Věta

Ke každé bezkontextové gramatice G lze sestrojit nedeterministický
zásobńıkový automat M p̌rij́ımaj́ıćı prázdným zásobńıkem takový, že
L(M) = L(G).
Důkaz: Pro BG G = (Π,Σ, S ,P) vytvǒŕıme M = ({q0},Σ, Γ, δ, q0, S), kde

Γ = Π ∪ Σ

Pro každé pravidlo (X → α) ∈ P z bezkontextové gramatiky G (kde
X ∈ Π a α ∈ (Π ∪ Σ)∗) p̌ridáme do p̌rechodové funkce δ
zásobńıkového automatu M odpov́ıdaj́ıćı pravidlo

q0X
ε

⟶ q0α .

Pro každý symbol a ∈ Σ p̌ridáme do p̌rechodové funkce δ
zásobńıkového automatu M pravidlo

q0a
a

⟶ q0 .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 215 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Př́ıklad: Uvažujme bezkontextovou gramatiku G = (Π,Σ, S ,P), kde
Π = {S ,E ,T ,F}
Σ = { a, +, *, (,),⊣ }
Množina P obsahuje následuj́ıćı pravidla:

S → E ⊣

E → T ∣ E+T
T → F ∣ T*F

F → a ∣ (E)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 216 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

K dané gramatice G = (Π,Σ, S ,P) s pravidly

S → E ⊣

E → T ∣ E+T
T → F ∣ T*F

F → a ∣ (E)
sestroj́ıme zásobńıkový automat M = ({q0},Σ, Γ, δ, q0, S), kde

Σ = { a, +, *, (,),⊣ }
Γ = {S ,E ,T ,F , a, +, *, (,),⊣ }
Přechodová funkce δ obsahuje následuj́ıćı pravidla:

q0S
ε

⟶ q0E ⊣ q0F
ε

⟶ q0a q0a
a

⟶ q0 q0(
(

⟶ q0

q0E
ε

⟶ q0T q0F
ε

⟶ q0(E) q0+
+

⟶ q0 q0)
)

⟶ q0

q0E
ε

⟶ q0E+T q0*
*

⟶ q0 q0 ⊣
⊣

⟶ q0

q0T
ε

⟶ q0F

q0T
ε

⟶ q0T*F

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 217 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

S

S

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣E

S ⇒ E⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣T

S ⇒ E⊣ ⇒ T⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*T

S ⇒ E⊣ ⇒ T⊣ ⇒ T*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*F

S ⇒ E⊣ ⇒ T⊣ ⇒ T*F⊣ ⇒ F*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)E(

S ⇒ E⊣ ⇒ T⊣ ⇒ T*F⊣ ⇒ F*F⊣ ⇒ (E)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)E

S ⇒ E⊣ ⇒ T⊣ ⇒ T*F⊣ ⇒ F*F⊣ ⇒ (E)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)T+E

⋯ ⇒ T⊣ ⇒ T*F⊣ ⇒ F*F⊣ ⇒ (E)*F⊣ ⇒ (E+T)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)T+T

⋯ ⇒ F*F⊣ ⇒ (E)*F⊣ ⇒ (E+T)*F⊣ ⇒ (T+T)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)T+F

⋯ ⇒ (E)*F⊣ ⇒ (E+T)*F⊣ ⇒ (T+T)*F⊣ ⇒ (F+T)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)T+a

⋯ ⇒ (E+T)*F⊣ ⇒ (T+T)*F⊣ ⇒ (F+T)*F⊣ ⇒ (a+T)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)T+

⋯ ⇒ (E+T)*F⊣ ⇒ (T+T)*F⊣ ⇒ (F+T)*F⊣ ⇒ (a+T)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)T

⋯ ⇒ (E+T)*F⊣ ⇒ (T+T)*F⊣ ⇒ (F+T)*F⊣ ⇒ (a+T)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)F

⋯ ⇒ (T+T)*F⊣ ⇒ (F+T)*F⊣ ⇒ (a+T)*F⊣ ⇒ (a+F)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)a

⋯ ⇒ (F+T)*F⊣ ⇒ (a+T)*F⊣ ⇒ (a+F)*F⊣ ⇒ (a+a)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*)

⋯ ⇒ (F+T)*F⊣ ⇒ (a+T)*F⊣ ⇒ (a+F)*F⊣ ⇒ (a+a)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F*

⋯ ⇒ (F+T)*F⊣ ⇒ (a+T)*F⊣ ⇒ (a+F)*F⊣ ⇒ (a+a)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣F

⋯ ⇒ (F+T)*F⊣ ⇒ (a+T)*F⊣ ⇒ (a+F)*F⊣ ⇒ (a+a)*F⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)E(

⋯ ⇒ (a+T)*F⊣ ⇒ (a+F)*F⊣ ⇒ (a+a)*F⊣ ⇒ (a+a)*(E)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)E

⋯ ⇒ (a+T)*F⊣ ⇒ (a+F)*F⊣ ⇒ (a+a)*F⊣ ⇒ (a+a)*(E)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)T+E

⋯ ⇒ (a+a)*F⊣ ⇒ (a+a)*(E)⊣ ⇒ (a+a)*(E+T)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)T+T

⋯ ⇒ (a+a)*(E)⊣ ⇒ (a+a)*(E+T)⊣ ⇒ (a+a)*(T+T)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)T+F*T

⋯ ⇒ (a+a)*(E+T)⊣ ⇒ (a+a)*(T+T)⊣ ⇒ (a+a)*(T*F+T)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)T+F*F

⋯ ⇒ (a+a)*(T*F+T)⊣ ⇒ (a+a)*(F*F+T)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)T+F*a

⋯ ⇒ (a+a)*(F*F+T)⊣ ⇒ (a+a)*(a*F+T)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)T+F*

⋯ ⇒ (a+a)*(F*F+T)⊣ ⇒ (a+a)*(a*F+T)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)T+F

⋯ ⇒ (a+a)*(F*F+T)⊣ ⇒ (a+a)*(a*F+T)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)T+a

⋯ ⇒ (a+a)*(a*F+T)⊣ ⇒ (a+a)*(a*a+T)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)T+

⋯ ⇒ (a+a)*(a*F+T)⊣ ⇒ (a+a)*(a*a+T)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)T

⋯ ⇒ (a+a)*(a*F+T)⊣ ⇒ (a+a)*(a*a+T)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)F

⋯ ⇒ (a+a)*(a*a+T)⊣ ⇒ (a+a)*(a*a+F)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)a

⋯ ⇒ (a+a)*(a*a+F)⊣ ⇒ (a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣)

⋯ ⇒ (a+a)*(a*a+F)⊣ ⇒ (a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⊣

⋯ ⇒ (a+a)*(a*a+F)⊣ ⇒ (a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

q0

⋯ ⇒ (a+a)*(a*a+F)⊣ ⇒ (a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 218 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Z p̌redchoźıho p̌ŕıkladu je vidět, že zásobńıkový automat M během
výpočtu v zásadě provád́ı levou derivaci v gramatice G.

Snadno se ukáže, že:

Každé levé derivaci v gramatice G odpov́ıdá nějaký výpočet
automatu M.

Každému výpočtu automatu M odpov́ıdá nějaká levá derivace
v gramatice G.

Poznámka: Výše uvedený postup odpov́ıdá syntaktické analýze shora
dol̊u.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 219 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Alternativně lze p̌ri syntaktické analýze postupovat též zdola nahoru.

Tomu odpov́ıdá následuj́ıćı konstrukce nedeterministického zásobńıkového
automatu M = (Q,Σ, Γ, δ, q0,X0) k dané gramatice G = (Π,Σ, S ,P),
kde:

Γ = Π ∪ Σ ∪ {⊢}, kde ⊢ /∈ (Π ∪ Σ)
X0 = ⊢

Q obsahuje stavy odpov́ıdaj́ıćı všem sufix̊um pravých stran pravidel
z P a dále speciálńı stav ⟨S⟩ (kde S ∈ Π je počátečńı neterminál
gramatiky G) a speciálńı stav qacc .

Stav odpov́ıdaj́ıćı suffixu α (kde α ∈ (Π ∪ Σ)∗) budeme označovat
zápisem ⟨α⟩.
Speciálńım p̌ŕıpadem je stav odpov́ıdaj́ıćı sufixu ε. Tento stav budeme
označovat ⟨⟩.
q0 = ⟨⟩
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 220 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Pro každý vstupńı symbol a ∈ Σ a každý zásobńıkový symbol W ∈ Γ
p̌ridáme do δ následuj́ıćı pravidlo:

⟨⟩W a
⟶ ⟨⟩aW

Pro každé pravidlo X → Y1Y2⋯Yn z gramatiky G (kde X ∈ Π, n ≥ 0
a Yi ∈ (Π ∪ Σ) pro 1 ≤ i ≤ n) p̌ridáme do p̌rechodové funkce δ
automatu M následuj́ıćı sadu pravidel:

⟨⟩Yn

ε
⟶ ⟨Yn⟩⟨Yn⟩Yn−1
ε

⟶ ⟨Yn−1Yn⟩⟨Yn−1Yn⟩Yn−2
ε

⟶ ⟨Yn−2Yn−1Yn⟩
⋮

⟨Y2Y3 . . .Yn⟩Y1
ε

⟶ ⟨Y1Y2Y3⋯Yn⟩
a dále pro každé W ∈ Γ pravidla

⟨Y1Y2⋯Yn⟩W ε
⟶ ⟨⟩XW

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 221 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Pokud nap̌ŕıklad bude gramatika G obsahovat pravidlo

B → CaADb

bude p̌rechodová funkce δ automatu M obsahovat pravidla

⟨⟩b ε
⟶ ⟨b⟩⟨b⟩D ε
⟶ ⟨Db⟩⟨Db⟩A ε
⟶ ⟨ADb⟩⟨ADb⟩a ε
⟶ ⟨aADb⟩⟨aADb⟩C ε
⟶ ⟨CaADb⟩

a dále pro každé W ∈ Γ pravidlo

⟨CaADb⟩W ε
⟶ ⟨⟩BW

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 222 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Speciálně pro ε-pravidla z gramatiky G budou p̌ridaná pravidla
vypadat následovně: ε-pravidlu

X → ε

z gramatiky G, kde X ∈ Π, budou odpov́ıdat pravidla v δ tvaru

⟨⟩W ε
⟶ ⟨⟩XW

kde W ∈ Γ.

Nakonec p̌ridáme do δ dvě speciálńı pravidla (kde S ∈ Π je počátečńı
neterminál gramatiky G):

⟨⟩S ε
⟶ ⟨S⟩ ⟨S⟩⊢ ε

⟶ qacc

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 223 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Př́ıklad: Vezměme si opět stejnou gramatiku G jako v p̌redchoźım p̌ŕıkladě:

S → E ⊣

E → T ∣ E+T
T → F ∣ T*F

F → a ∣ (E)
K ńı sestroj́ıme zásobńıkový automat M = (Q,Σ, Γ, δ, q0,X0), kde

Σ = { a, +, *, (,),⊣ }
Γ = {S ,E ,T ,F , a, +, *, (,),⊣,⊢ }
Q = { ⟨⟩, ⟨⊣⟩, ⟨E ⊣⟩, ⟨T ⟩, ⟨+T ⟩, ⟨E+T ⟩, ⟨F ⟩, ⟨*F ⟩, ⟨T*F ⟩,⟨a⟩, ⟨)⟩, ⟨E)⟩, ⟨(E)⟩, ⟨S⟩, qacc }
q0 = ⟨⟩
X0 = ⊢

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 224 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Pro každé X ∈ Γ p̌ridáme do δ následuj́ıćı pravidla:

⟨⟩X a
⟶ ⟨⟩aX⟨⟩X +
⟶ ⟨⟩+X⟨⟩X *
⟶ ⟨⟩*X

⟨⟩X (
⟶ ⟨⟩(X

⟨⟩X)
⟶ ⟨⟩)X

⟨⟩X ⊣
⟶ ⟨⟩⊣X

⟨⟩S ε

⟶ ⟨S⟩⟨S⟩⊢ ε

⟶ qacc

⟨⟩⊣ ε

⟶ ⟨⊣⟩⟨⊣⟩E ε

⟶ ⟨E⊣⟩ ⟨E⊣⟩X ε

⟶ ⟨⟩SX
⟨⟩T ε

⟶ ⟨T ⟩ ⟨T ⟩X ε

⟶ ⟨⟩EX⟨T ⟩+ ε

⟶ ⟨+T ⟩⟨+T ⟩E ε

⟶ ⟨E+T ⟩ ⟨E+T ⟩X ε

⟶ ⟨⟩EX
⟨⟩F ε

⟶ ⟨F ⟩ ⟨F ⟩X ε

⟶ ⟨⟩TX⟨F ⟩* ε

⟶ ⟨*F ⟩⟨*F ⟩T ε

⟶ ⟨T*F ⟩ ⟨T*F ⟩X ε

⟶ ⟨⟩TX
⟨⟩a ε

⟶ ⟨a⟩ ⟨a⟩X ε

⟶ ⟨⟩FX
⟨⟩) ε

⟶ ⟨)⟩⟨)⟩E ε

⟶ ⟨E)⟩⟨E)⟩(ε

⟶ ⟨(E)⟩ ⟨(E)⟩X ε

⟶ ⟨⟩FX
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 225 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢

(a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (

(a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (a

(a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨a⟩

⊢ (

(a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (F

(F+a)*(a*a+a)⊣ ⇒ (a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨F ⟩

⊢ (

(F+a)*(a*a+a)⊣ ⇒ (a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (T

(T+a)*(a*a+a)⊣ ⇒ (F+a)*(a*a+a)⊣ ⇒ (a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨T ⟩

⊢ (

(T+a)*(a*a+a)⊣ ⇒ (F+a)*(a*a+a)⊣ ⇒ (a+a)*(a*a+a)⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (E

(E+a)*(a*a+a)⊣ ⇒ (T+a)*(a*a+a)⊣ ⇒ (F+a)*(a*a+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (E +

(E+a)*(a*a+a)⊣ ⇒ (T+a)*(a*a+a)⊣ ⇒ (F+a)*(a*a+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (E + a

(E+a)*(a*a+a)⊣ ⇒ (T+a)*(a*a+a)⊣ ⇒ (F+a)*(a*a+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨a⟩

⊢ (E +

(E+a)*(a*a+a)⊣ ⇒ (T+a)*(a*a+a)⊣ ⇒ (F+a)*(a*a+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (E + F

(E+F)*(a*a+a)⊣ ⇒ (E+a)*(a*a+a)⊣ ⇒ (T+a)*(a*a+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨F ⟩

⊢ (E +

(E+F)*(a*a+a)⊣ ⇒ (E+a)*(a*a+a)⊣ ⇒ (T+a)*(a*a+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (E + T

(E+T)*(a*a+a)⊣ ⇒ (E+F)*(a*a+a)⊣ ⇒ (E+a)*(a*a+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨T ⟩

⊢ (E +

(E+T)*(a*a+a)⊣ ⇒ (E+F)*(a*a+a)⊣ ⇒ (E+a)*(a*a+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨+T ⟩

⊢ (E

(E+T)*(a*a+a)⊣ ⇒ (E+F)*(a*a+a)⊣ ⇒ (E+a)*(a*a+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨E+T ⟩

⊢ (

(E+T)*(a*a+a)⊣ ⇒ (E+F)*(a*a+a)⊣ ⇒ (E+a)*(a*a+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (E

(E)*(a*a+a)⊣ ⇒ (E+T)*(a*a+a)⊣ ⇒ (E+F)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ (E)

(E)*(a*a+a)⊣ ⇒ (E+T)*(a*a+a)⊣ ⇒ (E+F)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨)⟩

⊢ (E

(E)*(a*a+a)⊣ ⇒ (E+T)*(a*a+a)⊣ ⇒ (E+F)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨E)⟩

⊢ (

(E)*(a*a+a)⊣ ⇒ (E+T)*(a*a+a)⊣ ⇒ (E+F)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨(E)⟩

⊢

(E)*(a*a+a)⊣ ⇒ (E+T)*(a*a+a)⊣ ⇒ (E+F)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ F

F*(a*a+a)⊣ ⇒ (E)*(a*a+a)⊣ ⇒ (E+T)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨F ⟩

⊢

F*(a*a+a)⊣ ⇒ (E)*(a*a+a)⊣ ⇒ (E+T)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T

T*(a*a+a)⊣ ⇒ F*(a*a+a)⊣ ⇒ (E)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T *

T*(a*a+a)⊣ ⇒ F*(a*a+a)⊣ ⇒ (E)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (

T*(a*a+a)⊣ ⇒ F*(a*a+a)⊣ ⇒ (E)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (a

T*(a*a+a)⊣ ⇒ F*(a*a+a)⊣ ⇒ (E)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨a⟩

⊢ T * (

T*(a*a+a)⊣ ⇒ F*(a*a+a)⊣ ⇒ (E)*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (F

T*(F*a+a)⊣ ⇒ T*(a*a+a)⊣ ⇒ F*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨F ⟩

⊢ T * (

T*(F*a+a)⊣ ⇒ T*(a*a+a)⊣ ⇒ F*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (T

T*(T*a+a)⊣ ⇒ T*(F*a+a)⊣ ⇒ T*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (T *

T*(T*a+a)⊣ ⇒ T*(F*a+a)⊣ ⇒ T*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (T * a

T*(T*a+a)⊣ ⇒ T*(F*a+a)⊣ ⇒ T*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨a⟩

⊢ T * (T *

T*(T*a+a)⊣ ⇒ T*(F*a+a)⊣ ⇒ T*(a*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (T * F

T*(T*F+a)⊣ ⇒ T*(T*a+a)⊣ ⇒ T*(F*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨F ⟩

⊢ T * (T *

T*(T*F+a)⊣ ⇒ T*(T*a+a)⊣ ⇒ T*(F*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨*F ⟩

⊢ T * (T

T*(T*F+a)⊣ ⇒ T*(T*a+a)⊣ ⇒ T*(F*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨T*F ⟩

⊢ T * (

T*(T*F+a)⊣ ⇒ T*(T*a+a)⊣ ⇒ T*(F*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (T

T*(T+a)⊣ ⇒ T*(T*F+a)⊣ ⇒ T*(T*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨T ⟩

⊢ T * (

T*(T+a)⊣ ⇒ T*(T*F+a)⊣ ⇒ T*(T*a+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (E

T*(E+a)⊣ ⇒ T*(T+a)⊣ ⇒ T*(T*F+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (E +

T*(E+a)⊣ ⇒ T*(T+a)⊣ ⇒ T*(T*F+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (E + a

T*(E+a)⊣ ⇒ T*(T+a)⊣ ⇒ T*(T*F+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨a⟩

⊢ T * (E +

T*(E+a)⊣ ⇒ T*(T+a)⊣ ⇒ T*(T*F+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (E + F

T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ T*(T+a)⊣ ⇒ T*(T*F+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨F ⟩

⊢ T * (E +

T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ T*(T+a)⊣ ⇒ T*(T*F+a)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (E + T

T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ T*(T+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨T ⟩

⊢ T * (E +

T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ T*(T+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨+T ⟩

⊢ T * (E

T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ T*(T+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨E+T ⟩

⊢ T * (

T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ T*(T+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (E

T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * (E)

T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨)⟩

⊢ T * (E

T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨E)⟩

⊢ T * (

T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨(E)⟩

⊢ T *

T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ T*(E+a)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T * F

T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨F ⟩

⊢ T *

T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨*F ⟩

⊢ T

T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨T*F ⟩

⊢

T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ T

T⊣ ⇒ T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨T ⟩

⊢

T⊣ ⇒ T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ T*(E+F)⊣ ⇒

⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ E

E⊣ ⇒ T⊣ ⇒ T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ E ⊣

E⊣ ⇒ T⊣ ⇒ T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⊣⟩

⊢ E

E⊣ ⇒ T⊣ ⇒ T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨E ⊣⟩

⊢

E⊣ ⇒ T⊣ ⇒ T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨⟩

⊢ S

S ⇒ E⊣ ⇒ T⊣ ⇒ T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

⟨S⟩

⊢

S ⇒ E⊣ ⇒ T⊣ ⇒ T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

(a + a) * (a * a + a) ⊣

qacc

S ⇒ E⊣ ⇒ T⊣ ⇒ T*F⊣ ⇒ T*(E)⊣ ⇒ T*(E+T)⊣ ⇒ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 226 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Jak je vidět z p̌redchoźıho p̌ŕıkladu, zásobńıkový automat M v zásadě
provád́ı pravou derivaci v gramatice G pozpátku.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 227 / 674

Daľśı ťŕıdy bezkontextových gramatik

Existuje řada r̊uzných ťŕıd bezkontextových gramatik, pro které je možné
sestrojit daný zásobńıkový automat tak, aby byl deterministický:

Př́ıstup shora dol̊u — vytvá̌ŕı levou derivaci:

LL(0), LL(1), LL(2), . . .

Př́ıstup zdola nahoru — vytvá̌ŕı pravou derivaci pozpátku:

LR(0), LR(1), LR(2), . . .

LALR (resp. LALR(1), . . .)

SLR (resp. SLR(1), . . .)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 228 / 674

Generátory parser̊u

Generátory parser̊u — nástroje, které umožňuj́ı z popisu dané gramatiky
automaticky vygenerovat kód v nějakém programovaćım jazyce, který de
facto implementuje činnost odpov́ıdaj́ıćıho zásobńıkového automatu.

Př́ıklady generátor̊u parser̊u:

Yacc

Bison

ANTLR

JavaCC

Menhir

. . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 229 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Věta

Ke každému zásobńıkovému automatu M s jedńım stavem a p̌rij́ımaj́ıćım
prázdným zásobńıkem lze sestrojit bezkontextovou gramatiku G takovou,
že L(G) = L(M).
Důkaz: Pro ZA M = ({q0},Σ, Γ, δ, q0,X0), kde Σ ∩ Γ = ∅, vytvǒŕıme
BG G = (Γ,Σ,X0,P), kde

(A → aα) ∈ P ⟺ (q0, α) ∈ δ(q0, a,A)
pro každé A ∈ Γ, a ∈ Σ ∪ {ε}, α ∈ Γ

∗
.

Indukćı můžeme dokázat

X0 ⇒
∗
uα (v G) ⟺ q0X0

u
⟶ q0α (v M)

kde u ∈ Σ
∗
a α ∈ Γ

∗
(p̌ričemž v G uvažujeme pouze levé derivace).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 230 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

a b a a b a b b

q0

CABCA

M: G:

⋮ ⋮

q0A
a

⟶ q0BC A → aBC

q0B
b

⟶ q0 B → b

⋮ ⋮

a b a AC B AC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 231 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

a b a a b a b b

q0

CABCCB

M: G:

⋮ ⋮

q0A
a

⟶ q0BC A → aBC

q0B
b

⟶ q0 B → b

⋮ ⋮

a b a AC B AC

⇒ a b a a B C C B AC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 231 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

a b a a b a b b

q0

CABCC

M: G:

⋮ ⋮

q0A
a

⟶ q0BC A → aBC

q0B
b

⟶ q0 B → b

⋮ ⋮

a b a AC B AC

⇒ a b a a B C C B AC

⇒ a b a a b C C B AC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 231 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Věta

Ke každému zásobńıkovému automatu M lze sestrojit zásobńıkový
automat M

′
s jedńım stavem tž. L(M′) = L(M).

Myšlenka d̊ukazu:

Stav automatu M si budeme pamatovat na zásobńıku.

Pro δ(q, a,X) = {(q′, ε)} muśıme kontrolovat nejen, že jsme ve
stavu q, ale také, že se dostaneme do stavu q

′
. (Daľśı p̌ŕıpady jsou

p̌ŕımočaré.)

Každý zásobńıkový symbol automatu M
′
je tedy trojice, kde si

pamatujeme zásobńıkový symbol, aktuálńı stav a aktuálńı stav ze
symbolu o jedna ńıže na zásobńıku.

ZA M
′
nedeterministicky

”
hádá“ ř́ıd́ıćı stavy, do kterých se dostane

M v okamžiku, kdy se daný zásobńıkový symbol ocitne na vrcholu
zásobńıku.
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 232 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Chybná myšlenka:

q5

a b b a b a

B

A

A

C

B

A

q
′

0

a b b a b a

B

A

A

C

B

q5A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 233 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Chybná myšlenka:

q13

a b b a b a

B

A

A

C

B

C

B q
′

0

a b b a b a

B

A

A

C

B

C

q13B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 233 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Chybná myšlenka:

q7

a b b a b a

B

A

A

C

B

C

q
′

0

a b b a b a

B

A

A

C

B

C

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 233 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Daľśı chybná myšlenka:

q5

a b b a b a

B

A

A

C

B

A

q
′

0

a b b a b a

q11B

q4A

q15A

q8C

q4B

q5A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 234 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Daľśı chybná myšlenka:

q13

a b b a b a

B

A

A

C

B

C

B q
′

0

a b b a b a

q11B

q4A

q15A

q8C

q4B

q7C

q13B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 234 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Daľśı chybná myšlenka:

q7

a b b a b a

B

A

A

C

B

C

q
′

0

a b b a b a

q11B

q4A

q15A

q8C

q4B

q7C

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 234 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Korektńı konstrukce:

q5

a b b a b a

B

A

A

C

B

A

q
′

0

a b b a b a

q11B q9

q4Aq11

q15Aq4

q8C q15

q4B q8

q5Aq4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 235 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Korektńı konstrukce:

q13

a b b a b a

B

A

A

C

B

C

B q
′

0

a b b a b a

q11B q9

q4Aq11

q15Aq4

q8C q15

q4B q8

q7C q4

q13B q7

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 235 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Korektńı konstrukce:

q7

a b b a b a

B

A

A

C

B

C

q
′

0

a b b a b a

q11B q9

q4Aq11

q15Aq4

q8C q15

q4B q8

q7C q4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 235 / 674

Ekvivalence bezkontextových gramatik a zás. automat̊u

Tvrzeńı

K libovolné bezkontextové gramatice G je možné sestrojit
(nedeterministický) zásobńıkový automat M takový, že L(G) = L(M).
Tvrzeńı

K libovolnému zásobńıkovému automatu M je možné sestrojit
bezkontextovou gramatiku G takovou, že L(M) = L(G).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 236 / 674

Turingovy stroje

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 237 / 674

Turingův stroj

Turing̊uv stroj — zǎŕızeńı podobné konečnému automatu s následuj́ıćımi
rozd́ıly:

pohyb hlavy oběma směry

možnost zápisu na pásku na aktuálńı pozici hlavy

páska je nekonečná

q5

⋯⋯ □ □ a b a b b a b □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 238 / 674

Turingův stroj

Turing̊uv stroj — zǎŕızeńı podobné konečnému automatu s následuj́ıćımi
rozd́ıly:

pohyb hlavy oběma směry

možnost zápisu na pásku na aktuálńı pozici hlavy

páska je nekonečná

q8

⋯⋯ □ □ a b c b b a b □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 238 / 674

Turingův stroj

Turing̊uv stroj — zǎŕızeńı podobné konečnému automatu s následuj́ıćımi
rozd́ıly:

pohyb hlavy oběma směry

možnost zápisu na pásku na aktuálńı pozici hlavy

páska je nekonečná

q14

⋯⋯ □ □ a b c a b a b □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 238 / 674

Turingův stroj

Turing̊uv stroj — zǎŕızeńı podobné konečnému automatu s následuj́ıćımi
rozd́ıly:

pohyb hlavy oběma směry

možnost zápisu na pásku na aktuálńı pozici hlavy

páska je nekonečná

q14

⋯⋯ □ □ a b c a b a b □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 238 / 674

Turingův stroj

Turing̊uv stroj — zǎŕızeńı podobné konečnému automatu s následuj́ıćımi
rozd́ıly:

pohyb hlavy oběma směry

možnost zápisu na pásku na aktuálńı pozici hlavy

páska je nekonečná

q14

⋯⋯ □ □ a b c a b a b □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 238 / 674

Turingův stroj

Turing̊uv stroj — zǎŕızeńı podobné konečnému automatu s následuj́ıćımi
rozd́ıly:

pohyb hlavy oběma směry

možnost zápisu na pásku na aktuálńı pozici hlavy

páska je nekonečná

q14

⋯⋯ □ □ a b c a b a b □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 238 / 674

Turingův stroj

Turing̊uv stroj — zǎŕızeńı podobné konečnému automatu s následuj́ıćımi
rozd́ıly:

pohyb hlavy oběma směry

možnost zápisu na pásku na aktuálńı pozici hlavy

páska je nekonečná

q7

⋯⋯ □ a a b c a b a b □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 238 / 674

Turingův stroj

Alan M. Turing,
”
On Computable Numbers, with an application to the

Entscheidungsproblem“, Proceedings of the London Mathematical Society,
42 (1936), pp. 230–265, Erratum: Ibid., 43 (1937), pp. 544–546.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 239 / 674

Turingův stroj

Definice

Formálně je Turing̊uv stroj definován jako šestice M = (Q,Σ, Γ, δ, q0,F)
kde:

Q je konečná neprázdná množina stav̊u

Γ je konečná neprázdná množina páskových symbol̊u (pásková
abeceda)

Σ ⊆ Γ je konečná neprázdná množina vstupńıch symbol̊u (vstupńı
abeceda)

δ ∶ (Q − F) × Γ → Q × Γ × {−1, 0,+1} je p̌rechodová funkce

q0 ∈ Q je počátečńı stav

F ⊆ Q je množina koncových stav̊u

Předpokládáme, že v Γ − Σ je vždy speciálńı prvek □ označuj́ıćı prázdný
znak (blank).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 240 / 674

Konfigurace Turingova stroje

q5

⋯⋯ □ □ a b a b b a a b □ □ □

Konfigurace Turingova stroje je dána:

stavem ř́ıd́ıćı jednotky

obsahem pásky

pozićı hlavy

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 241 / 674

Konfigurace Turingova stroje

Výpočet Turingova stroje M = (Q,Σ, Γ, δ, q0,F) nad slovem w ∈ Σ
∗
,

kde w = a1a2⋯an, zač́ıná v počátečńı konfiguraci:

q0

⋯⋯ □ □ a1 a2 a3 an−1 an □ □⋯

stav ř́ıd́ıćı jednotky je q0

na pásce je zapsáno slovo w , zbývaj́ıćı poĺıčka pásky jsou vyplněna
prázdnými symboly (□)

hlava se nacháźı na prvńım symbolu slova w (nebo na symbolu □,
pokud je w = ε)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 242 / 674

Turingův stroj

Jeden krok Turingova stroje:

Předpokládejme, že:

stav ř́ıd́ıćı jednotky je q

na poĺıčku, kde se právě nacháźı hlava, je zapsán symbol b

Řekněme, že δ(q, b) = (q′, b′, d), kde d ∈ {−1, 0,+1}.
Jeden krok Turingova stroje se provede následovně:

stav ř́ıd́ıćı jednotky se změńı na q
′

na poĺıčko na pozici hlavy se ḿısto symbolu b zaṕı̌se symbol b
′

V závislosti na hodnotě d se hlava posune:

pro d = −1 se posune o jedno poĺıčko doleva
pro d = +1 se posune o jedno poĺıčko doprava
pro d = 0 se pozice hlavy nezměńı

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 243 / 674

Turingův stroj

Turing̊uv stroj provád́ı kroky tak dlouho, dokud stav ř́ıd́ıćı jednotky
neńı stav z množiny F .

Konfigurace, kde stav ř́ıd́ıćı jednotky paťŕı do množiny F , jsou
koncové konfigurace.

V koncových konfiguraćıch výpočet konč́ı.

Výpočet stroje M nad slovem w může být nekonečný.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 244 / 674

Turingův stroj

Často voĺıme množinu koncových stav̊u F = {qacc , qrej}.
Můžeme pak pro slovo w ∈ Σ

∗
definovat, zda ho daný Turing̊uv stroj

p̌rij́ımá:

Pokud je po skončeńı výpočtu nad slovem w ř́ıd́ıćı jednotka ve
stavu qacc , stroj slovo w p̌rij́ımá.

Pokud je po skončeńı výpočtu nad slovem w ř́ıd́ıćı jednotka ve
stavu qrej , stroj slovo w nep̌rij́ımá.

Pokud je výpočet nad slovem w nekonečný, stroj slovo w nep̌rij́ımá.

Jazyk L(M) Turingova stroje M je množina všech slov nad abecedou Σ
∗
,

která stroj M p̌rij́ımá.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 245 / 674

Turingův stroj

Jazyk L ⊆ Σ
∗
je Turingovým strojem M p̌rij́ımán (accepted), jestliže:

pro každé slovo w ∈ Σ
∗
plat́ı, že w ∈ L právě tehdy, když výpočet

stroje M nad w skonč́ı v koncovém stavu qacc .

(Výpočty nad slovy, která nepaťŕı do L, tedy mohou skončit ve stavu qrej
nebo být nekonečné.)

Jazyk L ⊆ Σ
∗
je Turingovým strojem M rozpoznáván (recognized),

jestliže:

pro každé slovo w ∈ L výpočet stroje M nad w skonč́ı v koncovém
stavu qacc .

pro každé slovo w ∈ (Σ∗ − L) výpočet stroje M nad w skonč́ı
v koncovém stavu qrej .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 246 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ a a a a b b b b c c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x a a a b b b b c c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x a a a b b b b c c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x a a a b b b b c c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x a a a b b b b c c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x a a a x b b b c c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x a a a x b b b c c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x a a a x b b b c c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x a a a x b b b c c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x a a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x a a x b b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x a a x x b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x a a x x b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x a a x x b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x a a x x b b x c c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x a a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x x a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x x a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x x a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x x a x x b b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x x a x x x b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x x a x x x b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x x a x x x b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x x a x x x b x x c c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x a x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x x x x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x x x x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x x x x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q1

□ □ x x x x x x x b x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x x x x x x x x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x x x x x x x x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x x x x x x x x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q2

□ □ x x x x x x x x x x x c □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q3

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q4

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

q0

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

Jazyk L = {anbncn ∣ n ≥ 0}
Q = {q0, q1, q2, q3, q4, qacc , qrej} F = {qacc , qrej}
Σ = {a, b, c} Γ = {□, a, b, c, x}

δ □ a b c x

q0 (qacc ,□, 0) (q1, x,+1) (qrej , b, 0) (qrej , c, 0) (q0, x,+1)
q1 (qrej ,□, 0) (q1, a,+1) (q2, x,+1) (qrej , c, 0) (q1, x,+1)
q2 (qrej ,□, 0) (qrej , a, 0) (q2, b,+1) (q3, x,+1) (q2, x,+1)
q3 (q4,□,−1) (qrej , a, 0) (qrej , b, 0) (q3, c,+1) (q3, x,+1)
q4 (q0,□,+1) (q4, a,−1) (q4, b,−1) (q4, c,−1) (q4, x,−1)

qacc

□ □ x x x x x x x x x x x x □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 247 / 674

Turingův stroj

q0 q1 q2 q3

q4

qacc qrej

x;+

a → x;+

□; 0
b, c; 0

a, x;+

b → x;+

□, c; 0

b, x;+

c → x;+

□, a; 0

c, x;+

a, b; 0

□;−

a, b, c, x;−

□;+

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 248 / 674

Turingův stroj

Turing̊uv stroj nemuśı dávat jen odpověd’ Ano nebo Ne, ale může
realizovat nějakou funkci, která každému slovu ze Σ

∗
p̌rǐrazuje nějaké

jiné slovo (z Γ
∗
).

Slovo p̌rǐrazené slovu w je slovo, které z̊ustane zapsáno na pásce po
výpočtu nad slovem w , když odstrańıme všechny znaky □.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 249 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

R

□ □ □ 1 1 1 0 0 1 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

R

□ □ □ 1 1 1 0 0 1 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

R

□ □ □ 1 1 1 0 0 1 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

R

□ □ □ 1 1 1 0 0 1 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

R

□ □ □ 1 1 1 0 0 1 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

R

□ □ □ 1 1 1 0 0 1 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

R

□ □ □ 1 1 1 0 0 1 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

R

□ □ □ 1 1 1 0 0 1 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

0

□ □ □ 1 1 1 0 0 1 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

1

□ □ □ 1 1 1 0 0 1 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

2

□ □ □ 1 1 1 0 0 0 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

1

□ □ □ 1 1 1 0 0 0 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

0

□ □ □ 1 1 1 1 0 0 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

1

□ □ □ 1 1 1 1 0 0 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

2

□ □ □ 1 0 1 1 0 0 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

2

□ □ □ 1 0 1 1 0 0 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

1

□ □ 0 1 0 1 1 0 0 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

0

□ 1 0 1 0 1 1 0 0 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Turingův stroj – násobeńı ťremi

R 0 1 2

P

□;−

0,1;+ 0;−
1;−

0,□→ 1;−

1 → 0;−

0,□→ 0;−

1;−

□;−

P

□ 1 0 1 0 1 1 0 0 1 □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 250 / 674

Nedeterministické Turingovy stroje

Můžeme uvažovat i nedeterministické Turingovy stroje, kde pro každý
stav q a symbol b p̌rechodová funkce δ(q, b) určuje v́ıce r̊uzných trojic(q′, b′, d).
Stroj si může vybrat libovolnou z nich.

Stroj p̌rij́ımá slovo w , jestliže existuje alespoň jeden jeho výpočet vedoućı
k p̌rijet́ı slova w .

Poznámka: Ke každému nedeterministickému Turingovu stroji je možné
sestrojit ekvivalentńı deterministický Turing̊uv stroj.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 251 / 674

Nedeterministické Turingovy stroje

Formálně se v definici deterministického a nedeterministického Turingova
stroje M = (Q,Σ, Γ, δ, q0,F) lǐśı pouze definice p̌rechodové funkce δ:

Deterministický Turing̊uv stroj:

δ ∶ (Q − F) × Γ → Q × Γ × {−1, 0,+1}
Nedeterministický Turing̊uv stroj:

δ ∶ (Q − F) × Γ → P(Q × Γ × {−1, 0,+1})

Poznámka: U nedeterministických Turingových stroj̊u také nedává p̌ŕılǐs
smysl jiná množina koncových stav̊u než F = {qacc , qrej}.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 252 / 674

Varianty Turingových stroj̊u

Dř́ıve uvedená definice Turingova stroje je jen jednou z mnoha
možných variant.

Uvedeme několik p̌ŕıkladů toho, v čem se mohou některé jiné varianty
Turingových stroj̊u lǐsit.

Prakticky všechny tyto varianty Turingových stroj̊u jsou schopny
p̌rij́ımat či rozpoznávat tytéž jazyky a poč́ıtat tytéž funkce.

Co se týká doby výpočtu a množstv́ı použité paměti, mezi r̊uznými
variantami mohou, ale nemuśı být významné rozd́ıly.

Všechny ńıže uvedené varianty můžeme uvažovat v deterministické
i nedeterministické verzi.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 253 / 674

Varianty Turingových stroj̊u

Jednostranně či oboustranně nekonečná páska:

V p̌redchoźı definici jsme uvažovali pásku, která je nekonečná jak
směrem doleva, tak směrem doprava.

Mı́sto toho se někdy v definici Turingova stroje uvažuje páska, která
je nekonečná jen směrem doprava.

q5

a b a b b a a b □ □ □ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 254 / 674

Varianty Turingových stroj̊u

Je ťreba nějak definovat, co má stát, když se hlava nacháźı na nejlevěǰśım
poĺıčku pásky a má se posunout doleva.

Dvě nejběžněǰśı možnosti:

Nastane
”
chybový“ stav, kdy se výpočet (neúspěšně) ukonč́ı:

q5

a b a b b a a b □ □ □ ⋯

δ(q5, a) = (q13, b,−1)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 255 / 674

Varianty Turingových stroj̊u

Na levém konci pásky je
”
zarážka“ reprezentovaná speciálńım

symbolem ⊢∈ (Γ − Σ).
Tuto zarážku neńı možné p̌repsat a neńı na ńı možný pohyb směrem
doleva, tj. pro každé q ∈ Q plat́ı, že pokud δ(q,⊢) = (q′, b, d), tak
b =⊢ a d ∈ {0,+1}.

q5

⊢ a b a b b a a b □ □ ⋯

δ(q5,⊢) = (q17,⊢,+1)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 256 / 674

Varianty Turingových stroj̊u

Poznámka: S možnost́ı, že výpočet může skončit neúspěšně, protože
nastane nějaká chyba, kdy z dané konfigurace neńı možné pokračovat, ale
p̌ritom to neńı koncová konfigurace, se setkáme i u řady daľśıch stroj̊u,
kterými se budeme zabývat.

Obecně mohou p̌ri výpočtu libovolného stroje nastat následuj́ıćı p̌ŕıpady:

Výpočet skonč́ı úspěšně v koncové konfiguraci, která odpov́ıdá
korektńımu zastaveńı.

Výpočet skonč́ı neúspěšně v konfiguraci, která neńı koncová, ale neńı
v ńı možné pokračovat ve výpočtu — toto chápeme tak, že výpočet
skončil chybou.

Výpočet se nikdy nezastav́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 257 / 674

Varianty Turingových stroj̊u

Často se také uvažuj́ı v́ıcepáskové Turingovy stroje.

q5

0 # 0 1 0 # □ □ □

1 1 1 0 1 1 0 0 1

□ □ a a b a b b □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 258 / 674

Varianty Turingových stroj̊u

V p̌ŕıpadě v́ıcepáskového stroje:

Každá z k pásek má svou vlastńı páskovou abecedu, tj. máme
páskové abecedy Γ1, Γ2, . . . , Γk .

Přechodová funkce δ je typu

(Q − F) × Γ1 ×⋯× Γk → Q × Γ1 × {−1, 0,+1} ×⋯× Γk × {−1, 0,+1}

Př́ıklad:
δ(q5, a, 1,□) = (q12, a,−1, x, 0, 1,+1)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 259 / 674

Varianty Turingových stroj̊u

Př́ıklad:

q5

0 # 0 1 0 # □ □ □

1 1 1 0 1 1 0 0 1

□ □ a a b a b b □

δ(q5, a, 1,□) = (q12, a,−1, x, 0, 1,+1)
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 260 / 674

Varianty Turingových stroj̊u

Př́ıklad:

q12

0 # 0 1 0 # 1 □ □

1 x 1 0 1 1 0 0 1

□ □ a a b a b b □

δ(q5, a, 1,□) = (q12, a,−1, x, 0, 1,+1)
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 260 / 674

Varianty Turingových stroj̊u

Př́ıklad: Stroj prováděj́ıćı sč́ıtáńı dvou binárně zapsaných č́ısel
ohraničených znaky # (nap̌r. č́ısla 6 a 11 budou zapsaná jako slova
“#110#” a “#1011#”).

q14

0 1 #

1 0 1 1

1 1 0

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 261 / 674

Varianty Turingových stroj̊u

V́ıcepáskové stroje maj́ı často jednu z pásek vyčleněnu jako vstupńı pásku
a jednu z pásek jako výstupńı pásku. Ostatńı pásky pak použ́ıvaj́ı jako
pracovńı:

Vstupńı páska — obsahuje vstupńı slovo, neńı možné na ni zapisovat
(je read-only), neńı nekonečná

Pracovńı pásky — je možné z nich č́ıst i na ně zapisovat (jsou typu
read/write), na začátku výpočtu jsou prázdné (obsahuj́ı pouze
symboly □)

Výstupńı páska — je na ni možné pouze zapisovat (je write-only),
neńı z ńı možné č́ıst, na začátku výpočtu je prázdná, pohyb hlavy je
možný jen zleva doprava

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 262 / 674

Varianty Turingových stroj̊u

q5

⊢ b a b a a a a b a b b b a ⊣ Input

0 1 1 0 0 1 0 0 1

□ □ # 0 1 1 # □ □

□ □ a a b # b b #

c a c c b d a Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 263 / 674

Varianty Turingových stroj̊u

Pokud má stroj vyčleněnou speciálńı vstupńı pásku (která je read-only),
použ́ıvaj́ı se typicky dvě následuj́ıćı varianty:

Na této vstupńı pásce je možný pohyb hlavy doleva i doprava.

Vstupńı slovo w ∈ Σ
∗
je v takovém p̌ŕıpadě ohraničeno zleva a zprava

pomoćı
”
zarážek“, tj. speciálńıch symbol̊u ⊢,⊣∈ (Γ − Σ).

Na vstupńı pásce je možný pohyb hlavy pouze zleva doprava.

Poznámka: Varianta s možným pohybem hlavy na obě strany a se
zarážkami je obvykleǰśı.

Pokud nebude řečeno jinak, budeme uvažovat tuto variantu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 264 / 674

Varianty Turingových stroj̊u

Mı́sto v́ıce pásek je možné též uvažovat v́ıce hlav na jedné pásce:

q7

⋯⋯ □ □ a b a b b a a b □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 265 / 674

Varianty Turingových stroj̊u

V p̌ŕıpadě v́ıce hlav na jedné pásce, je ťreba specifikovat:

Zda se může v́ıce hlav nacházet současně na jednom poĺıčku pásky.

A pokud ano, jak je definováno chováńı daného stroje v p̌ŕıpadě, že
hlavy nacházej́ıćı se na stejném poĺıčku budou cht́ıt na toto poĺıčko
zapsat rozd́ılné symboly.

Zda je daný stroj schopen detekovat to, že se dvě nebo v́ıce hlav
nacházej́ı současně na témže poĺıčku.

Poznámka: Samožrejmě obecně můžeme uvažovat stroje s v́ıce páskami,
kde každá z těchto pásek může být vybavena v́ıce hlavami.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 266 / 674

Varianty Turingových stroj̊u

Uvažujme stroj s v́ıce páskami a s libovolným počtem hlav na každé pásce.

Mı́sto toho, aby stroj pracoval v každém kroku zároveň se všemi hlavami,
můžeme jeho činnost popisovat jako

”
program“ skládaj́ıćı se

z jednoduš̌śıch instrukćı následuj́ıćıch typů:

posunout danou hlavu o jedno poĺıčko doleva

posunout danou hlavu o jedno poĺıčko doprava

zapsat na pozici dané hlavy daný specifikovaný symbol

p̌reč́ıst z pozice dané hlavy jeden symbol a provést větveńı programu
(tj. j́ıt do r̊uzných stav̊u ř́ıd́ıćı jednotky) v závislosti na tom, o jaký
symbol se jedná

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 267 / 674

Varianty Turingových stroj̊u

Zat́ım jsme uvažovali jen lineárńı (jednorozměrné) pásky.

Mı́sto jednorozměrné pásky může ḿıt pamět’ s poĺıčky (kde každé poĺıčko
obsahuje jeden znak z nějaké dané abecedy) nějakou jinou strukturu.

Nap̌ŕıklad:

dvourozměrná čtverečková rovina
— pohyb hlavy do čty̌r směr̊u: doleva, doprava, nahoru, dol̊u

d-rozměrná pamět’ pro nějaké d = 3, 4, . . .
(ťŕırozměrná, čty̌rrozměrná, atd.)

pamět’ organizovaná ve formě (nekonečného) stromu

. . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 268 / 674

Lineárně omezený automat

Lineárně omezený automat (LBA — linear bounded automaton):

Nedeterministický Turing̊uv stroj, který může využ́ıvat jen úsek pásky,
kde je zapsáno vstupńı slovo.

Poĺıčka pásky, která na začátku obsahuj́ı symboly vstupńıho slova, je
možné během výpočtu libovolně p̌repisovat.

Levá a pravá zarážka kolem slova. Tyto zarážky nemohou být
p̌repsány.

Z levé zarážky je možný pohyb jen vpravo, z pravé zarážky jen vlevo.

q5

⊢ b a b a b b a b a a b ⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 269 / 674

Lineárně omezený automat

Lineárně omezené automaty je možné uvažovat v deterministické
i nedeterministické verzi.

Jako standardńı (tj. pokud neńı uvedeno jinak) se bere
nedeterministická verze.

Otázka, zda je možné jakýkoli jazyk, který je rozpoznáván
nedeterministickým LBA, rozpoznávat také deterministickým LBA, je
otev̌reným problémem.

Poznámka: Z hlediska jazyk̊u, jaké jsou schopné p̌rij́ımat nebo
rozpoznávat, a z hlediska funkćı, jaké jsou schopné poč́ıtat, jsou lineárně
omezené automaty výrazně slabš́ı než Turingovy stroje, které maj́ı
k dispozici neomezeně velkou pamět’ (ve formě nekonečné pásky).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 270 / 674

Chomského hierarchie

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 271 / 674

Generativńı gramatiky

Definice

Generativńı gramatika je dána čtvěrićı parametr̊u G = (Π,Σ, S ,P), kde
Π je konečná množina neterminál̊u

Σ je konečná množina terminál̊u, Π ∩ Σ = ∅

S ∈ Π je počátečńı neterminál

P je konečná množina pravidel typu α → β, kde
α ∈ (Π ∪ Σ)∗Π(Π ∪ Σ)∗ a β ∈ (Π ∪ Σ)∗.

Př́ıklad pravidla:

CaECb → bDFbBDaC

Poznámka: Tento druh gramatik bývá též označován jako
gramatiky typu 0, neomezené gramatiky či obecné gramatiky.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 272 / 674

Generativńı gramatiky

Předpokládejme, že máme dánu generativńı gramatiku G = (Π,Σ, S ,P).
Relace ⇒⊆ (Π ∪ Σ)∗ × (Π ∪ Σ)∗:

µ1αµ2 ⇒ µ1βµ2 pokud α → β je pravidlo v P

Př́ıklad: Jestliže (BcE → DDaBb) ∈ P , pak

CaBCBcEAccABb ⇒ CaBCDDaBbAccABb

Jazyk L(G) generovaný gramatikou G = (Π,Σ, S ,P) je množina všech
slov v abecedě Σ, která lze odvodit nějakou derivaćı z počátečńıho
neterminálu S pomoćı pravidel z P , tj.

L(G) = {w ∈ Σ
∗ ∣ S ⇒

∗
w}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 273 / 674

Generativńı gramatiky

Předpokládejme, že máme dánu generativńı gramatiku G = (Π,Σ, S ,P).
Relace ⇒⊆ (Π ∪ Σ)∗ × (Π ∪ Σ)∗:

µ1αµ2 ⇒ µ1βµ2 pokud α → β je pravidlo v P

Př́ıklad: Jestliže (BcE → DDaBb) ∈ P , pak

CaBCBcEAccABb ⇒ CaBCDDaBbAccABb

Jazyk L(G) generovaný gramatikou G = (Π,Σ, S ,P) je množina všech
slov v abecedě Σ, která lze odvodit nějakou derivaćı z počátečńıho
neterminálu S pomoćı pravidel z P , tj.

L(G) = {w ∈ Σ
∗ ∣ S ⇒

∗
w}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 273 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

⇒ aaaaabbccQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

⇒ aaaaabbccQQQ

⇒ aaaaabbcQcQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

⇒ aaaaabbccQQQ

⇒ aaaaabbcQcQQ

⇒ aaaaabbQccQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

⇒ aaaaabbccQQQ

⇒ aaaaabbcQcQQ

⇒ aaaaabbQccQQ

⇒ aaaaabbbcccQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

⇒ aaaaabbccQQQ

⇒ aaaaabbcQcQQ

⇒ aaaaabbQccQQ

⇒ aaaaabbbcccQQ

⇒ aaaaabbbccQcQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

⇒ aaaaabbccQQQ

⇒ aaaaabbcQcQQ

⇒ aaaaabbQccQQ

⇒ aaaaabbbcccQQ

⇒ aaaaabbbccQcQ

⇒ aaaaabbbcQccQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

⇒ aaaaabbccQQQ

⇒ aaaaabbcQcQQ

⇒ aaaaabbQccQQ

⇒ aaaaabbbcccQQ

⇒ aaaaabbbccQcQ

⇒ aaaaabbbcQccQ

⇒ aaaaabbbQcccQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

⇒ aaaaabbccQQQ

⇒ aaaaabbcQcQQ

⇒ aaaaabbQccQQ

⇒ aaaaabbbcccQQ

⇒ aaaaabbbccQcQ

⇒ aaaaabbbcQccQ

⇒ aaaaabbbQcccQ

⇒ aaaaabbbbccccQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

⇒ aaaaabbccQQQ

⇒ aaaaabbcQcQQ

⇒ aaaaabbQccQQ

⇒ aaaaabbbcccQQ

⇒ aaaaabbbccQcQ

⇒ aaaaabbbcQccQ

⇒ aaaaabbbQcccQ

⇒ aaaaabbbbccccQ

⇒ aaaaabbbbcccQc

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabcQQQQ

⇒ aaaaabQcQQQ

⇒ aaaaabbccQQQ

⇒ aaaaabbcQcQQ

⇒ aaaaabbQccQQ

⇒ aaaaabbbcccQQ

⇒ aaaaabbbccQcQ

⇒ aaaaabbbcQccQ

⇒ aaaaabbbQcccQ

⇒ aaaaabbbbccccQ

⇒ aaaaabbbbcccQc

⇒ aaaaabbbbccQcc

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbcQccc ⇒ aaaaabbQccQQ

⇒ aaaaabbbcccQQ

⇒ aaaaabbbccQcQ

⇒ aaaaabbbcQccQ

⇒ aaaaabbbQcccQ

⇒ aaaaabbbbccccQ

⇒ aaaaabbbbcccQc

⇒ aaaaabbbbccQcc

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbcQccc

⇒ aaaaabbbbQcccc

⇒ aaaaabbQccQQ

⇒ aaaaabbbcccQQ

⇒ aaaaabbbccQcQ

⇒ aaaaabbbcQccQ

⇒ aaaaabbbQcccQ

⇒ aaaaabbbbccccQ

⇒ aaaaabbbbcccQc

⇒ aaaaabbbbccQcc

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Generativńı gramatiky

Př́ıklad: Gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abc

cQ → Qc

bQc → bbcc

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbcQccc

⇒ aaaaabbbbQcccc

⇒ aaaaabbbbbccccc

⇒ aaaaabbQccQQ

⇒ aaaaabbbcccQQ

⇒ aaaaabbbccQcQ

⇒ aaaaabbbcQccQ

⇒ aaaaabbbQcccQ

⇒ aaaaabbbbccccQ

⇒ aaaaabbbbcccQc

⇒ aaaaabbbbccQcc

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 274 / 674

Kontextové gramatiky

Kontextové gramatiky, označované též jako gramatiky typu 1, jsou
speciálńım p̌ŕıpadem generativńıch gramatik.

Gramatika G = (Π,Σ, S ,P) se nazývá kontextová, jestliže všechna jej́ı
pravidla (s jednou ńıže uvedenou výjimkou) jsou tvaru

αXβ → αγβ

kde X ∈ Π, α, β, γ ∈ (Π ∪ Σ)∗, p̌ričemž ∣γ∣ ≥ 1.

Jedinou výjimkou je, že gramatika G může obsahovat pravidlo S → ε.

Pokud toto pravidlo obsahuje, nesḿı se počátečńı nerminál S vyskytovat
na pravé straně žádného pravidla.

Př́ıklad pravidla:

BaEC → BaDAcBC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 275 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

⇒ aaaaabbXQCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

S ⇒ aSQ

⇒ aaSQQ

⇒ aaaSQQQ

⇒ aaaaSQQQQ

⇒ aaaaabCQQQQ

⇒ aaaaabXQQQQ

⇒ aaaaabXYQQQ

⇒ aaaaabQYQQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

⇒ aaaaabbXQCQQ

⇒ aaaaabbXYCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ ⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

⇒ aaaaabbXQCQQ

⇒ aaaaabbXYCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

⇒ aaaaabbXQCQQ

⇒ aaaaabbXYCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

⇒ aaaaabbXQCQQ

⇒ aaaaabbXYCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

⇒ aaaaabbXQCQQ

⇒ aaaaabbXYCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

⇒ aaaaabbXQCQQ

⇒ aaaaabbXYCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

⇒ aaaaabbXQCQQ

⇒ aaaaabbXYCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabbbCCQCQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

⇒ aaaaabbXQCQQ

⇒ aaaaabbXYCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabbbCCQCQ

⇒ aaaaabbbCXQCQ

⇒ aaaaabQCQQQ

⇒ aaaaabbCCQQQ

⇒ aaaaabbCXQQQ

⇒ aaaaabbCXYQQ

⇒ aaaaabbCQYQQ

⇒ aaaaabbCQCQQ

⇒ aaaaabbXQCQQ

⇒ aaaaabbXYCQQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabbbCCQCQ

⇒ aaaaabbbCXQCQ

⇒ aaaaabbbCXYCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabbbCCQCQ

⇒ aaaaabbbCXQCQ

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabbbCCQCQ

⇒ aaaaabbbCXQCQ

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabbbCCQCQ

⇒ aaaaabbbCXQCQ

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabbbCCQCQ

⇒ aaaaabbbCXQCQ

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabbbCCQCQ

⇒ aaaaabbbCXQCQ

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabbbCCQCQ

⇒ aaaaabbbCXQCQ

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

⇒ aaaaabbbQCCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbQYCQQ

⇒ aaaaabbQCCQQ

⇒ aaaaabbbCCCQQ

⇒ aaaaabbbCCXQQ

⇒ aaaaabbbCCXYQ

⇒ aaaaabbbCCQYQ

⇒ aaaaabbbCCQCQ

⇒ aaaaabbbCXQCQ

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

⇒ aaaaabbbQCCCQ

⇒ aaaaabbbbCCCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ ⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

⇒ aaaaabbbQCCCQ

⇒ aaaaabbbbCCCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

⇒ aaaaabbbQCCCQ

⇒ aaaaabbbbCCCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

⇒ aaaaabbbQCCCQ

⇒ aaaaabbbbCCCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

⇒ aaaaabbbQCCCQ

⇒ aaaaabbbbCCCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

⇒ aaaaabbbQCCCQ

⇒ aaaaabbbbCCCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

⇒ aaaaabbbQCCCQ

⇒ aaaaabbbbCCCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

⇒ aaaaabbbQCCCQ

⇒ aaaaabbbbCCCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

⇒ aaaaabbbCXYCQ

⇒ aaaaabbbCQYCQ

⇒ aaaaabbbCQCCQ

⇒ aaaaabbbXQCCQ

⇒ aaaaabbbXYCCQ

⇒ aaaaabbbQYCCQ

⇒ aaaaabbbQCCCQ

⇒ aaaaabbbbCCCCQ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

⇒ aaaaabbbbCXQCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

⇒ aaaaabbbbXQCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

⇒ aaaaabbbbXQCCC

⇒ aaaaabbbbXYCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

⇒ aaaaabbbbXQCCC

⇒ aaaaabbbbXYCCC

⇒ aaaaabbbbQYCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbCCCXQ

⇒ aaaaabbbbCCCXY

⇒ aaaaabbbbCCCQY

⇒ aaaaabbbbCCCQC

⇒ aaaaabbbbCCXQC

⇒ aaaaabbbbCCXYC

⇒ aaaaabbbbCCQYC

⇒ aaaaabbbbCCQCC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

⇒ aaaaabbbbXQCCC

⇒ aaaaabbbbXYCCC

⇒ aaaaabbbbQYCCC

⇒ aaaaabbbbQCCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbbCCCCC ⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

⇒ aaaaabbbbXQCCC

⇒ aaaaabbbbXYCCC

⇒ aaaaabbbbQYCCC

⇒ aaaaabbbbQCCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbbCCCCC

⇒ aaaaabbbbbcCCCC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

⇒ aaaaabbbbXQCCC

⇒ aaaaabbbbXYCCC

⇒ aaaaabbbbQYCCC

⇒ aaaaabbbbQCCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbbCCCCC

⇒ aaaaabbbbbcCCCC

⇒ aaaaabbbbbccCCC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

⇒ aaaaabbbbXQCCC

⇒ aaaaabbbbXYCCC

⇒ aaaaabbbbQYCCC

⇒ aaaaabbbbQCCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbbCCCCC

⇒ aaaaabbbbbcCCCC

⇒ aaaaabbbbbccCCC

⇒ aaaaabbbbbcccCC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

⇒ aaaaabbbbXQCCC

⇒ aaaaabbbbXYCCC

⇒ aaaaabbbbQYCCC

⇒ aaaaabbbbQCCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbbCCCCC

⇒ aaaaabbbbbcCCCC

⇒ aaaaabbbbbccCCC

⇒ aaaaabbbbbcccCC

⇒ aaaaabbbbbccccC

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

⇒ aaaaabbbbXQCCC

⇒ aaaaabbbbXYCCC

⇒ aaaaabbbbQYCCC

⇒ aaaaabbbbQCCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Kontextové gramatiky

Př́ıklad: Kontextová gramatika generuj́ıćı jazyk L = {anbncn ∣ n ≥ 1}
S → aSQ

S → abC

bQC → bbCC

C → c

CQ → XQ

XQ → XY

XY → QY

QY → QC

Derivace slova aaaaabbbbbccccc :

⇒ aaaaabbbbbCCCCC

⇒ aaaaabbbbbcCCCC

⇒ aaaaabbbbbccCCC

⇒ aaaaabbbbbcccCC

⇒ aaaaabbbbbccccC

⇒ aaaaabbbbbccccc

⇒ aaaaabbbbCXQCC

⇒ aaaaabbbbCXYCC

⇒ aaaaabbbbCQYCC

⇒ aaaaabbbbCQCCC

⇒ aaaaabbbbXQCCC

⇒ aaaaabbbbXYCCC

⇒ aaaaabbbbQYCCC

⇒ aaaaabbbbQCCCC

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 276 / 674

Bezkontextové gramatiky

Daľśım speciálńım typem generativńıch gramatik jsou bezkontextové
gramatiky.

Bezkontextové gramatiky jsou označovány též jako gramatiky typu 2.

Gramatika G = (Π,Σ, S ,P) se nazývá bezkontextová, jestliže všechna jej́ı
pravidla jsou tvaru

X → γ

kde X ∈ Π, γ ∈ (Π ∪ Σ)∗.
Př́ıklad pravidla:

C → DaBBc

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 277 / 674

Bezkontextové gramatiky

Poznámka: Ne každá bezkontextová gramatika je kontextová, protože
bezkontextová gramatika může obsahovat i jiná ε-pravidla (tj. pravidla
tvaru X → ε) než S → ε.

Libovolná bezkontextová gramatika bez ε-pravidel (resp. nanejvýš s jedńım
ε-pravidlem S → ε, p̌ričemž se neterminál S nenacháźı na pravé straně
žádného pravidla) je speciálńım p̌ŕıpadem kontextové gramatiky.

Ke každé bezkontextové gramatice G je možné sestrojit ekvivalentńı
bezkontextovou gramatiku bez ε-pravidel.

Ke každé bezkontextové gramatice tedy existuje ekvivalentńı kontextová
gramatika.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 278 / 674

Regulárńı gramatiky

Připomeňme, že gramatika je pravá (resp. levá) regulárńı gramatika,
jestliže všechna jej́ı pravidla jsou následuj́ıćıch dvou tvar̊u:

A → wB (resp. A → Bw)

A → w

kde A,B ∈ Π, w ∈ Σ
∗
.

Gramatika je regulárńı, jestliže se jedná o pravou nebo levou regulárńı
gramatiku.

Regularńı gramatiky jsou označovány jako gramatiky typu 3.

Je zjevné, že regulárńı gramatiky jsou speciálńım p̌ŕıpadem
bezkontextových gramatik.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 279 / 674

Chomského hierarchie

Podle tvaru pravidel, která jsou v gramatice povolena, je tedy možné
rozdělit gramatiky na následuj́ıćı čty̌ri typy:

Typ 0 — obecné generativńı gramatiky

pravidla bez omezeńı

Typ 1 — kontextové gramatiky

pravidla tvaru αXβ → αγβ, kde ∣γ∣ ≥ 1
(Výjimka S → ε, ale S pak neńı na pravé straně žádného pravidla.)

Typ 2 — bezkontextové gramatiky

pravidla tvaru X → γ

Typ 3 — regulárńı gramatiky

pravidla tvaru X → wY (resp. X → Yw) nebo X → w

kde α, β, γ ∈ (Π ∪ Σ)∗, X ∈ Π a w ∈ Σ
∗

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 280 / 674

Chomského hierarchie

Jednotlivým typům gramatik odpov́ıdaj́ı jednotlivé typy jazyk̊u:

Typ 0: Jazyk L je rekurzivně spočetný (či typu 0),
jestliže existuje generativńı gramatika, která tento jazyk generuje.

Typ 1: Jazyk L je kontextový (či typu 1),
jestliže existuje kontextová gramatika, která tento jazyk generuje.

Typ 2: Jazyk L je bezkontextový (či typu 2),
jestliže existuje bezkontextová gramatika, která tento jazyk generuje.

Typ 3: Jazyk L je regulárńı (či typu 3),
jestliže existuje regulárńı gramatika, která tento jazyk generuje.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 281 / 674

Chomského hierarchie

Tř́ıdy jazyk̊u:

typu 0

kontextové

bezkontextové

regulárńı

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 282 / 674

Chomského hierarchie

Př́ıklad jazyka, který je bezkontextový, ale neńı regulárńı:{anbn ∣ n ≥ 1}
Př́ıklad jazyka, který je kontextový, ale neńı bezkontextový:{anbncn ∣ n ≥ 1}

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 283 / 674

Chomského hierarchie

Př́ıklady jazyk̊u, které jsou typu 0, ale nejsou kontextové:

Jazyk tvǒrený slovy, která reprezentuj́ı logicky platné formule
predikátové logiky.

Jazyk tvǒrený slovy, která reprezentuj́ı kódy těch Turingových stroj̊u,
které p̌ri výpočtu nad prázdným slovem po konečném počtu krok̊u
zastav́ı.

Př́ıklady jazyk̊u, které nejsou typu 0:

Jazyk tvǒrený slovy, která reprezentuj́ı právě ty formule predikátové
logiky, které nejsou logicky platné.

Jazyk tvǒrený slovy, která reprezentuj́ı kódy těch Turingových stroj̊u,
které p̌ri výpočtu nad prázdným slovem nikdy nezastav́ı.

Jazyk tvǒrený slovy, která reprezentuj́ı kódy těch Turingových stroj̊u,
které p̌ri výpočtu nad libovolným slovem vždy po konečném počtu
krok̊u zastav́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 284 / 674

Chomského hierarchie

Daľśı možné charakterizace regulárńıch jazyk̊u:

jazyky p̌rij́ımané konečnými automaty (deterministickými,
nedeterministickými, zobecněnými nedeterministickými)

jazyky, které je možné popsat pomoćı regulárńıch výraz̊u

Daľśı možná charakterizace bezkontextových jazyk̊u:

jazyky p̌rij́ımané nedeterministickými zásobńıkovými automaty

Daľśı možná charakterizace kontextových jazyk̊u:

jazyky p̌rij́ımané nedeterministickými lineárně omezenými automaty

Daľśı možná charakterizace jazyk̊u typu 0:

jazyky p̌rij́ımané (deterministickými či nedeterministickými)
Turingovými stroji

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 285 / 674

Chomského hierarchie

Chomského hierarchie — shrnut́ı:

Typ 0 — rekurzivně spočetné jazyky:

obecné generativńı gramatiky
Turingovy stroje (deterministické, nedeterministické)

Typ 1 — kontextové jazyky:

kontextové gramatiky
nedeterministické lineárně omezené automaty

Typ 2 — bezkontextové jazyky:

bezkontextové gramatiky
nedeterministické zásobńıkové automaty

Typ 3 — regulárńı jazyky:

regulárńı gramatiky
konečné automaty (deterministické, nedeterministické)
regulárńı výrazy

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 286 / 674

Výpočetńı modely

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 287 / 674

Výpočet algoritmu

Algoritmy jsou vykonávány stroji — může to být nap̌ŕıklad:

skutečný poč́ıtač — vykonává instrukce strojového kódu

virtuálńı stroj — vykonává instrukce bytekódu

nějaký idealizovaný matematický model poč́ıtače

. . .

Stroj může být:

jednoúčelový — vykonává jen jeden algoritmus

obecněǰśı — algoritmus dostává ve formě programu

Stroj pracuje po kroćıch.

Algoritmus během výpočtu zpracovává konkrétńı vstup a produkuje
p̌ŕıslušný výstup.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 288 / 674

Výpočetńı modely

Výpočetńı model — nějaký idealizovaný matematický model poč́ıtače

abstrahujeme od r̊uzných nepodstatných implementačńıch detail̊u

chceme analyzovat ty vlastnosti algoritmů, které pokud možno co
nejméně záviśı na detailech stroje, který bude daný algoritmus
vykonávat

Př́ıklady některých výpočetńıch model̊u:

konečné automaty

zásobńıkové automaty

Turingovy stroje

stroje RAM

. . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 289 / 674

Výpočetńı modely

Během výpočtu si stroj typicky muśı pamatovat:

která instrukce se právě provád́ı

obsah své pracovńı paměti

Podle typu stroje je určeno:

s jakým typem dat stroj pracuje

jak jsou tato data v paměti organizována

jaké operace s těmito daty může stroj vykonávat

Podle typu algoritmu a typu analýzy, kterou chceme provádět, se můžeme
rozhodnout, zda má smysl mezi obsah paměti zahranout i ḿısta

odkud se čtou vstupńı data

kam se zapisuj́ı výstupńı data

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 290 / 674

Výpočetńı modely

Jedńım z využit́ı výpočetńıch model̊u je to, že mohou sloužit pro p̌resné
definováńı pojmů, důležitých pro stanoveńı výpočetńı složitosti daného
algoritmu:

doby výpočtu daného algoritmu A pro daný vstup w

(pozn.: věťsinou je to počet krok̊u vykonaných strojem během
výpočtu)

množstv́ı použité paměti během tohoto výpočtu

Obecně je pro r̊uzné výpočetńı modely také důležité

zda je daný typ stroje schopen simulovat výpočty nějakého jiného
typu stroje

jak se p̌ri této simulaci lǐśı doba výpočtu či množstv́ı použité paměti
oproti původńımu stroji

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 291 / 674

Simulace výpočtu

Vysvětleńı toho, co to znamená, že stroj M je simulován strojem M
′
:

Výpočet stroje M pro vstup w je (konečná nebo nekonečná)
posloupnost konfiguraćı stroje M

α0 ⟶ α1 ⟶ α2 ⟶⋯

Tomuto výpočtu odpov́ıdá výpočet stroje M
′
tvǒrený konfiguracemi

β0 ⟶ β1 ⟶ β2 ⟶⋯

kde každé konfiguraci αi odpov́ıdá nějaká konfigurace βf (i), kde
f ∶ N → N je funkce, pro kterou plat́ı f (i) ≤ f (j) pro každé i a j , kde
i < j .

Existuje relace mezi vzájemně si odpov́ıdaj́ıćımi konfiguracemi
stroje M a jim odpov́ıdaj́ıćımi konfiguracemi stroje M

′
.

Existuj́ı funkce mapuj́ıćı vstup w na odpov́ıdaj́ıćı počátečńı
konfigurace α0 a β0 a analogicky funkce mapuj́ıćı koncové konfigurace
na výsledek výpočtu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 292 / 674

Simulace výpočtu

M M
′

α0

α1

α2

α3

α4

β0

β1

β2

β3

β4

β5

β6

β7

β8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 293 / 674

Výpočetńı modely

Některé výpočetńı modely jsou slabš́ı (konečné automaty, zásobńıkové
automaty, . . .) a neńı pomoćı nich možné implementovat libovolný
algoritmus.

My se ted’ zamě̌ŕıme na výpočetńı modely, které jsou dostatečně silné na
to, aby byly schopny vykonávat libovolný algoritmus (nap̌r. takový, jaký je
možné zapsat jako program v nějakém programovaćım jazyce).

Takovým výpočetńım model̊um se ř́ıká Turingovsky úplné:

samy jsou schopny simulovat činnost libovolného Turingova stroje

jejich činnost může být simulována Turingovým strojem

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 294 / 674

Oboustranně nekonečná páska pomoćı jednostranné

Oboustranně nekonečná páska:

q5

⋯⋯ □ □ □ a d b b a b c a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranně nekonečná páska:

q5 ↑

⋯
b a b c a b □

$ b d a □ □ □

0 1 2 3 4 5 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 295 / 674

Oboustranně nekonečná páska pomoćı jednostranné

Oboustranně nekonečná páska:

q8

⋯⋯ □ □ □ a d b b a b d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranně nekonečná páska:

q8 ↑

⋯
b a b d a b □

$ b d a □ □ □

0 1 2 3 4 5 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 295 / 674

Oboustranně nekonečná páska pomoćı jednostranné

Oboustranně nekonečná páska:

q14

⋯⋯ □ □ □ a d b b a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranně nekonečná páska:

q14 ↑

⋯
b a c d a b □

$ b d a □ □ □

0 1 2 3 4 5 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 295 / 674

Oboustranně nekonečná páska pomoćı jednostranné

Oboustranně nekonečná páska:

q14

⋯⋯ □ □ □ a d b b a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranně nekonečná páska:

q14 ↑

⋯
b a c d a b □

$ b d a □ □ □

0 1 2 3 4 5 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 295 / 674

Oboustranně nekonečná páska pomoćı jednostranné

Oboustranně nekonečná páska:

q7

⋯⋯ □ □ □ a d b c a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranně nekonečná páska:

q7 ↓

⋯
c a c d a b □

$ b d a □ □ □

0 1 2 3 4 5 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 295 / 674

Oboustranně nekonečná páska pomoćı jednostranné

Oboustranně nekonečná páska:

q7

⋯⋯ □ □ □ a d b c a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranně nekonečná páska:

q7 ↓

⋯
c a c d a b □

$ b d a □ □ □

0 1 2 3 4 5 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 295 / 674

Oboustranně nekonečná páska pomoćı jednostranné

Oboustranně nekonečná páska:

q19

⋯⋯ □ □ □ a a b c a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranně nekonečná páska:

q19 ↓

⋯
c a c d a b □

$ b a a □ □ □

0 1 2 3 4 5 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 295 / 674

Oboustranně nekonečná páska pomoćı jednostranné

Oboustranně nekonečná páska:

q19

⋯⋯ □ □ □ a a b c a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranně nekonečná páska:

q19 ↓

⋯
c a c d a b □

$ b a a □ □ □

0 1 2 3 4 5 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 295 / 674

Oboustranně nekonečná páska pomoćı jednostranné

Oboustranně nekonečná páska:

q19

⋯⋯ □ □ □ a a b b a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranně nekonečná páska:

q19 ↑

⋯
b a c d a b □

$ b a a □ □ □

0 1 2 3 4 5 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 295 / 674

Oboustranně nekonečná páska pomoćı jednostranné

Oboustranně nekonečná páska:

q19

⋯⋯ □ □ □ a a b b a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranně nekonečná páska:

q19 ↑

⋯
b a c d a b □

$ b a a □ □ □

0 1 2 3 4 5 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 295 / 674

Abeceda {0, 1}
Činnost stroje s libovolnou páskovou abecedou Γ může být simulována
strojem s páskovou abecedou {0, 1}.
Stač́ı zvolit nějaké vhodné kódováńı symbol̊u abecedy Γ pomoćı k-bitových
sekvenćı.

Př́ıklad: Pásková abeceda Γ = {□, a, b, c, d, e, f, g}
□ ↔ 000
a ↔ 001
b ↔ 010
c ↔ 011
d ↔ 100
e ↔ 101
f ↔ 110
g ↔ 111

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 296 / 674

Abeceda {0, 1}
Stroj s páskovou abecedou Γ:

q7

⋯⋯ f c a e d b c f d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)
δ(q12, f) = (q5, b,−1)

Stroj s abecedou {0, 1}:

q7 011

⋯⋯ 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0

7 8 10 11 12

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 297 / 674

Abeceda {0, 1}
Stroj s páskovou abecedou Γ:

q12

⋯⋯ f c a e d b a f d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)
δ(q12, f) = (q5, b,−1)

Stroj s abecedou {0, 1}:

q12
001; ε
right

⋯⋯ 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0

7 8 10 11 12

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 297 / 674

Abeceda {0, 1}
Stroj s páskovou abecedou Γ:

q12

⋯⋯ f c a e d b a f d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)
δ(q12, f) = (q5, b,−1)

Stroj s abecedou {0, 1}:

q12
01; 1
right

⋯⋯ 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0

7 8 9-10 11 12

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 297 / 674

Abeceda {0, 1}
Stroj s páskovou abecedou Γ:

q12

⋯⋯ f c a e d b a f d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)
δ(q12, f) = (q5, b,−1)

Stroj s abecedou {0, 1}:

q12
1; 11
right

⋯⋯ 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0

7 8 9-10 11 12

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 297 / 674

Abeceda {0, 1}
Stroj s páskovou abecedou Γ:

q12

⋯⋯ f c a e d b a f d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)
δ(q12, f) = (q5, b,−1)

Stroj s abecedou {0, 1}:

q12 110

⋯⋯ 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0

7 8 9 11 12

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 297 / 674

Abeceda {0, 1}
Stroj s páskovou abecedou Γ:

q5

⋯⋯ f c a e d b a b d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)
δ(q12, f) = (q5, b,−1)

Stroj s abecedou {0, 1}:

q5
ε; 010
left

⋯⋯ 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0

7 8 9 11 12

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 297 / 674

Abeceda {0, 1}
Stroj s páskovou abecedou Γ:

q5

⋯⋯ f c a e d b a b d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)
δ(q12, f) = (q5, b,−1)

Stroj s abecedou {0, 1}:

q5
1; 01
left

⋯⋯ 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0

7 8 9-10 11 12

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 297 / 674

Abeceda {0, 1}
Stroj s páskovou abecedou Γ:

q5

⋯⋯ f c a e d b a b d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)
δ(q12, f) = (q5, b,−1)

Stroj s abecedou {0, 1}:

q5
01; 0
left

⋯⋯ 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0

7 8 9-10 11 12

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 297 / 674

Abeceda {0, 1}
Stroj s páskovou abecedou Γ:

q5

⋯⋯ f c a e d b a b d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)
δ(q12, f) = (q5, b,−1)

Stroj s abecedou {0, 1}:

q5 001

⋯⋯ 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0

7 8 10 11 12

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 297 / 674

Abeceda {0, 1}

Při výše uvedené simulaci je jeden krok původńıho stroje simulován
k + 1 kroky, kde k je počet bit̊u kóduj́ıćı jeden symbol abecedy Γ.

Pokud tedy původńı stroj provede během výpočtu t krok̊u, simuluj́ıćı stroj
provede O(t) krok̊u.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 298 / 674

Zmenšeńı počtu stav̊u ř́ıd́ıćı jednotky

Poznámka: Tak, jako je možné zmenšit páskovou abecedu na pouhé dva
symboly za cenu nár̊ustu velikosti počtu stav̊u ř́ıd́ıćı jednotky, je rovněž
možné sńıžit počet stav̊u ř́ıd́ıćı jednotky:

Činnost libovolného Turingova stroje je možné simulovat Turingovým
strojem, který má pouze dva nekoncové stavy ř́ıd́ıćı jednotky
(a p̌ŕıpadně nějaké koncové stavy), ovšem za cenu nár̊ustu velikosti
páskové abecedy.

Podobně jako v p̌redchoźım p̌ŕıpadě je jeden krok původńıho stroje
simulován s kroky, kde s je konstanta závisej́ıćı pouze na počtu stav̊u ř́ıd́ıćı
jednotky původńıho stroje (tj. na velikosti množiny Q).

Opět zde tedy plat́ı, že pokud původńı stroj provede během výpočtu
t krok̊u, simuluj́ıćı stroj provede O(t) krok̊u.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 299 / 674

Simulace v́ıce hlav na pásce pomoćı jedné

V́ıce hlav na pásce:

431 2

⋯⋯ □ □ □ a b a b b a a b □ □ □ □

Páska s jednou hlavou:

⋯⋯ $ □ □ a b a b b a a b □ $ □ □

4
▼

3
▼

2
▼

1
▼

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 300 / 674

Simulace v́ıce pásek pomoćı jedné

V́ıce pásek:

□ □ a a b a b b □

1 1 1 0 1 1 0 0 1

0 # 0 1 0 # □ □ □

Jedna páska s v́ıce hlavami:

12 3

□ □ a a b a b b □

1 1 1 0 1 1 0 0 1
0 # 0 1 0 # □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 301 / 674

Simulace v́ıce pásek pomoćı jedné

V́ıce pásek:

□ □ a a b a b b □

1 1 1 0 1 1 0 0 1

0 # 0 1 0 # □ □ □

Jedna páska s jednou hlavou: varianta, kde se posunuj́ı značky hlav

□ □ a a b a b b □

1 1 1 0 1 1 0 0 1

0 # 0 1 0 # □ □ □

▼

▼

▼

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 301 / 674

Simulace v́ıce pásek pomoćı jedné

V́ıce pásek:

□ □ a a b a b b □

1 1 1 0 1 1 0 0 1

0 # 0 1 0 # □ □ □

Jedna páska s jednou hlavou: varianta, kde se posunuj́ı obsahy pásek

□ □ □ $ a a b a b b $

□ $ 0 0 1 1 1 0 1 1 0
0 1 0 # □ $ □ □ □ □

▼

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 301 / 674

Pásky, zásobńıky a č́ıtače

Můžeme uvažovat r̊uzné stroje, které maj́ı konečnou ř́ıd́ıćı jednotku
doplněnou o nějaký druh neomezeně velké paměti.

Tato pamět’ může být tvǒrena jednou nebo v́ıce strukturami, jako jsou
ťreba:

Páska — čteńı a zápis symbolu na aktuálńı pozici, posun hlavy
doleva a doprava

Poznámka: Páska může být jednostranně nebo oboustranně
nekonečná.

Zásobńık — push, pop, test prázdnosti zásobńıku

Č́ıtač — hodnotou je p̌rirozené č́ıslo, operace p̌ričteńı nebo odečteńı
hodnoty jedna, test rovnosti nule

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 302 / 674

Zásobńık

Na zásobńık je možné se d́ıvat jako na speciálńı p̌ŕıpad jednostranně
nekonečné pásky.

Zásobńık:

⊢ c b a c a a b

Páska:

⋯⊢ c b a c a a b □ □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 303 / 674

Zásobńık

Na zásobńık je možné se d́ıvat jako na speciálńı p̌ŕıpad jednostranně
nekonečné pásky.

Zásobńık:

⊢ c b a c a a b a

Páska:

⋯⊢ c b a c a a b a □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 303 / 674

Zásobńık

Na zásobńık je možné se d́ıvat jako na speciálńı p̌ŕıpad jednostranně
nekonečné pásky.

Zásobńık:

⊢ c b a c a a b

Páska:

⋯⊢ c b a c a a b □ □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 303 / 674

Zásobńık

Na zásobńık je možné se d́ıvat jako na speciálńı p̌ŕıpad jednostranně
nekonečné pásky.

Zásobńık:

⊢ c b a c a a

Páska:

⋯⊢ c b a c a a □ □ □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 303 / 674

Zásobńık

Na zásobńık je možné se d́ıvat jako na speciálńı p̌ŕıpad jednostranně
nekonečné pásky.

Zásobńık:

⊢ c b a c a

Páska:

⋯⊢ c b a c a □ □ □ □ □ □ □

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 303 / 674

Zásobńık

Oboustranně nekonečnou pásku je možné simulovat pomoćı dvou
zásobńık̊u:

q5

⋯⋯ □ c b a d a b a b c a □ □

Stroj se dvěma zásobńıky:

q5 d

⊢ c b a a b a b c a ⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 304 / 674

Zásobńık

Oboustranně nekonečnou pásku je možné simulovat pomoćı dvou
zásobńık̊u:

q7

⋯⋯ □ c b a c a b a b c a □ □

Stroj se dvěma zásobńıky:

q7 a

⊢ c b a c b a b c a ⊣

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 304 / 674

Č́ıtač

Č́ıtač — hodnotou č́ıtače může být libovolně velké p̌rirozené č́ıslo,
tj. prvek množiny N = {0, 1, 2, 3, . . .}.
Základńı operace:

zvýšeńı hodnoty o jedna:

x ∶= x + 1

sńıžeńı hodnoty o jedna:

x ∶= x − 1

test, jestli je hodnota č́ıtače nula:

if (x = 0) goto ℓ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 305 / 674

Č́ıtač

Na č́ıtač je možné se d́ıvat jako na speciálńı p̌ŕıpad zásobńıku či pásky.

Zásobńık:

⊢ I I I I I I I

Páska:

⋯⊢

Č́ıtač:

7

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 306 / 674

Č́ıtač

Na č́ıtač je možné se d́ıvat jako na speciálńı p̌ŕıpad zásobńıku či pásky.

Zásobńık:

⊢ I I I I I I I I

Páska:

⋯⊢

Č́ıtač:

8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 306 / 674

Č́ıtač

Na č́ıtač je možné se d́ıvat jako na speciálńı p̌ŕıpad zásobńıku či pásky.

Zásobńık:

⊢ I I I I I I I

Páska:

⋯⊢

Č́ıtač:

7

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 306 / 674

Č́ıtač

Na č́ıtač je možné se d́ıvat jako na speciálńı p̌ŕıpad zásobńıku či pásky.

Zásobńık:

⊢ I I I I I I

Páska:

⋯⊢

Č́ıtač:

6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 306 / 674

Č́ıtač

Na č́ıtač je možné se d́ıvat jako na speciálńı p̌ŕıpad zásobńıku či pásky.

Zásobńık:

⊢ I I I I I

Páska:

⋯⊢

Č́ıtač:

5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 306 / 674

Minského stroj

Minského stroj — stroj, který má konečnou ř́ıd́ıćı jednotku a konečný
počet č́ıtač̊u x1, x2, . . . , xk :

q5

70

x1

928

x2

14

x3

0

x4

1024

x5

0

x6

Poznámka: Pro označeńı č́ıtač̊u budeme kromě symbol̊u x1, x2, . . .

použ́ıvat také symboly jako x , y , z , . . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 307 / 674

Minského stroj

Na Minského stroj se můžeme d́ıvat jako na program tvǒrený posloupnost́ı
instrukćı následuj́ıćıch pěti typů:

zvýšeńı hodnoty daného č́ıtače o jedna:

xi ∶= xi + 1

sńıžeńı hodnoty daného č́ıtače o jedna:

xi ∶= xi − 1

test, jestli je hodnota daného č́ıtače nula:

if (xi = 0) goto ℓ

nepodḿıněný skok:

goto ℓ

zastaveńı programu:

halt
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 308 / 674

Minského stroj

Vynulováńı č́ıtače x :

� L1 ∶ if (x = 0) goto L2

x ∶= x − 1

goto L1

L2 ∶ . . .

3

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynulováńı č́ıtače x :

L1 ∶ if (x = 0) goto L2
� x ∶= x − 1

goto L1

L2 ∶ . . .

3

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynulováńı č́ıtače x :

L1 ∶ if (x = 0) goto L2

x ∶= x − 1
� goto L1

L2 ∶ . . .

2

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynulováńı č́ıtače x :

� L1 ∶ if (x = 0) goto L2

x ∶= x − 1

goto L1

L2 ∶ . . .

2

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynulováńı č́ıtače x :

L1 ∶ if (x = 0) goto L2
� x ∶= x − 1

goto L1

L2 ∶ . . .

2

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynulováńı č́ıtače x :

L1 ∶ if (x = 0) goto L2

x ∶= x − 1
� goto L1

L2 ∶ . . .

1

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynulováńı č́ıtače x :

� L1 ∶ if (x = 0) goto L2

x ∶= x − 1

goto L1

L2 ∶ . . .

1

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynulováńı č́ıtače x :

L1 ∶ if (x = 0) goto L2
� x ∶= x − 1

goto L1

L2 ∶ . . .

1

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynulováńı č́ıtače x :

L1 ∶ if (x = 0) goto L2

x ∶= x − 1
� goto L1

L2 ∶ . . .

0

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynulováńı č́ıtače x :

� L1 ∶ if (x = 0) goto L2

x ∶= x − 1

goto L1

L2 ∶ . . .

0

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynulováńı č́ıtače x :

L1 ∶ if (x = 0) goto L2

x ∶= x − 1

goto L1
� L2 ∶ . . .

0

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Přičteńı obsahu č́ıtače z k č́ıtači y (a vynulováńı č́ıtače z):

� L2 ∶ if (z = 0) goto L3

z ∶= z − 1

y ∶= y + 1

goto L1

L3 ∶ . . .

0

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Přičteńı obsahu č́ıtače z k č́ıtači y (a vynulováńı č́ıtače z):

L2 ∶ if (z = 0) goto L3
� z ∶= z − 1

y ∶= y + 1

goto L1

L3 ∶ . . .

0

x

14

y

2

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Přičteńı obsahu č́ıtače z k č́ıtači y (a vynulováńı č́ıtače z):

L2 ∶ if (z = 0) goto L3

z ∶= z − 1
� y ∶= y + 1

goto L1

L3 ∶ . . .

0

x

14

y

1

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Přičteńı obsahu č́ıtače z k č́ıtači y (a vynulováńı č́ıtače z):

L2 ∶ if (z = 0) goto L3

z ∶= z − 1

y ∶= y + 1
� goto L1

L3 ∶ . . .

0

x

15

y

1

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Přičteńı obsahu č́ıtače z k č́ıtači y (a vynulováńı č́ıtače z):

� L2 ∶ if (z = 0) goto L3

z ∶= z − 1

y ∶= y + 1

goto L1

L3 ∶ . . .

0

x

15

y

1

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Přičteńı obsahu č́ıtače z k č́ıtači y (a vynulováńı č́ıtače z):

L2 ∶ if (z = 0) goto L3
� z ∶= z − 1

y ∶= y + 1

goto L1

L3 ∶ . . .

0

x

15

y

1

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Přičteńı obsahu č́ıtače z k č́ıtači y (a vynulováńı č́ıtače z):

L2 ∶ if (z = 0) goto L3

z ∶= z − 1
� y ∶= y + 1

goto L1

L3 ∶ . . .

0

x

15

y

0

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Přičteńı obsahu č́ıtače z k č́ıtači y (a vynulováńı č́ıtače z):

L2 ∶ if (z = 0) goto L3

z ∶= z − 1

y ∶= y + 1
� goto L1

L3 ∶ . . .

0

x

16

y

0

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Přičteńı obsahu č́ıtače z k č́ıtači y (a vynulováńı č́ıtače z):

� L2 ∶ if (z = 0) goto L3

z ∶= z − 1

y ∶= y + 1

goto L1

L3 ∶ . . .

0

x

16

y

0

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Přičteńı obsahu č́ıtače z k č́ıtači y (a vynulováńı č́ıtače z):

L2 ∶ if (z = 0) goto L3

z ∶= z − 1

y ∶= y + 1

goto L1
� L3 ∶ . . .

0

x

16

y

0

z

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 309 / 674

Minského stroj

Vynásobeńı hodnoty č́ıtače x č́ıslem 5:

L1 ∶ if (x = 0) goto L2

x ∶= x − 1

y ∶= y + 1

y ∶= y + 1

y ∶= y + 1

y ∶= y + 1

y ∶= y + 1

goto L1

L2 ∶ if (y = 0) goto L3

y ∶= y − 1

x ∶= x + 1

goto L2

L3 ∶ . . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 310 / 674

Minského stroj

Vyděleńı hodnoty č́ıtače x č́ıslem 5 a zjǐstěńı zbytku po děleńı:

L1 ∶ if (x = 0) goto M0

x ∶= x − 1

if (x = 0) goto M1

x ∶= x − 1

if (x = 0) goto M2

x ∶= x − 1

if (x = 0) goto M3

x ∶= x − 1

if (x = 0) goto M4

x ∶= x − 1

y ∶= y + 1

goto L1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 310 / 674

Minského stroj

Zásobńık je možné simulovat pomoćı dvou č́ıtač̊u — hodnota jednoho
č́ıtače reprezentuje obsah zásobńıku jako č́ıslo, jehož zápis v č́ıselné
soustavě o základu k = ∣Γ∣ + 1 (kde Γ je zásobńıková abeceda) odpov́ıdá
obsahu zásobńıku.

Symbol na vrcholu zásobńıku — zbytek po děleńı č́ıslem k

Pop — vydělit č́ıslem k

Push — vynásobit č́ıslem k a p̌rič́ıst kód p̌ŕıslušného symbolu

Druhý č́ıtač slouž́ı jako pomocný p̌ri prováděńı výše uvedených operaćı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 311 / 674

Minského stroj

Př́ıklad:

a ↔ 1
b ↔ 2
c ↔ 3
d ↔ 4
e ↔ 5
f ↔ 6
g ↔ 7
h ↔ 8
i ↔ 9

f c e a c a h b

63513182

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 312 / 674

Minského stroj

Př́ıklad:

a ↔ 1
b ↔ 2
c ↔ 3
d ↔ 4
e ↔ 5
f ↔ 6
g ↔ 7
h ↔ 8
i ↔ 9

f c e a c a h b a

635131821

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 312 / 674

Minského stroj

Př́ıklad:

a ↔ 1
b ↔ 2
c ↔ 3
d ↔ 4
e ↔ 5
f ↔ 6
g ↔ 7
h ↔ 8
i ↔ 9

f c e a c a h b

63513182

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 312 / 674

Minského stroj

Př́ıklad:

a ↔ 1
b ↔ 2
c ↔ 3
d ↔ 4
e ↔ 5
f ↔ 6
g ↔ 7
h ↔ 8
i ↔ 9

f c e a c a h

6351318

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 312 / 674

Minského stroj

Př́ıklad:

a ↔ 1
b ↔ 2
c ↔ 3
d ↔ 4
e ↔ 5
f ↔ 6
g ↔ 7
h ↔ 8
i ↔ 9

f c e a c a

635131

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 312 / 674

Minského stroj

Připomeňme, že oboustranně nekonečnou pásku je možné simulovat
pomoćı dvou zásobńık̊u.

V Minského stroji může být obsah každého z těchto zásobńık̊u
reprezentován jemu odpov́ıdaj́ıćım č́ıtačem.

Nav́ıc poťrebujeme ještě jeden pomocný č́ıtač pro implementaci operaćı
násobeńı a děleńı na těchto č́ıtač́ıch reprezentuj́ıćıch obsahy zásobńık̊u.

Vid́ıme, že Turing̊uv stroj s k páskami je možné simulovat Minského
strojem s 2k + 1 č́ıtači.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 313 / 674

Minského stroj

Libovolný konečný počet č́ıtač̊u je možné simulovat pomoćı dvou č́ıtač̊u.

Jeden č́ıtač (označme jej C) reprezentuje hodnoty všech č́ıtač̊u —
nap̌r. hodnoty ťŕı č́ıtač̊u x , y , z mohou být v č́ıtači C reprezentovány
jako č́ıslo 2

x
3
y
5
z
.

Druhý č́ıtač je použ́ıván jako pomocný p̌ri prováděńı operaćı násobeńı
a děleńı na č́ıtači C .

Přičteńı jedničky k č́ıtači x je simulováno jako vynásobeńı č́ıtače C

hodnotou 2, p̌ričteńı jedničky k č́ıtači y jako vynásobeńı
hodnotou 3, atd.

Analogicky je odečteńı jedničky od č́ıtače x simulováno pomoćı
vyděleńı č́ıtače C hodnotou 2, odečteńı jedničky od č́ıtače y

vyděleńım hodnotou 3, atd.

Test podḿınky x = 0 odpov́ıdá testu, zda je hodnota C dělitelná
dvěmi, atd.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 314 / 674

Minského stroj

Vid́ıme, že činnost libovolného Turingova stroje je možné simulovat
Minského strojem s dvěma č́ıtači.

Tato simulace je však mimǒrádně neefektivńı:

Už simulace pásky Turingova stroje pomoćı ťŕı č́ıtač̊u vyžaduje
exponenciálně věťśı počet krok̊u, než kolik by jich vykonal tento
Turing̊uv stroj.

Simulace činnosti těchto ťŕı č́ıtač̊u pomoćı dvou č́ıtač̊u tento počet
krok̊u dále exponenciálně zvyšuje.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 315 / 674

Stroje RAM

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 316 / 674

Stroj RAM

Stroj RAM (Random Access Machine) je idealizovaný model poč́ıtače.

Skládá se z těchto část́ı:

Programová jednotka – obsahuje program stroje RAM a ukazatel na
právě prováděnou instrukci

Pracovńı pamět’ tvǒrená buňkami oč́ıslovanými 0, 1, 2, . . .

Tyto buňky buňky budeme označovat R0,R1,R2, . . .

Obsah buněk je možno č́ıst i do nich zapisovat.

Vstupńı páska – je z ńı možné pouze č́ıst

Výstupńı páska – je na ni možno pouze zapisovat

Buňky paměti i vstupńı a výstupńı pásky obsahuj́ı jako hodnoty celá č́ısla
(tj. prvky množiny Z).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 317 / 674

Stroj RAM

3

2

1

4

5

6

8

0

7

0

0

0

0

0

0

0

0

0

7 5 2 0

IP

ALU

11

10

0

2

5

9

8

7

6

4

3

1

vstup

výstup

pracovńı

pamět’

programová
jednotka

R0 ∶= 3

R1 ∶= R0

R2 ∶= read ()
if (R2 = 0) goto 10

[R1] ∶= R2

R1 ∶= R1 + 1

goto 2

R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)
if (R1 > R0) goto 7

halt

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 318 / 674

Stroj RAM

Přehled instrukćı:

Ri ∶= c – p̌rǐrazeńı konstanty

Ri ∶= Rj – p̌rǐrazeńı

Ri ∶= [Rj] – load (čteńı z paměti)[Ri] ∶= Rj – store (zápis do paměti)

Ri ∶= Rj op Rk – aritmetické instrukce, op ∈ {+,−,∗, /}
nebo Ri ∶= Rj op c

if (Ri rel Rj) goto ℓ – podḿıněný skok, rel ∈ {=,≠,≤,≥,<,>}
nebo if (Ri rel c) goto ℓ

goto ℓ – nepodḿıněný skok

Ri ∶= read () – čteńı ze vstupu

write (Ri) – zápis na výstup

halt – zastaveńı programu

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 319 / 674

Stroj RAM

Př́ıklady instrukćı:

R5 ∶= 42 – p̌rǐrazeńı konstanty

R12 ∶= R3 – p̌rǐrazeńı

R8 ∶= [R2] – load (čteńı z paměti)[R15] ∶= R9 – store (zápis do paměti)

R7 ∶= R3 + R6 – aritmetická instrukce

R18 ∶= R18 − 1 – aritmetická instrukce

if (R4 ≥ R1) goto 2801 – podḿıněný skok

if (R2 ≠ 0) goto 3581 – podḿıněný skok

goto 537 – nepodḿıněný skok

R23 ∶= read () – čteńı ze vstupu

write (R17) – zápis na výstup

halt – zastaveńı programu

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 320 / 674

Stroj RAM

� R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

?0

?1

?2

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3
� R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

?1

?2

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

� L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

31

?2

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
� if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

31

132

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3

� [R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

31

132

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

� R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

31

132

133

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1
� goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

41

132

133

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

� L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

41

132

133

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
� if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

41

-22

133

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3

� [R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

41

-22

133

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

� R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

41

-22

133

-24

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1
� goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

51

-22

133

-24

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

� L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

51

-22

133

-24

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
� if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

51

422

133

-24

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3

� [R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

51

422

133

-24

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

� R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

51

422

133

-24

425

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1
� goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

61

422

133

-24

425

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

� L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

61

422

133

-24

425

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
� if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3

� [R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

� R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

56

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1
� goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

71

52

133

-24

425

56

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

� L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

71

52

133

-24

425

56

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
� if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3

� [R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

� R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1
� goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

81

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

� L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

81

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
� if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

81

02

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt

30

81

02

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
� L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

81

02

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1
� R2 ∶= [R1]

write (R2)
L3 ∶ if (R1 > R0) goto L2

halt

30

71

02

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
� write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
� L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1
� R2 ∶= [R1]

write (R2)
L3 ∶ if (R1 > R0) goto L2

halt

30

61

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
� write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
� L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1
� R2 ∶= [R1]

write (R2)
L3 ∶ if (R1 > R0) goto L2

halt

30

51

52

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
� write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

51

422

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt

30

51

422

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
� L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

51

422

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1
� R2 ∶= [R1]

write (R2)
L3 ∶ if (R1 > R0) goto L2

halt

30

41

422

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
� write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

41

-22

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt

30

41

-22

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
� L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

41

-22

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1
� R2 ∶= [R1]

write (R2)
L3 ∶ if (R1 > R0) goto L2

halt

30

31

-22

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
� write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

31

132

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt

30

31

132

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2 13

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()
if (R2 = 0) goto L3[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
write (R2)

L3 ∶ if (R1 > R0) goto L2
� halt

30

31

132

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2 13

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 321 / 674

Stroj RAM

Rozd́ıly oproti skutečnému poč́ıtači:

Velikost paměti neńı omezena (adresa může být libovolné p̌rirozené
č́ıslo).

Velikost obsahu jednotlivých buněk neńı omezena (buňka může
obsahovat libovolné celé č́ıslo).

Čte data sekvenčně ze vstupu, který je tvǒren sekvenćı celých č́ısel.
Ze vstupu lze pouze č́ıst.

Zapisuje data sekvenčně na výstup, který je tvǒren sekvenćı celých
č́ısel. Na výstup je možné pouze zapisovat.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 322 / 674

Stroj RAM

Operace jako p̌ŕıstup k buňce paměti na adrese menš́ı než nula nebo
děleńı nulou vedou k chybě — výpočet se (neúspěšně) zastav́ı.

Co se týká počátečńıho obsahu paměti, jsou dvě možnosti, jak ho
definovat:

Všechny buňky jsou inicializovány hodnotou 0.

Čteńı obsahu buňky, do které nebylo dosud nic zapsáno, způsob́ı chybu.

Buňky na začátku obsahuj́ı speciálńı hodnotu (označenou zde
symbolem ‘?’), která reprezentuje to, že buňka nebyla dosud
inicializována.

Uvažuj́ı se i varianty stroj̊u RAM, kde buňky paměti (a vstupu
a výstupu) neobsahuj́ı celá č́ısla (tj. prvky množiny Z), ale mohou
obsahovat jen p̌rirozená č́ısla (tj. prvky množiny N).

Nap̌ŕıklad operace odč́ıtáńı (Ri ∶= Rj − Rk) se pak chová tak, že
pokud by výsledkem mělo být záporné č́ıslo, je jako výsledek operace
p̌rǐrazena hodnota 0.
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 323 / 674

Stroj RAM

Různé varianty stroj̊u RAM se mohou lǐsit t́ım, jaké konkrétńı operace
v aritmetických instrukćıch podporuj́ı nebo naopak nepodporuj́ı.

Nap̌ŕıklad:

podpora bitových operaćı (and, or, not, xor, . . .), bitový posunů, . . .

varianta stroje RAM, která nemá operace násobeńı a děleńı

Mohli bychom také uvažovat variantu stroje RAM, kde ḿısto instrukćı
tvaru

if (Ri rel Rj) goto ℓ nebo if (Ri rel c) goto ℓ

jsou všechny podḿıněné skoky jen tvaru

if (Ri rel 0) goto ℓ

Mı́sto všech relaćı {=,≠,≤,≥,<,>} může být podporována jen nějaká
podmnožina z nich, nap̌r. {=,>}.
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 324 / 674

Stroj RAM

V některých variantách stroje RAM nemaj́ı vstup a výstup podobu
sekvence č́ısel.

Mı́sto toho pracuje stroj z hlediska vstupu a výstupu s páskami
obsahuj́ıćımi sekvence symbol̊u z nějaké dané abecedy, nap̌r. {0, 1}.
Stroj má pak nap̌ŕıklad instrukce, které mu umožňuj́ı větvit výpočet
podle symbolu p̌rečteného ze vstupu.

Vniťrńı pamět’ ovšem i v této variantě pracuje s č́ısly.

Pokud má stroj jako výsledek dávat jen odpověd’ Ano/Ne (tj. p̌rijmout
nebo nep̌rijmout daný vstup), nemuśı ḿıt výstupńı pásku.

Instrukce halt je pak nahrazena instrukcemi accept a reject.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 325 / 674

Stroj RAM

Ve standardńı definici stroje RAM se věťsinou neuvažuj́ı instrukce
skoku na adresu instrukce uloženou v buňce paměti, tj. instrukce typu

goto Ri

Stroj RAM bychom mohli rozš́ı̌rit o tento druh instrukćı.

Jako standardńı se u stroje RAM bere to, že kód programu neńı
uložen v pracovńı paměti, ale má zvláštńı samostatnou pamět’, která
je jen pro čteńı.

V pr̊uběhu výpočtu se tedy kód programu nemůže měnit.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 326 / 674

Stroj RASP

Druh stroje podobný stroji RAM, kde je ovšem program uložen
v pracovńı paměti (instrukce jsou kódovány č́ısly) a je možné ho
pr̊uběhu výpočtu měnit, se označuje jako stroj RASP
(random-access stored program).

Stroj RASP tak umožňuje provádět činnost sebemodifikuj́ıćıch se
programů.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 327 / 674

Turingův stroj simuluj́ıćı činnost stroje RAM

Neńı těžké si rozmyslet, že činnost libovolného Turingova stroje je možné
simulovat pomoćı stroje RAM.

Promyslet si, že i naopak činnost každého stroje RAM je možné simulovat
Turingovým strojem, je o něco komplikovaněǰśı.

Při popisu toho, jak simulovat činnost stroje RAM pomoćı Turingova
stroje, budeme postupovat po menš́ıch kroćıch:

Ukážeme, jak činnost stroje RAM ve variantě, kterou jsme si popsali,
simulovat variantou stroje RAM s poněkud jednoduš̌śımi instrukcemi.

Ukážeme, jak činnost této jednoduš̌śı varianty stroje RAM simulovat
v́ıcepáskovým Turingovým strojem.

Už ďŕıve jsme viděli, jak činnosti v́ıcepáskového Turingovat stroje
simulovat pomoćı jednopáskového Turingovat stroje.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 328 / 674

Jednoduš̌śı varianta stroje RAM

Tato jednoduš̌śı varianta stroje RAM bude ḿıt kromě pracovńı paměti ťri
registry:

registr A — témě̌r všechny instrukce pracuj́ı s t́ımto registrem,
výsledky všech operaćı se ukládaj́ı do tohoto registru

Poznámka: Tento druh registru se často označuje jako akumulátor.

registr B — tento registr slouž́ı k uložeńı druhého operandu pro
aritmetické instrukce (prvńı operand je vždy v akumulátoru)

registr C — tento registr slouž́ı k uložeńı adresy, na kterou bude
zapisovat instrukce store

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 329 / 674

Jednoduš̌śı varianta stroje RAM

Přehled instrukćı:

A ∶= c – p̌rǐrazeńı konstanty

B ∶= A – p̌rǐrazeńı do registru B

C ∶= A – p̌rǐrazeńı do registru C

A ∶= [A] – load (čteńı z paměti)[C] ∶= A – store (zápis do paměti)

A ∶= A op B – aritmetické instrukce, op ∈ {+,−,∗, /}
if (A rel 0) goto ℓ – podḿıněný skok, rel ∈ {=,≠,≤,≥,<,>}
goto ℓ – nepodḿıněný skok

A ∶= read () – čteńı ze vstupu

write (A) – zápis na výstup

halt – zastaveńı programu

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 330 / 674

Jednoduš̌śı varianta stroje RAM

Nap̌ŕıklad instrukce

R7 ∶= R3 + R6

může být nahrazena posloupnost́ı instrukćı:

A ∶= 7

C ∶= A

A ∶= 6

A ∶= [A]
B ∶= A

A ∶= 3

A ∶= [A]
A ∶= A + B[C] ∶= A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 331 / 674

Jednoduš̌śı varianta stroje RAM

Nap̌ŕıklad instrukce

[R15] ∶= R9

může být nahrazena posloupnost́ı instrukćı:

A ∶= 15

A ∶= [A]
C ∶= A

A ∶= 9

A ∶= [A][C] ∶= A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 331 / 674

Jednoduš̌śı varianta stroje RAM

Nap̌ŕıklad instrukce

if (R4 ≥ R11) goto ℓ

může být nahrazena posloupnost́ı instrukćı:

A ∶= 11

A ∶= [A]
B ∶= A

A ∶= 4

A ∶= [A]
A ∶= A − B

if (A ≥ 0) goto ℓ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 331 / 674

Turingův stroj simuluj́ıćı činnost stroje RAM

Turing̊uv stroj pracuje se slovy nad nějakou abecedou, zat́ımco stroj RAM
s č́ısly. Č́ısla ale můžeme zapisovat jako sekvence symbol̊u a naopak
symboly nějaké abecedy můžeme zapisovat jako č́ısla.

Nap̌ŕıklad následuj́ıćı vstup stroje RAM

5 13 -3 0 6

může být v p̌ŕıpadě Turingova stroje reprezentován jako

1 0 1 # 1 1 0 1 # - 1 1 # 0 # 1 1 0

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 332 / 674

Turingův stroj simuluj́ıćı činnost stroje RAM

Turing̊uv stroj simuluj́ıćı činnost stroje RAM bude ḿıt několik pásek:

Pásku, na které bude uložen obsah pracovńı paměti stroje RAM.

Tři pásky, na kterých budou uloženy hodnoty registr̊u A, B a C .

(Hodnoty registr̊u A, B a C budou na těchto páskách zapsány binárně
bez vedoućıch nul a zleva a zprava budou ohraničeny symboly #.)

Pásku reprezentuj́ıćı vstupńı pásku stroje RAM.

Pásku reprezentuj́ıćı výstupńı pásku stroje RAM.

Jednu pomocnou pásku použ́ıvanou p̌ri implementaci simulace
jednotlivých instrukćı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 333 / 674

Turingův stroj simuluj́ıćı činnost stroje RAM

Turing̊uv stroj si bude v ř́ıd́ıćı jednotce pamatovat, která instrukce stroje
RAM se právě provád́ı.

Provedeńı věťsiny instrukćı neńı složité:

A ∶= c

zaṕı̌se jednotlivé bity konstanty c na pásku registru A

B ∶= A nebo C ∶= A

zkoṕıruje obsah pásky registru A na pásku registru B nebo C

goto ℓ

změńı se jen stav ř́ıd́ıćı jednotky Turingova stroje

if (A rel 0) goto ℓ, kde rel ∈ {=,≠,≤,≥,<,>}
snadno se otestuje obsah registru A a podle výsledku se změńı stav
ř́ıd́ıćı jednotky Turingova stroje

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 334 / 674

Turingův stroj simuluj́ıćı činnost stroje RAM

A ∶= read ()
zkoṕırováńı hodnoty (ohraničené znaky “#”) ze vstupńı pásky na
pásku registru A

write (A)
zkoṕırováńı hodnoty registru A na výstupńı pásku.

halt

výpočet se zastav́ı

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 335 / 674

Turingův stroj simuluj́ıćı činnost stroje RAM

Také aritmetické instrukce jsou poměrně jednoduché, i když o něco
složitěǰśı než p̌redchoźı instrukce:

A ∶= A op B , kde op ∈ {+,−,∗, /}
Př́ıslušnou operaci (nap̌r. sč́ıtáńı nebo odč́ıtáńı) provede Turing̊uv
stroj bit po bitu, výsledek je ukládán do registru A.

Poznámka: Násobeńı a děleńı je možné realizovat pomoćı série sč́ıtáńı,
odč́ıtáńı a bitových posunů.

Při implementaci násobeńı a děleńı může být poťreba použ́ıt pomocnou
pásku k ukládáńı mezivýsledk̊u.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 336 / 674

Turingův stroj simuluj́ıćı činnost stroje RAM

Asi nejsložitěǰśı je realizace pracovńı paměti stroje RAM.

Jednou z možnost́ı je pamatovat si jen obsah těch buněk, se kterými stroj
RAM v pr̊uběhu své činnosti někdy pracoval.

Př́ıklad: Stroj RAM zat́ım pracoval jen s buňkami 2, 3 a 6:

Buňka 2 obsahuje hodnotu 11.

Buňka 3 obsahuje hodnotu −1.

Buňka 6 obsahuje hodnotu 2.

Obsah pásky Turingova stroje reprezentuj́ıćı buňky paměti stroje RAM
bude následuj́ıćı:

$ # 1 0 : 1 0 1 1 # 1 1 : - 1 # 1 1 0 : 1 0 # $

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 337 / 674

Turingův stroj simuluj́ıćı činnost stroje RAM

Instrukce load, tj. A ∶= [A]:
Turing̊uv stroj bude hledat p̌ŕıslušnou adresu uloženou v registru A na
pásce reprezentuj́ıćı obsah paměti stroje RAM.
(Pokud ji nenajdeme, p̌ridá ji na konec, s t́ım, že obsahuje hodnotu 0.)

Př́ıslušnou hodnotu zkoṕıruje na pásku registru A.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 338 / 674

Turingův stroj simuluj́ıćı činnost stroje RAM

Instrukce store, tj. [C] ∶= A:

Podobně jako u instrukce load se najde p̌ŕıslušné ḿısto na pásce
reprezentuj́ıćı pracovńı pamět’, kde se nacháźı obsah buňky, jej́ıž
adresa je v registru C .

Zbytek pásky s obsahem paměti stroje RAM se zkoṕıruje na
pomocnou pásku.

Na p̌ŕıslušné ḿısto se zkoṕıruje obsah pásky registru A.

Zbytek pásky, který byl zkoṕırován na pomocnou pásku, se zkoṕıruje
zpět (za nově zapsanou hodnotu).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 339 / 674

Algoritmy

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 340 / 674

Pseudokód

Algoritmy věťsinou nebudeme zapisovat jako programy pro stroj RAM, ale
sṕı̌se jako programy v nějakém vyš̌śım programovaćım jazyce.

Nebudeme se vázat na nějaký konkrétńı programovaćı jazyk.

Programy budeme zapisovat pomoćı pseudokódu, jehož syntaxi si
budeme libovolně p̌rizpůsobovat podle poťreby (nap̌r. použit́ı libovolné
matematické notace, slovńıch popis̊u, apod.).

Př́ıklad:

Algoritmus: Algoritmus pro nalezeńı nejvěťśıho prvku v poli

Find-Max (A, n):
k ∶= 0
for i ∶= 1 to n − 1 do

if A[i] > A[k] then
k ∶= i

return A[k]
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 341 / 674

Algoritmy

Poznámka:

Z hlediska analýzy toho, jak daný algoritmus funguje, věťsinou neńı p̌ŕılǐs
podstatný rozd́ıl v tom, jestli algoritmus:

čte vstupńı data z nějakého vstupńıho zǎŕızeńı (nap̌r. ze souboru na
disku, z klávesnice, apod.)

zapisuje data na nějaké výstupńı zǎŕızeńı (nap̌r. do souboru, na
obrazovku, apod.)

nebo

čte vstupńı data z paměti (nap̌r. jsou mu p̌redány jako parametry)

zapisuje data na do paměti (nap̌r. je vrát́ı jako návratovou hodnotu)

V pseudokódu tak tedy věťsinou budou vstupńı data p̌redávána jako
argumenty dané funkce a výstup bude p̌redstavován návratovou hodnotou
této funkce.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 342 / 674

Ř́ıd́ıćı tok

Instrukce lze zhruba rozdělit na dvě skupiny:

instrukce p̌ŕımo pracuj́ıćı s daty:

p̌rǐrazeńı
vyhodnoceńı hodnot výraz̊u v podḿınkách
čteńı vstupu, zápis na výstup
. . .

instrukce ovlivňuj́ıćı ř́ıd́ıćı tok — určuj́ı, které instrukce se budou
provádět, v jakém pǒrad́ı, apod.:

větveńı (if, switch, . . .)
cykly (while, do .. while, for, . . .)
uspǒrádáńı instrukćı do blok̊u
návraty z podpogramů (return, . . .)
. . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 343 / 674

Graf ř́ıd́ıćıho toku

k ∶= 0

i ∶= 1

[i < n]
[i ≥ n]

[A[i] > A[k]]
[A[i] ≤ A[k]]

k ∶= i

i ∶= i + 1
result ∶= A[k]

0

1

2

3

4

5

6

7

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 344 / 674

Některé základńı konstrukce strukturovaného programováńı

S1

S2

[B] [¬B]
S1 S2

[B] [¬B]
S

S1; S2 if B then S1 else S2 if B then S

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 345 / 674

Některé základńı konstrukce strukturovaného programováńı

[B][¬B]
S

[B][¬B]
S

while B do S do S while B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 346 / 674

Některé základńı konstrukce strukturovaného programováńı

[i ≤ b][i > b]
i ∶= a

i ∶= i + 1S

for i ∶= a to b do S

i ∶= a

while i ≤ b do
S

i ∶= i + 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 347 / 674

Některé základńı konstrukce strukturovaného programováńı

Zkrácené vyhodnocováńı složených podḿınek, nap̌r.:

while i < n and A[i] > x do . . .

[B1]
[¬B1]

[B2] [¬B2]

S1 S2

[B1] [¬B1]
[B2] [¬B2]

S1 S2

if B1 and B2 then S1 else S2 if B1 or B2 then S1 else S2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 348 / 674

Ř́ıd́ıćı tok realizovaný pomoćı goto

goto ℓ — nepodḿıněný skok

if B then goto ℓ — podḿıněný skok

Př́ıklad:

0: k ∶= 0
1: i ∶= 1
2: goto 6

3: if A[i] ≤ A[k] then goto 5

4: k ∶= i

5: i ∶= i + 1
6: if i < n then goto 3

7: return A[k]
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 349 / 674

Ř́ıd́ıćı tok realizovaný pomoćı goto

goto ℓ — nepodḿıněný skok

if B then goto ℓ — podḿıněný skok

Př́ıklad:

start: k ∶= 0
i ∶= 1
goto L3

L1: if A[i] ≤ A[k] then goto L2

k ∶= i

L2: i ∶= i + 1
L3: if i < n then goto L1

return A[k]
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 349 / 674

Vyhodnoceńı složitých výraz̊u

Vyhodnoceńı složitého výrazu, jako ťreba

A[i + s] ∶= (B[3 ∗ j + 1] + x) ∗ y + 8

může být na nižš́ı úrovni nahrazeno posloupnost́ı jednoduš̌śıch p̌ŕıkaz̊u,
jako ťreba

t1 ∶= i + s

t2 ∶= 3 ∗ j

t2 ∶= t2 + 1
t3 ∶= B[t2]
t3 ∶= t3 + x

t3 ∶= t3 ∗ y

t3 ∶= t3 + 8
A[t1] ∶= t3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 350 / 674

Výpočet algoritmu

Konfigurace — popis celkového stavu stroje v nějakém okamžiku během
výpočtu

Př́ıklad: Konfigurace tvaru

(q,mem)
kde

q — aktuálńı ř́ıd́ıćı stav

mem — p̌redstavuje aktuálńı obsah paměti stroje — jaké hodnoty
jsou momentálně p̌rǐrazeny jednotlivým proměnným.

Př́ıklad obsahu paměti mem:

⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k : 0, result: ?⟩
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 351 / 674

Výpočet algoritmu

Př́ıklad konfigurace:

(2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k : 0, result: ?⟩)
Výpočet stroje M prováděj́ıćıho algoritmus Alg , kde zpracovává vstup w ,
je posloupnost konfiguraćı.

Zač́ıná se v počátečńı konfiguraci.

Každým krokem stroj p̌recháźı z jedné konfigurace do daľśı.

Výpočet konč́ı v koncové konfiguraci.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 352 / 674

Výpočet algoritmu

k ∶= 0

i ∶= 1

[i < n]
[i ≥ n]

[A[i] > A[k]]
[A[i] ≤ A[k]]

k ∶= i

i ∶= i + 1
result ∶= A[k]

0

1

2

3

4

5

6

7

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 353 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α16: (6, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Př́ıklad: Výpočet, kde algoritmus Find-Max zpracovává vstup, kde
A = [3, 8, 1, 3, 6] a n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α16: (6, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α17: (7, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: 8⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 354 / 674

Výpočet algoritmu

Provedeńım instrukce I se p̌rejde z konfigurace α do konfigurace α
′
:

α
I

⟶ α
′

Výpočet může být:

Konečný:

α0

I0
⟶ α1

I1
⟶ α2

I2
⟶ α3

I3
⟶ α4

I4
⟶ ⋯

It−2
⟶ αt−1

It−1
⟶ αt

kde αt je bud’ koncová konfigurace nebo konfigurace, kde došlo
k chybě a neńı možné pokračovat

Nekonečný:

α0

I0
⟶ α1

I1
⟶ α2

I2
⟶ α3

I3
⟶ α4

I4
⟶ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 355 / 674

Výpočet algoritmu

Výpočet je možné popsat dvěma r̊uznými způsoby:

jako posloupnost konfiguraćı α0, α1, α2, . . .

jako posloupnost provedených instrukćı I0, I1, I2, . . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 356 / 674

Churchova-Turingova teze

Z p̌rechoźıho by mělo být jasné, že:

Program v libovolném programovaćım jazyce je možné p̌reložit do
podoby programu pro stroj RAM.

Činnost stroje RAM je možné simulovat Turingovým strojem.

Činost každého programu v nějakém libovolném programovaćım jazyce je
tedy možné vykonávat Turingovým strojem.

Churchova-Turingova teze

Každý algoritmus je možné realizovat nějakým Turingovým strojem.

Neńı to věta, kterou by bylo možno dokázat v matematickém smyslu –
neńı formálně definováno, co je to algoritmus.

Tezi formulovali nezávisle na sobě v polovině 30. let 20. stolet́ı Alan Turing
a Alonzo Church.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 357 / 674

Churchova-Turingova teze

Př́ıklady matematických formalismů zachycuj́ıćıch pojem algoritmus:

Turingovy stroje

stroje RAM

lambda kalkulus

rekurzivńı funkce

. . .

Dále můžeme uvést:

Libovolný (obecný) programovaćı jazyk (jako nap̌r. C, Java, Python,
Lisp, Haskell, Prolog apod.).

Všechny tyto modely jsou ekvivalentńı z hlediska algoritmů, které jsou
schopny realizovat.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 358 / 674

Dokazováńı korektnosti algoritmů

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 359 / 674

Korektnost algoritmu

Algoritmy slouž́ı k řešeńı problémů.

Problém — specifikace toho, co má algoritmus dělat:

Popis vstupu
Popis výstupu
Vztah mezi vstupy a výstupy

Algoritmus — konkrétńı postup, jak p̌ri výpočtu postupovat

Algoritmus je korektńım řešeńım daného problému, jestliže se pro všechny
vstupy zastav́ı a vydá správný výsledek.

Př́ıklad:

Problém: Problém ťŕıděńı
Algoritmus: Quicksort

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 360 / 674

Korektnost algoritmu

Př́ıklad:

Problém nalezeńı maximálńıho prvku v poli:

Vstup: Pole A indexované od nuly a č́ıslo n udávaj́ıćı počet prvk̊u
v tomto poli, p̌ričemž se p̌redpokládá, že n ≥ 1.

Výstup: Hodnota result, která je hodnotou maximálńıho prvku
v poli A, tj. hodnota result, pro kterou plat́ı:

A[j] ≤ result pro všechna j ∈ N, kde 0 ≤ j < n, a

existuje j ∈ N takové, že 0 ≤ j < n a A[j] = result.

Instance problému — konkrétńı vstup, nap̌r.

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

Pro tuto instanci je výstupem hodnota 11.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 361 / 674

Korektnost algoritmu

Algoritmus: Algoritmus pro nalezeńı nejvěťśıho prvku v poli

Find-Max (A, n):
k ∶= 0
for i ∶= 1 to n − 1 do

if A[i] > A[k] then
k ∶= i

return A[k]

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 362 / 674

Korektnost algoritmu

Definice

Algoritmus Alg řeš́ı problém P , jestliže pro každou instanci w problému P

jsou splněny následuj́ıćı dvě podḿınky:

(a) Výpočet algoritmu Alg nad vstupem w se po konečném počtu krok̊u
(korektně) zastav́ı.

(b) Algoritmus Alg vygeneruje pro vstup w výstup, který odpov́ıdá
podḿınkám kladeným na výstup ve specifikaci problému P .

Algoritmus, který řeš́ı problém P , je korektńım řešeńım tohoto problému.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 363 / 674

Korektnost algoritmu

Algoritmus Alg neńı korektńım řešeńı problému P , jestliže existuje
vstup w takový, že p̌ri výpočtu nad t́ımto vstupem nastane některá
z následuj́ıćıch chyb:

provedeńı nějaké chybné nepovolené operace (p̌ŕıstup k prvku pole
mimo povolený rozsah index̊u, děleńı nulou, . . .),

vygenerovaný výstup neodpov́ıdá podḿınkám specifikovaným v zadáńı
problému P ,

výpočet se nikdy nezastav́ı.

Testováńı — spustěńı algoritmu nad r̊uznými vstupy a zkontrolováńı, zda
se algoritmus pro tyto vstupy chová

”
správně“.

Testováńı může prokázat p̌ŕıtomnost chyb, ale ne to, že se algoritmus
chová korektně pro všechny vstupy.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 364 / 674

Korektnost algoritmu

Typicky je množina možných instanćı daného problému nekonečná (nebo
p̌rinejmenš́ım velmi velká), takže neńı možné otestovat činnost algoritmu
na všech instanćıch.

Pro zdůvodněńı a ově̌reńı toho, že algoritmus je korektńım řešeńım daného
problému je ťreba podat d̊ukaz, který bere v úvahu všechny možné
výpočty na všech možných vstupech.

Důkaz korektnosti algoritmu je obecně vhodné rozdělit na dvě části:

Zdůvodněńı toho, že algoritmus pro žádný vstup nikdy neudělá nic

”
špatně“:

během výpočtu nedojde k žádné chybné operaci
pokud program skonč́ı, výstup bude

”
správně“

Zdůvodněńı toho, že se algoritmus pro každý vstup po konečném
počtu krok̊u zastav́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 365 / 674

Invarianty

Uvažujme libovolný systém skládaj́ıćı se z:

množiny stav̊u (či konfiguraćı) — může být nekonečná

p̌rechodů mezi těmito stavy

některé ze stav̊u jsou určené jako počátečńı

Stav je dosažitelný, jestliže je možné se do něj dostat z některého
počátečńıho stavu použit́ım nějaké posloupnosti p̌rechodů.

Invariant je nějaká podḿınka vymezuj́ıćı nějakou podmnožinu stav̊u
taková, že plat́ı ve všech dosažitelných stavech:

je splněna ve všech počátečńıch stavech

pokud je splněna v nějakém stavu a z tohoto stavu systém p̌rejde
jedńım krokem do nějakého daľśıho stavu, bude splněna i v tomto
stavu

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 366 / 674

Invarianty

dosažitelné stavy

všechny stavy

stavy,

kde plat́ı invariant

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 367 / 674

Invarianty

Př́ıklad: Budeme skákat s figurkou jezdce po šachovnici a zároveň budeme
poč́ıtat počty provedených tahů, p̌ričemž zač́ınáme na nějakém b́ılém poli
v nejlevěǰśım sloupci:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 368 / 674

Invarianty

Stavy — dvojice skládaj́ıćı se z aktuálńı pozice figurky jezdce na
šachovnici a hodnoty č́ıtače udávaj́ıćı počet zat́ım provedených tahů

Přechody — provedeńı jednoho tahu jezdcem (podle pravidel šachu)
a zvýšeńı č́ıtače o jedna

Počátečńı stavy — jezdec se nacháźı na některém b́ılém poli
v nejlevěǰśım sloupci a hodnota č́ıtače ja 0

Plat́ı zde nap̌ŕıklad následuj́ıćı invariant:

jestliže je hodnota č́ıtače sudá, jezdec se nacháźı na b́ılém poli

jestliže je hodnota č́ıtače lichá, jezdec se nacháźı na černém poli

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 369 / 674

Invarianty

Př́ıklad: Algoritmus Find-Max reprezentovaný formou grafu ř́ıd́ıćıho toku

k ∶= 0

i ∶= 1

[i < n]
[i ≥ n]

[A[i] > A[k]]
[A[i] ≤ A[k]]

k ∶= i

i ∶= i + 1
result ∶= A[k]

0

1

2

3

4

5

6

7

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 370 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α16: (6, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Výpočet pro vstup A = [3, 8, 1, 3, 6] a n = 5 jako posloupnost konfiguraćı:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α16: (6, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α17: (7, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: 8⟩)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 371 / 674

Invarianty

Stavy — konfigurace skládaj́ıćı se ze stavu ř́ıd́ıćı jednotky a obsahu
paměti reprezentovaného hodnotami jednotlivých proměnných.

Přechody — dány jednotlivými instrukcemi na hranách grafu, měńı
zároveň ř́ıd́ıćı stav i obsah paměti p̌rǐrazováńım hodnot do
proměnných

Počátečńı stavy — všechny možné počátečńı konfigurace pro
všechny možné vstupńı instance, které jsou p̌ŕıpustné podle
specifikace problému

Invarianty budou ḿıt formu tvrzeńı vyjaďruj́ıćıch se o konfiguraćıch,
tj. o stavech ř́ıd́ıćı jednotky a o hodnotách jednotlivých proměnných, nap̌r.

Pokud je stav ř́ıd́ıćı jednotky 2, pak v dané konfiguraci plat́ı 1 ≤ i ≤ n,
0 ≤ k < i a A[k] je nejvěťśı z prvk̊u A[0],A[1], . . . ,A[i − 1].
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 372 / 674

Invarianty

U systémů, kde je součást́ı konfigurace nějaký ř́ıd́ıćı stav, může být
výhodné formulovat invarianty ve formě:

jestliže je stav ř́ıd́ıćı jednotky 0, pak plat́ı ϕ0

jestliže je stav ř́ıd́ıćı jednotky 1, pak plat́ı ϕ1

⋮

jestliže je stav ř́ıd́ıćı jednotky r , pak plat́ı ϕr

p̌ričemž tvrzeńı ϕ0, ϕ1, . . . , ϕr se vyjaďruj́ı pouze o obsahu paměti, nikoli
o ř́ıd́ıćıch stavech.

Konfigurace můžeme rozdělit do (konečně mnoha) skupin podle stav̊u
ř́ıd́ıćı jednotky.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 373 / 674

Invarianty

ř́ıd́ıćı stav 2

ř́ıd́ıćı stav 6
ř́ıd́ıćı stav 3

invariant ϕ2

invariant ϕ6

invariant ϕ3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 374 / 674

Invarianty

Invariant — podḿınka, která muśı být v určitém ḿıstě kódu algoritmu
vždy (tj. ve všech možných výpočtech pro všechny možné vstupy) splněna
v okamžiku, kdy algoritmus t́ımto ḿıstem procháźı.

Invarianty můžeme zapisovat formulemi predikátové logiky:

volné proměnné odpov́ıdaj́ı proměnným programu

valuace je dána hodnotami proměnných programu v dané konfiguraci

Př́ıklad: Formule

(1 ≤ i) ∧ (i ≤ n)
bude platit nap̌ŕıklad v konfiguraci, kde proměnná i má hodnotu 5 a
proměnná n má hodnotu 14.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 375 / 674

Invarianty

Zjǐstěné invarianty mohou sloužit k řadě r̊uzných účel̊u:

Napomohou lepš́ımu porozuměńı chováńı algoritmu.

Lze pomoćı nich ově̌rit, že nenastanou určité typy chyb —
nap̌r. p̌ŕıstup k poli mimo povolené rozsahy index̊u, děleńı nulou, . . .

Ově̌ŕıme, že v ḿıstech v kódu, kde by mohla daná chyba nastat,
budou platit invarianty, které zaruč́ı, že proměnné budou ḿıt vždy
takové hodnoty, aby chyba nenastala.

Př́ıklad: Při p̌ŕıstupu k prvku A[i] bude vždy platit 0 ≤ i < n,
kde n je délka pole.

Invariant, který bude platit v koncových konfiguraćıch, zaruč́ı, že
výstup algoritmu bude odpov́ıdat specifikaci v zadáńı problému.

Při analýze výpočetńı složitosti napomohou p̌ri zkoumáńı toho,
kolikrát se provedou které instrukce nebo jak velké množstv́ı paměti je
p̌ri výpočtu poťreba.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 376 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0
↓

k

8

1

↑

i

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

↑

i

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

1

2

↑

i

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

1

2

5

3

↑

i

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

1

2

5

3

8

4

↑

i

6

5

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

1

2

5

3

8

4

6

5

↑

i

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

1

2

5

3

8

4

6

5

11

6

↑

i

4

7

10

8

5

9
↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6
↓

k

↑

i

4

7

10

8

5

9
↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6
↓

k

4

7

↑

i

10

8

5

9
↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6
↓

k

4

7

10

8

↑

i

5

9
↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6
↓

k

4

7

10

8

5

9

↑

i

↓

n

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Stanoveńı invariant̊u neńı úplně mechanický proces. Vyžaduje určité
pochopeńı chováńı algoritmu.

Před formulováńım hypotéz o tom, jaké invarianty plat́ı v jednotlivých
ř́ıd́ıćıch stavech, může být vhodné se pod́ıvat na to, jak se daný algoritmus
chová na nějakých konkrétńıch vstupech.

Př́ıklad: Výpočet algoritmu Find-Max pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6
↓

k

4

7

10

8

5

9
↓

n

↑

i

A

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 377 / 674

Invarianty

Př́ıklady invariant̊u:

invariant v ř́ıd́ıćım stavu q zaṕı̌seme formuĺı ϕq

Invarianty v jednotlivých ř́ıd́ıćıch stavech (zat́ım jen hypotézy):

ϕ0: (n ≥ 1)
ϕ1: (n ≥ 1) ∧ (k = 0)
ϕ2: (n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i)
ϕ3: (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i)
ϕ4: (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i)
ϕ5: (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k ≤ i)
ϕ6: (n ≥ 1) ∧ (i = n) ∧ (0 ≤ k < n)
ϕ7: (n ≥ 1) ∧ (i = n) ∧ (0 ≤ k < n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 378 / 674

Invarianty

Zkontrolováńı toho, že invarianty opravdu plat́ı:

Muśıme zkontrolovat, zda invarianty plat́ı v počátečńıch konfiguraćıch
— toto je věťsinou jednoduché.

Pro každou instrukci algoritmu je ťreba zkontrolovat, zda za
p̌redpokladu, že bude platit p̌ŕıslušný invariant p̌red provedeńım této
instrukce, bude platit i p̌ŕıslušný invariant po provedeńı této instrukce.

Předpokládejme algoritmus ve formě grafu ř́ıd́ıćıho toku:

hrany odpov́ıdaj́ı instrukćım

vezměme si hranu ze stavu q do stavu q
′
označenou instrukćı I

řekněme, že (zat́ım neově̌rené) invarianty pro stavy q a q
′
jsou

vyjáďreny formulemi ϕ a ψ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 379 / 674

Invarianty

PSfrag
q

q
′

I

ϕ

ψ

pro tuto hranu muśıme zkontrolovat, že pro všechny konfigurace

α = (q,mem) a α
′
= (q′,mem

′) takové, že α
I

⟶ α
′
, plat́ı, že pokud

v konfiguraci α plat́ı ϕ,

pak

v konfiguraci α
′
plat́ı ψ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 380 / 674

Invarianty

Zkontrolováńı instrukćı, které jsou testy podḿınek:

hrana označená testem podḿınky [B]
q

q
′

[B]

ϕ

ψ

Obsah paměti se neměńı, takže stač́ı ově̌rit, že plat́ı implikace

(ϕ ∧ B) ⇒ ψ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 381 / 674

Invarianty

Př́ıklad:

2

3

[i < n]
(n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i)

(n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i)
Stač́ı ově̌rit, že plat́ı následuj́ıćı implikace:

Jestliže (n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i) ∧ (i < n),
pak (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 382 / 674

Invarianty

Př́ıklad:

2

6

[i ≥ n]
(n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i)

(n ≥ 1) ∧ (i = n) ∧ (0 ≤ k < n)
Stač́ı ově̌rit, že plat́ı následuj́ıćı implikace:

Jestliže (n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i) ∧ (i ≥ n),
pak (n ≥ 1) ∧ (i = n) ∧ (0 ≤ k < n).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 382 / 674

Invarianty

Zkontrolováńı instrukćı, které p̌rǐrazuj́ı hodnoty proměnným (měńı obsah
paměti):

hrana označená p̌rǐrazeńım x ∶= E

q

q
′

x ∶= E

ϕ

ψ

Je ťreba rozlǐsovat mezi hodnotou proměnné x p̌red t́ımto p̌rǐrazeńım a po
tomto p̌rǐrazeńı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 383 / 674

Invarianty

Pro následuj́ıćı konstrukce budeme poťrebavat operaci substituce na
formuĺıch:

ϕ[E/x]
označuje formuli, kterou dostaneme z formule ϕ dosazeńım výrazu E za
všechny volné výskyty proměnné x ve formuli ϕ.

Př́ıklad: Řekněme, že ϕ je formule (1 ≤ i) ∧ (i ≤ n).
Zápis ϕ[i ′/i] pak označuje formuli

(1 ≤ i
′) ∧ (i ′ ≤ n)

a zápis ϕ[(i + 1)/i] formuli

(1 ≤ i + 1) ∧ (i + 1 ≤ n)
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 384 / 674

Invarianty

PSfrag
q

q
′

x ∶= E

ϕ

ψ

Zavedeme novou proměnnou x
′
reprezentuj́ıćı hodnotu proměnné x po

provedeńı tohoto p̌rǐrazeńı.

Je ťreba ově̌rit následuj́ıćı implikaci:

(ϕ ∧ (x ′ = E)) ⇒ ψ[x ′/x]
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 385 / 674

Invarianty

Př́ıklad:

4

5

k ∶= i

(n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i)

(n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k ≤ i)
Stač́ı ově̌rit, že plat́ı následuj́ıćı implikace:

Jestliže (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i) ∧ (k ′ = i),
pak (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k

′
≤ i).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 386 / 674

Invarianty

Př́ıklad:

5

2

i ∶= i + 1

(n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k ≤ i)

(n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i)
Stač́ı ově̌rit, že plat́ı následuj́ıćı implikace:

Jestliže (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k ≤ i) ∧ (i ′ = i + 1),
pak (n ≥ 1) ∧ (1 ≤ i

′
≤ n) ∧ (0 ≤ k < i

′).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 386 / 674

Invarianty

Dokončeńı ově̌reńı toho, že algoritmus Find-Max vraćı správný výsledek
(za p̌redpokladu, že skonč́ı):

ψ0: ϕ0

ψ1: ϕ1 ∧ (∀j ∈ N)(0 ≤ j < 1 → A[j] ≤ A[k])
ψ2: ϕ2 ∧ (∀j ∈ N)(0 ≤ j < i → A[j] ≤ A[k])
ψ3: ϕ3 ∧ (∀j ∈ N)(0 ≤ j < i → A[j] ≤ A[k])
ψ4: ϕ4 ∧ (∀j ∈ N)(0 ≤ j < i → A[j] ≤ A[k]) ∧ (A[i] > A[k])
ψ5: ϕ5 ∧ (∀j ∈ N)(0 ≤ j ≤ i → A[j] ≤ A[k])
ψ6: ϕ6 ∧ (∀j ∈ N)(0 ≤ j < n → A[j] ≤ A[k])
ψ7: ϕ7 ∧ (result = A[k]) ∧ (∀j ∈ N)(0 ≤ j < n → A[j] ≤
result) ∧ (∃j ∈ N)(0 ≤ j < n ∧ A[j] = result)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 387 / 674

Invarianty

Často neńı ťreba specifikovat invarianty ve všech ř́ıd́ıćıch stavech, ale jen
v některých

”
důležitých“ — zejména stavy, kde se vstupuje do nebo

vystupuje z cykl̊u:

Je pak ťreba ově̌rit:

Že invariant plat́ı p̌red vstupem do cyklu.

Že pokud invariant plat́ı p̌red provedeńım cyklu, tak bude platit i po
jeho provedeńı.

Že invariant plat́ı p̌ri opuštěńı cyklu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 388 / 674

Invarianty

Př́ıklad: V algoritmu Find-Max je takovým
”
důležitým“ stavem stav 2.

Ve stavu 2 plat́ı:

n ≥ 1

1 ≤ i ≤ n

0 ≤ k < i

Pro všechna j taková, že 0 ≤ j < i , plat́ı A[j] ≤ A[k].

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 389 / 674

Invarianty

Př́ıklady toho, jak určit invarianty u některých daľśıch stav̊u, pokud už
u některých stav̊u invarianty máme:

q

q
′

x ∶= E

ϕ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 390 / 674

Invarianty

Př́ıklady toho, jak určit invarianty u některých daľśıch stav̊u, pokud už
u některých stav̊u invarianty máme:

q

q
′

x ∶= E

ϕ

∃x
′(ϕ[x ′/x] ∧ x = E[x ′/x])

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 390 / 674

Invarianty

Př́ıklady toho, jak určit invarianty u některých daľśıch stav̊u, pokud už
u některých stav̊u invarianty máme:

q

q
′

x ∶= E

ψ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 390 / 674

Invarianty

Př́ıklady toho, jak určit invarianty u některých daľśıch stav̊u, pokud už
u některých stav̊u invarianty máme:

q

q
′

x ∶= E

ψ[E/x]

ψ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 390 / 674

Invarianty

Př́ıklady toho, jak určit invarianty u některých daľśıch stav̊u, pokud už
u některých stav̊u invarianty máme:

q

q
′

q
′′

[B] [¬B]
ϕ

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 390 / 674

Invarianty

Př́ıklady toho, jak určit invarianty u některých daľśıch stav̊u, pokud už
u některých stav̊u invarianty máme:

q

q
′

q
′′

[B] [¬B]
ϕ

ϕ ∧ B ϕ ∧ ¬B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 390 / 674

Invarianty

Př́ıklady toho, jak určit invarianty u některých daľśıch stav̊u, pokud už
u některých stav̊u invarianty máme:

q

q
′

q
′′

[B] [¬B]

ψ1 ψ2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 390 / 674

Invarianty

Př́ıklady toho, jak určit invarianty u některých daľśıch stav̊u, pokud už
u některých stav̊u invarianty máme:

q

q
′

q
′′

[B] [¬B]
(B ⇒ ψ1) ∧ (¬B ⇒ ψ2)

ψ1 ψ2

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 390 / 674

Invarianty

Př́ıklad:

Algoritmus: Tř́ıděńı p̌ŕımým vkládáńım

Insertion-Sort (A, n):
for j ∶= 1 to n − 1 do

x ∶= A[j]
i ∶= j − 1
while i ≥ 0 and A[i] > x do

A[i + 1] ∶= A[i]
i ∶= i − 1

A[i + 1] ∶= x

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 391 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x =?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x =?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0
↓

i

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

i

1

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0
↓

i

8

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

3

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

i
↓

n

x = 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

8

2

5

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

8

2
↓

i

5

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1
↓

i

8

2

8

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4

↑

j

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3
↓

i

8

4

↑

j

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4

↑

j

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4

6

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4
↓

i

6

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3
↓

i

8

4

8

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2
↓

i

8

3

8

4

8

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6

↑

j

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5
↓

i

11

6

↑

j

4

7

10

8

5

9
↓

n

x = 11

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6

↑

j

4

7

10

8

5

9
↓

n

x = 11

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6

4

7

↑

j

10

8

5

9
↓

n

x = 11

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6
↓

i

4

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5
↓

i

11

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4
↓

i

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3
↓

i

8

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2
↓

i

6

3

6

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1
↓

i

5

2

5

3

6

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

11

7

10

8

↑

j

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

11

7
↓

i

10

8

↑

j

5

9
↓

n

x = 10

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6
↓

i

11

7

11

8

↑

j

5

9
↓

n

x = 10

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7

11

8

↑

j

5

9
↓

n

x = 10

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7

11

8

5

9

↑

j

↓

n

x = 10

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7

11

8
↓

i

5

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7
↓

i

11

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6
↓

i

10

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5
↓

i

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4
↓

i

8

5

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3
↓

i

6

4

6

5

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

5

4

6

5

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

5

4

6

5

8

6

8

7

10

8

11

9
↓

n

↑

j

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 392 / 674

Invarianty

Předpokládejme, že vstupem je pole A = [a0, a1, . . . , an−1] a č́ıslo n

(kde n ≥ 1) udávaj́ıćı délku tohoto pole, tj. že na začátku pro každé i ,
kde 0 ≤ i < n, plat́ı A[i] = ai .

Na začátku cyklu for (tj. vždy p̌red provedeńım testu j < n,
resp. j ≤ n − 1) plat́ı následuj́ıćı invarianty:

1 ≤ j ≤ n

Prvky pole A[0],A[1], . . . ,A[j − 1] obsahuj́ı hodnoty a0, a1, . . . , aj−1
sěrazené od nejmenš́ı po nejvěťśı, tj.

A[0] ≤ A[1] ≤⋯ ≤ A[j − 1]
Prvky pole A[j],A[j + 1], . . . ,A[n − 1] obsahuj́ı hodnoty
aj , aj+1, . . . , an−1, tj.

A[j] = aj , A[j + 1] = aj+1, . . . , A[n − 1] = an−1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 393 / 674

Invarianty

Na začátku cyklu while (tj. vždy p̌red provedeńım testu i ≥ 0) plat́ı
následuj́ıćı invarianty:

1 ≤ j < n

−1 ≤ i < j

Proměnná x obsahuje hodnotu aj , tj. x = aj .

Prvky pole A[0],A[1], . . . ,A[i] a A[i + 2],A[i + 3], . . . ,A[j] obsahuj́ı
hodnoty a0, a1, . . . , aj−1 sěrazené od nejmenš́ı po nejvěťśı, tj.

A[0] ≤ A[1] ≤⋯ ≤ A[i] ≤ A[i + 2] ≤ A[i + 3] ≤⋯ ≤ A[j]
Všechny prvky A[i + 2],A[i + 3], . . . ,A[j] jsou osťre věťśı než x .

Prvky pole A[j + 1],A[j + 2], . . . ,A[n − 1] obsahuj́ı hodnoty
aj+1, aj+2, . . . , an−1, tj.

A[j + 1] = aj+1, A[j + 2] = aj+2, . . . , A[n − 1] = an−1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 394 / 674

Konečnost výpočtu

Dva možné p̌ŕıpady, jak může vypadat nekonečný výpočet:

nějaká konfigurace se zopakuje — následuj́ıćı konfigurace se opakuj́ı
stále dokola

objevuj́ı se stále nové a nové konfigurace

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 395 / 674

Konečnost výpočtu

Jeden z běžných způsobů dokazováńı toho, že se algoritmus zaručeně pro
každý vstup po konečném počtu krok̊u zastav́ı:

každé (dosažitelné) konfiguraci p̌rǐradit hodnotu z nějaké vhodně
zvolené množiny W

na množině W definovat uspǒrádáńı ≤ takové, že ve W neexistuj́ı
nekonečné (osťre) klesaj́ıćı posloupnosti

ukázat, že s provedeńım každé instrukce se hodnota p̌rǐrazená

konfiguraci zmenšuje, tj. pro α
I

⟶ α
′
je

f (α) > f (α′)
(f (α), f (α′) jsou hodnoty z množiny W p̌rǐrazené konfiguraćım α

a α
′
)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 396 / 674

Konečnost výpočtu

Jako množinu W je možno použ́ıt nap̌ŕıklad:

Množinu p̌rirozených č́ısel N = {0, 1, 2, 3, . . . } s uspǒrádáńım ≤.

Množinu vektor̊u p̌rirozených č́ısel s lexikografickým uspǒrádáńım,
tj. s uspǒrádáńım, kde vektor (a1, a2, . . . , am) je menš́ı než vektor(b1, b2, . . . , bn), jestliže

existuje i takové, že 1 ≤ i ≤ m a i ≤ n, kde ai < bi a pro všechna j

taková, že 1 ≤ j < i , plat́ı aj = bj , nebo

m < n a pro všechna j taková, že 1 ≤ j ≤ m, je aj = bj .

Nap̌ŕıklad (5, 1, 3, 6, 4) < (5, 1, 4, 1) a (4, 1, 1) < (4, 1, 1, 3).
Poznámka: Počet prvk̊u vektor̊u muśı být omezen nějakou
konstantou.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 397 / 674

Konečnost výpočtu

k ∶= 0

i ∶= 1

[i < n]
[i ≥ n]

[A[i] > A[k]]
[A[i] ≤ A[k]]

k ∶= i

i ∶= i + 1
result ∶= A[k]

0

1

2

3

4

5

6

7

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 398 / 674

Konečnost výpočtu

Př́ıklad: Vektory p̌rǐrazené jednotlivým konfiguraćım:

Stav 0: f (α) = (4)
Stav 1: f (α) = (3)
Stav 2: f (α) = (2, n − i , 3)
Stav 3: f (α) = (2, n − i , 2)
Stav 4: f (α) = (2, n − i , 1)
Stav 5: f (α) = (2, n − i , 0)
Stav 6: f (α) = (1)
Stav 7: f (α) = (0)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 399 / 674

Konečnost výpočtu

5

2

i ∶= i + 1

(2, n − i , 0)

(2, n − i , 3)
Je ťreba brát v úvahu, že se touto instrukćı hodnota proměnné i měńı.

Z konfigurace s p̌rǐrazeným vektorem (2, n − i , 0) se p̌rejde do konfigurace
s p̌rǐrazeným vektorem (2, n − i

′
, 3), kde i

′
= i + 1.

Zjevně plat́ı n − i
′
< n − i , nebot’ n − (i + 1) < n − i .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 400 / 674

Výpočetńı složitost algoritmů

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 401 / 674

Složitost algoritmu

Poč́ıtače pracuj́ı rychle, ale ne nekonečně rychle. Provedeńı každé
instrukce trvá nějakou (i když velmi krátkou) dobu.

Stejný problém může řešit v́ıce r̊uzných algoritmů a doba výpočtu
(daná hlavně počtem provedených instrukćı) může být pro r̊uzné
algoritmy r̊uzná.

Algoritmy bychom chtěli mezi sebou porovnávat a zvolit si ten lepš́ı.

Algoritmy můžeme naprogramovat a změ̌rit čas výpočtu. T́ım zjist́ıme
jak dlouho trvá výpočet na konkrétńıch datech, na kterých algoritmus
testujeme.

Chtěli bychom ḿıt i nějakou p̌resněǰśı p̌redstavu o tom, jak dlouho
bude trvat výpočet na všech možných vstupńıch datech.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 402 / 674

Složitost algoritmu

Doba výpočtu je ovlivněna mnoha faktory, nap̌r.:

použitý algoritmus
množstv́ı vstupńıch dat
použitý hardware (důležitá může být nap̌r. taktovaćı frekvence
procesoru)
použitý programovaćı jazyk — a jeho konkrétńı implementace
(p̌rekladač/interpreter)
. . .

Pokud poťrebujeme řešit problém pro
”
malá“ vstupńı data, doba

výpočtu je věťsinou zanedbatelná.

S nar̊ustaj́ıćım množstv́ım vstupńıch dat (velikosti vstupu) může doba
výpočtu r̊ust, někdy velmi výrazně.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 403 / 674

Složitost algoritmu

Časová složitost algoritmu — jak záviśı doba výpočtu na množstv́ı
vstupńıch dat

Pamět’ová (resp. prostorová) složitost algoritmu — jak záviśı
množstv́ı použité paměti na množst́ı vstupńıch dat

Poznámka: Přesné definice těchto pojmů budou uvedeny za chv́ıli.

Poznámka:

Existuj́ı i daľśı typy výpočetńı složitosti, kterými se nebudeme zabývat
(nap̌r. komunikačńı složitost).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 404 / 674

Složitost algoritmu

Vezměme si nějaký konkrétńı stroj vykonávaj́ıćı nějaký algoritmus —
nap̌r. stroj RAM, Turing̊uv stroj, . . .

Budeme p̌redpokládat, že pro daný stroj M máme nějak definované pro
libovolný vstup w z množiny všech vstupů In následuj́ıćı dvě funkce:

timeM ∶ In → N — vyjaďruje dobu výpočtu stroje M nad vstupem w

spaceM ∶ In → N — vyjaďruje množstv́ı paměti použité strojem M
p̌ri výpočtu nad vstupem w

Poznámka: Předpokládáme, že výpočet stroje M nad libovolným
vstupem w se po konečném počtu krok̊u zastav́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 405 / 674

Složitost algoritmu

Př́ıklad:

Jednopáskový Turing̊uv stroj M:

timeM(w) — počet krok̊u, které vykoná M p̌ri výpočtu nad
vstupem w

spaceM(w) — počet poĺıček navšt́ıvených na pásce během
výpočtu nad vstupem w

Stroj RAM:

timeM(w) — počet krok̊u, které vykoná daný stroj RAM p̌ri
výpočtu nad vstupem w

spaceM(w) — počet buněk poměti, které byly použity během
výpočtu nad vstupem w (bylo do nich něco zapsáno nebo z nich
bylo čteno)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 406 / 674

Velikost vstupu

Pro r̊uzné vstupy provede program r̊uzný počet instrukćı.

Pokud chceme počet provedených instrukćı nějak analyzovat, je vhodné si
zavést pojem velikost vstupu.

Typicky je velikost vstupu č́ıslo, které udává, jak je daná instance
”
velká“

(č́ım věťśı č́ıslo, t́ım věťśı instance).

Poznámka: Velikost vstupu si v daném konkrétńım p̌ŕıpadě můžeme
definovat, jak chceme a jak je to pro daľśı analýzu výhodné.

Co p̌resně zvoĺıme jako velikost vstupu neńı p̌redem dáno, ale z podstaty
zadaného problému věťsinou nějak p̌rirozeně vyplývá, co za velikost vstupu
zvolit.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 407 / 674

Velikost vstupu

Př́ıklady:

Pro problém
”
Tř́ıděńı“, kde vstupem je sekvence č́ısel a1, a2, . . . , an

a výstupem jsou tato č́ısla seťŕıděná, můžeme vźıt jako velikost vstupu
hodnotu n.

Pro problém
”
Prvoč́ıselnost“, kde vstupem je p̌rirozené č́ıslo x , a kde

se ptáme, zda x je prvoč́ıslo, můžeme vźıt jako velikost vstupu počet
bit̊u č́ısla x .

(Jinou možnost́ı by bylo vźıt jako velikost vstupu p̌ŕımo hodnotu x .)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 408 / 674

Velikost vstupu

Někdy je vhodné popsat velikost vstupu pomoćı v́ıce č́ısel.

Nap̌ŕıklad u problémů, kde vstupem je graf, můžeme definovat velikost
vstupu jako dvojici č́ısel n,m, kde:

n – počet vrchol̊u grafu

m – počet hran grafu

Poznámka: Jinou možnost́ı by bylo definovat velikost vstupu jako jediné
č́ıslo n +m.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 409 / 674

Velikost vstupu

Obecně můžeme pro libovolný problém definovat velikost vstupu
následovně:

Pokud je vstupem slovo w z nějaké obecedy Σ:
délka slova w

Pokud je vstupem sekvence bit̊u (tj. slovo z abecedy {0, 1}):
počet bit̊u v této sekvenci

Pokud je vstupem p̌rirozené č́ıslo x :
počet bit̊u nutných k zápisu č́ısla x

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 410 / 674

Časová složitost

Chceme analyzovat konkrétńı algoritmus (jeho konkrétńı implementaci).

Zaj́ımá nás, kolik instrukćı se provede, pokud algoritmus dostane vstup
velikosti 0, 1, 2, 3, 4,

Je žrejmé, že i pro vstupy, které maj́ı stejnou velikost, může být počet
provedených instrukćı r̊uzný.

Označme si velikost vstupu w ∈ In jako size(w).
Nyńı definujme následuj́ıćı funkci T ∶ N → N takovou, že pro n ∈ N je

T (n) = max { timeM(w) ∣ w ∈ In, size(w) = n }

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 411 / 674

Časová složitost v nejhořśım p̌ŕıpadě

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(w)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 412 / 674

Časová složitost v nejhořśım p̌ŕıpadě

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(w)T (n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 412 / 674

Časová a prostorová složitost v nejhořśım p̌ŕıpadě

Takto definované funkci T (n) (tj. funkci, která pro daný algoritmus a
danou definici velikosti vstupu p̌rǐrazuje každému p̌rirozenému č́ıslu n

maximálńı počet instrukćı, které algoritmus provede, pokud dostane vstup
velikosti n) se ř́ıká časová složitost algorimu v nejhořśım p̌ŕıpadě.

T (n) = max { timeM(w) ∣ w ∈ In, size(w) = n }

Analogicky můžeme definovat prostorovou (pamět’ovou) složitost
algoritmu v nejhořśım p̌ŕıpadě jako funkci S(n), kde as a function S(n)
where:

S(n) = max { spaceM(w) ∣ w ∈ In, size(w) = n }
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 413 / 674

Časová složitost v pr̊uměrném p̌ŕıpadě

Kromě časové složitosti v nejhořśım p̌ŕıpadě má smysl zkoumat i časovou
složitost v pr̊uměrném p̌ŕıpadě.

V tomto p̌ŕıpadě T (n) nedefinujeme jako maximum, ale jako aritmetický
pr̊uměr z hodnot

{ timeM(w) ∣ w ∈ In, size(w) = n }
Určit časovou složitost v pr̊uměrném p̌ŕıpadě je věťsinou těžš́ı než
určit časovou složitost v nejhořśım p̌ŕıpadě.

Často se tyto dvě funkce p̌ŕılǐs nelǐśı, někdy je ale rozd́ıl významný.

Poznámka: Zkoumat složitost v nejlepš́ım p̌ŕıpadě věťsinou moc smysl
nemá.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 414 / 674

Časová složitost v pr̊uměrném p̌ŕıpadě

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(w)T (n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 415 / 674

Výpočetńı složitost algoritmu

Z definice vid́ıme, že jak časová, tak prostorová, složitost algoritmu jsou
funkce, jej́ıchž p̌resné hodnoty závist́ı nejen na daném algoritmu Alg , ale
také na následuj́ıćıch věcech:

na stroji M, na kterém algoritmus Alg běž́ı,

na definici doby výpočtu timeM(w) a množstv́ı použité
paměti spaceM(w) algoritmu Alg na stroji M pro vstup w ∈ In,

na definici velikosti vstupu (tj. definici funkce size).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 416 / 674

Výpočetńı složitost algoritmu

Přesné určeńı doby výpočtu nebo množstv́ı použité paměti může být
extrémně komplikované.

Věťsinou se p̌ri analýze výpočetńı složitosti algoritmu použ́ıvá celá řada
zjednodušeńı:

Věťsinou se neanalyzuje, jak záviśı doba výpočtu nebo množstv́ı
použité paměti na konkrétńıch vstupńıch datech, ale pouze, jak závist́ı
na velikosti vstupu, tj. na množstv́ı těchto dat.

Funkce vyjaďruj́ıćı, jak roste doba výpočtu nebo množstv́ı použité
paměti v závislosti na velikosti vstupu, se nepoč́ıtaj́ı p̌resně — poč́ıtaj́ı
se odhady těchto funkćı.

Odhady těchto funkćı se vyjaďruj́ı pomoćı tzv. asymptotické notace
— nap̌r. se řekne, že časová složitost algoritmu MergeSort je
O(n log n), zat́ımco časová složitost algoritmu BubbleSort je O(n2).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 417 / 674

Časová složitost algoritmu

Př́ıklad analýzy časové složitosti algoritmu bez použit́ı asymptotické
notace:

Takto podrobně se analýza výpočetńı složitosti algoritmu témě̌r nikdy
nedělá — je to p̌ŕılǐs pracné a komplikované.

Uvid́ıme tak ale, co vše je p̌ri použit́ı asymptotické notace zanedbáno
a o kolik je analýza s použit́ım asymptotické notace jednoduš̌śı.

Budeme poč́ıtat s konstantami c0, c1, . . . , ck , které udávaj́ı dobu
trváńı jednotlivých instrukćı — nebudeme poč́ıtat s konkrétńımi č́ısly.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 418 / 674

Doba výpočtu

Řekněme, že máme algoritmus reprezentován ve formě grafu ř́ıd́ıćıho toku:

Každé instrukci (tj. každé hraně) p̌rǐrad́ıme hodnotu udávaj́ıćı, jak
dlouho trvá provedeńı této instrukce.

Provedeńı r̊uzných instrukćı může trvat r̊uznou dobu.

Pro jednoduchost p̌redpokládejme, že provedeńı té samé instrukce
trvá pokaždé stejnou dobu — hodnota p̌rǐrazená dané instrukci je
č́ıslo z množiny R+ (množina nezáporných reálných č́ısel).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 419 / 674

Doba výpočtu

Př́ıklad:

Algoritmus: Nalezeńı nejvěťśıho prvku v poli

Find-Max (A, n):
k ∶= 0
for i ∶= 1 to n − 1 do

if A[i] > A[k] then
k ∶= i

return A[k]

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 420 / 674

Doba výpočtu

k ∶= 0

i ∶= 1

[i < n]
[i ≥ n]

[A[i] > A[k]]
[A[i] ≤ A[k]]

k ∶= i

i ∶= i + 1
result ∶= A[k]

0

1

2

3

4

5

6

7

Instr. doba

k ∶= 0 c0
i ∶= 1 c1[i < n] c2[i ≥ n] c3[A[i] ≤ A[k]] c4[A[i] > A[k]] c5
k ∶= i c6

i ∶= i + 1 c7
result ∶= A[k] c8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 421 / 674

Doba výpočtu

Př́ıklad: Doby provedeńı jednotlivých instrukćı by mohly být ťreba:

Instr. označeńı doba

k ∶= 0 c0 4
i ∶= 1 c1 4[i < n] c2 10[i ≥ n] c3 12[A[i] ≤ A[k]] c4 14[A[i] > A[k]] c5 12
k ∶= i c6 5

i ∶= i + 1 c7 6
result ∶= A[k] c8 5

Pro konkrétńı vstup w , nap̌r. pro w = ([3, 8, 4, 5, 2], 5), bychom mohli
výpočet odsimulovat a určit konkrétńı dobu výpočtu t(w).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 422 / 674

Časová složitost algoritmu

Předpokládáme vstupy tvaru (A, n), kde A je pole a n počet prvk̊u tohoto
pole (p̌ričemž n ≥ 1).

Jako velikost vstupu (A, n) zvolme n.

Uvažujme nyńı o nějaké jednom vstupu w = (A, n) velikosti n:

Dobu výpočtu t(w) nad vstupem w můžeme vyjáďrit jako

t(w) = c0 ⋅m0(w) + c1 ⋅m1(w) + ⋯ + c8 ⋅m8(w),
kde m0,m1, . . . ,m8 jsou funkce udávaj́ıćı, kolikrát je daná instukce p̌ri
výpočtu nad vstupem w provedena.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 423 / 674

Časová složitost algoritmu

Instr. doba počet provedeńı hodnota mi(w)
k ∶= 0 c0 m0(w) 1
i ∶= 1 c1 m1(w) 1[i < n] c2 m2(w) n − 1[i ≥ n] c3 m3(w) 1[A[i] ≤ A[k]] c4 m4(w) n − 1 − ℓ[A[i] > A[k]] c5 m5(w) ℓ

k ∶= i c6 m6(w) ℓ

i ∶= i + 1 c7 m7(w) n − 1
result ∶= A[k] c8 m8(w) 1

ℓ — počet pr̊uchodů cyklem, kdy plat́ı A[i] > A[k] (zjevně je 0 ≤ ℓ < n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 424 / 674

Časová složitost algoritmu

Dosazeńım do

t(w) = c0 ⋅m0(w) + c1 ⋅m1(w) + ⋯ + c8 ⋅m8(w),
dostaneme

t(w) = d1 + d2 ⋅ (n − 1) + d3 ⋅ (n − 1 − ℓ) + d4 ⋅ ℓ,

kde

d1 = c0 + c1 + c3 + c8 d3 = c4
d2 = c2 + c7 d4 = c5 + c6

Po úpravě je

t(w) = (d2 + d3) ⋅ n + (d4 − d3) ⋅ ℓ + (d1 − d2 − d3)
Poznámka: t(w) neńı časová složitost, ale doba výpočtu pro konkrétńı
vstup w

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 425 / 674

Časová složitost algoritmu

Nap̌ŕıklad pokud budou doby provedeńı jednotlivých instrukćı následuj́ıćı:

Instr. označeńı doba

k ∶= 0 c0 4
i ∶= 1 c1 4[i < n] c2 10[i ≥ n] c3 12[A[i] ≤ A[k]] c4 14[A[i] > A[k]] c5 12
k ∶= i c6 5

i ∶= i + 1 c7 6
result ∶= A[k] c8 5

bude d1 = 25, d2 = 16, d3 = 14 a d4 = 17.

V takovém p̌ŕıpadě je t(w) = 30n + 3ℓ − 5.

Pro konkrétńı vstup w = ([3, 8, 4, 5, 2], 5) je n = 5 a ℓ = 1, takže
t(w) = 30 ⋅ 5 + 3 ⋅ 1 − 5 = 148.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 426 / 674

Časová složitost algoritmu

Pro které vstupy velikosti n bude výpočet trvat nejdéle (tj. které vstupy
p̌redstavuj́ı nejhořśı p̌ŕıpad), může záviset na detailech implementace a
p̌resných hodnotách konstant:

Doba výpočtu algoritmu Find-Max pro vstup w = (A, n) velikosti n:

t(w) = (d2 + d3) ⋅ n + (d4 − d3) ⋅ ℓ + (d1 − d2 − d3)
Pokud d3 ≥ d4 — nejhořśı jsou p̌ŕıpady, kdy má ℓ co nejmenš́ı hodnotu

ℓ = 0 — nap̌ŕıklad vstupy tvaru [0, 0, . . . , 0] nebo ťreba[n, n − 1, n − 2, . . . , 2, 1]
Pokud d3 ≤ d4 — nejhořśı jsou p̌ŕıpady, kdy má ℓ co nejvěťśı hodnotu

ℓ = n − 1 — nap̌ŕıklad vstupy tvaru [0, 1, . . . , n − 1]
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 427 / 674

Časová složitost algoritmu

Časová složitost T (n) algoritmu Find-Max v nejhořśım p̌ŕıpadě je tedy
dána následovně:

Pokud d3 ≥ d4:

T (n) = (d2 + d3) ⋅ n + (d1 − d2 − d3)
Pokud d3 ≤ d4:

T (n) = (d2 + d3) ⋅ n + (d4 − d3) ⋅ (n − 1) + (d1 − d2 − d3)
= (d2 + d4) ⋅ n + (d1 − d2 − d4)

Př́ıklad: Pro d1 = 25, d2 = 16, d3 = 14 a d4 = 17 bude

T (n) = (16 + 17) ⋅ n + (25 − 16 − 17)
= 33n − 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 428 / 674

Časová složitost algoritmu

V obou p̌ŕıpadech (at’ už d3 ≥ d4 nebo d3 ≤ d4) bude časová složitost
algoritmu Find-Max funkce tvaru

T (n) = an + b

kde a a b jsou nějaké konstanty, jejichž p̌resné hodnoty záviśı na délce
trváńı jednotlivých instrukćı.

Poznámka: Konkrétně bychom tyto konstanty mohli vyjáďrit jako

a = d2 +max{d3, d4} b = d1 − d2 −max{d3, d4}
Nap̌ŕıklad

T (n) = 33n − 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 429 / 674

Časová složitost algoritmu

Pokud bychom se spokojili s t́ım, že časová složitost algoritmu Find-Max

je nějaká funkce tvaru

T (n) = an + b,

kde by nás ale nezaj́ımaly konkrétńı hodnoty konstant a a b, celá analýza
mohla být výrazně jednoduš̌śı.

Ve skutečnosti ani věťsinou nechceme vědět, jak p̌resně funkce T (n)
vypadá (obecně to může být nějaká velmi komplikovaná funkce),
a stačilo by nám, že v́ıme, že hodnoty funkce T (n)

”
zhruba“

odpov́ıdaj́ı hodnotám nějaké funkce S(n) = an + b, kde a a b jsou
nějaké konstanty.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 430 / 674

Časová složitost algoritmu

U dané funkce T (n) vyjaďruj́ıćı časovou nebo pamět’ovou složitost se tak
věťsinou spokoj́ıme s jej́ım p̌ribližným vyjáďreńım — odhadem, kde

zanedbáme méně významné členy

(nap̌r. ve funkci T (n) = 15n
2
+ 40n − 5 zanedbáme členy 40n a −5 a

ḿısto původńı funkce budeme uvažovat jen o funkci T (n) = 15n
2
),

zanedbáme konstanty, kterými se násob́ı

(nap̌r. ḿısto funkce T (n) = 15n
2
budeme uvažovat

o funkci T (n) = n
2
)

konstanty v exponentech ignorovat nebudeme — nap̌ŕıklad je
podstatný rozd́ıl mezi funkcemi T1(n) = n

2
a T2(n) = n

3
.

bude nás zaj́ımat, jak se funkce T (n) chová pro
”
velké“ hodnoty n,

chováńı na malých hodnotách budeme ignorovat

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 431 / 674

Rychlost r̊ustu funkćı

Program zpracovává vstup velikosti n.
Předpokládejme, že pro vstup velikosti n provede T (n) operaćı, a že
provedeńı jedné operace trvá 1µs (10

−6
s).

n

T (n) 20 40 60 80 100 200 500 1000

n 20µs 40µs 60µs 80µs 0.1ms 0.2ms 0.5ms 1ms

n log n 86µs 0.213ms 0.354ms 0.506ms 0.664ms 1.528ms 4.48ms 9.96ms

n
2

0.4ms 1.6ms 3.6ms 6.4ms 10ms 40ms 0.25 s 1 s

n
3

8ms 64ms 0.216 s 0.512 s 1 s 8 s 125 s 16.7min.

n
4

0.16 s 2.56 s 12.96 s 42 s 100 s 26.6min. 17.36 hod. 11.57 dńı

2
n

1.05 s 12.75 dńı 36560 let 38.3⋅10
9
let 40.1⋅10

15
let 50⋅10

45
let 10.4⋅10

136
let –

n! 77147 let 2.59⋅10
34
let 2.64⋅10

68
let 2.27⋅10

105
let 2.96⋅10

144
let – – –

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 432 / 674

Rychlost r̊ustu funkćı

Uvažujme 3 algoritmy se složitostmi T1(n) = n,T2(n) = n
3
,T3(n) = 2

n
.

Náš poč́ıtač zvládne v reálném čase (kolik jsme ochotni počkat) 10
12

krok̊u.

Složitost Velikost vstupu

T1(n) = n 10
12

T2(n) = n
3

10
4

T3(n) = 2
n

40

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 433 / 674

Rychlost r̊ustu funkćı

Uvažujme 3 algoritmy se složitostmi T1(n) = n,T2(n) = n
3
,T3(n) = 2

n
.

Náš poč́ıtač zvládne v reálném čase (kolik jsme ochotni počkat) 10
12

krok̊u.

Složitost Velikost vstupu

T1(n) = n 10
12

T2(n) = n
3

10
4

T3(n) = 2
n

40

Nyńı poč́ıtač 1000 násobně zrychĺıme. Zvládne tedy 10
15

krok̊u.

Složitost Velikost vstupu Nárust

T1(n) = n 10
15

1000×

T2(n) = n
3

10
5

10×

T3(n) = 2
n

50 +10

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 433 / 674

Asymptotická notace

V následuj́ıćım se zamě̌ŕıme na funkce typu f ∶ N → R, kde:

Hodnota f (n) nemuśı být definovaná pro všechny hodnoty n ∈ N, ale
muśı existovat nějaká konstanta n0 taková, že hodnota f (n) je
definovaná pro všechna n ∈ N taková, že n ≥ n0.

Př́ıklad: Funkce f (n) = log2(n) neńı definovaná pro n = 0, ale pro
všechna n ≥ 1 už definovaná je.

Muśı existovat taková konstanta n0, že pro všechny hodnoty n ∈ N,
kde n ≥ n0, plat́ı f (n) ≥ 0.

Př́ıklad: Pro funkci f (n) = n
2
− 25 plat́ı f (n) ≥ 0 pro všechna n ≥ 5.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 434 / 674

Asymptotická notace

Vezměme si libovolnou funkci g ∶ N → R. Zápisy O(g), Ω(g), Θ(g), o(g)
a ω(g) označuj́ı množiny funkćı typu N → R, kde:

O(g) – množina všech funkćı, které rostou nejvýše tak rychle jako g

Ω(g) – množina všech funkćı, které rostou alespoň tak rychle jako g

Θ(g) – množina všech funkćı, které rostou stejně rychle jako g

o(g) – množina všech funkćı, které rostou pomaleji než funkce g

ω(g) – množina všech funkćı, které rostou rychleji než funkce g

Poznámka: Toto nejsou definice! Ty následuj́ı na následuj́ıćıch slidech.

O – velké
”
O“

Ω – velké řecké ṕısmeno
”
omega“

Θ – velké řecké ṕısmeno
”
theta“

o – malé
”
o“

ω – malé
”
omega“

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 435 / 674

Asymptotická notace – symbol O

Neformálně:

O(g) – množina všech funkćı, které rostou nejvýše tak rychle jako g

Jak formálně definovat, kdy plat́ı f ∈ O(g) ?
Prvńı pokus:

porovnat hodnoty funkćı

(∀n ∈ N)(f (n) ≤ g(n))
Problém: Neumožňuje zanedbat konstanty, nap̌r. neńı pravda, že(∀n ∈ N)(3n2 ≤ 2n

2).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 436 / 674

Asymptotická notace – symbol O

Neformálně:

O(g) – množina všech funkćı, které rostou nejvýše tak rychle jako g

Jak formálně definovat, kdy plat́ı f ∈ O(g) ?
Druhý pokus:

p̌renásobit funkci g nějakou dostatečně velkou konstantou c

(∃c > 0)(∀n ∈ N)(f (n) ≤ c ⋅ g(n))
Problém: Nerovnost nemuśı ani po p̌renásobeńı libovolně velkou
konstantou platit pro malé hodnoty n.

Nap̌ŕıklad funkce g(n) = n
2
očividně roste rychleji než funkce

f (n) = n + 5. Ovšem bez ohledu na to, jak velkou zvoĺıme
konstantu c , pro n = 0 nikdy nebude platit n + 5 ≤ c ⋅ n

2
.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 436 / 674

Asymptotická notace – symbol O

Neformálně:

O(g) – množina všech funkćı, které rostou nejvýše tak rychle jako g

Jak formálně definovat, kdy plat́ı f ∈ O(g) ?
Třet́ı pokus:

nerovnost nemuśı platit pro všechna n, stač́ı, že bude platit pro
všechny

”
dostatečně velké“ hodnoty n

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0)(f (n) ≤ c ⋅ g(n))

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 436 / 674

Asymptotická notace – symbol O

nn0

c⋅g(n)
f (n)

Definice

Vezměme si libovolnou funkci g ∶ N → R. Pro funkci f ∶ N → R plat́ı
f ∈ O(g) právě tehdy, když

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0)(f (n) ≤ c ⋅ g(n)).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 437 / 674

Asymptotická notace – symbol O

Poznámky:

c je kladné reálné č́ıslo (tj. c ∈ R a c > 0)

n0 a n jsou p̌rirozená č́ısla (tj. n0 ∈ N a n ∈ N)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 438 / 674

Asymptotická notace – symbol O

Př́ıklad: Vezměme si funkce f (n) = 2n
2
+ 3n + 7 a g(n) = n

2
.

Chceme ukázat f ∈ O(g), tj. f ∈ O(n2):
Postup 1:

Zvolme nap̌ŕıklad c = 3.

c ⋅ g(n) = 3n
2
= 2n

2
+

1
2
n
2
+

1
2
n
2

Poťrebujeme naj́ıt takové n0, aby pro každé n ≥ n0 platilo současně

2n
2
≥ 2n

2 1
2
n
2
≥ 3n 1

2
n
2
≥ 7

Snadno ově̌ŕıme, že nap̌ŕıklad n0 = 6 vyhovuje těmto požadavk̊um.

Pak pro každé n ≥ 6 plat́ı c ⋅ g(n) ≥ f (n):
cg(n) = 3n

2
= 2n

2
+

1
2
n
2
+

1
2
n
2
≥ 2n

2
+ 3n + 7 = f (n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 439 / 674

Asymptotická notace – symbol O

Př́ıklad, kde f (n) = 2n
2
+ 3n + 7 a g(n) = n

2
:

Postup 2:

Zvolme c = 12.

c ⋅ g(n) = 12n
2
= 2n

2
+ 3n

2
+ 7n

2

Poťrebujeme naj́ıt takové n0, aby pro každé n ≥ n0 platilo současně

2n
2
≥ 2n

2
3n

2
≥ 3n 7n

2
≥ 7

Uvedené vztahy zjevně plat́ı pro n0 = 1, takže pro každé n ≥ 1 plat́ı
f (n) ≤ c ⋅ g(n):
c ⋅ g(n) = 12n

2
= 2n

2
+ 3n

2
+ 7n

2
≥ 2n

2
+ 3n + 7 = f (n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 440 / 674

Asymptotická notace – symbol Ω

nn0

c⋅g(n)

f (n)

Definice

Vezměme si libovolnou funkci g ∶ N → R. Pro funkci f ∶ N → R plat́ı
f ∈ Ω(g) právě tehdy, když

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0)(c ⋅ g(n) ≤ f (n)).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 441 / 674

Asymptotická notace – symbol Ω

Neńı těžké zdůvodnit, že plat́ı následuj́ıćı tvrzeńı:

Pro libovolné funkce f a g plat́ı:

f ∈ O(g) právě tehdy, když g ∈ Ω(f)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 442 / 674

Asymptotická notace – symbol Θ

nn0

c2⋅g(n)
f (n)
c1⋅g(n)

Definice

Vezměme si libovolnou funkci g ∶ N → R. Pro funkci f ∶ N → R plat́ı
f ∈ Θ(g) právě tehdy, když

(∃c1 > 0)(∃c2 > 0)(∃n0 ≥ 0)(∀n ≥ n0)(c1 ⋅ g(n) ≤ f (n) ≤ c2 ⋅ g(n)).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 443 / 674

Asymptotická notace – symbol Θ

Z definice Θ snadno vyplývá následuj́ıćı:

Pro libovolné funkce f a g plat́ı:

f ∈ Θ(g) právě tehdy, když f ∈ O(g) a f ∈ Ω(g)
f ∈ Θ(g) právě tehdy, když f ∈ O(g) a g ∈ O(f)
f ∈ Θ(g) právě tehdy, když g ∈ Θ(f)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 444 / 674

Asymptotická notace – symboly o and ω

Definice

Vezměme si libovolnou funkci g ∶ N → R. Pro funkci f ∶ N → R plat́ı
f ∈ o(g) právě tehdy, když

lim
n→+∞

f (n)
g(n) = 0

Definice

Vezměme si libovolnou funkci g ∶ N → R. Pro funkci f ∶ N → R plat́ı
f ∈ ω(g) právě tehdy, když

lim
n→+∞

f (n)
g(n) = +∞

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 445 / 674

Asymptotická notace

Pro libovolné funkce f a g plat́ı následuj́ıćı tvrzeńı:

Jestliže existuje hodnota c ≥ 0 taková, že

lim
n→+∞

f (n)
g(n) = c

pak f ∈ O(g).
Jestliže existuje hodnota c ≥ 0 taková, že

lim
n→+∞

g(n)
f (n) = c

pak f ∈ Ω(g).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 446 / 674

Asymptotická notace

Zjevně plat́ı:

Pokud f ∈ o(g), pak f ∈ O(g).
Pokud f ∈ ω(g), pak f ∈ Ω(g).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 447 / 674

Asymptotická notace

Na asymptotickou notaci se můžeme d́ıvat jako na určitý druh porovnáńı
rychlosti r̊ustu funkćı:

f ∈ O(g) — rychlost r̊ustu f “≤” rychlost r̊ustu g

f ∈ Ω(g) — rychlost r̊ustu f “≥” rychlost r̊ustu g

f ∈ Θ(g) — rychlost r̊ustu f “=” rychlost r̊ustu g

f ∈ o(g) — rychlost r̊ustu f “<” rychlost r̊ustu g

f ∈ ω(g) — rychlost r̊ustu f “>” rychlost r̊ustu g

Poznámka:

Existuj́ı dvojice funkćı f a g takové, že

f /∈ O(g) a g /∈ O(f),
nap̌ŕıklad

f (n) = n
2

g(n) = {n pokud n mod 2 = 1

n
3

jinak

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 448 / 674

Asymptotická notace

O funkci f řekneme, že je:

lineárńı, pokud f (n) ∈ Θ(n)
kvadratická, pokud f (n) ∈ Θ(n2)
kubická, pokud f (n) ∈ Θ(n3)
polynomiálńı, pokud f (n) ∈ O(nk) pro nějaké k > 0

exponenciálńı, pokud f (n) ∈ O(cnk) pro nějaké c > 1 a k > 0
logaritmická, pokud f (n) ∈ Θ(log n)
polylogaritmická, pokud f (n) ∈ Θ(logk n) pro nějaké k > 0

O(1) je množina všech omezených funkćı, tj. funkćı jejichž funkčńı
hodnoty jsou shora omezeny nějakou konstantou.

Exponenciálńı funkce se v asymptotické notaci často uvád́ı ve

tvaru 2
O(nk)

, protože potom již nemuśıme uvažovat r̊uzné základy
mocniny.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 449 / 674

Asymptotická notace

Obecně plat́ı:

jakákoliv polylogaritmická funkce roste pomaleji než jakákoli
polynomiálńı funkce

jakákoli polynomiálńı funkce roste pomaleji než jakákoli exponenciálńı
funkce

p̌ri porovnáváńı polynomiálńıch funkćı n
k
a n

ℓ
stač́ı porovnat

hodnoty k a ℓ

p̌ri porovnáváńı polylogaritmických funkćı log
k
n a log

ℓ
n stač́ı

porovnat hodnoty k a ℓ

p̌ri porovnáváńı exponenciálńıch funkćı 2
p(n)

a 2
q(n)

stač́ı porovnat
polynomy p(n) a q(n).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 450 / 674

Asymptotická notace

Tvrzeńı

Předpokládejme, že a a b jsou nějaké konstanty takové, že a > 0 a b > 0,
a k a ℓ jsou nějaké libovolné konstanty, kde k ≥ 0, ℓ ≥ 0 a k ≤ ℓ.

Uvažujme funkce

f (n) = a ⋅ n
k

g(n) = b ⋅ n
ℓ

Pro každé takové funkce f a g plat́ı f ∈ O(g):
Důkaz: Zvolme c =

a

b
.

Vzhledem k tomu, že pro n ≥ 1 zjevně plat́ı n
k
≤ n

ℓ
(protože k ≤ ℓ), tak

pro n ≥ 1 plat́ı

c ⋅ g(n) = a

b
⋅ g(n) = a

b
⋅ b ⋅ n

ℓ
= a ⋅ n

ℓ
≥ a ⋅ n

k
= f (n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 451 / 674

Asymptotická notace

Tvrzeńı

Pro libovolná a, b > 1 a libovolné n > 0 plat́ı

loga n =
logb n

logb a

Důkaz: Z n = a
loga n plyne logb n = logb(aloga n).

Protože logb(aloga n) = loga n ⋅ logb a, dostáváme logb n = loga n ⋅ logb a,
z čehož plyne výše uvedený závěr.

Z toho důvodu se p̌ri použit́ı asymptotické notace základ logaritmu obvykle
vynechává: nap̌ŕıklad ḿısto Θ(n log2 n) můžeme napsat Θ(n log n).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 452 / 674

Asymptotická notace

Př́ıklady:

n ∈ O(n2) n
3
∈ O(n4)

1000n ∈ O(n) 0.00001n
2
− 10

10
n ∈ Θ(1010n2)

2
log2 n

∈ Θ(n) n
3
− n

2
log

3
2 n + 1000n − 10

100
∈ Θ(n3)

n
3 /∈ O(n2) n

3
+ 1000n − 10

100
∈ O(n3)

n
2 /∈ O(n) n

3
+ n

2 /∈ Θ(n2)
n
3
+ 2

n /∈ O(n2) n! /∈ O(2n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 453 / 674

Asymptotická notace

Pro libovolné ťri funkce f , g a h plat́ı:

jestliže f ∈ O(g) a g ∈ O(h), pak f ∈ O(h)
jestliže f ∈ Ω(g) a g ∈ Ω(h), pak f ∈ Ω(h)
jestliže f ∈ Θ(g) a g ∈ Θ(h), pak f ∈ Θ(h)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 454 / 674

Asymptotická notace

Pro libovolnou funkci f a libovolnou konstantu c > 0 plat́ı:

c ⋅ f ∈ Θ(f)
Pro libovolné dvě funkce f , g plat́ı:

max(f , g) ∈ Θ(f + g)
pokud f ∈ O(g), pak f + g ∈ Θ(g)

Pro libovolné čty̌ri funkce f1, f2, g1, g2 plat́ı:

pokud f1 ∈ O(f2) a g1 ∈ O(g2), pak f1 + g1 ∈ O(f2 + g2) a
f1 ⋅ g1 ∈ O(f2 ⋅ g2)
pokud f1 ∈ Θ(f2) a g1 ∈ Θ(g2), pak f1 + g1 ∈ Θ(f2 + g2) a
f1 ⋅ g1 ∈ Θ(f2 ⋅ g2)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 455 / 674

Asymptotická notace

Jak bylo uvedeno, výrazy O(g), Ω(g), Θ(g), o(g) a ω(g) označuj́ı určité
množiny funkćı.

V odborných textech se však někdy použ́ıvaj́ı tyto výrazy i v poněkud
odlǐsném významu:

zápis O(g), Ω(g), Θ(g), o(g) nebo ω(g) nereprezentuje danou
množinu funkćı, ale nějakou funkci z dané množiny.

Tato konvence se použ́ıvá zejména v zápisu rovnic nebo nerovnic.

Př́ıklad: 3n
3
+ 5n

2
− 11n + 2 = 3n

3
+ O(n2)

Při použit́ı této konvence je tedy možné nap̌ŕıklad psát f = O(g) ḿısto
f ∈ O(g).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 456 / 674

Složitost algoritmů

Řekněme, že bychom chtěli analyzovat časovou složitost T (n) nějakého
algoritmu, který se skládá z instrukćı I1, I2, . . . , Ik :

Předpokládejme, že doby provedeńı jednotlivých instrukćı jsou
c1, c2, . . . , ck , tj. doba provedeńı instrukce Ii je dána konstantou ci .

Předpokládejme, že In je množina všech možných vstupů pro daný
algoritmus.

Zaved’me si pro každou instrukci Ii odpov́ıdaj́ıćı funkci

mi ∶ In → N

udávaj́ıćı, kolikrát se provede instrukce Ii p̌ri výpočtu nad daným
vstupem, tj. hodnota mi(w) udává, kolikrát se provede instrukce Ii
p̌ri výpočtu nad vstupem w .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 457 / 674

Složitost algoritmů

Celková doba výpočtu nad vstupem w :

t(w) = c1 ⋅m1(w) + c2 ⋅m2(w) +⋯+ ck ⋅mk(w).
Připomeňme, že T (n) = max { t(w) ∣ size(w) = n }.
Pro každou z funkćı m1,m2, . . . ,mk můžeme nadefinovat odpov́ıdaj́ıćı
funkci fi ∶ N → R, kde

fi(n) = max {mi(w) ∣ size(w) = n }
tj. fi(n) je maximum z počtu provedeńı instrukce Ii pro všechny
vstupy velikosti n.

Zjevně plat́ı T ∈ O(f1 + f2 +⋯+ fk).
Připomeňme si, že pokud fj ∈ O(fi), pak ci ⋅ fi + cj ⋅ fj ∈ O(fi).
Pokud tedy pro některou funkci fi plat́ı, že pro všechny fj , kde j ≠ i ,
je fj ∈ O(fi), pak

T ∈ O(fi).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 458 / 674

Složitost algoritmů

Zjevně také plat́ı, že pro libovolnou z funkćı f1, f2, . . . , fk je T ∈ Ω(fi).
Při analýze celkové časové složitosti T (n) se tedy věťsinou můžeme
omezit pouze na analýzu počtu provedeńı nejčastěji prováděné
instrukce Ii , tj. zkoumáńı toho, jak rychle roste funkce fi(n), protože
plat́ı

T ∈ Θ(fi).
Pro ostatńı instrukce Ij stač́ı ově̌rit, že

fj ∈ O(fi),
tj. neńı pro ně nutné p̌resně zjǐst’ovat, jak rychle rostou, ale jen to, že
rostou nanejvýš tak rychle jako fi .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 459 / 674

Složitost algoritmů

Př́ıklad:

Algoritmus: Nalezeńı nejvěťśıho prvku v poli

Find-Max (A, n):
k ∶= 0
for i ∶= 1 to n − 1 do

if A[i] > A[k] then
k ∶= i

return A[k]

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 460 / 674

Složitost algoritmů

Při analýze složitosti algoritmu Find-Max jsme zjistili, že časová složitost
daného algoritmu v nejhořśım p̌ŕıpadě je

f (n) = an + b .

Kdybychom to nechtěli takto podrobně zjǐst’ovat a spokojili se s hrubš́ım
odhadem, mohli jsme určit, že časová složitost tohoto algoritmu je Θ(n),
protože:

Algoritmus obsahuje jediný cyklus, který se pro vstup velikosti n
provede vždy právě (n− 1) krát, tj. počet pr̊uchodů cyklem je v Θ(n).
V rámci jednoho pr̊uchodu cyklem se provede několik instrukćı, jejichž
počet je shora i zdola omezen nějakými konstantami nezávislými na
velikosti vstupu. Doba provedeńı jedné iterace cyklu je tedy v Θ(1).
Ostatńı instrukce se provedou jednou. Čas, který se stráv́ı jejich
prováděńım, je v Θ(1).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 461 / 674

Složitost algoritmů

Pokusme se analyzovat časovou složitost následuj́ıćıho algoritmu:

Algoritmus: Tř́ıděńı p̌ŕımým vkládáńım

Insertion-Sort (A, n):
for j ∶= 1 to n − 1 do

x ∶= A[j]
i ∶= j − 1
while i ≥ 0 and A[i] > x do

A[i + 1] ∶= A[i]
i ∶= i − 1

A[i + 1] ∶= x

Tj. chceme naj́ıt funkci T (n) takovou, že časová složitost algoritmu
Insertion-Sort v nejhořśım p̌ŕıpadě je v Θ(T (n)).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 462 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x =?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x =?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0
↓

i

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

i

1

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0
↓

i

8

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

3

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

i
↓

n

x = 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

8

2

5

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

8

2
↓

i

5

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1
↓

i

8

2

8

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4

↑

j

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3
↓

i

8

4

↑

j

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4

↑

j

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4

6

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4
↓

i

6

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3
↓

i

8

4

8

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2
↓

i

8

3

8

4

8

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6

↑

j

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5
↓

i

11

6

↑

j

4

7

10

8

5

9
↓

n

x = 11

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6

↑

j

4

7

10

8

5

9
↓

n

x = 11

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6

4

7

↑

j

10

8

5

9
↓

n

x = 11

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6
↓

i

4

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5
↓

i

11

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4
↓

i

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3
↓

i

8

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2
↓

i

6

3

6

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1
↓

i

5

2

5

3

6

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

11

7

10

8

↑

j

5

9
↓

n

x = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

11

7
↓

i

10

8

↑

j

5

9
↓

n

x = 10

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6
↓

i

11

7

11

8

↑

j

5

9
↓

n

x = 10

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7

11

8

↑

j

5

9
↓

n

x = 10

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7

11

8

5

9

↑

j

↓

n

x = 10

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7

11

8
↓

i

5

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7
↓

i

11

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6
↓

i

10

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5
↓

i

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4
↓

i

8

5

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3
↓

i

6

4

6

5

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

5

4

6

5

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Př́ıklad: Výpočet algoritmu Insertion-Sort pro vstup

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

5

4

6

5

8

6

8

7

10

8

11

9
↓

n

↑

j

x = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 463 / 674

Složitost algoritmů

Algoritmus: Tř́ıděńı p̌ŕımým vkládáńım

Insertion-Sort (A, n):
for j ∶= 1 to n − 1 do

x ∶= A[j]
i ∶= j − 1
while i ≥ 0 and A[i] > x do

A[i + 1] ∶= A[i]
i ∶= i − 1

A[i + 1] ∶= x

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 464 / 674

Složitost algoritmů

Uvažujme vstupy velikosti n:

Vněǰśı cyklus for se provede n − 1 krát.
(Proměnná j nabývá hodnot 1, 2, . . . , n − 1.)

Vniťrńı cyklus while se pro danou hodnotu j provede maximálně
j krát.
(Proměnná i nabývá hodnot j − 1, j − 2, . . . , 1, 0.)

Existuj́ı vstupy, pro které plat́ı, že pro každou hodnotu j od 1 do n− 1
se vniťrńı cyklus while provede právě j krát.

V nejhořśım p̌ŕıpadě se tedy cyklus while provede celkem m krát, kde

m = 1 + 2 +⋯+ (n − 1) = (1 + (n − 1)) ⋅ n−1
2

=
1
2
n
2
−

1
2
n

Celková časová složitost algoritmu Insertion-Sort v nejhořśım
p̌ŕıpadě je tedy Θ(n2).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 465 / 674

Složitost algoritmů

V p̌redchoźım p̌ŕıpadě jsme p̌resně spoč́ıtali celkový počet pr̊uchodů
cyklem while.

Obecně to neńı vždy možné spoč́ıtat takto p̌resně nebo to může být hodně
komplikované. Pokud nás zaj́ımá jen asymptotický odhad, tak to často ani
neńı nutné.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 466 / 674

Složitost algoritmů

Pokud bychom nap̌ŕıklad neuměli spoč́ıtat součet aritmetické posloupnosti,
mohli bychom provést analýzu následovně:

Vněǰśı cyklus for se neprovede v́ıce než n krát, vniťrńı cyklus while se
p̌ri každé iteraci vněǰśıho cyklu provede maximálně n krát. Celkově se
tedy vniťrńı cyklus provede maximálně n

2
krát.

Plat́ı tedy T ∈ O(n2).
Pro některé vstupy se p̌ri posledńıch ⌊n/2⌋ pr̊uchodech cyklem for
provede cyklus while alespoň ⌈n/2⌉ krát.

Pro některé vstupy se tedy cyklus while provede alespoň⌊n/2⌋ ⋅ ⌈n/2⌉ krát.

⌊n/2⌋ ⋅ ⌈n/2⌉ ≥ (n/2 − 1) ⋅ (n/2) = 1
4
n
2
−

1
2
n

Plat́ı tedy T ∈ Ω(n2).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 467 / 674

Složitost algoritmů

Zat́ım jsme uvažovali, že provedeńı dané instrukce trvá vždy stejně
dlouho bez ohledu na to, s jakými hodnotami pracuje.

Při použit́ı asymptotických odhadů tedy doba trváńı jednotlivých
instrukćı nehrála roli a důležité bylo pouze to, kolikrát se daná
instrukce p̌ri běhu algoritmu provede.

Nap̌ŕıklad p̌ri použit́ı stroj̊u RAM jako výpočetńıho modelu to
odpov́ıdá poč́ıtáńı počtu provedených instrukćı, tj. doba trváńı
provedeńı jedné instrukce je 1.

Tato se označuje jako použit́ı tzv. jednotkové ḿıry.

Odhady časové složitosti v jednotkové ḿı̌re odpov́ıdaj́ı době běhu na
skutečných poč́ıtač́ıch za p̌redpokladu, že operace, které provád́ı stroj
RAM, může skutečný poč́ıtač provést v konstantńım čase.

To plat́ı, pokud č́ısla, se kterými algoritmus pracuje, jsou malá
(vejdou se nap̌r. do 32 nebo 64 bit̊u).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 468 / 674

Složitost algoritmů

Pokud by stroj RAM pracoval s
”
velkými“ č́ısly (nap̌r. 1000 bitovými),

bude odhad časové složitosti v jednotkové ḿı̌re nerealistický v tom
smyslu, že výpočet na skutečném poč́ıtači bude trvat mnohem déle.

Proto se p̌ri analýze časové složitosti algoritmů, u kterých se
p̌redpokládá práce s velkými č́ısly, použ́ıvá tzv. logaritmická ḿıra,
kdy je doba provedeńı jedné instrukce úměrná počtu bitových
operaćı, které je ťreba pro provedeńı dané instrukce provést.

Doba trváńı instrukce je tedy závislá na aktuálńıch hodnotách jej́ıch
operandů.

Nap̌ŕıklad doba prováděńı instrukćı sč́ıtáńı a odč́ıtáńı je rovna součtu
počt̊u bit̊u jejich operandů.

Doba prováděńı instrukćı násobeńı a děleńı je rovna součinu počt̊u
bit̊u jejich operandů.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 469 / 674

Složitost algoritmů

Poznámka: Zápisem blen(x) označme počet bit̊u v binárńım zápise
p̌rirozeného č́ısla x .

Plat́ı
blen(x) = max (1, ⌈log2(x + 1)⌉)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 470 / 674

Prostorová (pamět’ová) složitost algoritmů

Zat́ım jsme se zaj́ımali o čas, který poťrebujeme k výpočtu

Někdy bývá kritickou velikost paměti poťrebné k provedeńı výpočtu.

V p̌ŕıpadě stroj̊u RAM opět můžeme i z hlediska množstv́ı použité paměti
rozlǐsovat mezi použit́ım jednotkové a logaritmické ḿıry:

Množstv́ım paměti stroje RAM M použitým pro vstup w rozuḿıme bud’

počet buněk paměti nebo počet bit̊u paměti, které stroj M během svého
výpočtu nad vstupem w použije.

Definice

Prostorová složitost stroje RAM M (v nejhořśım p̌ŕıpadě) je funkce
S ∶ N → N, kde S(n) udává maximálńı množstv́ı paměti použité
strojem M pro vstupy délky n.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 471 / 674

Prostorová (pamět’ová) složitost algoritmů

Pro konkrétńı problém můžeme ḿıt dva algoritmy takové, že jeden
má menš́ı prostorovou složitost a druhý zase časovou složitost.

Je-li časová složitost algoritmu v O(f (n)) je i prostorová v O(f (n))
(počet buněk navšt́ıvených RAMem nemůže být řádově věťśı než
počet krok̊u, protože v každém kroku použije nejvýše ťri buňky paměti
— nejvýše dvě pro čteńı a nejvýše jednu pro zápis).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 472 / 674

Př́ıklady analýzy složitosti algoritmů
(a p̌ŕıklady technik použ́ıvaných p̌ri návrhu efektivńıch algoritmů)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 473 / 674

Složitost algoritmů

Orientačńı typické hodnoty velikosti vstupu n, pro které algoritmus
s danou časovou složitost́ı ještě věťsinou zvládne na

”
běžném PC“ spoč́ıtat

výsledek ve zlomku sekundy nebo maximálně v řádu sekund.

(Záviśı to samožrejmě výrazně na konkrétńıch detailech. Nav́ıc se zde
p̌redpokládá, že v asymptotické notaci nejsou skryty nějaké velké
konstanty.)

O(n) O(n log n) O(n2) O(n3)
1 000 000 – 100 000 000 100 000 – 1 000 000 1000 – 10 000 100 – 1000

2
O(n)

O(n!)
20 – 30 10 – 15

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 474 / 674

Složitost algoritmů

Při použ́ıváńı asymptotických odhadů časové složitosti algoritmů bychom
si měli být vědomi některých úskaĺı:

Asyptotické odhady se týkaj́ı pouze toho, jak roste čas s rostoućı
velikost́ı vstupu.

Něŕıkaj́ı nic o konkrétńı době výpočtu. V asymptotické notaci mohou
být skryty velké konstanty.

Algoritmus, který má lepš́ı asymptotickou časovou složitost než
nějaký jiný algoritmus, může být ve skutečnosti rychleǰśı až pro nějaké
hodně velké vstupy.

Věťsinou analyzujeme složitost v nejhořśım p̌ŕıpadě. Pro některé
algoritmy může být doba výpočtu v nejhořśım p̌ŕıpadě mnohem věťśı
než doba výpočtu na

”
typických“ instanćıch.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 475 / 674

Složitost algoritmů

Můžeme si to ilustrovat na algoritmech pro ťŕıděńı.

Algoritmus Nejhořśı p̌ŕıpad Pr̊uměrný p̌ŕıpad

Bubblesort Θ(n2) Θ(n2)
Heapsort Θ(n log n) Θ(n log n)
Quicksort Θ(n2) Θ(n log n)

Quicksort má hořśı asymptotickou složitost v nejhořśım p̌ŕıpadě než
Heapsort, stejnou asymptotickou složitost v pr̊uměrném p̌ŕıpadě a
p̌resto je v praxi nejrychleǰśı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 476 / 674

Složitost algoritmů

Polynom — funkce tvaru

akn
k
+ ak−1n

k−1
+ ⋯ + a2n

2
+ a1n + a0

kde a0, a1, . . . , ak jsou konstanty.

Př́ıklady polynomů:

4n
3
− 2n

2
+ 8n + 13 2n + 1 n

100

Funkce f je polynomiálńı, jestliže je shora omezena nějakým polynomem,
tj. jestliže existuje nějaká konstanta k taková, že f ∈ O(nk).
Polynomiálńı jsou nap̌ŕıklad funkce, které paťŕı do následuj́ıćıch ťŕıd:

O(n) O(n log n) O(n2) O(n5) O(√n) O(n100)
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 477 / 674

Složitost algoritmů

Funkce jako 2
n
nebo n! polynomiálńı nejsou — pro libovolně velkou

konstantu k plat́ı

2
n
∈ Ω(nk) n! ∈ Ω(nk)

Polynomiálńı algoritmus — algoritmus, jehož časová složitost je
polynomiálńı (tj. shora omezená nějakým polynomem)

Zhruba se dá ř́ıct, že:

polynomiálńı algoritmy jsou efektivńı algoritmy, které se daj́ı prakticky
použ́ıt i pro relativně velké vstupy

algoritmy, které polynomiálńı nejsou, se daj́ı použ́ıt jen pro poměrně
malé vstupy

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 478 / 674

Složitost algoritmů

Rozděleńı na polynomiálńı a nepolynomiálńı algoritmy je velmi hrubé —
nelze kategoricky tvrdit, že polynomiálńı algoritmy jsou vždy prakticky
použitelné a nepolynomiálńı naopak nikdy nejsou:

algoritmus se složitost́ı Θ(n100) pravděpodobně p̌ŕılǐs prakticky
použitelný nebude,

některé algoritmy, které nejsou polynomiálńı, mohou fungovat
efektivně pro velkou část vstupů, a složitost věťśı než polynomiálńı
maj́ı jen kv̊uli některým problematickým vstupům, na kterých může
výpočet trvat velmi dlouhou dobu.

Poznámka: Polynomiálńı algoritmy, kde by konstanta v exponentu bylo
nějaké velké č́ıslo (nap̌r. algoritmy se složitost́ı Θ(n100)), se p̌ri řešeńı
běžných algoritmických problémů prakticky nevyskytuj́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 479 / 674

Složitost algoritmů

Pro věťsinu běžných algoritmických problémů nastává jedna ze ťŕı
možnost́ı:

Je znám polynomiálńı algoritmus se složitost́ı O(nk), kde k je nějaké
velmi malé č́ıslo (nap̌r. 5 a častěji ťreba 3 a méně).

Neńı znám žádný polynomiálńı algoritmus a nejlepš́ı známé algoritmy

maj́ı složitosti jako ťreba 2
Θ(n)

, Θ(n!) nebo nějaké ještě věťśı.

V některých p̌ŕıpadech může být znám i důkaz, že pro daný problém
žádný polynomiálńı algoritmus neexistuje (tj. nedá se vytvǒrit).

Neńı znám žádný algoritmus, který řeš́ı daný problém (a p̌ŕıpadně je i
dokázáno, že žádný takový algoritmus neexistuje).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 480 / 674

Složitost algoritmů

Typický p̌ŕıklad polynomiálńıho algoritmu — násobeńı matic s časovou
složitost́ı Θ(n3) a pamět’ovou složitost́ı Θ(n2):
Algoritmus: Násobeńı matic

Matrix-Mult (A,B ,C , n):
for i ∶= 1 to n do

for j ∶= 1 to n do
x ∶= 0
for k ∶= 1 to n do

x ∶= x + A[i][k] ∗ B[k][j]
C[i][j] ∶= x

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 481 / 674

Složitost algoritmů

Při hrubé analýze složitosti často stač́ı spoč́ıtat počet do sebe
vnǒrených smyček — a tento počet pak udává stupeň polynomu

Př́ıklad: Tři vnǒrené cykly p̌ri násobeńı matic — časová složitost
algoritmu je O(n3).
Pokud neprob́ıhaj́ı všechny smyčky nap̌r. od 0 do n, ale počet
pr̊uchodů vniťrńımi smyčkami se p̌ri r̊uzných iteraćıch vněǰśı smyčky
měńı, podrobněǰśı analýza může být komplikovaněǰśı.

Věťsinou to pak vede na poč́ıtáńı součt̊u r̊uzných typů č́ıselných řad
(nap̌r. aritmetické, geometrické, apod.).

Často dá taková podrobněǰśı analýza podobný výsledek jako hrubá
analýza, mnohdy však může být složitost zjǐstěná touto podrobněǰśı
analýzou podstatně nižš́ı než by vyplývalo z hrubého odhadu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 482 / 674

Aritmetická posloupnost

Aritmetická posloupnost — č́ıselná řada a0, a1, . . . , an−1, kde

ai = a0 + i ⋅ d ,

kde d je nějaká konstanta nezávistlá na i .

V aritmetické posloupnosti tedy pro všechna i plat́ı ai+1 = ai + d .

Př́ıklad: Aritmetická posloupnost, kde a0 = 1, d = 1 a n = 100:

1, 2, 3, 4, 5, 6, . . . , 96, 97, 98, 99, 100

Součet aritmetické posloupnosti:

n−1

∑
i=0

ai = a0 + a1 +⋯+ an−1 =
1

2
n (a0 + an−1)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 483 / 674

Aritmetická posloupnost

Př́ıklad:

1 + 2 +⋯+ n =
1

2
n(n + 1) =

1

2
n
2
+

1

2
n = Θ(n2)

Konkrétně nap̌ŕıklad pro n = 100 je

1 + 2 +⋯+ 100 = 50 ⋅ 101 = 5050.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 484 / 674

Aritmetická posloupnost

Důkaz: Označme

s =

n−1

∑
i=0

ai = a0 + a1 +⋯+ an−1

2s = s + s

= (a0 + a1 +⋯+ an−1) + (a0 + a1 +⋯+ an−1)
= (a0 + a1 +⋯+ an−1) + (an−1 + an−2 +⋯+ a0)
= (a0 + an−1) + (a1 + an−2) +⋯+ (an−1 + a0)
= ((a0 + 0⋅d) + (a0 + (n − 1)⋅d)) + ((a0 + 1⋅d) + (a0 + (n − 2)⋅d))+

⋯ + ((a0 + (n − 1)⋅d) + (a0 + 0⋅d))
= n ⋅ (a0 + a0 + (n − 1)⋅d)
= n ⋅ (a0 + an−1)
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 485 / 674

Aritmetická posloupnost

Př́ıklad: s = 1 + 2 + 3 +⋯+ 99 + 100

2s = s + s

= (1 + 2 +⋯+ 100) + (1 + 2 +⋯+ 100)
= (1 + 2 +⋯+ 100) + (100 + 99 +⋯+ 1)
= (1 + 100) + (2 + 99) + (3 + 98) +⋯+ (99 + 2) + (100 + 1)
= 100 ⋅ (1 + 100) = 10100

Takže

s =
1

2
⋅ 10100 = 5050

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 486 / 674

Geometrická posloupnost

Geometrická posloupnost — č́ıselná řada a0, a1, . . . , an, kde

ai = a0 ⋅ q
i
,

kde q je nějaká konstanta nezávistlá na i .

V geometrické posloupnosti tedy pro všechna i plat́ı ai+1 = ai ⋅ q.

Př́ıklad: Geometrická posloupnost, kde a0 = 1, q = 2 a n = 14:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384

Součet geometrické posloupnosti (kde q ≠ 1):

n

∑
i=0

ai = a0 + a1 +⋯+ an = a0
q
n+1

− 1

q − 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 487 / 674

Geometrická posloupnost

Př́ıklad:

1 + q + q
2
+⋯+ q

n
=

q
n+1

− 1

q − 1

Speciálně pro q = 2:

1 + 2
1
+ 2

2
+ 2

3
+⋯+ 2

n
=

2
n+1

− 1

2 − 1
= 2 ⋅ 2

n
− 1 = Θ(2n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 488 / 674

Geometrická posloupnost

Důkaz: Označme

s =

n

∑
i=0

ai = a0 + a1 +⋯+ an

s = a0 ⋅ q
0
+ a0 ⋅ q

1
+⋯+ a0 ⋅ q

n

s ⋅ q = (a0 ⋅ q0 + a0 ⋅ q
1
+⋯+ a0 ⋅ q

n) ⋅ q
= a0 ⋅ q

1
+ a0 ⋅ q

2
+⋯+ a0 ⋅ q

n+1

s ⋅ q − s = a0 ⋅ q
n+1

− a0 ⋅ q
0

s ⋅ (q − 1) = a0 ⋅ (qn+1 − 1)
s = a0 ⋅

q
n+1

− 1

q − 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 489 / 674

Složitost algoritmů

Exponenciálńı funkce: funkce tvaru c
n
, kde c je konstanta —

nap̌r. funkce 2
n

Logaritmus — inverzńı funkce k exponenciálńı funkci: pro dané n je

logc n

taková hodnota x , že c
x
= n.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 490 / 674

Složitost algoritmů

n 2
n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536
17 131072
18 262144
19 524288
20 1048576

n ⌈log2 n⌉
0 —
1 0
2 1
3 2
4 2
5 3
6 3
7 3
8 3
9 4
10 4
11 4
12 4
13 4
14 4
15 4
16 4
17 5
18 5
19 5
20 5

n log2 n
1 0
2 1
4 2
8 3
16 4
32 5
64 6
128 7
256 8
512 9
1024 10
2048 11
4096 12
8192 13
16384 14
32768 15
65536 16
131072 17
262144 18
524288 19
1048576 20

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 491 / 674

Složitost algoritmů

Př́ıklady toho, kde se p̌ri analýze algoritmů objevuj́ı exponenciálńı funkce
a logaritmy:

Nějaká hodnota se opakovaně zmenšuje na polovinu nebo naopak
zdvojnásobuje.

Nap̌ŕıklad u binárńıho vyhledáváńı (metodou půleńı intervalu) se
s každou iteraćı cyklu zmenšuje velikost intervalu na polovinu.

Předpokládejme, že pole má velikost n.

Jaká je minimálńı velikost pole n, p̌ri které se provede alespoň
k iteraćı?

Odpověd’: 2
k

Plat́ı tedy k = log2(n). Časová složitost algoritmu je pak Θ(log n).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 492 / 674

Složitost algoritmů

Pomoćı n bit̊u je možno reprezentovat č́ısla od 0 do 2
n
− 1.

Minimálńı počet bit̊u poťrebných pro uložeńı p̌rirozeného č́ısla x

reprezentovaného binárně je⌈log2(x + 1)⌉.
Dokonale vyvážený binárńı strom o výšce h má 2

h+1
− 1 vrchol̊u,

z čehož 2
h
jsou listy.

Dokonale vyvážený binárńı strom o n vrcholech má výšku zhruba
log2 n.

Ilustračńı p̌ŕıklad: Kdybychom nakreslili vyvážený strom
o n = 1 000 000 vrcholech tak, aby sousedńı vrcholy byly vzdáleny
o 1 cm a výška každé vrstvy byla také 1 cm, měl by tento strom na
š́ı̌rku 10 km a na výšku zhruba 20 cm.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 493 / 674

Složitost algoritmů

Dokonale vyvážený binárńı strom výšky h:

h

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 494 / 674

Složitost algoritmů

Dokonale vyvážený binárńı strom výšky h:

h

2
0

2
1

2
2

2
3

2
4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 494 / 674

Složitost algoritmů

Efektivńı uložeńı úplného binárńıho stromu v poli:

64

2

5 7

3

1

9 108 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 495 / 674

Složitost algoritmů

Efektivńı uložeńı úplného binárńıho stromu v poli:

64

2

5 7

3

1

9 108 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Potomci vrcholu s indexem i maj́ı indexy 2i a 2i + 1.
Rodič vrcholu s indexem i má index ⌊i/2⌋.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 495 / 674

Složitost algoritmů

Halda (heap) — úplný binárńı strom uložený v poli A výše uvedeným
způsobem, kde nav́ıc pro každé i = 1, 2, . . . , n plat́ı:

pokud 2i ≤ n, pak A[i] ≤ A[2i]
pokud 2i + 1 ≤ n, pak A[i] ≤ A[2i + 1]

Př́ıklady využit́ı haldy:

ťŕıd́ıćı algoritmus HeapSort

efektivńı implementace prioritńı fronty — umožňuje provádět věťsinu
operaćı na této frontě s časovou složitost́ı v O(log n), kde n je počet
prvk̊u ve frontě

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 496 / 674

Složitost algoritmů

Algoritmus: Vytvǒreńı haldy z neseťŕıděného pole

Create-Heap (A, n):
i ∶= ⌊n/2⌋
while i ≥ 1 do

j ∶= i

x ∶= A[j]
while 2 ∗ j ≤ n do

k ∶= 2 ∗ j

if k + 1 ≤ n and A[k + 1] < A[k] then
k ∶= k + 1

if x ≤ A[k] then break
A[j] ∶= A[k]
j ∶= k

A[j] ∶= x

i ∶= i − 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 497 / 674

Složitost algoritmů

Časová složitost algoritmu Create-Heap:

Rychlou a hrubou analýzou lehce zjist́ıme, že tato složitost je
v O(n log n) a v Ω(n):

Vněǰśı cyklus se provede vždy ⌊n/2⌋ krát — počet pr̊uchodů je tedy
v Θ(n).
Počet pr̊uchodů vniťrńım cyklem v rámci jedné iterace vněǰśıho cyklu je
očividně v O(log n).

Daleko méně žrejmé je, že celkový počet pr̊uchodů vniťrńım cyklem
(tj. dohromady p̌res všechny iterace vněǰśıho cyklu) je ve skutečnosti
v O(n).

Celkově tedy dostáváme:

Časová složitost algoritmu Create-Heap je v Θ(n).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 498 / 674

Složitost algoritmů

Zdůvodněńı toho, proč je počet pr̊uchodů vniťrńım cyklem v O(n):
Předpokládejme pro jednoduchost, že všechny větve stromu jsou stejně
dlouhé a maj́ı délku h — plat́ı tedy n = 2

h+1
− 1.

Označme Ci , kde 0 ≤ i < h, celkový počet pr̊uchodů vniťrńım cyklem, kdy
je na začátku cyklu hodnota j v i-té vrstvě stromu (vrstvy jsou č́ıslovány
odshora 0, 1, 2, . . .).

Zjevně je celkový počet pr̊uchodů s dán vztahem

s = Ch−1 + Ch−2 +⋯+ C0 =

h−1

∑
i=0

Ci

Hodnotu Ci spoč́ıtáme jako celkový počet vrchol̊u ve vstvách 0, 1, . . . , i :

Ci = 2
0
+ 2

1
+⋯+ 2

i
=

i

∑
k=0

2
k

=
2
i+1
− 1

2 − 1
= 2

i+1
− 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 499 / 674

Složitost algoritmů

Celkový součet pak spoč́ıtáme následovně:

s =

h−1

∑
i=0

Ci =

h−1

∑
i=0

(2i+1 − 1) = 2 ⋅ (h−1

∑
i=0

2
i) − (h−1

∑
i=0

1)
= 2 ⋅

2
h
− 1

2 − 1
− h = 2

h+1
− 2 − h = n − 1 − h = O(n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 500 / 674

Rekurzivńı algoritmy

Rekurzivńı algoritmus je algoritmus, který p̌revede řešeńı původńıho
problému na řešeńı několika podobných problémů pro menš́ı instance.

Obecné schéma rekurzivńıch algoritmů:

Pokud se jedná o elementárńı p̌ŕıpad, vy̌reš ho p̌ŕımo a vrat’ výsledek.

V opačném p̌ŕıpadě vytvǒr instance podproblémů.

Zavolej sám sebe pro každou z těchto instanćı.

Z výsledk̊u pro jednotlivé podproblémy slož řešeńı původńıho
problému a vrat’ ho jako výsledek.

Poznámka: Instance podproblémů muśı vždy být v nějakém smyslu menš́ı
než instance původńıho problému. Často (ne však vždy) se zmenšuje
velikost instance.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 501 / 674

Hanojské věže

A B C

Úkol: Přeḿıstit disky z A na B, p̌ričemž:

V jednom okamžiku je možné p̌resouvat jen jeden disk.

Neńı dovaleno položit věťśı disk na menš́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 502 / 674

Hanojské věže

n = 1 ∶

A → B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 503 / 674

Hanojské věže

n = 1 ∶

A → B

n = 2 ∶

A → C

A → B

C → B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 503 / 674

Hanojské věže

n = 1 ∶

A → B

n = 2 ∶

A → C

A → B

C → B

n = 3 ∶

A → B

A → C

B → C

A → B

C → A

C → B

A → B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 503 / 674

Hanojské věže

n = 1 ∶

A → B

n = 2 ∶

A → C

A → B

C → B

n = 3 ∶

A → B

A → C

B → C

A → B

C → A

C → B

A → B

n = 4 ∶

A → C

A → B

C → B

A → C

B → A

B → C

A → C

A → B

C → B

C → A

B → A

C → B

A → C

A → B

C → B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 503 / 674

Hanojské věže

A B C

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 504 / 674

Hanojské věže

A B C

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 504 / 674

Hanojské věže

A B C

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 504 / 674

Hanojské věže

A B C

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 504 / 674

Hanojské věže

Algoritmus: Hanojské věže

Hanoi (n, src, dst, tmp):
if n = 0 then return
Hanoi (n − 1, src, tmp, dst)
print (src, “→”, dst)
Hanoi (n − 1, tmp, dst, src)

Main (n):
Hanoi (n, “A”, “B”, “C”)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 505 / 674

Hanojské věže

Označme P(n) počet tahů, které provede algoritmus pro n disk̊u.

Tvrzeńı

P(n) = 2
n
− 1.

Důkaz:

Pro n = 0: P(n) = 0 = 2
0
− 1

Pro n > 0: Předpokládáme, že P(n − 1) = 2
n−1

− 1.

P(n) = 2P(n − 1) + 1 =

= 2(2n−1 − 1) + 1 =

= 2 ⋅ 2
n−1

− 2 + 1 =

= 2
n
− 1

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 506 / 674

Hanojské věže

Tvrzeńı

Pro p̌resun n disk̊u je ťreba minimálně 2
n
− 1 tahů.

Důkaz:
Indukćı.

Uvedený algoritmus nalezne tedy optimálńı řešeńı.

Poznámka

Otázka: Jak dlouho by trvalo p̌resunut́ı 64 disk̊u, pokud by p̌resunut́ı
jednoho disku trvalo 1 s ?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 507 / 674

Hanojské věže

Tvrzeńı

Pro p̌resun n disk̊u je ťreba minimálně 2
n
− 1 tahů.

Důkaz:
Indukćı.

Uvedený algoritmus nalezne tedy optimálńı řešeńı.

Poznámka

Otázka: Jak dlouho by trvalo p̌resunut́ı 64 disk̊u, pokud by p̌resunut́ı
jednoho disku trvalo 1 s ?

Odpověd’: 18446744073709551615 s, tj. asi 585 miliard let.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 507 / 674

Rekurzivńı algoritmy

Výpočet rekurzivńıho algoritmu je možné znázornit jako strom:

vrcholy stromu odpov́ıdaj́ı jednotlivým podproblémům

kǒren je původńı problém

potomci vrcholu odpov́ıdaj́ı podproblémům daného problému

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 508 / 674

Pruning

Př́ıstup, kdy do rekurzivńım algoritmu doplńıme nějaké vhodné testy, které
způsob́ı, že se rekurzivńı procedura nebude volat pro některé podproblémy,
u kterých je jisté, že jejich vy̌rešeńı nepovede k řešeńı celého problému, se
nazývá pruning.

Č́ım v́ıce větv́ı stromu t́ımto způsobem odstrańıme, t́ım lépe.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 509 / 674

Problém osmi dam

Problém: Naj́ıt všechny možnosti, jak rozḿıstit n dam na šachovnici
velikosti n × n tak, aby se žádné dvě dámy navzájem
neohrožovaly.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 510 / 674

Problém osmi dam

Jedno z možných řešeńı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 511 / 674

Problém osmi dam

Vstupem je č́ıslo n.

Algoritmus bude použ́ıvat následuj́ıćı pole:

Y — s indexy 0 . . n − 1, hodnota Y [i] udává pro dámu ve sloupci i
č́ıslo řádku, na kterém se nacháźı

A — s indexy 0 . . n − 1, booleovská hodnota A[j] udává, jestli je
řádek j obsazený

B — s indexy 0 . . 2n − 2, booleovská hodnota B[k] udává, jestli je
diagonála k ve směru ↗ obsazená

C — s indexy −(n − 1) . . +(n − 1), booleovská hodnota C[k]
udává, jestli je diagonála k ve směru ↘ obsazená

Prohledáváńı se spust́ı zavoláńım Search (0).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 512 / 674

Problém osmi dam

Algoritmus: Rozḿıstěńı n dam na šachovnici

Seach (k):
if k = n then

Print-Solution ()
return

for i ∶= 0 to n − 1 do
i2 ∶= k + i ; i3 ∶= k − i

if ¬A[i] and ¬B[i2] and ¬C[i3] then
Y [k] ∶= i

A[i] ∶= True; B[i2] ∶= True; C[i3] ∶= True

Search (k + 1)
A[i] ∶= False; B[i2] ∶= False; C[i3] ∶= False

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 513 / 674

Problém osmi dam

x+y x−y

1

2

3 3 4 5 6

2 3 4 5

1 2 3 4

32100

0 1 2 3

1

2

3 −3 −2 −1 0

−2 −1 0 1

−1 0 1 2

32100

0 1 2 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 514 / 674

Rekurzivńı algoritmy

Uvedený algoritmus pro rozḿıstěńı n dam na šachovnici je p̌ŕıkladem
prohledáváńı s návratem (backtracking).

I p̌ri použit́ı pruningu má tento typ algoritmů věťsinou exponenciálńı
složitost.

Obecně rekurzivńı algoritmy, které p̌revád́ı řešeńı problému velikosti n
na dva nebo v́ıce problémů velikosti n − 1, ḿıvaj́ı věťsinou
exponenciálńı složitost.

Pokud rekurzivńı algoritmus p̌revád́ı řešeńı problému velikosti n na
řešeńı problémů velikosti n/2, složitost může být (a často bývá)
polynomiálńı.

Tento postup může někdy vést k řešeńım, která mohou být
efektivněǰśı než nějaké p̌ŕımočaré řešeńı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 515 / 674

Složitost algoritmů

Př́ıklad: Algoritmus Merge-Sort.

Hlavńı myšlenka algoritmu: Dvě seťŕıděné posloupnosti snadno spoj́ıme do
jediné seťŕıděné posloupnosti.
Pokud maj́ı obě posloupnosti dohromady n prvk̊u, vyžaduje tato operace
n krok̊u.

34 42 58 61

10 11 53 67
⟹

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 516 / 674

Složitost algoritmů

Př́ıklad: Algoritmus Merge-Sort.

Hlavńı myšlenka algoritmu: Dvě seťŕıděné posloupnosti snadno spoj́ıme do
jediné seťŕıděné posloupnosti.
Pokud maj́ı obě posloupnosti dohromady n prvk̊u, vyžaduje tato operace
n krok̊u.

34 42 58 61

11 53 67
⟹ 10

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 516 / 674

Složitost algoritmů

Př́ıklad: Algoritmus Merge-Sort.

Hlavńı myšlenka algoritmu: Dvě seťŕıděné posloupnosti snadno spoj́ıme do
jediné seťŕıděné posloupnosti.
Pokud maj́ı obě posloupnosti dohromady n prvk̊u, vyžaduje tato operace
n krok̊u.

34 42 58 61

53 67
⟹ 10 11

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 516 / 674

Složitost algoritmů

Př́ıklad: Algoritmus Merge-Sort.

Hlavńı myšlenka algoritmu: Dvě seťŕıděné posloupnosti snadno spoj́ıme do
jediné seťŕıděné posloupnosti.
Pokud maj́ı obě posloupnosti dohromady n prvk̊u, vyžaduje tato operace
n krok̊u.

42 58 61

53 67
⟹ 10 11 34

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 516 / 674

Složitost algoritmů

Př́ıklad: Algoritmus Merge-Sort.

Hlavńı myšlenka algoritmu: Dvě seťŕıděné posloupnosti snadno spoj́ıme do
jediné seťŕıděné posloupnosti.
Pokud maj́ı obě posloupnosti dohromady n prvk̊u, vyžaduje tato operace
n krok̊u.

58 61

53 67
⟹ 10 11 34 42

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 516 / 674

Složitost algoritmů

Př́ıklad: Algoritmus Merge-Sort.

Hlavńı myšlenka algoritmu: Dvě seťŕıděné posloupnosti snadno spoj́ıme do
jediné seťŕıděné posloupnosti.
Pokud maj́ı obě posloupnosti dohromady n prvk̊u, vyžaduje tato operace
n krok̊u.

58 61

67
⟹ 10 11 34 42 53

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 516 / 674

Složitost algoritmů

Př́ıklad: Algoritmus Merge-Sort.

Hlavńı myšlenka algoritmu: Dvě seťŕıděné posloupnosti snadno spoj́ıme do
jediné seťŕıděné posloupnosti.
Pokud maj́ı obě posloupnosti dohromady n prvk̊u, vyžaduje tato operace
n krok̊u.

61

67
⟹ 10 11 34 42 53 58

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 516 / 674

Složitost algoritmů

Př́ıklad: Algoritmus Merge-Sort.

Hlavńı myšlenka algoritmu: Dvě seťŕıděné posloupnosti snadno spoj́ıme do
jediné seťŕıděné posloupnosti.
Pokud maj́ı obě posloupnosti dohromady n prvk̊u, vyžaduje tato operace
n krok̊u.

67
⟹ 10 11 34 42 53 58 61

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 516 / 674

Složitost algoritmů

Př́ıklad: Algoritmus Merge-Sort.

Hlavńı myšlenka algoritmu: Dvě seťŕıděné posloupnosti snadno spoj́ıme do
jediné seťŕıděné posloupnosti.
Pokud maj́ı obě posloupnosti dohromady n prvk̊u, vyžaduje tato operace
n krok̊u.

⟹ 10 11 34 42 53 58 61 67

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 516 / 674

Složitost algoritmů

Algoritmus: Merge sort

Merge-Sort (A, p, r):
if r − p > 1 then

q ∶= ⌊(p + r) / 2⌋
Merge-Sort(A, p, q)
Merge-Sort(A, q, r)
Merge(A, p, q, r)

Pro seťŕıděńı pole A, které obsahuje prvky A[0],A[1],⋯,A[n − 1],
zavoláme Merge-Sort(A, 0, n).
Poznámka: Procedura Merge(A, p, q, r) spoj́ı seťŕıděné posloupnosti
uložené v A[p . . q − 1] a A[q . . r − 1] do jedné posloupnosti uložené
v A[p . . r − 1].

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 517 / 674

Složitost algoritmů

Vstup: 58, 42, 34, 61, 67, 10, 53, 11

42 58 34 61 10 67 11 53

34 42 6158 10 11 53 67

10 11 34 42 67615853

58 42 34 61 67 10 53 11

Strom rekurzivńıch voláńı má Θ(log n) úrovńı. Na každé úrovni se provede
Θ(n) operaćı. Časová složitost algoritmu Merge-Sort je Θ(n log n).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 518 / 674

The master theorem

Master theorem

Předpokládejme, že a ≥ 1 a b > 1 jsou konstanty, že f (n) je funkce a že
funkce T (n) je definována rekurentńım p̌redpisem

T (n) = a ⋅ T (n/b) + f (n)
(kde n/b může být bud’ ⌊n/b⌋ nebo ⌈n/b⌉). Pak plat́ı:

a Pokud f (n) ∈ O(nlogb a−ǫ) pro nějakou konstantu ǫ > 0, pak

T (n) = Θ(nlogb a).
b Pokud f (n) ∈ Θ(nlogb a), pak T (n) = Θ(nlogb a log n).
c Pokud f (n) ∈ Ω(nlogb a+ǫ) pro nějakou konstantu ǫ > 0 a pokud

a ⋅ f (n/b) ≤ c ⋅ f (n) pro nějakou konstantu c < 1 a všechna
dostatečně velká n, pak T (n) = Θ(f (n)).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 519 / 674

The master theorem

Master theorem je možné použ́ıt pro analýzu složitosti libovolného
rekurzivńıho algoritmu, kde:

Řešeńı jednoho podproblému velikosti n, kde n > 1, se p̌revede na
řešeńı a podproblémů, z nichž každy má velikost n/b.
Doba, která stráv́ı řešeńım jednoho podproblému velikosti n,
nepoč́ıtaje v to dobu, která se stráv́ı v rekurzivńıch voláńıch, je určená
funkćı f (n).

Př́ıklad: Algoritmus Merge-Sort: a = 2, b = 2, f (n) ∈ Θ(n)
(v rámci jednoho voláńı — dva podproblémy, každý velikosti n/2, spojeńı
dvou seťŕıděných sekvenćı v čase Θ(n))
Plat́ı f (n) ∈ Θ(nlogb a) = Θ(n), takže

T (n) ∈ Θ(nlogb a log n) = Θ(n log n).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 520 / 674

The master theorem

Př́ıklad: Násobeńı čtvercových matic A a B velikosti n × n rekurzivńım
způsobem:

Pro n = 1 se výsledek spoč́ıtá p̌ŕımo.

Pro n > 1 se každá z matic A a B rozlož́ı na čty̌ri podmatice
velikosti (n/2) × (n/2).
Výsledek se poskládá pomoćı sč́ıtáńı a násobeńı těchto osmi menš́ıch
matic. Pro násobeńı těchto menš́ıch matic se funkce zavolá rekurzivně.

Př́ımočarý způsob vyžaduje 8 násobeńı matic velikosti (n/2) × (n/2).
Máme tedy a = 8, b = 2, f (n) ∈ Θ(n2).
Plat́ı f (n) ∈ O(nlogb a−ǫ), protože n

2
∈ O(nlog2 8−ǫ) = O(n3−ǫ) plat́ı

nap̌r. pro ǫ = 1.

Takže T (n) ∈ Θ(nlogb a) = Θ(nlog2 8) = Θ(n3).
Tento postup tedy neńı lepš́ı než standardńı jednoduchý algoritmus pro
násobeńı matic.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 521 / 674

The master theorem

Existuje však chytrý způsob, jak výše uvedené provést komplikovaněǰśım
způsobem tak, že v rámci jednoho rekurzivńıho voláńı postač́ı rekurzivně
volat funkci 7 krát
(za cenu věťśıho počtu sč́ıtáńı a odč́ıtáńı).

Jedná se o tzv. Strassen̊uv algoritmus.

Zde je a = 7, b = 2 a f (n) ∈ Θ(n2).
Opět plat́ı f (n) ∈ O(nlogb a−ǫ), protože n

2
∈ O(nlog2 7−ǫ) plat́ı

nap̌r. pro ǫ = 0.5.

(log2 7 je p̌ribližně 2.80735)

Takže T (n) ∈ Θ(nlogb a) = Θ(nlog2 7) a tedy T (n) ∈ O(n2.81).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 522 / 674

The master theorem

Důkaz master theoremu:

Pro jednoduchost se omeźıme jen na p̌ŕıpady, kdy f (n) = n
c
pro nějakou

konstantu c > 0.

Rovněž pro jednoduchost p̌redpokládejme, že n je mocninou č́ısla b, at’

nemuśıme řešit zaokrouhlováńı.

Představme si strom rekurzivńıch voláńı pro instanci velikosti n:

Výška stromu je logb n.

Počty vrchol̊u na jednotlivých úrovńıch jsou a
0
, a

1
, . . . , a

logb n

Čas, který se stráv́ı v jednom vrcholu na úrovni i je

f (n

bi
) = (n

bi
)c

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 523 / 674

The master theorem

Plat́ı tedy

T (n) =

logb n

∑
i=0

a
i
⋅ f (n

bi
) =

logb n

∑
i=0

a
i
⋅ (n

bi
)c = n

c
⋅

logb n

∑
i=0

(a

bc
)i

Označme q = a/bc . Je ťreba rozlǐsit ťri p̌ŕıpady:

q > 1 — tj. když plat́ı a > b
c
, neboli c < logb a

q = 1 — tj. když plat́ı a = b
c
, neboli c = logb a

q < 1 — tj. když plat́ı a < b
c
, neboli c > logb a

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 524 / 674

The master theorem

Př́ıpad q > 1 — tj. když plat́ı a > b
c
, neboli c < logb a:

T (n) = n
c
⋅

logb n

∑
i=0

(a

bc
)i = n

c
⋅
q
logb n+1 − 1

q − 1
∈ Θ(nc ⋅ qlogb n)

Plat́ı

n
c
⋅ q

logb n
= n

c
⋅ (a

bc
)logb n = n

c
⋅ n

logb(a

bc
)

= n
c
⋅ n

logb a−logb(bc)
= n

c+logb a−c
= n

logb a

Plat́ı tedy T (n) ∈ Θ(nlogb a).
Poznámka: Počet list̊u stromů (tj. podproblémů velikosti 1)

je a
logb n

= n
logb a.

Věťsina času se tedy tráv́ı řešeńım těchto elementárńıch p̌ŕıpadů.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 525 / 674

The master theorem

Př́ıpad q = 1 — tj. když plat́ı a = b
c
, neboli c = logb a:

T (n) = n
c
⋅

logb n

∑
i=0

(a

bc
)i = n

c
⋅

logb n

∑
i=0

1 = n
c
⋅(logb n+1) ∈ Θ(nlogb a log n)

Poznámka: V každé vrstvě stromu se stráv́ı zhruba stejný čas Θ(nlogb a).
Vrstev je celkem Θ(log n).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 526 / 674

The master theorem

Př́ıpad q < 1 — tj. když plat́ı a < b
c
, neboli c > logb a:

T (n) = n
c
⋅

logb n

∑
i=0

(a

bc
)i < n

c
⋅

∞

∑
i=0

(a

bc
)i = n

c
⋅

1

1 − q
∈ O(nc)

protože pro q, kde 0 < q < 1, plat́ı

∞

∑
i=0

q
i
= lim

z→∞

z

∑
i=0

q
i
= lim

z→∞

q
z+1

− 1

q − 1
=

1

1 − q

Zjevně plat́ı T (n) ∈ Ω(nc) (protože už v samotném kǒreni se stráv́ı
čas Θ(nc)), takže celkově plat́ı T (n) ∈ Θ(nc).
Poznámka: Věťsina času se v tomto p̌ŕıpadě stráv́ı v kǒreni stromu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 527 / 674

Dynamické programováńı

Definice

Slovo v = a1a2 . . . an nad abecedou Σ (kde všechna ai ∈ Σ) je
podsekvenćı slova w ∈ Σ

∗
, jestliže existuj́ı slova u0, u1, . . . , un ∈ Σ

∗

taková, že
w = u0 a1 u1 a2 u2 ⋯ un−1 an un

Př́ıklad: Slovo bcba je podsekvenćı slova abcbdcab.

Nejdeľśı společná podsekvence (longest common subsequence)
slov u a v je nejdeľśı slovo w , které je podsekvenćı slova u a zároveň
podsekvenćı slova v .

Př́ıklad: Nejdeľśı společnou podsekvenćı slov abcbdab a bdcaba je
slovo bcba.

Poznámka: Nejdeľśı společná podsekvence vždy existuje, ale ne vždy je
dána jednoznačně — nap̌r. pro aaabb a bbbaa je to aa i bb.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 528 / 674

Dynamické programováńı

Problém: Nejdeľśı společná podsekvence

Vstup: Slova u a v nad abecedou Σ.

Výstup: Nejdeľśı slovo w , které je podsekvenćı slova u a zároveň
podsekvenćı slova v .

Předpokládejme, že:

slova u a v jsou uložena v poĺıch A a B indexovaných od jedné

hodnoty m a n udávaj́ı délku slov u a v

Tj. pokud u = a1a2⋯am a v = b1b2⋯bn, tak:

prvky A[1],A[2], . . . ,A[m] obsahuj́ı symboly a1, a2, . . . , am

prvky B[1],B[2], . . . ,B[n] obsahuj́ı symboly b1, b2, . . . , bn

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 529 / 674

Dynamické programováńı

Zamě̌rme se nejprve na problém, zjistit pro daná slova u a v , jaká je délka
jejich nejdeľśı společné podsekvence.

Můžeme řešit rekurzivně podproblémy následuj́ıćıho typu:

Lcs-len (i , j) — pro dané i a j , kde 0 ≤ i ≤ m a 0 ≤ j ≤ n, vrát́ı
délku nejdeľśı společné podsekvence prefixu slova u délky i a prefixu
slova v délky j .

Tj. Lcs-len (i , j) vrát́ı délku nejdeľśı společné podsekvence slov
uložených v

A[1],A[2], . . . ,A[i] a B[1],B[2], . . . ,B[j]
Délku nejdeľśı společné podsekvence slov u a v pak můžeme zjistit pomoćı
Lcs-len (m, n).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 530 / 674

Dynamické programováńı

Rekurzivńı řešeńı:

Lcs-len (i , j) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 pokud i = 0 nebo j = 0

Lcs-len (i − 1, j − 1) + 1 pokud A[i] = B[j]
max(Lcs-len (i − 1, j),

Lcs-len (i , j − 1) pokud A[i] ≠ B[j]

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 531 / 674

Dynamické programováńı

Rekurzivńı řešeńı:

Lcs-len (i , j) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 pokud i = 0 nebo j = 0

Lcs-len (i − 1, j − 1) + 1 pokud A[i] = B[j]
max(Lcs-len (i − 1, j),

Lcs-len (i , j − 1) pokud A[i] ≠ B[j]
Toto řešeńı má očividně exponenciálńı časovou složitost.

Ve skutečnosti poťrebujeme řešit jen (m + 1) ⋅ (n + 1) r̊uzných
podproblémů (protože i ∈ {0, 1, . . . ,m} a j ∈ {0, 1, . . . , n}).
Výsledky řešeńı jednotlivých podproblémů si můžeme ukládat do tabulky
a nemuśıme je řešit opakovaně.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 531 / 674

Dynamické programováńı

Algoritmus: Nalezeńı nejdeľśı společné podsekvence — vyplněńı tabulky

Lcs-comp (A,m,B , n):
for i ∶= 0 to m do C[i][0] ∶= 0
for j ∶= 1 to n do C[0][j] ∶= 0
for i ∶= 1 to m do

for j ∶= 1 to n do
if A[i] = B[j] then

C[i][j] ∶= C[i − 1][j − 1] + 1; D[i][j] ∶= “↖”
else

if C[i − 1][j] ≤ C[i][j − 1] then
C[i][j] ∶= C[i − 1][j]; D[i][j] ∶= “ ↑ ”

else
C[i][j] ∶= C[i][j − 1]; D[i][j] ∶= “←”

Složitost algoritmu je O(m ⋅ n).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 532 / 674

Dynamické programováńı

j 0 1 2 3 4 5 6

i b d c a b a

0
0 0 0 0 0 0 0

1 a
0

↑

0
↑

0
↑

0
↖

1 ← 1
↖

1

2 b
0

↖

1 ← 1 ← 1
↑

1
↖

2 ← 2

3 c
0

↑

1
↑

1
↖

2 ← 2
↑

2
↑

2

4 b
0

↖

1
↑

1
↑

2
↑

2
↖

3 ← 3

5 d
0

↑

1
↖

2
↑

2
↑

2
↑

3
↑

3

6 a
0

↑

1
↑

2
↑

2
↖

3
↑

3
↖

4

7 b
0

↖

1
↑

2
↑

2
↑

3
↖

3
↑

4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 533 / 674

Dynamické programováńı

Dynamické programováńı:

Pokud máme rekurzivńı řešeńı, kde se opakovaně mnohokrát řeš́ı
stejné instance podproblémů, je vhodné ukládat řešeńı podproblémů
do nějaké datové struktury.

Jedna možnost je ponechat rekurzivńı řešeńı a značit si, které
podproblémy již byly vy̌rešeny.

Jiná možnost je systematické řešeńı všech podproblémů ve vhodném
pǒrad́ı (od nejmenš́ıch po nejvěťśı).

Při řešeńı daného podproblému jsou rekurzivńı voláńı nahrazena
p̌rečteńım již ďŕıve uložených řešeńı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 534 / 674

Reprezentace graf̊u

Reprezentace grafu:

1 2 3

4 5 6

5

4

3

2

1 42

2

4

6 5

6 6

5

1

0 1 0

0 1

0 0

0 1 0

10 0

3

5

4

2

1

1 2 3 4 5

6

6

1 0 0

0 0 0 0

10 10

0 0 0

0 0 0

0 0 0 0 0

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 535 / 674

Reprezentace graf̊u

Reprezentace grafu:

1

5 4

2

3

5

4

3

2

1 5

5

2

1 3 4

2 3

4

2 4

5

1 2

5

0 1 0 0 1

1 0 1 1 1

0 1 0 1 0

0 1 1 0 1

1 1 10 0

3

5

4

2

1

1 2 3 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 536 / 674

Minimálńı kostra grafu

Kostra grafu — souvislý podgraf grafu, který obsahuje všechny vrcholy
a neobsahuje žádné cykly

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 537 / 674

Minimálńı kostra grafu

Kostra grafu — souvislý podgraf grafu, který obsahuje všechny vrcholy
a neobsahuje žádné cykly

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 537 / 674

Minimálńı kostra grafu

Uvažujme neorientovaný graf G = (V ,E), kde nav́ıc máme dány váhy
hran, tj. funkci w ∶ E → R+, p̌rǐrazuj́ıćı každé hraně jej́ı váhu.

Pokud T je podmnožina hran (tj. T ⊆ E), můžeme funkci w rozš́ı̌rit na
tuto podmnožinu:

w(T) = ∑
e∈T

w(e)
Kostra grafu G je dána takovou množinou hran T (kde T ⊆ E), která
splňuje to, že graf (V ,T) je souvislý a neobsahuje žádný cyklus.

Minimálńı kostra T je taková kostra grafu G , kde pro libovolnou jinou
kostru grafu T

′
plat́ı

w(T) ≤ w(T ′)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 538 / 674

Minimálńı kostra grafu

Problém: Minimálńı kostra grafu

Vstup: Souvislý neorientovaný graf G = (V ,E) s ohodnoceńım
hran w ∶ E → R+.

Výstup: Některá minimálńı kostra grafu G .

Algoritmus, který by systematicky zkoušel všechny možné kostry, má
očividně exponenciálńı složitost.

Efektivńı algoritmy pro tento problém jsou založeny na tzv. greedy
(hltavém, hladovém) řešeńı:

na základě nějakého lokálńıho kritéria vybrat z mnoha možnost́ı jen
jednu a nezkoušet všechny možnosti

— z mnoha hran, které je možné do kostry p̌ridat, vybrat vždy hranu
s co nejmenš́ı váhou, která nevytvǒŕı cyklus, a tu p̌ridat

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 539 / 674

Minimálńı kostra grafu

Kruskal̊uv algoritmus:

Seťŕıdit hrany podle váhy od nejmenš́ı po nejvěťśı.

T ∶= ∅

Prob́ırat hrany v daném seťŕıděném pǒrad́ı.

Pro každou hranu e otestovat, zda jej́ım p̌ridáńım do T nevznikne
cyklus, pokud ne, nastavit

T ∶= T ∪ {e}
Vrátit T jako výsledek.

Výpočetńı složitost záviśı na tom, jak je konkrétně implementováno
testováńı toho, že nevznikne cyklus:

Př́ımočaré řešeńı má složitost O(n ⋅m).
Existuje efektivńı řešeńı se složitost́ı O(m log n).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 540 / 674

Minimálńı kostra grafu

U greedy algoritmů je obecně věťsinou nesložitěǰśı část́ı návrhu algoritmu
d̊ukaz korektnosti — zdůvodněńı toho lokálně optimálńı volby skutečně
vždy vedou ke globálně optimálńımu řešeńı.

U Kruskalova algoritmu může být důkaz založen na tom, že se udržuje
následuj́ıćı invariant:

Aktuálńı množina T je podmnožinou hran nějaké minimálńı kostry T0.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 541 / 674

Minimálńı kostra grafu

Řekněme, že T je podmnožinou minimálńı kostry T0, a algoritmus
v následuj́ıćım kroku p̌ridá hranu e takovou, že T ∪ {e} neńı
podmnožinou hran žádné minimálńı kostry.

Přidáńım hrany e do T0 vznikne cyklus.

Tento cyklus muśı obsahovat nějakou hranu e
′
takovou, že e

′ /∈ T

(jinak by p̌ridáńım e do T vznikl cyklus).

Nav́ıc muśı platit w(e) ≤ w(e ′) (jinak by algoritmus nevybral
hranu e).

Množina T
′
0 = (T0 − {e ′}) ∪ {e} je rovněž kostra.

Nav́ıc zjevně plat́ı w(T ′
0) ≤ w(T0), takže muśı platit w(T ′

0) = w(T0)
(jinak by kostra T0 nebyla minimálńı).

Kostra T
′
0 je tedy minimálńı a plat́ı T ∪ {e} ⊆ T

′
0, což je ve sporu

s p̌redpokladem, že T ∪ {e} neńı podmnožinou hran žádné minimálńı
kostry.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 542 / 674

Prohledáváńı do š́ı̌rky

Nalezeńı nejkraťśı cesty v grafu, kde hrany nejsou ohodnoceny:

Algoritmus pro prohledáváńı grafu do š́ı̌rky

Vstupem je graf G (s množinou vrchol̊u V) a počátečńı vrchol s.

Algoritmus pro všechny vrcholy najde nejkraťśı cestu z vrcholu s.

Pro graf, který má n vrchol̊u a m hran je doba výpočtu tohoto
algoritmu Θ(n +m).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 543 / 674

Prohledáváńı do š́ı̌rky

Algoritmus: Prohledáváńı do š́ı̌rky

Bfs (G , s):
Bfs-Init(G , s)
Enqueue(Q, s)
while Q ≠ ∅ do

u ∶= Dequeue(Q)
for each v ∈ edges[u] do

if color[v] = white then
color[v] ∶= gray

d[v] ∶= d[u] + 1
pred[v] ∶= u

Enqueue(Q, v)
color[u] ∶= black

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 544 / 674

Prohledáváńı do š́ı̌rky

Algoritmus: Prohledáváńı do š́ı̌rky — inicializace

Bfs-Init (G , s):
for each u ∈ V − {s} do

color[u] ∶= white

d[u] ∶=∞
pred[u] ∶= nil

color[s] ∶= gray

d[s] ∶= 0
pred[s] ∶= nil

Q ∶= ∅

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 545 / 674

Nerozhodnutelné problémy

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 546 / 674

Algoritmicky řešitelné problémy

Předpokládejme, že máme dán nějaký problém P .

Jestliže existuje nějaký algoritmus, který řeš́ı problém P , pak ř́ıkáme, že
problém P je algoritmicky řešitelný.

Jestliže P je rozhodovaćı problém a jestliže existuje nějaký algoritmus,
který problém P řeš́ı, pak ř́ıkáme, že problém P je (algoritmicky)
rozhodnutelný.

Když chceme ukázat, že problém P je algoritmicky řešitelný, stač́ı ukázat
nějaký algoritmus, který ho řeš́ı (a p̌ŕıpadně ukázat, že daný algoritmus
problém P skutečně řeš́ı).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 547 / 674

Algoritmicky něrešitelné problémy

Problém, který neńı algoritmicky řešitelný, je algoritmicky něrešitelný.

Rozhodovaćı problém, který neńı rozhodnutelný, je nerozhodnutelný.

Kupodivu existuje řada algoritmických problémů (p̌resně definovaných),
o kterých je dokázáno, že nejsou algoritmicky řešitelné.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 548 / 674

Halting Problem

Vezměme si nějaký libovolný obecný programovaćı jazyk L.

Nav́ıc p̌redpokládejme, že programy v jazyce L běž́ı na nějakém
idealizovaném stroji, kde maj́ı k dispozici (potenciálně) neomezené
množstv́ı paměti — tj. kde alokace paměti nikdy neselže kv̊uli nedostatku
paměti.

Př́ıklad: Následuj́ıćı problém zvaný Problém zastaveńı (Halting
problem) je nerozhodnutelný:

Halting problem

Vstup: Zdrojový kód programu P v jazyce L, vstupńı data x .

Otázka: Zastav́ı se program P po nějakém konečném počtu krok̊u,
pokud dostane jako vstup data x?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 549 / 674

Halting Problem

Předpokládejme, že by existoval nějaký program, který by rozhodoval
Halting problem.

Mohli bychom tedy vytvǒrit podprogram H, deklarovaný jako

Bool H(String kod, String vstup)

kde H(P , x) vrát́ı:

true pokud se program P zastav́ı pro vstup x ,

false pokud se program P nezastav́ı pro vstup x .

Poznámka: Řekněme, že podprogram H(P , x) by vracel false v p̌ŕıpadě,
že P neńı syntakticky správný kód programu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 550 / 674

Halting Problem

S použit́ım podprogramu H bychom vytvǒrili program D, který bude
provádět následuj́ıćı kroky:

Načte sv̊uj vstup do proměnné x typu String.

Zavolá podprogram H(x , x).
Pokud podprogram H vrátil true, skoč́ı do nekonečné smyčky

loop: goto loop

V p̌ŕıpadě, že H vrátil false, program D se ukonč́ı.

Co udělá program D, pokud mu p̌redlož́ıme jako vstup jeho vlastńı kód?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 551 / 674

Halting Problem

Pokud D dostane jako vstup sv̊uj vlastńı kód, tak se bud’ zastav́ı nebo
nezastav́ı.

Pokud se D zastav́ı, tak H(D,D) vrát́ı true a D skoč́ı do nekonečné
smyčky. Spor!

Pokud se D nezastav́ı, tak H(D,D) vrát́ı false a D se zastav́ı. Spor!

V obou p̌ŕıpadech dospějeme ke sporu a daľśı možnost neńı. Nemůže tedy
platit p̌redpoklad, že H řeš́ı Halting problem.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 552 / 674

Částečně rozhodnutelné problémy

Problém je částečně rozhodnutelný, jestliže existuje algoritmus, který:

Pokud dostane jako vstup instanci, pro kterou je odpověd’ Ano, tak
se po konečném počtu krok̊u zastav́ı a vyṕı̌se "ANO".

Pokud dostane jako vstup instanci, pro kterou je odpověd’ Ne, tak se
bud’ zastav́ı a vyṕı̌se "NE" nebo se nikdy nezastav́ı.

Je očividné, že nap̌ŕıklad HP (Halting problem) je částečně rozhodnutelný.

Některé problémy však nejsou ani částečně rozhodnutelné.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 553 / 674

Postova věta

Doplňkový problém k danému rozhodovaćımu problému P je problém,
kde vstupy jsou stejné jako u problému P a otázka je negaćı otázky
z problému P .

Postova věta

Jestliže problém P i jeho doplňkový problém jsou částečně rozhodnutelné,
pak je problém P rozhodnutelný.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 554 / 674

Převody mezi problémy

Pokud máme o nějakém (rozhodovaćım) problému dokázáno, že je
nerozhodnutelný, můžeme ukázat nerozhodnutelnost daľśıch problémů
pomoćı redukćı (p̌revodů) mezi problémy.

Problém P1 je p̌reveditelný na problém P2, jestliže existuje
algoritmus Alg takový, že:

Jako vstup může dostat libovolnou instanci problému P1.

K instanci problému P1, kterou dostane jako vstup (označme ji w),
vyprodukuje jako sv̊uj výstup instanci problému P2 (označme ji
Alg(w)).
Plat́ı, že pro vstup w je v problému P1 odpověd’ Ano právě tehdy,
když pro vstup Alg(w) je v problému P2 odpověd’ Ano.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 555 / 674

Převody mezi problémy

vstupy problému P1 vstupy problému P2

Ano Ano

Ne
Ne

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 556 / 674

Převody mezi problémy

vstupy problému P1 vstupy problému P2

Ano Ano

Ne
Ne

Alg

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 556 / 674

Převody mezi problémy

Řekněme, že existuje redukce Alg problému P1 na problém P2.

Pokud by problém P2 byl rozhodnutelný, pak i problém P1 je
rozhodnutelný.

Řešeńı problému P1 pro vstup x :

Zavoláme Alg se vstupem x , vrát́ı nám hodnotu Alg(x).
Zavoláme algoritmus řeš́ıćı problém P2 se vstupem Alg(x).
Hodnotu, kterou nám vrát́ı vyṕı̌seme jako výsledek.

Je žrejmé, že pokud P1 je nerozhodnutelný, tak P2 nemůže být
rozhodnutelný.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 557 / 674

Daľśı nerozhodnutelné problémy

Redukćı z Halting problému se dá ukázat nerozhodnutelnost celé řady
problémů, které se týkaj́ı ově̌rováńı chováńı programů:

Vydá daný program pro nějaký vstup odpověd’ Ano?

Zastav́ı se daný program pro libovolný vstup?

Dávaj́ı dva dané programy pro stejné vstupy stejný výstup?

. . .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 558 / 674

Halting problem

Pro účely důkaz̊u se Halting problem nejčastěji použ́ıvá v následuj́ıćı
podobě:

Halting problem

Vstup: Popis Turingova stroje M a slovo w .

Otázka: Zastav́ı se stroj M po nějakém konečném počtu krok̊u,
pokud dostane jako sv̊uj vstup slovo w?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 559 / 674

Daľśı nerozhodnutelné problémy

S následuj́ıćım p̌ŕıkladem nerozhodnutelného problému už jsme se setkali:

Problém

Vstup: Bezkontextové gramatiky G1 a G2.

Otázka: Je L(G1) = L(G2)?
p̌ŕıpadně

Problém

Vstup: Bezkontextová gramatika G generuj́ıćı jazyk nad abecedou Σ.

Otázka: Je L(G) = Σ
∗
?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 560 / 674

Daľśı nerozhodnutelné problémy

Vstupem je množina typů kartiček, jako ťreba:

a

aa

abb

bbab

bab

ab

baba

aa

aba

a

Otázka je, zda je možné z těchto typů kartiček vytvǒrit neprázdnou
konečnou posloupnost, kde žretězeńım slov nahǒre i dole vznikne totéž
slovo. Každý typ kartičky je možné použ́ıvat opakovaně.

a

aa

abb

bbab

abb

bbab

baba

aa

abb

bbab

aba

a

Nahǒre i dole vznikne slovo aabbabbbabaabbaba.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 561 / 674

Daľśı nerozhodnutelné problémy

Redukćı z p̌redchoźıho problému se dá snadno ukázat nerozhodnutelnost
některých daľśıch problémů z oblasti bezkontextových gramatik:

Problém

Vstup: Bezkontextové gramatiky G1 a G2.

Otázka: Je L(G1) ∩ L(G2) = ∅?
Problém

Vstup: Bezkontextová gramatika G.

Otázka: Je G nejednoznačná?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 562 / 674

Daľśı nerozhodnutelné problémy

Vstupem je množina typů kachliček, jako ťreba:

Otázka je, zda je možné použit́ım daných typů kachliček pokrýt každou
libovolně velkou konečnou plochu tak, aby všechny kachličky spolu
sousedily stejnými barvami.

Poznámka: Můžeme p̌redpokládat, že máme v zásobě neomezené
množstv́ı kachliček všech typů.

Kachličky neńı dovoleno otáčet.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 563 / 674

Daľśı nerozhodnutelné problémy

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 564 / 674

Daľśı nerozhodnutelné problémy

Problém

Vstup: Uzav̌rená formule predikátové logiky (prvńıho řádu), ve které
mohou být použity jako predikátové symboly pouze = a <,
jako funkčńı symboly pouze + a ∗ a jako konstantńı symboly
pouze 0 a 1.

Otázka: Je daná formule pravdivá v oboru p̌rirozených č́ısel (p̌ri
p̌rirozené interpretaci všech funkčńıch a predikátových
symbol̊u)?

Př́ıklad vstupu:

∀x∃y∀z((x ∗ y = z) ∧ (y + 1 = x))
Poznámka: Úzce souviśı s Gödelovou větou o neúplnosti.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 565 / 674

Daľśı nerozhodnutelné problémy

Je zaj́ımavé, že analogický problém, kde ale ḿısto p̌rirozených č́ısel
uvažujeme č́ısla reálná, je algoritmicky rozhodnutelný (i když popis daného
algoritmu a důkaz jeho korektnosti jsou značně netriviálńı).

Rovněž pokud uvažujeme p̌rirozená nebo celá č́ısla a stejné formule jako
v p̌redchoźım p̌ŕıpadě, ale s t́ım, že v nich nesḿı být použit funkčńı
symbol ∗ (násobeńı), tak je problém algoritmicky rozhodnutelný.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 566 / 674

Daľśı nerozhodnutelné problémy

Pokud můžeme použ́ıvat ∗, je ve skutečnosti nerozhodnutelný už velmi
omezený p̌ŕıpad:

Desátý Hilbert̊uv problém

Vstup: Polynom f (x1, x2, . . . , xn) vytvǒrený z proměnných
x1, x2, . . . , xn a celoč́ıselných konstant.

Otázka: Existuj́ı p̌rirozená č́ısla x1, x2, . . . , xn taková, že
f (x1, x2, . . . , xn) = 0 ?

Př́ıklad vstupu: 5x
2
y − 8yz + 3z

2
− 15

Tj. ptáme se, zda

∃x∃y∃z(5 ∗ x ∗ x ∗ y + (−8) ∗ y ∗ z + 3 ∗ z ∗ z + (−15) = 0)
plat́ı v oboru p̌rirozených č́ısel.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 567 / 674

Daľśı nerozhodnutelné problémy

Také následuj́ıćı problém je algoritmicky nerozhodnutelný:

Problém

Vstup: Uzav̌rená formule ϕ predikátové logiky prvńıho řádu.

Otázka: Plat́ı ⊧ ϕ ?

Poznámka: Zápis ⊧ ϕ znamená, že formule ϕ je logicky platná,
tj. pravdivá v každé interpretaci.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 568 / 674

Tř́ıdy složitosti

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 569 / 674

Složitost problémů

Ukazuje se, že r̊uzné (algoritmické) problémy jsou r̊uzně těžké.

Obt́ıžněǰśı jsou ty problémy, k jejichž řešeńı poťrebujeme v́ıce času a
paměti.

Obt́ıžnost problémů chceme nějak posuzovat, a to jak

absolutně – kolik času a kolik paměti poťrebujeme k jejich řešeńı, tak

relativně – o kolik je jejich řešeńı obt́ıžněǰśı nebo naopak jednoduš̌śı
oproti jiným problémům.

Proč se u některých problémů nedǎŕı nalézt efektivńı algoritmy?
Může v̊ubec nějaký efektivńı algoritmus pro daný problém existovat?

Kde p̌resně jsou limity toho, co je možné prakticky zvládnout?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 570 / 674

Složitost problémů

Je poťreba rozlǐsovat složitost algoritmu a složitost problému.

Pokud nap̌ŕıklad zkoumáme časovou složitost v nejhořśım p̌ŕıpadě, mohli
bychom neformálně ř́ıct:

složitost algoritmu — funkce, která vyjaďruje, jaká bude pro daný
algoritmus maximálńı doba výpočtu pro vstup velikosti n

složitost problému — jaká je časová složitost
”
nejefektivněǰśıho“

algoritmu, který řeš́ı daný problém

Zavedeńı pojmu
”
složitost problému“ ve výše uvedeném smyslu naráž́ı na

značné technické obt́ıže. Pojem
”
složitost problému“ se tedy jako takový

nedefinuje, ale obcháźı se zavedeńım tzv. ťŕıd složitosti.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 571 / 674

Tř́ıdy složitosti

Tř́ıdy složitosti jsou podmnožiny množiny všech (algoritmických)
problémů.

Daná konkrétńı ťŕıda složitosti je vždy charakterizována nějakou vlastnost́ı,
kterou maj́ı problémy do ńı paťŕıćı.

Typickým p̌ŕıkladem takové vlastnosti je vlastnost, že pro daný problém
existuje nějaký algoritmus s určitým omezeńım (nap̌r. časové nebo
prostorové složitosti):

Do dané ťŕıdy pak paťŕı všechny problémy, pro které takovýto
algoritmus existuje.

Naopak do ńı nepaťŕı problémy, pro které žádný takový algoritmus
neexistuje.

Poznámka: V následuj́ıćım popisu se budeme sousťredit prakticky jen na
ťŕıdy rozhodovaćıch problémů.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 572 / 674

Tř́ıdy složitosti

Definice

Pro libovolnou funkci f ∶ N → N definujeme ťŕıdu T (f (n)) jako ťŕıdu
obsahuj́ıćı právě ty rozhodovaćı problémy, pro něž existuje algoritmus
s časovou složitost́ı O(f (n)).
Př́ıklad:

T (n) – ťŕıda všech rozhodovaćıch problémů pro něž existuje
algoritmus s časovou složitost́ı O(n)
T (n2) – ťŕıda všech rozhodovaćıch problémů pro než existuje
algoritmus s časovou složitost́ı O(n2)
T (n log n) – ťŕıda všech rozhodovaćıch problémů pro než existuje
algoritmus s časovou složitost́ı O(n log n)
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 573 / 674

Tř́ıdy složitosti

Definice

Pro libovolnou funkci f ∶ N → N definujeme ťŕıdu S(f (n)) jako ťŕıdu
obsahuj́ıćı právě ty rozhodovaćı problémy, pro něž existuje algoritmus
s prostorovou složitost́ı O(f (n)).
Př́ıklad:

S(n) – ťŕıda všech rozhodovaćıch problémů pro něž existuje
algoritmus s prostorovou složitost́ı O(n)
S(n2) – ťŕıda všech rozhodovaćıch problémů pro než existuje
algoritmus s prostorovou složitost́ı O(n2)
S(n log n) – ťŕıda všech rozhodovaćıch problémů pro než existuje
algoritmus s prostorovou složitost́ı O(n log n)
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 574 / 674

Tř́ıdy složitosti

Poznámka:

Všimněte si, že u ťŕıd T (f) a S(f) může to, které problémy do dané ťŕıdy
paťŕı, záviset na použitém výpočetńım modelu (zda je to stroj RAM,
jednopáskový Turing̊uv stroj, v́ıcepáskový Turing̊uv stroj, . . .).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 575 / 674

Tř́ıdy složitosti

Pomoćı ťŕıd T (f (n)) a S(f (n)) můžeme definovat ťŕıdy PTIME a
PSPACE jako

PTIME = ⋃
k≥0

T (nk) PSPACE = ⋃
k≥0

S(nk)
PTIME je ťŕıda všech rozhodovaćıch problémů, pro které existuje
algoritmus s polynomiálńı časovou složitost́ı, tj. s časovou složitost́ı
O(nk), kde k je nějaká konstanta.

PSPACE je ťŕıda všech rozhodovaćıch problémů, pro které existuje
algoritmus s polynomiálńı prostorovou složitost́ı, tj. s prostorovou
složitost́ı O(nk), kde k je nějaká konstanta.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 576 / 674

Tř́ıdy složitosti

Poznámka: Vzhledem k tomu, že všechny (rozumné) výpočetńı modely
jsou schopné se navzájem simulovat tak, že p̌ri dané simulaci nevzroste
počet krok̊u ani množstv́ı použité paměti v́ıc než polynomiálně, neńı
definice ťŕıd PTIME a PSPACE závislá na použitém výpočetńım modelu.
Pro jejich zadefinováńı můžeme použ́ıt kterýkoliv výpočetńı model.

Ř́ıkáme, že tyto ťŕıdy jsou robustńı — jejich definice nezáviśı na použitém
výpočetńım modelu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 577 / 674

Tř́ıdy složitosti

Analogicky můžeme zavést daľśı ťŕıdy:

EXPTIME – množina všech rozhodovaćıch problémů, pro které existuje

algoritmus s časovou složitost́ı 2
O(nk)

, kde k je nějaká
konstanta

EXPSPACE – množina všech rozhodovaćıch problémů, pro které existuje

algoritmus s prostorovou složitost́ı 2
O(nk)

, kde k je nějaká
konstanta

LOGSPACE – množina všech rozhodovaćıch problémů, pro které existuje
algoritmus s prostorovou složitost́ı O(log n)

Poznámka: Mı́sto 2
O(nk)

bychom mohli psát také O(cnk), kde c a k jsou
nějaké konstanty.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 578 / 674

Tř́ıdy složitosti

Při definici ťŕıdy LOGSPACE muśıme p̌resněji specifikovat, co považujeme
za prostorovou složitost algoritmu.

Uvažujeme nap̌ŕıklad Turing̊uv stroj, který pracuje se ťremi páskami:

Vstupńı páskou, na které je na začátku výpočtu zapsán vstup.
Z této pásky je možno pouze č́ıst.

Pracovńı páskou, která je na začátku výpočtu prázdná. Z této pásky
je možno č́ıst i na ni zapisovat.

Výstupńı páskou, která je také na začátku výpočtu prázdná a na
kterou je možno pouze zapisovat.

Množstv́ı použité paměti je pak definováno, jako počet použitých poĺıček
na pracovńı pásce.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 579 / 674

Tř́ıdy složitosti

Daľśı p̌ŕıklady ťŕıd složitosti:

2-EXPTIME – množina všech problémů, pro které existuje algoritmus

s časovou složitost́ı 2
2
O(nk)

, kde k je nějaká konstanta

2-EXPSPACE – množina všech problémů, pro které existuje algoritmus

s prostorovou složitost́ı 2
2
O(nk)

, kde k je nějaká konstanta

ELEMENTARY – množina všech problémů, pro které existuje algoritmus
s časovou (či prostorovou) složitost́ı

2
2
2
⋅
⋅
⋅
2
2
O(nk)

kde k je konstanta a počet exponent̊u je omezen konstantou.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 580 / 674

Vztahy mezi ťŕıdami složitosti

Pokud Turing̊uv stroj provede m krok̊u, tak použije maximálně m poĺıček
na pásce.

Pokud tedy existuje pro nějaký problém algoritmus s časovou
složitost́ı O(f (n)), má tento algoritmus prostorovou složitost
(nejvýše) O(f (n)).
Je tedy žrejmé, že plat́ı následuj́ıćı vztah.

Pozorováńı

Pro libovolnou funkci f ∶ N → N plat́ı T (f (n)) ⊆ S(f (n)).
Poznámka: Analogicky bychom mohli argumentovat nap̌ŕıklad pro
stroj RAM.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 581 / 674

Vztahy mezi ťŕıdami složitosti

Z p̌redchoźıho okamžitě plyne:

PTIME ⊆ PSPACE

EXPTIME ⊆ EXPSPACE

2-EXPTIME ⊆ 2-EXPSPACE

⋮

Vzhledem k tomu, že polynomiálńı funkce rostou pomaleji než
exponenciálńı a logaritmické pomaleji než polynomiálńı, zjevně plat́ı:

PTIME ⊆ EXPTIME ⊆ 2-EXPTIME ⊆ ⋯

LOGSPACE ⊆ PSPACE ⊆ EXPSPACE ⊆ 2-EXPSPACE ⊆ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 582 / 674

Vztahy mezi ťŕıdami složitosti

Pro libovolná dvě reálná č́ısla ǫ1 a ǫ2 taková, že 0 ≤ ǫ1 < ǫ2, plat́ı

S(nǫ1) ⊊ S(nǫ2)
LOGSPACE ⊊ PSPACE

PSPACE ⊊ EXPSPACE

Pro libovolná dvě reálná č́ısla ǫ1 a ǫ2 taková, že 0 ≤ ǫ1 < ǫ2, plat́ı

T (nǫ1) ⊊ T (nǫ2)
PTIME ⊊ EXPTIME

EXPTIME ⊊ 2-EXPTIME

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 583 / 674

Vztahy mezi ťŕıdami složitosti

Při zkoumáńı vztahů mezi ťŕıdami složitosti se ukazuje jako užitečný pojem
konfigurace.

Konfiguraćı budeme rozumět celkový stav, ve kterém se během jednoho
kroku nacháźı stroj, prováděj́ıćı nějaký daný algoritmus.

U Turingova stroje je konfigurace dána stavem jeho ř́ıd́ıćı jednotky,
obsahem pásky (resp. pásek) a pozićı hlavy (resp. hlav).

U stroje RAM je konfigurace dána obsahem paměti, obsahem všech
registr̊u (včetně IP), obsahem vstupńı a výstupńı pásky a pozicemi
čtećı a zapisovaćı hlavy.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 584 / 674

Vztahy mezi ťŕıdami složitosti

Mělo by být jasné, že konfigurace (resp. jejich popisy) můžeme zapisovat
jako slova v nějaké abecedě.

Nav́ıc můžeme konfigurace zapisovat tak, že délka těchto slov bude zhruba
stejná jako množstv́ı paměti použité algoritmem (tj. počet poĺıček na
pásce použitých Turingovým stojem, počet bit̊u paměti použitých strojem
RAM apod.).

Poznámka: Pokud máme abecedu Σ, kde ∣Σ∣ = c , tak:

Počet slov délky n je c
n
, tj. 2

Θ(n)
.

Počet slov délky nejvýše n je

n

∑
i=0

c
n
=

c
n+1

− 1

c − 1

tj. také 2
Θ(n)

.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 585 / 674

Vztahy mezi ťŕıdami složitosti

Je jasné, že během výpočtu korektńıho algoritmu se žádná konfigurace
nemůže zopakovat, protože jinak by se algoritmus zacyklil a běžel by
donekonečna.

Pokud tedy v́ıme, že prostorová složitost nějakého algoritmu je O(f (n)),
znamená to, že počet r̊uzných konfiguraćı dosažitelných během výpočtu

je 2
O(f (n))

.

Protože se konfigurace během žádného výpočtu neopakuj́ı, je i časová

složitost daného algoritmu maximálně 2
O(f (n))

.

Pozorováńı

Pro libovolnou funkci f ∶ N → N plat́ı, že pokud je nějaký problém P

řešený algoritmem s prostorovou složitost́ı O(f (n)), pak časová složitost

tohoto algoritmu je v 2
O(f (n))

.

Pokud je tedy problém P ve ťŕıdě S(f (n)), pak je i ve ťŕıdě T (2c⋅f (n)) pro
nějaké c > 0.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 586 / 674

Vztahy mezi ťŕıdami složitosti

Z p̌redchoźıho plynou následuj́ıćı důsledky:

LOGSPACE ⊆ PTIME

PSPACE ⊆ EXPTIME

EXPSPACE ⊆ 2-EXPTIME

⋮

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 587 / 674

Vztahy mezi ťŕıdami složitosti

Shrnut́ı:

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆

⊆ 2-EXPTIME ⊆ 2-EXPSPACE ⊆ ⋯ ⊆ ELEMENTARY

PTIME ⊊ EXPTIME ⊊ 2-EXPTIME ⊊ ⋯

LOGSPACE ⊊ PSPACE ⊊ EXPSPACE ⊊ 2-EXPSPACE,⊊ ⋯

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 588 / 674

Horńı a dolńı odhady složitosti problémů

Horńım odhadem složitosti problému rozuḿıme to, že složitost problému
neńı vyš̌śı než nějaká uvedená.

Věťsinou je to formulováno tak, že daný problém paťŕı do nějaké určité
ťŕıdy složitosti.

Př́ıklady tvrzeńı, které se týkaj́ı horńıch odhadů složitosti:

Problém dosažitenosti v grafu je v PTIME.

Problém ekvivalence dvou regulárńıch výraz̊u je v EXPSPACE.

Pokud chceme zjistit nějaký horńı odhad složitosti problému, stač́ı ukázat,
že existuje algoritmus s danou složitost́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 589 / 674

Horńı a dolńı odhady složitosti problémů

Dolńım odhadem složitosti problému rozuḿıme to, že složitost problému
je alespoň taková jako nějaká uvedená.

Obecně je zjǐst’ováńı (netriviálńıch) dolńıch odhadů složitosti problémů
mnohem obt́ıžněǰśı než zjǐst’ováńı horńıch odhadů.

Pro odvozeńı dolńıho odhadu muśıme totiž ukázat, že každý algoritmus
řeš́ıćı daný problém má danou složitost.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 590 / 674

Horńı a dolńı odhady složitosti problémů

Problém
”
Tř́ıděńı“

Vstup: Posloupnost prvk̊u a1, a2, . . . , an.

Výstup: Prvky a1, a2, . . . , an seťŕıděné od nejmenš́ıho po nejvěťśı.

Dá se dokázat, že každý algoritmus, který řeš́ı problém “Tř́ıděńı” a na
prvćıch ťŕıděné posloupnosti použ́ıvá pouze operaci porovnáváńı
(tj. nezkoumá obsah těchto prvk̊u), má časovou složist v nejhořśım p̌ŕıpadě
v Ω(n log n) (tj. pro každý takový algoritmus existuj́ı konstanty c > 0
a n0 ≥ 0 takové, že pro každé n ≥ n0 existuje vstup velikosti n, pro který
provede algoritmus nejmémě cn log n operaćı).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 591 / 674

Nedeterministické algoritmy a ťŕıdy

složitosti

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 592 / 674

Nedeterminismus

Nedeterministický stroj RAM:

Je definován velice podobně jako deterministický RAM.

Nav́ıc má instrukci

nd goto ℓ1, ℓ2

která umožňuje stroji vybrat si jedno z možných pokračováńı.

Pokud ze všech možných výpočt̊u takového stroje nad zadaným
vstupem alespoň jeden skonč́ı s odpověd́ı Ano, je odpověd’ Ano.

Pokud všechny výpočty skonč́ı s odpověd́ı Ne, je odpověd’ Ne.

Podobně můžeme definovat nedeterministické verze jiných výpočetńıch
model̊u, nap̌r. nedeterministické Turingovy stroje.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 593 / 674

Nedeterminismus

NEANO NE NE NE NEANO ANONE

NE NE

NE

Doba výpočtu nedeterministického stroje RAM (nebo jiného
nedeterministického stroje) nad zadaným vstupem je definována jako
délka nejdeľśıho možného výpočtu nad t́ımto vstupem.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 594 / 674

Nedeterminismus

NEANO NE NE NE NEANO ANONE

NE NE

NE

Doba výpočtu nedeterministického stroje RAM (nebo jiného
nedeterministického stroje) nad zadaným vstupem je definována jako
délka nejdeľśıho možného výpočtu nad t́ımto vstupem.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 594 / 674

Nedeterminismus

Problém
”
Barveńı grafu k barvami“

Vstup: Neorientovaný graf G a p̌rirozené č́ıslo k .

Otázka: Je možné obarvit vrcholy grafu G k barvami tak, aby žádné
dva vrcholy spojené hranou neměly stejnou barvu?

k = 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 595 / 674

Nedeterminismus

Problém
”
Barveńı grafu k barvami“

Vstup: Neorientovaný graf G a p̌rirozené č́ıslo k .

Otázka: Je možné obarvit vrcholy grafu G k barvami tak, aby žádné
dva vrcholy spojené hranou neměly stejnou barvu?

k = 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 595 / 674

Nedeterminismus

Problém
”
Barveńı grafu k barvami“

Vstup: Neorientovaný graf G a p̌rirozené č́ıslo k .

Otázka: Je možné obarvit vrcholy grafu G k barvami tak, aby žádné
dva vrcholy spojené hranou neměly stejnou barvu?

Nedeterministický algoritmus pracuje následovně:

1 Každému vrcholu grafu G nedeterministicky p̌rǐrad́ı jednu z k barev.

2 Projde všechny hrany grafu G a u každé z nich zkotroluje, že oba jej́ı
koncové vrcholy jsou obarveny r̊uznými barvami. Pokud ne, skonč́ı
s odpověd́ı Ne.

3 Pokud prošel všechny hrany a u všech byly koncové vrcholy obarveny
r̊uznými barvami, skonč́ı s odpověd́ı Ano.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 595 / 674

Nedeterminismus

Problém
”
Isomorfismus graf̊u“

Vstup: Neorientované grafy G1 = (V1,E1) a G2 = (V2,E2).
Otázka: Jsou grafy G1 a G2 isomorfńı?

Poznámka: Grafy G1 a G2 jsou isomorfńı, jestliže existuje nějaká bijekce
f ∶ V1 → V2 taková, že pro libovolné dva vrcholy u, v ∈ V1 plat́ı(u, v) ∈ E1 právě když (f (u), f (v)) ∈ E2.

Nedeterministický algoritmus pracuje následovně:

1 Nedeterministicky zvoĺı hodnoty funkce f pro všechny v ∈ V1.

2 Deterministicky ově̌ŕı, že f je bijekce a že pro všechny dvojice vrchol̊u
je splněna výše uvedená podḿınka.

3 Pokud je některá z podḿınek porušena, skonč́ı s odpověd́ı Ne,
v opačném p̌ŕıpadě s odpověd́ı Ano.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 596 / 674

Nedeterminismus

Z hlediska rozhodnutelnosti nep̌rináš́ı nedeterministické algoritmy
oproti deterministickým nic daľśıho nav́ıc:
Pokud je nějaký problém možné řešit nedeterministickým strojem
RAM nebo TS, tak je ho možné řešit i deterministickým, který
postupně vyzkouš́ı všechny možné výpočty nedeterministického stroje
nad daným vstupem.

Nedeterminismus má význam p̌redevš́ım p̌ri zkoumáńı výpočetńı
složitosti problémů.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 597 / 674

Nedeterminismus

Při výše uvedené p̌ŕımočaré simulaci činnosti nedeterministického
algoritmu pomoćı deterministického, který systematicky zkouš́ı
všechny možné výpočty, je časová složitost deterministického
algoritmu exponenciálně vyš̌śı než u nedeterministického.

Pro řadu problémů je zjevné, že pro ně existuje nedeterministický
algoritmus s polynomiálńı časovou složitost́ı, ale neńı v̊ubec jasné,
jestli pro ně existuje také deterministický algoritmus s polynomiálńı
časovou složitost́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 598 / 674

Nedeterminismus

Na nedeterminismus můžeme nahĺıžet následuj́ıćımi způsoby:

1 Ve chv́ıli, kdy má stroj nedeterministicky zvolit mezi několika
možnostmi, tak

”
uhodne“, která z těchto možnost́ı povede

k odpovědi Ano (pokud taková možnost existuje).

2 Ve chv́ıli, kdy má stroj nedeterministicky zvolit mezi několika
možnostmi, rozděĺı se do tolika kopíı, kolik je těchto možnost́ı,
a každá z těchto kopíı pokračuje ve výpočtu odpov́ıdaj́ıćı jedné
z možnost́ı, p̌ričemž pracuj́ı všechny paralelně.

Odpověd’ je Ano právě tehdy, když alespoň jedna z kopíı stroje
odpov́ı Ano.

Ani jedno z toho neńı něco, co by se dalo efektivně realisticky
implementovat.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 599 / 674

Nedeterminismus

Daľśı možný pohled na nedeterminismus:

Druh algoritmu, který sice něreš́ı daný problém, ale s použit́ım
dodatečné daľśı informace — svědka (witness) — uḿı ově̌rit, že pro
danou instanci je odpověd’ Ano.

Předpokládejme, že v původńım problému je vstupem nějaké x

z množiny instanćı In a otázka je, zda má dané x nějakou
specifikovanou vlastnost P .

Pro daný vstup x je dána množina potenciálńıch svědk̊u W (x),
p̌ričemž právě tehdy, když x má vlastnost P , tak existuje nějaký
skutečný svědek y ∈ W (x) toho, že x tuto vlastnost P skutečně má.

Vezměme si deterministický algoritmus Alg , který jako vstup
dostane dvojici (x , y) (kde y ∈ W (x)) a ově̌ŕı, zda y je svědkem
toho, že x má vlastnost P .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 600 / 674

Nedeterminismus

Př́ıklad: Problém
”
Barveńı grafu k barvami“:

Vstup: Neorientovaný graf G = (V ,E) a č́ıslo k .

Potenciálńı svědci : Všechna možná obarveńı vrchol̊u grafu G

s použ́ım k barev, tj. všechny možné funkce c ∶ V → {1, . . . , k}.
Skutečńı svědci : Taková obarveńı c , kde pro každou hranu (u, v) ∈ E

plat́ı, že c(u) ≠ c(v).

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 601 / 674

Nedeterminismus

Ke každému takovému deterministickému algoritmu Alg , který pro
danou dvojici (x , y) uḿı ově̌rit, zda y je svědkem toho, že x má
vlastnost P , je možné snadno sestrojit odpov́ıdaj́ıćı
nedeterministický algoritmus, který řeš́ı původńı problém:

Pro dané x ∈ In nejprve neterministicky vygeneruje potenciálńıho
svědka y ∈ W (x).
Použije algoritmus Alg jako podprogram k (deterministickému) ově̌reńı
toho, zda je y skutečným svědkem.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 602 / 674

Nedeterminismus

Naopak ke každému nedeterministickému algoritmu můžeme
snadno vytvǒrit deterministický algoritmus ově̌ruj́ıćı svědky:

Potenciálńım svědkem bude posloupnost udávaj́ıćı pro jednotlivé kroky
původńıho nedeterministického algoritmu, která možnost se má
v daném kroku zvolit.

Deterministický algoritmus simuluje jeden konkrétńı výpočet (jednu
větev stromu) původńıho algoritmu, p̌ričemž v kroćıch, kdy má na
výběr z v́ıce možnost́ı, tak nehádá, ale postupuje podle toho, co je
určeno v zadané posloupnosti.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 603 / 674

Nedeterminismus

Zejména nás budou zaj́ımat ty p̌ŕıpady, kdy časová složitost algoritmu pro
ově̌rováńı svědka je polynomiálńı vzhledem k velikosti vstupu x .

Mimo jiné to znamená, že daný svědek y , dosvědčuj́ıćı, že pro x je
odpověd’ Ano, muśı být polynomiálně velký.

Nedeterministickým algoritmem s polynomiálńı časovou složitost́ı se tedy
daj́ı řešit ty rozhodovaćı problémy, kde:

pro daný vstup x existuje p̌ŕıslušný (polynomiálně velký) svědek právě
tehdy, když pro x je odpověd’ Ano,

je možné deterministickým algoritmem v polynomiálńım čase ově̌rit,
že daný potenciálńı svědek je skutečně svědkem.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 604 / 674

Nedeterminismus

Mnohdy je existence takových polynomiálně velkých svědk̊u
a deterministických algoritmů, které je ově̌ruj́ı, očividná a je triviálńı
ukázat, že existuj́ı — nap̌r. u problémů jako

”
Barveńı grafu k barvami“,

”
Isomorfismus graf̊u“ nebo u následuj́ıćıho problému:

Testováńı složenosti

Vstup: Přirozené č́ıslo x .

Otázka: Je č́ıslo x složené?

Poznámka: Č́ıslo x je složené, když existuj́ı p̌rirozená č́ısla a a b taková,
že a > 1, b > 1 a x = a ⋅ b.

Nap̌ŕıklad č́ıslo 15 je složené, protože 15 = 3 ⋅ 5.

Č́ıslo x ∈ N je tedy složené, pokud x > 1 a x neńı prvoč́ıslo.

Existence takových polynomiálně velkých svědk̊u ale nutně neznamená, že
je snadné je naj́ıt.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 605 / 674

Nedeterminismus

U některých problémů může být ale ukázáńı existence takových
polynomiálně velkých svědk̊u, které je možné deterministiky
v polynomiálńım čase ově̌rovat, značně netriviálńım výsledkem.

Př́ıkladem je následuj́ıćı problém:

Testováńı prvoč́ıselnosti

Vstup: Přirozené č́ıslo x .

Otázka: Je č́ıslo x prvoč́ıslo?

S využit́ım r̊uzných netriviálńıch poznatk̊u z teorie č́ısel se dá ukázat
existence takových svědk̊u i pro tento problém — svědci zde maj́ı podobu
poměrně komplikované rekurzivně definované datové struktury.

Poznámka: Tento výsledek ukázal V. Pratt v roce 1975.

Mnohem později bylo ukázáno, že
”
Testováńı prvoč́ıselnosti“ je ve

skutečnosti v PTIME (Agrawal–Kayal–Saxena, 2002).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 606 / 674

Nedeterministické ťŕıdy složitosti

Definice

Pro funkci f ∶ N → N rozuḿıme ťŕıdou časové složitosti NT (f)
množinu těch rozhodovaćıch problémů, které jsou řešeny
nedeterministickými RAMy s časovou složitost́ı v O(f (n)).
Definice

Pro funkci f ∶ N → N rozuḿıme ťŕıdou prostorové složitosti NS(f)
množinu těch rozhodovaćıch problémů, které jsou řešeny
nedeterminictickými RAMy s prostorovou složitost́ı v O(f (n)).
Poznámka: Ve výše uvedených definićıch mohou být samožrejmě ḿısto
stroj̊u RAM uvedeny ťreba Turingovy stroje či nějaký jiný výpočetńı model.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 607 / 674

Tř́ıda NPTIME

Definice

NPTIME =

∞

⋃
k=0

NT (nk)

NPTIME (někdy se ṕı̌se jen NP) je ťŕıda všech problémů, pro které
existuje nedeterministický algoritmus s polynomiáńı časovou složitost́ı.

Do NPTIME tedy paťŕı problémy, u kterých je možné pro daný vstup
rychle ově̌rit, že odpověd’ je Ano, pokud nám ten, kdo nás o tom
chce p̌resvědčit, dodá nějakou dodatečnou informaci.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 608 / 674

Tř́ıdy NPSPACE, NEXPTIME, NEXPSPACE, . . .

Podobně můžeme definovat daľśı ťŕıdy složitosti:

NPSPACE – množina všech rozhodovaćıch problémů, pro které existuje
nedeterministický algoritmus s polynomiáńı prostorovou
složitost́ı

NEXPTIME – množina všech rozhodovaćıch problémů, pro které existuje

nedeterministický algoritmus s časovou složitost́ı 2
O(nk)

, kde
k je nějaká konstanta

NEXPSPACE – množina všech rozhodovaćıch problémů, pro které existuje

nedeterministický algoritmus s prostorovou složitost́ı 2
O(nk)

,
kde k je nějaká konstanta

NLOGSPACE – množina všech rozhodovaćıch problémů, pro které existuje
nedeterministický algoritmus s prostorovou složitost́ı
O(log n)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 609 / 674

Vztahy mezi ťŕıdami složitosti

Je žrejmé, že na deterministické algoritmy se můžeme d́ıvat jako na
speciálńı p̌ŕıpad nedeterministických.

Očividně tedy plat́ı:

LOGSPACE ⊆ NLOGSPACE

PTIME ⊆ NPTIME

PSPACE ⊆ NPSPACE

EXPTIME ⊆ NEXPTIME

EXPSPACE ⊆ NEXPSPACE

⋮

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 610 / 674

Vztahy mezi ťŕıdami složitosti

Rovněž je žrejmé, že jak u deterministických, tak u nedeterministických
algoritmů, algoritmus během výpočtu nemůže použ́ıt řádově v́ıce buněk
paměti, než kolik udělá krok̊u.

Prostorová složitost daného algoritmu je tedy vždy nejvýše taková, jaká je
jeho časová složitost.

Z toho plyne:

PTIME ⊆ PSPACE

NPTIME ⊆ NPSPACE

EXPTIME ⊆ EXPSPACE

NEXPTIME ⊆ NEXPSPACE

⋮

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 611 / 674

Vztahy mezi ťŕıdami složitosti

Vezměme si nějaký nedeterministický algoritmus s časovou
složitost́ı O(f (n)).
Deteriministický algoritmus, který bude simulovat jeho činnost t́ım
způsobem, že bude systematicky procházet všechny jeho výpočty
(procházeńım stromu těchto výpočt̊u do hloubky), vystač́ı s následuj́ıćı
pamět́ı:

pamět’, kde je uložena aktuálńı konfigurace simulovaného stroje
— má velikost O(f (n)) (protože pokud tento simulovaný
nedeterministický stroj udělá maximálně O(f (n)) krok̊u, tak jeho
konfigurace budou použ́ıvat nanejvýš O(f (n)) buněk paměti)

pamět’ pro uložeńı zásobńıku, který bude použ́ıvat k tomu, aby se
mohl vracet k p̌redchoźım konfiguraćım
— aby bylo možné z následuj́ıćı konfigurace α

′
obnovit p̌redchoźı

konfiguraci α, stač́ı si uložit konstatńı množstv́ı informace — jen to,
co se p̌ri p̌rechodu z α do α

′
změnilo

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 612 / 674

Vztahy mezi ťŕıdami složitosti

Vzhledem k tomu, že délka větv́ı je O(f (n)), množst́ı poťrebné
paměti pro zásobńık je O(f (n)).
Celkově tedy deterministický algoritmus p̌ri této simulaci vystač́ı
s množstv́ım paměti, které je nejvýše O(f (n)).

Z výše uvedeného tedy vyplývá:

NPTIME ⊆ PSPACE

NEXPTIME ⊆ EXPSPACE

⋮

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 613 / 674

Vztahy mezi ťŕıdami složitosti

Vezměme si nějaký nedeterministický algoritmus s prostorovou
složitost́ı O(f (n)):

Připomeňme, že konfiguraćı velikosti nejvýše O(f (n)) je O(c f (n)),
kde c je nějaká konstanta, což můžeme psát jako 2

O(f (n))
.

Počet krok̊u tohoto nedeterministického algoritmu v rámci jedné větve

výpočtu tedy může být až 2
O(f (n))

.

(Pozn.: Žádná konfigurace se během výpočtu nemůže zopakovat,
protože jinak by mohly být výpočty nekonečné.)

Simulace výše popsaným způsobem by tedy měla časovou složitost

až 2
2
O(f (n))

.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 614 / 674

Vztahy mezi ťŕıdami složitosti

Při simulaci můžeme postupovat, ale o něco chyťreji — p̌redstavme si
orientovaný graf, kde:

vrcholy — všechny konfigurace simulovaného stroje, jejichž velikost
je nejvýše O(f (n))
— těchto konfiguraćı je 2

O(f (n))
hrany — mezi vrcholy, které reprezentuj́ı konfigurace α a α

′
vede

hrany právě tehdy, když simulovaný stroj může p̌rej́ıt jedńım krokem
z konfigurace α do konfigurace α

′

— z každého vrcholu povede počet hran omezený shora nějakou

kostantou — hran tedy bude také řádově 2
O(f (n))

Stač́ı umět zjistit, zda ve výše uvedeném grafu existuje cesta z vrcholu,
který odpov́ıdá počátečńı konfiguraci (pro daný vstup x), do některého
vrcholu, který odpov́ıdá koncové konfiguraci, kdy daný stroj davá
odpověd’ Ano.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 615 / 674

Vztahy mezi ťŕıdami složitosti

Pro zjǐstěńı existence takové cesty je možné použ́ıt libovolný algoritmus na
procházeńı grafu — procházeńı do š́ı̌rky, procházeńı do hloubky, . . . :

Algoritmus si muśı ukládat a značit, které konfigurace již navšt́ıvil.
Daľśı pamět’ poťrebuje pro uložeńı fronty či zásobńıku, apod.

Časová i prostorová složitost tohoto algoritmu bude lineárně úměrná

velikosti daného grafu, tj. 2
O(f (n))

.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 616 / 674

Vztahy mezi ťŕıdami složitosti

Dostáváme tedy následuj́ıćı:

Činnost nedeterministického algoritmu, jehož prostorová složitost
je O(f (n)), je možné simulovat deterministickým algoritmem, jehož

časová složitost je 2
O(f (n))

.

Z toho vyplývá:

NLOGSPACE ⊆ PTIME

NPSPACE ⊆ EXPTIME

NEXPSPACE ⊆ 2-EXPTIME

⋮

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 617 / 674

Vztahy mezi ťŕıdami složitosti

Uvažujeme opět nějaký nedeterministický algoritmus s prostorovou
složitost́ı O(f (n)). Ted’ nám ale pro změnu půjde o co nejmenš́ı
prostorovou složitost simuluj́ıćıho deterministického algoritmu.

Věta (Savitch, 1970)

Činnost nedeterministického algoritmu s prostorovou složitost́ı O(f (n)) je
možné simulovat deterministickým algoritmem s prostorovou
složitost́ı O(f (n)2).
Myšlenka d̊ukazu:

Opět si p̌redstavme výše popsaný graf konfiguraćı, který má 2
O(f (n))

vrchol̊u (i hran).

Algoritmus bude zjǐst’ovat, zda existuje cesta z počátečńı konfigurace
do některé p̌rij́ımaj́ıćı konfigurace.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 618 / 674

Vztahy mezi ťŕıdami složitosti

Základem bude rekurzivńı funkce F (α, α′, i), která pro libovolné zadané
konfigurace α a α

′
a č́ıslo i ∈ N zjist́ı, zda ve výše uvedeném grafu existuje

cesta z α do α
′
délky nejvýše 2

i
:

Pokud je i = 0, zjist́ı, zda existuje cesta z α do α
′
délky nejvýše 1:

bud’ je to cesta délky 0, tj. α = α
′
,

nebo je to cesta délky 1, tj. je možné p̌rej́ıt z α do α
′
jedńım krokem

Pokud je i > 0, bude systematicky prob́ırat všechny možné
konfigurace α

′′
a testovat, jestli:

existuje cesta délky nejvýše 2
i/2 z α do α

′′

— zavolá rekurzivně F (α, α′′, i − 1)
existuje cesta délky nejvýše 2

i/2 z α
′′
do α

′

— zavolá rekurzivně F (α′′, α′, i − 1)
Pokud oboj́ı vrát́ı True, vrát́ı True, jinak pokračuje zkoušeńım
daľśıho α

′′
.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 619 / 674

Vztahy mezi ťŕıdami složitosti

Analýza prostorové složitosti daného algoritmu:

V rámci jednoho rekurzivńıho voláńı funkce F je ťreba ḿıt uložené:

ťri konfigurace α, α
′
, α

′′
— všechny jsou velikosti O(f (n))

hodnotu č́ısla i , které je řádově O(f (n)) — proto na jeho uložeńı stač́ı
zhruba O(log F (n)) bit̊u

daľśı pomocné proměnné, jejichž hodnoty jsou proti velikosti výše
uvedených položek zanedbatelné

Množstv́ı paměti poťrebné v rámci jednoho rekurzivńıho voláńı je tedy
O(f (n)).
Hloubka zanǒreńı rekurze je také O(f (n)).
Celková prostorová složitost daného algoritmu je tedy O(f (n)2).
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 620 / 674

Vztahy mezi ťŕıdami složitosti

Z výše uvedené věty vyplývá:

NPSPACE ⊆ PSPACE

NEXPSPACE ⊆ EXPSPACE

⋮

Spolu s triviálńımi fakty, že PSPACE ⊆ NPSPACE,
EXPSPACE ⊆ NEXPSPACE, . . . nám to tedy dává:

PSPACE = NPSPACE

EXPSPACE = NEXPSPACE

⋮

Poznámka: Všimněte si, že z výše uvedeného nevyplývá, že by muselo
platit LOGSPACE = NLOGSPACE.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 621 / 674

Vztahy mezi ťŕıdami složitosti

Celkově tak dostáváme následuj́ıćı hierarchii ťŕıd složitosti:

LOGSPACE ⊆ NLOGSPACE ⊆

⊆ PTIME ⊆ NPTIME ⊆ PSPACE = NPSPACE ⊆

⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE = NEXPSPACE ⊆

⋮

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 622 / 674

NP-úplné problémy

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 623 / 674

Polynomiálńı p̌revody mezi problémy

Problém P1 je polynomiálně p̌reveditelný na problém P2, jestliže existuje
algoritmus Alg s polynomiálńı časovou složitost́ı, který p̌revád́ı problém P1

na problém P2.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 624 / 674

Polynomiálńı p̌revody mezi problémy

vstupy problému P1 vstupy problému P2

Ano Ano

Ne
Ne

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 625 / 674

Polynomiálńı p̌revody mezi problémy

vstupy problému P1 vstupy problému P2

Ano Ano

Ne
Ne

Alg

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 625 / 674

Polynomiálńı p̌revody mezi problémy

Řekněme, že problém P1 je polynomiálně p̌reveditelný na problém P2,
tj. existuje polynomiálńı algoritmus Alg realizuj́ıćı tento p̌revod.

Pokud pro problém P2 existuje polynomiálńı algoritmus, pak i pro
problém P1 existuje polynomiálńı algoritmus.

Řešeńı problému P1 pro vstup w :

Zavoláme Alg se vstupem w , vrát́ı nám hodnotu Alg(w).
Zavoláme algoritmus řeš́ıćı problém P2 se vstupem Alg(w).
Hodnotu, kterou nám vrát́ı, vyṕı̌seme jako výsledek.

Z toho plyne:

Pokud neexistuje polynomiálńı algoritmus pro problém P1, tak neexistuje
ani polynomiálńı algoritmus pro problém P2.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 626 / 674

Polynomiálńı p̌revody mezi problémy

Existuje velká skupina algoritmických problémů označovaných jako
NP-úplné problémy, které:

paťŕı do ťŕıdy NPTIME, tj. jsou řešitelné v polynomiálńım čase
nedeterministickým algoritmem

jsou tedy řešitelné v exponenciálńım čase

neńı pro ně znám žádný algoritmus s polynomiálńı časovou složitost́ı

na druhou stranu neńı ani dokázáno, že daný pro daný problém
nemůže algoritmus s polynomiálńı časovou složitost́ı existovat

jsou všechny navzájem polynomiálně p̌reveditelné

Poznámka: Toto neńı definice NP-úplných problémů. Ta bude uvedena
později.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 627 / 674

Problém SAT

Typickým p̌ŕıkladem NP-úplného problému je problém SAT:

SAT (splnitelnost booleovských formuĺı)

Vstup: Booleovská formule ϕ.

Otázka: Je ϕ splnitelná?

Př́ıklad:
Formule ϕ1 = x1 ∧ (¬x2 ∨ x3) je splnitelná:
nap̌r. p̌ri ohodnoceńı v , kde v(x1) = 1, v(x2) = 0, v(x3) = 1, je
formule ϕ1 pravdivá.

Formule ϕ2 = (x1 ∧ ¬x1) ∨ (¬x2 ∧ x3 ∧ x2) neńı splnitelná:
je nepravdivá p̌ri každém ohodnoceńı v .

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 628 / 674

Problém 3-SAT

3-SAT je varianta problému SAT, ve které se omezujeme na formule
určitého speciálńıho typu:

3-SAT

Vstup: Formule ϕ v konjunktivńı normálńı formě, kde každá klauzule
obsahuje právě 3 literály.

Otázka: Je ϕ splnitelná?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 629 / 674

Problém 3-SAT

Připomenut́ı některých pojmů:

Literál je formule tvaru x nebo ¬x , kde x je atomický výrok.

Klauzule je disjunkce literál̊u.

Př́ıklady: x1 ∨ ¬x2 ¬x5 ∨ x8 ∨ ¬x15 ∨ ¬x23 x6

Formule je v konjunktivńı normálńı formě (KNF), jestliže je
konjunkćı klauzuĺı.

Př́ıklad: (x1 ∨ ¬x2) ∧ (¬x5 ∨ x8 ∨ ¬x15 ∨ ¬x23) ∧ x6

V p̌ŕıpadě problému 3-SAT tedy vyžadujeme, aby formule ϕ byla v KNF a
nav́ıc, aby každá klauzule obsahovala právě ťri literály.

Př́ıklad:(x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4)
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 630 / 674

Problém 3-SAT

Následuj́ıćı formule je splnitelná:(x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4)
Je pravdivá nap̌r. p̌ri ohodnoceńı v , kde

v(x1) = 0
v(x2) = 1
v(x3) = 0
v(x4) = 1

Naproti tomu následuj́ıćı formule neńı splnitelná:

(x1 ∨ x1 ∨ x1) ∧ (¬x1 ∨ ¬x1 ∨ ¬x1)
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 631 / 674

Polynomiálńı p̌revody mezi problémy

Ukážeme si p̌ŕıklad polynomiálńıho p̌revodu problému 3-SAT na problém
nezávislé množiny (IS).

Poznámka: Jak 3-SAT, tak IS jsou p̌ŕıklady NP-úplných problémů.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 632 / 674

Problém nezávislé množiny (IS)

Problém nezávislé množiny (IS)

Vstup: Neorientovaný graf G , č́ıslo k .

Otázka: Existuje v grafu G nezávislá množina velikosti k?

k = 4

Poznámka: Nezávislá množina v grafu je podmnožina vrchol̊u grafu
taková, že žádné dva vrcholy z této podmnožiny nejsou spojeny hranou.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 633 / 674

Problém nezávislé množiny (IS)

Problém nezávislé množiny (IS)

Vstup: Neorientovaný graf G , č́ıslo k .

Otázka: Existuje v grafu G nezávislá množina velikosti k?

k = 4

Poznámka: Nezávislá množina v grafu je podmnožina vrchol̊u grafu
taková, že žádné dva vrcholy z této podmnožiny nejsou spojeny hranou.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 633 / 674

Problém nezávislé množiny (IS)

Př́ıklad instance, kde je odpověd’ Ano:

k = 4

Př́ıklad instance, kde je odpověd’ Ne:

k = 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 634 / 674

Převod 3-SAT na IS

Poṕı̌seme (polynomiálńı) algoritmus, který bude ḿıt následuj́ıćı vlastnosti:

Vstup: Libovolná instance problému 3-SAT, tj. formule ϕ
v konjunktivńı normálńı formě, kde každá klauzule obsahuje právě ťri
literály.

Výstup: Instance problému IS, tj. neorientovaný graf G a č́ıslo k .

Nav́ıc bude pro libovolný vstup (tj. pro libovolnou formuli ϕ ve výše
uvedeném tvaru) zaručeno následuj́ıćı:

V grafu G bude existovat nezávislá množina velikosti k právě tehdy,
když formule ϕ bude splnitelná.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 635 / 674

Převod 3-SAT na IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 636 / 674

Převod 3-SAT na IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

Pro každý výskyt literálu p̌ridáme do grafu jeden vrchol.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 636 / 674

Převod 3-SAT na IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

Vrcholy odpov́ıdaj́ıćı výskyt̊um literál̊u paťŕıćım do stejné klauzule spoj́ıme
hranami.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 636 / 674

Převod 3-SAT na IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

Dvojice vrchol̊u odpov́ıdaj́ıćı literál̊um xi a ¬xi spoj́ıme hranami.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 636 / 674

Převod 3-SAT na IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

Č́ıslo k polož́ıme rovno počtu klauzuĺı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 636 / 674

Převod 3-SAT na IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

Vytvǒrený graf a č́ıslo k vydá algoritmus jako výstup.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 636 / 674

Převod 3-SAT na IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

v(x1) = 1
v(x2) = 1
v(x3) = 0
v(x4) = 1

Jestliže je formule ϕ splnitelná, existuje ohodnoceńı v , p̌ri kterém má
v každé klauzuli alespoň jeden literál hodnotu 1.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 636 / 674

Převod 3-SAT na IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

v(x1) = 1
v(x2) = 1
v(x3) = 0
v(x4) = 1

Z každé klauzule vybereme jeden literál, který má p̌ri ohodnoceńı v
hodnotu 1, a do nezávislé množiny p̌ridáme odpov́ıdaj́ıćı vrchol.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 636 / 674

Převod 3-SAT na IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

v(x1) = 1
v(x2) = 1
v(x3) = 0
v(x4) = 1

Lehce ově̌ŕıme, že vybrané vrcholy tvǒŕı nezávislou množinu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 636 / 674

Převod 3-SAT na IS

Vybrané vrcholy tvǒŕı nezávislou množinu, protože:

Z každé trojice vrchol̊u odpov́ıdaj́ıćı jedné klauzuli byl vybrán jen
jeden vrchol.

Nemohly být současně vybrány vrcholy označené xi a ¬xi .
(Při daném ohodnoceńı v má hodnotu 1 jen jeden z nich.)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 637 / 674

Převod 3-SAT na IS

Na druhou stranu, pokud v grafu G existuje nezávislá množina velikosti k ,
muśı určitě splňovat následuj́ıćı vlastnosti:

Z každé trojice vrchol̊u odpov́ıdaj́ıćı jedné klauzuli muśı být vybrán
nejvýše jeden vrchol.

Protože je ale klauzuĺı k a je vybráno k vrchol̊u, muśı být z každé
takové trojice vybrán právě jeden.

Nemohly být současně vybrány vrcholy označené xi a ¬xi .

Ohodnoceńı tedy zvoĺıme podle vybraných vrchol̊u, protože z p̌redchoźıho
vyplývá, že nehroźı, že by neexistovalo.
(Zbylým proměnným p̌rǐrad́ıme libovolné hodnoty.)

Při daném ohodnoceńı má formule ϕ určitě hodnotu 1, nebot’ v každé
klauzuli má hodnotu 1 alespoň jeden literál.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 638 / 674

Převod 3-SAT na IS

Popsaný algoritmus je určitě polynomiálńı:

Graf G a č́ıslo k je možné zkonstruovat k formuli ϕ v čase O(n2), kde n je
velikost formule ϕ.

Nav́ıc jsme viděli, že ve zkonstruovaném grafu G existuje nezávislá
množina velikosti k právě tehdy, když formule ϕ je splnitelná.

Popsaný algoritmus tedy ukazuje, že problém 3-SAT je polynomiálně
p̌reveditelný na problém IS.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 639 / 674

NP-úplné problémy

Vezměme si množinu všech možných rozhodovaćıch problémů.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 640 / 674

NP-úplné problémy

Šipkou si znázorńıme, že problém A je polynomiálně p̌reveditelný na
problém B .

A B

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 640 / 674

NP-úplné problémy

Nap̌ŕıklad problém 3-SAT je polynomiálně p̌reveditelný na problém IS.

3-SAT IS

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 640 / 674

NP-úplné problémy

Vezměme si nyńı ťŕıdu NPTIME a nějaký problém P .

P

NPTIME

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 640 / 674

NP-úplné problémy

Problém P je NP-těžký, jestliže každý problém z NPTIME je
polynomiálně p̌reveditelný na P .

P

NPTIME

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 640 / 674

NP-úplné problémy

Problém P je NP-úplný, jestliže je NP-těžký a nav́ıc sám paťŕı do
ťŕıdy NPTIME.

P

NPTIME

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 640 / 674

NP-úplné problémy

Pokud bychom pro nějaký NP-těžký problém P nalezli polynomiálńı
algoritmus, źıskali bychom t́ım polynomiálńı algoritmus pro každý problém
P
′
z NPTIME:

Na vstup problému P
′
bychom nejprve aplikovali algoritmus realizuj́ıćı

polynomiálńı p̌revod z P
′
na P .

Na vytvǒrenou instanci problému P bychom aplikovali polynomiálńı
algoritmus řeš́ıćı problém P a výsledek bychom vrátili jako odpověd’

pro danou instanci problému P
′
.

V takovém p̌ŕıpadě by tedy platilo PTIME = NPTIME, nebot’ pro každý
problém z NPTIME by existoval polynomiálńı (deterministický) algoritmus.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 641 / 674

NP-úplné problémy

Na druhou stranu, pokud existuje alespoň jeden problém z NPTIME, pro
který neexistuje polynomiálńı algoritmus, tak z p̌redchoźıho plyne, že pro
žádný NP-těžký problém nemůže existovat polynomiálńı algoritmus.

Zda plat́ı prvńı nebo druhá možnost, je otev̌rený problém.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 642 / 674

NP-úplné problémy

Neńı těžké si rozmyslet následuj́ıćı:

Pokud je problém A polynomiálně p̌reveditelný na problém B a problém B

je polynomiálně p̌reveditelný na problém C , pak problém A je
polynomiálně p̌reveditelný na problém C .

Pokud tedy o nějakém problému P v́ıme, že je NP-těžký a že P je
polynomiálně p̌reveditelný na problém P

′
, pak v́ıme, že i problém P

′
je

NP-těžký.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 643 / 674

NP-úplné problémy

Věta (Cook, 1971)

Problém SAT je NP-úplný.

Dá se ukázat, že SAT je polynomiálně p̌reveditelný na 3-SAT a viděli jsme,
že 3-SAT je polynomiálně p̌reveditelný na IS.

Z toho plyne, že problémy 3-SAT a IS jsou NP-těžké.

Neńı také těžké ukázat, že 3-SAT i IS paťŕı do ťŕıdy NPTIME.

Problémy 3-SAT i IS jsou NP-úplné.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 644 / 674

NP-úplné problémy

Polynomiálńımi p̌revody z již známých NP-úplných problémů se dá ukázat
NP-obt́ıžnost celé řady r̊uzných daľśıch problémů:

IS

3−SAT

3−CG

SUBSET−SUM

ILP

SAT

VC

CLIQUE

HC TSPHK

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 645 / 674

Př́ıklady některých NP-úplných problémů

Ze zat́ım uvedených problémů jsou NP-úplné následuj́ıćı ťri problémy:

SAT (splnitelnost booleovských formuĺı)

3-SAT

IS — problém nezávislé množiny (independent set)

Na následuj́ıćıch slidech jsou uvedeny některé daľśı NP-úplné problémy:

CG — vrcholové barveńı grafu (pozn.: je NP-úplný i ve speciálńım p̌ŕıpadě, kdy
máme právě 3 barvy)

VC — vrcholové pokryt́ı grafu (vertex cover)

CLIQUE — problém kliky

HC — problém Hamiltonovského cyklu

HK — problém Hamiltonovské kružnice

TSP — problém obchodńıho cestuj́ıćıho (traveling salesman problem)

SUBSET-SUM

ILP — celoč́ıselné lineárńı programováńı (integer linear programming)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 646 / 674

Barveńı grafu

Barveńı grafu

Vstup: Neorientovaný graf G , p̌rirozené č́ıslo k .

Otázka: Lze vrcholy grafu G obarvit k barvami tak, aby žádné dva
vrcholy spojené hranou neměly stejnou barvu?

Př́ıklad: k = 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 647 / 674

Barveńı grafu

Barveńı grafu

Vstup: Neorientovaný graf G , p̌rirozené č́ıslo k .

Otázka: Lze vrcholy grafu G obarvit k barvami tak, aby žádné dva
vrcholy spojené hranou neměly stejnou barvu?

Př́ıklad: k = 3

Odpověd’: Ano

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 647 / 674

Barveńı grafu

Barveńı grafu

Vstup: Neorientovaný graf G , p̌rirozené č́ıslo k .

Otázka: Lze vrcholy grafu G obarvit k barvami tak, aby žádné dva
vrcholy spojené hranou neměly stejnou barvu?

Př́ıklad: k = 3

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 647 / 674

Barveńı grafu

Barveńı grafu

Vstup: Neorientovaný graf G , p̌rirozené č́ıslo k .

Otázka: Lze vrcholy grafu G obarvit k barvami tak, aby žádné dva
vrcholy spojené hranou neměly stejnou barvu?

Př́ıklad: k = 3

Odpověd’: Ne

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 647 / 674

VC – Vrcholové pokryt́ı

VC – vrcholové pokryt́ı (vertex cover)

Vstup: Neorientovaný graf G a p̌rirozené č́ıslo k .

Otázka: Existuje v grafu G množina vrchol̊u velikosti k taková, že
každá hrana má alespoň jeden sv̊uj vrchol v této množině?

Př́ıklad: k = 6

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 648 / 674

VC – Vrcholové pokryt́ı

VC – vrcholové pokryt́ı (vertex cover)

Vstup: Neorientovaný graf G a p̌rirozené č́ıslo k .

Otázka: Existuje v grafu G množina vrchol̊u velikosti k taková, že
každá hrana má alespoň jeden sv̊uj vrchol v této množině?

Př́ıklad: k = 6

Odpověd’: Ano

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 648 / 674

CLIQUE – problém kliky

CLIQUE – problém kliky

Vstup: Neorientovaný graf G a p̌rirozené č́ıslo k .

Otázka: Existuje v grafu G množina vrchol̊u velikosti k taková, že
každé dva vrcholy této množiny jsou spojeny hranou?

Př́ıklad: k = 4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 649 / 674

CLIQUE – problém kliky

CLIQUE – problém kliky

Vstup: Neorientovaný graf G a p̌rirozené č́ıslo k .

Otázka: Existuje v grafu G množina vrchol̊u velikosti k taková, že
každé dva vrcholy této množiny jsou spojeny hranou?

Př́ıklad: k = 4

Odpověd’: Ano

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 649 / 674

Hamiltonovský cyklus

HC – Problém
”
Hamiltonovský cyklus“

Vstup: Orientovaný graf G .

Otázka: Existuje v grafu G Hamiltonovský cyklus (orientovaný cyklus
procházej́ıćı každým vrcholem právě jednou)?

Př́ıklad:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 650 / 674

Hamiltonovský cyklus

HC – Problém
”
Hamiltonovský cyklus“

Vstup: Orientovaný graf G .

Otázka: Existuje v grafu G Hamiltonovský cyklus (orientovaný cyklus
procházej́ıćı každým vrcholem právě jednou)?

Př́ıklad:

Odpověd’: Ne

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 650 / 674

Hamiltonovský cyklus

HC – Problém
”
Hamiltonovský cyklus“

Vstup: Orientovaný graf G .

Otázka: Existuje v grafu G Hamiltonovský cyklus (orientovaný cyklus
procházej́ıćı každým vrcholem právě jednou)?

Př́ıklad:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 650 / 674

Hamiltonovský cyklus

HC – Problém
”
Hamiltonovský cyklus“

Vstup: Orientovaný graf G .

Otázka: Existuje v grafu G Hamiltonovský cyklus (orientovaný cyklus
procházej́ıćı každým vrcholem právě jednou)?

Př́ıklad:

Odpověd’: Ano

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 650 / 674

Hamiltonovská kružnice

HK – Problém
”
Hamiltonovská kružnice“

Vstup: Neorientovaný graf G .

Otázka: Existuje v grafu G Hamiltonovská kružnice (neorientovaný
cyklus procházej́ıćı každým vrcholem právě jednou)?

Př́ıklad:

Odpověd’: Ne

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 651 / 674

Hamiltonovská kružnice

HK – Problém
”
Hamiltonovská kružnice“

Vstup: Neorientovaný graf G .

Otázka: Existuje v grafu G Hamiltonovská kružnice (neorientovaný
cyklus procházej́ıćı každým vrcholem právě jednou)?

Př́ıklad:

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 651 / 674

Hamiltonovská kružnice

HK – Problém
”
Hamiltonovská kružnice“

Vstup: Neorientovaný graf G .

Otázka: Existuje v grafu G Hamiltonovská kružnice (neorientovaný
cyklus procházej́ıćı každým vrcholem právě jednou)?

Př́ıklad:

Odpověd’: Ano

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 651 / 674

Problém obchodńıho cestuj́ıćıho

TSP - Problém
”
obchodńıho cestuj́ıćıho“

Vstup: Neorientovaný graf G s hranami ohodnocenými p̌rirozenými
č́ısly a č́ıslo k .

Otázka: Existuje v grafu G uzav̌rená cesta procházej́ıćı všemi vrcholy
takový, že součet délek hran na této cestě (včetně
opakovaných) je maximálně k?

Př́ıklad: k = 70

8

18 16

20

1

5 1

2

10
3

4

5

13

6
14

4

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 652 / 674

Problém obchodńıho cestuj́ıćıho

TSP - Problém
”
obchodńıho cestuj́ıćıho“

Vstup: Neorientovaný graf G s hranami ohodnocenými p̌rirozenými
č́ısly a č́ıslo k .

Otázka: Existuje v grafu G uzav̌rená cesta procházej́ıćı všemi vrcholy
takový, že součet délek hran na této cestě (včetně
opakovaných) je maximálně k?

Př́ıklad: k = 70

8

18 16

20

1

5 1

2

10
3

4

5

13

6
14

4

Odpověd’: Ano, protože byla nalezena cesta se součtem 69.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 652 / 674

SUBSET-SUM

Problém SUBSET-SUM

Vstup: Sekvence p̌rirozených č́ısel a1, a2, . . . , an a p̌rirozené č́ıslo s.

Otázka: Existuje množina I ⊆ {1, 2, . . . , n} taková, že ∑i∈I ai = s ?

Jinak řečeno, ptáme se zda z dané (multi)množiny č́ısel je možné vybrat
podmnožinu, jej́ıž součet je s.

Př́ıklad: Pro vstup tvǒrený č́ısly 3, 5, 2, 3, 7 a č́ıslem s = 15 je odpověd’

Ano, nebot’ 3 + 5 + 7 = 15.

Pro vstup tvǒrený č́ısly 3, 5, 2, 3, 7 a č́ıslem s = 16 je odpověd’ Ne, nebot’

žádná podmnožina těchto č́ısel nedává součet 16.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 653 / 674

SUBSET-SUM

Poznámka:
Pǒrad́ı č́ısel a1, a2, . . . , an na vstupu neńı důležité.

Všimněte si však určitého rozd́ılu oproti tomu, kdybychom problém
formulovali tak, že vstupem je množina {a1, a2, . . . , an} a č́ıslo s —
v množině se č́ısla neopakuj́ı, zat́ımco v sekvenci se může totéž č́ıslo
vyskytnout v́ıcekrát.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 654 / 674

SUBSET-SUM

Problém SUBSET-SUM je speciálńım p̌ŕıpadem problému batohu
(knapsack problem):

Knapsack problem

Vstup: Sekvence dvojic p̌rirozených č́ısel(a1, b1), (a2, b2), . . . , (an, bn) a dvě p̌rirozená č́ısla s a t.

Otázka: Existuje množina I ⊆ {1, 2, . . . , n} taková, že ∑i∈I ai ≤ s a
∑i∈I bi ≥ t ?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 655 / 674

SUBSET-SUM

Neformálně můžeme problém batohu formulovat takto:

Máme n p̌redmět̊u, kde i-tý p̌redmět váž́ı ai gramů a má cenu bi Kč. Do
batohu se vejdou p̌redměty o maximálńı celkové váze s gramů.

Otázka zńı, zda můžeme z p̌redmět̊u vybrat podmnožinu, která by vážila
maximálně s gramů a měla celkovou cenu alespoň t Kč.

Poznámka:
Zde jsme problém batohu formulovali jako rozhodovaćı problém.

Běžněǰśı je formulovat tento problém jako optimalizačńı problém, kde je
ćılem naj́ıt takovou množinu I ⊆ {1, 2, . . . , n}, kde hodnota ∑i∈I bi je
maximálńı, p̌ričemž ovšem muśı být dodržena podḿınka ∑i∈I ai ≤ s,
tj. vybrat p̌redměty s maximálńı celkovou cenou tak, aby nebyla
p̌rekročena kapacita batohu.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 656 / 674

SUBSET-SUM

To, že SUBSET-SUM je speciálńım p̌ŕıpadem problému batohu, vid́ıme
z následuj́ıćı jednoduché konstrukce:

Řekněme, že a1, a2, . . . , an, s1 je instance problému SUBSET-SUM.
Je očividné, že pro instanci problému batohu, kde máme sekvenci(a1, a1), (a2, a2), . . . , (an, an), s = s1 a t = s1, je odpověd’ stejná jako pro
původńı instanci SUBSET-SUM.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 657 / 674

SUBSET-SUM

Pokud chceme studovat složitost problémů jako jsou SUBSET-SUM nebo
problém batohu, je dobré si nejprve ujasnit, co považujeme za velikost
vstupu.

Asi nejp̌rirozeněǰśı je definovat velikost vstupu jako celkový počet bit̊u,
který poťrebujeme k zápisu instance.

Muśıme však určit, jakým způsobem jsou na vstupu zadána p̌rirozená č́ısla
– zda binárně (p̌ŕıpadně v jiné č́ıselné soustavě o základu alespoň 2,
nap̌r. deśıtkové nebo šestnáctkové) nebo unárně.

Pokud poč́ıtáme velikost vstupu jako celkový počet bit̊u p̌ri použit́ı
binárńıho zápisu č́ısel, tak pro problém SUBSET-SUM neńı znám
polynomiálńı algoritmus.

Pokud poč́ıtáme velikost vstupu jako celkový počet bit̊u p̌ri použit́ı
unárńıho zápisu, tak existuje pro problém SUBSET-SUM algoritmus
s polynomiálńı časovou složitost́ı.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 658 / 674

ILP – celoč́ıselné lineárńı programováńı

Problém ILP (celoč́ıselné lineárńı programováńı)

Vstup: Celoč́ıselná matice A a celoč́ıselný vektor b.

Otázka: Existuje celoč́ıselný vektor x , takový že Ax ≤ b?

Př́ıklad instance problému:

A =

⎛⎜⎝
3 −2 5
1 0 1
2 1 0

⎞⎟⎠ b =

⎛⎜⎝
8

−3
5

⎞⎟⎠
Ptáme se tedy, zda existuje celoč́ıselné řešeńı následuj́ıćı soustavy nerovnic:

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 659 / 674

ILP – celoč́ıselné lineárńı programováńı

Jedńım z řešeńı soustavy

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5

je nap̌ŕıklad x1 = −4, x2 = 1, x3 = 1, tj.

x =

⎛⎜⎝
−4
1
1

⎞⎟⎠
nebot’

3 ⋅ (−4) − 2 ⋅ 1 + 5 ⋅ 1 = −9 ≤ 8
−4 + 1 = −3 ≤ −3

2 ⋅ (−4) + 1 = −7 ≤ 5

Pro tuto instanci je tedy odpověd’ Ano.
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 660 / 674

ILP – celoč́ıselné lineárńı programováńı

Poznámka: Analogický problém, kdy se pro danou soustavu lineálńıch
nerovnic ptáme, zda existuje jej́ı řešeńı v oboru reálných č́ısel, je možné
řešit v polynomiálńım čase.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 661 / 674

PSPACE-úplné problémy, EXPTIME-úplné problémy, . . .

Problém P je PSPACE-těžký, jestliže je každý problém P
′
z PSPACE

polynomiálně p̌reveditelný na problém P .

Problém P je PSPACE-úplný, jestliže je PSPACE-těžký a nav́ıc sám
paťŕı do ťŕıdy PSPACE.

Problém P je EXPTIME-těžký, jestliže je každý problém P
′

z EXPTIME polynomiálně p̌reveditelný na problém P .

Problém P je EXPTIME-úplný, jestliže je EXPTIME-těžký a nav́ıc
sám paťŕı do ťŕıdy EXPTIME.

⋮

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 662 / 674

PSPACE-úplné problémy, EXPTIME-úplné problémy, . . .

Obecně pro libovolnou ťŕıdu složitosti C můžeme zavést ťŕıdy C-těžkých
a C-úplných problémů:

Definice

Problém P je C-těžký, jestliže je každý problém P
′
ze ťŕıdy C

polynomiálně p̌reveditelný na problém P .

Problém P je C-úplný, jestliže je C-těžký a nav́ıc sám paťŕı do ťŕıdy C.

Kromě NP-úplných problémů tak máme PSPACE-úplné problémy,
EXPTIME-úplné problémy, EXPSPACE-úplné problémy,
2-EXPTIME-úplné problémy, . . .

Obecně se dá ř́ıci, že C-úplné problémy jsou vždy ty nejtěžš́ı problémy
v dané ťŕıdě C.

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 663 / 674

PTIME-úplné problémy, NL-úplné problémy, . . .

Poznámka: Výše uvedeným způsobem zavedené pojmy C-těžkých
a C-úplných problémů, kdy byl v definici použit pojem polynomiálńı
p̌revoditelnosti, nedávaj́ı p̌ŕılǐs smysl pro ťŕıdu PTIME a daľśı ťŕıdy, které
jsou jej́ımi podmnožinami (jako ťreba NLOGSPACE).

Pro takové ťŕıdy se zavád́ı pojmy C-těžké a C-úplné problémy podobným
způsobem jako v p̌redchoźıch definićıch, ale ḿısto polynomiálńı redukćı se
použ́ıvaj́ı, tzv. logspace redukce:

algoritmus realizuj́ı daný p̌revod muśı být deterministický a ḿıt
logaritmickou prostorovou složitost

T́ımto způsobem se zavád́ı nap̌ŕıklad:

PTIME-úplné a PTIME-těžké problémy

NLOGSPACE-úplné a NLOGSPACE-těžké problémy (věťsinou se
označuj́ı kraťśım názvem jako NL-úplné a NL-těžké)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 664 / 674

Př́ıklad NL-úplného problému

Typický p̌ŕıklad NL-úplného problému:

Dosažitelnost v grafu

Vstup: Orientovaný graf G a dva jeho vrcholy s a t.

Otázka: Existuje v grafu G cesta z vrcholu s do vrcholu t ?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 665 / 674

Př́ıklad PTIME-úplného problému

Typický p̌ŕıklad PTIME-úplného problému:

Circuit Value Problem

Vstup: Acyklický booleovský obvod C skládaj́ıćı se z hradel a vodič̊u
a booleovské hodnoty x1, x2, . . . , xn na vstupech tohoto
obvodu.

Otázka: Bude na výstupu obvodu C p̌ri daných hodnotách vstupů
hodnota 1 ?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 666 / 674

Př́ıklady PSPACE-úplných problémů

Typickým p̌ŕıkladem PSPACE-úplného problému je problém
kvantifikovaných booleovských formuĺı — QBF (Quantified Boolean
Formulas):

QBF

Vstup: Kvantifikovaná booleovská formule tvaru

∃x1∀x2∃x3∀x4⋯∃xn−1∀xn ∶ ϕ,

kde ϕ je (běžná) booleovská formule obsahuj́ıćı
proměnné x1, x2, . . . , xn.

Otázka: Je daná formule pravdivá?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 667 / 674

Př́ıklady PSPACE-úplných problémů

EqNFA

Vstup: Nedeterministické konečné automaty A1 a A2.

Otázka: Je L(A1) = L(A2) ?
Univerzalita NKA

Vstup: Nedeterministický konečný automat A.

Otázka: Je L(A) = Σ
∗
?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 668 / 674

Př́ıklady PSPACE-úplných problémů

EqRE

Vstup: Regulárńı výrazy α1 a α2.

Otázka: Je L(α1) = L(α2) ?
Univerzalita RV

Vstup: Regulárńı výraz α.

Otázka: Je L(α) = Σ
∗
?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 669 / 674

Př́ıklady PSPACE-úplných problémů

Uvažujme následuj́ıćı hru, kterou hraj́ı dva hráči na orientovaném grafu G :

Hráči sťŕıdavě p̌resunuj́ı po vrcholech grafu G jeden hraćı kámen.

Při taźıch se označuj́ı vrcholy, které již byly kamenem navšt́ıveny.

Zač́ıná se na specifikovaném vrcholu v0.

Řekněme, že kámen je momentálně na vrcholu v . Hráč, který je na
tahu, vybere vrchol v

′
takový, že existuje hrana z v do v

′
a vrchol v

′

nebyl dosud navšt́ıven.

Hráč, který nemůže táhnout, prohrál a jeho protivńık vyhrál.

Generalized Geografy

Vstup: Orientovaný graf G s vyznačeným počátečńım vrcholem v0.

Otázka: Má hráč, který táhne jako prvńı, vyhrávaj́ıćı strategii ve ȟre
hrané na grafu G , kde se zač́ıná ve vrcholu v0 ?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 670 / 674

Př́ıklady EXPTIME-úplných problémů

Typický p̌ŕıklad EXPTIME-úplného problému:

Vstup: Turing̊uv stroj M, slovo w a č́ıslo k zapsané binárně.

Otázka: Zastav́ı se výpočet stroje M nad slovem w do k krok̊u?
(Tj. udělá stroj M p̌ri výpočtu nad slovem w

nejvýše k krok̊u?)

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 671 / 674

Př́ıklady EXPTIME-úplných problémů

Daľśı p̌ŕıklady EXPTIME-úplných problémů jsou nap̌ŕıklad zobecněné
varianty her jako jsou šachy, dáma nebo Go, hrané na hraćı ploše libovolné
velikosti (nap̌r. šachovnice velikosti n × n):

vstupem je pozice v dané ȟre (nap̌r. v šachu konkrétńı rozestaveńı
figurek na šachovnici a informace, který hráč je na tahu)

otázka je, zda má hráč, který je momentálně na tahu, v dané pozici
vyhrávaj́ıćı strategii

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 672 / 674

Př́ıklady EXPSPACE-úplných problémů

Regulárńı výrazy s mocněńım jsou definovány podobně jako běžné
regulárńı výrazy, ale kromě operátor̊u +, ⋅ a

∗
mohou nav́ıc obsahovat

unárńı operátor
2
s následuj́ıćım významem:

α
2
je zkratkou pro α ⋅ α.

Následuj́ıćı dva problémy jsou EXPSPACE-úplné:

Vstup: Regulárńı výrazy s mocněńım α1 a α2.

Otázka: Je L(α1) = L(α2) ?
Vstup: Regulárńı výraz s mocněńım α.

Otázka: Je L(α) = Σ
∗
?

Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 673 / 674

Presburgerova aritmetika

Př́ıklad problému, který je sice rozhodnutelný, ale má velkou výpočetńı
složitost:

Problém

Vstup: Uzav̌rená formule predikátové logiky (prvńıho řádu), ve které
mohou být použity jako predikátové symboly pouze = a <,
jako funkčńı symbol pouze + a jako kostantńı symboly
pouze 0 a 1.

Otázka: Je daná formule pravdivá v oboru p̌rirozených č́ısel (p̌ri
p̌rirozené interpretaci všech funkčńıch a predikátových
symbol̊u)?

Pro tento problém je znám deterministický algoritmus s časovou

složitost́ı 2
2
2
O(n)

a je rovnež známo, že každý nedeterministický algoritmus

řeš́ıćı tento problém, muśı ḿıt časovou složitost nejméně 2
2
Ω(n)

.
Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 11. února 2026 674 / 674

	Formalní jazyky
	Regularni vyrazy
	Konečné automaty
	Bezkontextové gramatiky
	Zasobnikove automaty
	Turingovy stroje
	Chomského hierarchie
	Výpočetní modely
	Stroje RAM
	Algoritmy
	Dokazování korektnosti algoritmů
	Výpočetní složitost
	Příklady analýzy složitosti
	Nerozhodnutelne problemy
	Třídy složitosti
	Nedeterministické algoritmy
	NP-úplné problémy

