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Ptednasejici

Jméno: doc. Ing. Zdenék Sawa, Ph.D.
E-mail: zdenek.sawa@vsb.cz
Mistnost: EA413
Web: https://www.cs.vsb.cz/sawa/uti

Na téchto strdnkdch najdete:
@ Informace o pfedmétu

o Ucebni texty

o Slidy z p¥ednasek

@ Zadani ptikladl na cvieni
o Aktudlni informace

°

Odkaz na strdnku s animacemi
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e Zapocet (30 bodi):

o Zapottovd pisemka (24 bodl) — bude se psat na cviteni
@ Minimum pro ziskani zdpo&tu je 12 bodd.
o MoZnost opravy za 20 bodi.

o Aktivita na cviceni (6 bodi)
@ Minimum pro ziskdni zdpo&tu jsou 3 body.

o Zkouska (70 bodu)
o Pisemna zkouska skladajici se ze dvou &asti po 35 bodech,
pticemz z kazdé ¢&asti je nutné ziskat nejméné 12 bodi.

o Celkové je tfeba ziskat minimalné 30 bodd.
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Teoreticka informatika

Teoreticka informatika — v&dni obor na pomezi mezi informatikou
a matematikou

@ zkoumadni obecnych otdzek tykajicich se algoritmi a vypotti
@ zkoumadni riznych formalismd pro popis algoritmi

@ zkoumdni rliznych prostfedki pro popis syntaxe a sémantiky
formalnich jazyki (zejména s diirazem na programovaci jazyky)

e matematicky p¥istup k analyze a ¥eSeni problémi (dokazovani obecn&
platnych matematickych tvrzeni tykajicich se algoritmi)
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Teoreticka informatika

P¥iklady nékterych typickych otdzek studovanych v teoretické informatice:

Je moZné dany problém YeSit pomoci néjakého algoritmu?

Pokud je mozné dany problém ¥esit pomoci algoritmu, jaka je
vypocetni sloZitost tohoto algoritmu?

Existuje pro dany problém né&jaky efektivni algoritmus, ktery ho ¥esi

Jak se presvédiit o tom, Ze dany algoritmus je skute¢né korektnim
feSenim daného problému?

Jaké instrukce musi umét vykonat stroj, ktery by mohl provadét dany
algoritmus?
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Algoritmy a problémy

Algoritmus — mechanicky postup, jak néco spotitat (miZe byt
vykondvan potitatem)

Algoritmy slouZi k YeSeni rliznych problémiu.

P¥iklad algoritmického problému:

Vstup: Ptirozena &isla x a y.

Vystup: Ptirozené &islo z takové, Ze z = x + y.
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Algoritmy a problémy

Algoritmus — mechanicky postup, jak néco spotitat (miZe byt
vykondvan potitatem)

Algoritmy slouZi k YeSeni rliznych problémiu.
P¥iklad algoritmického problému:
Vstup: Ptirozena &isla x a y.
Vystup: Ptirozené &islo z takové, Ze z = x + y.
Konkrétni vstup néjakého problému se nazyvé instance problému.

P¥iklad: Instanci vy$e uvedeného problému je naptiklad dvojice &isel
728 a 34.

Vystupem pro tuto instanci je &islo 762.
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Problémy

V zadani problému musi byt uréeno:

@ co je mnoZinou moZnych vstupl
@ co je mnozinou moZnych vystupt

@ jaky je vztah mezi vstupy a vystupy

vstupy vystupy
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Ptiklady problémii

Problém ,, T¥idéni*

Vstup: Sekvence prvki ag, a, ..., a,.

Vystup: Prvky sekvence aj, as, ..., a, sefazené od nejmensiho po
nejvetsi.
Ptiklad:
@ Vstup: 8,13,3,10,1,4
o Vystup: 1,3,4,8,10,13
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Pt¥iklad algoritmického problému

Problém , Hledani nejkrat¥i cesty v (neorientovaném) grafu*

Vstup: Neorientovany graf G = (V, E) s ohodnocenim hran
a dvojice vrcholl u,v € V.

Vystup: Nejkratsi cesta z vrcholu u do vrcholu v.
(Nebo informace, Ze 74dna takova cesta neexistuje.)

Ptiklad:
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Algoritmy a problémy

Algoritmus ¥esi dany problém pokud:

@ Se pro kaZdy vstup po kone&ném po&tu kroki zastavi.

@ Pro kazdy vstup vyda spravny vystup.

Korektnost algoritmu — ovéfeni toho, Ze dany algoritmus skute¢né fesi
dany problém

Vypocetni slozitost algoritmu:
@ Casova slozitost — jak zdvisi doba vypo&tu na velikosti vstupu

e pamétova (nebo téz prostorova) sloZitost — jak z4visi mnoZstvi
pouZité paméti na velikosti vstupu

Poznamka: Pro jeden problém mize existovat celd ¥ada algoritmii, které
jej korektné Yesi.
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Dalsi priklady problémi

Problém , Prvociselnost”
Vstup: P¥irozené &islo n.

Vystup: ANO pokud je n prvolislo, NE v opa&ném p¥ipadé.

Poznamka: P¥irozené &islo n je prvocislo, pokud je vétsi nez 1 a je
délitelné beze zbytku pouze &isly 1 a n.

Prvnich n&kolik prvotisel: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...
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Rozhodovaci problémy

Problém(im, kde mnoZina vystupii je {ANO, NE} se ¥ika rozhodovaci
problémy.

Rozhodovaci problémy jsou vétSinou specifikovany tak, Zze misto popisu
toho, co je vystupem, je uvedena otazka.

Ptiklad:

Problém , Prvotiselnost”
Vstup: P¥irozené &islo n.

Otédzka: Je n prvotislo?
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Optimalizaéni problémy

Problémiim, kde je pro dany vstup uréena né&jakd mnozina pFipustnych
fesSeni a kde je Gkolem mezi témito pFipustnymi FeSenimi vybrat takové,
které je v n&jakém ohledu minimaini nebo maximalni (p¥ipadng zjistit, Ze
Z4dné pFipustné Fedeni neexistuje), se ¥ikd optimaliza&ni problémy.

Ptiklad:

Problém ,Hledani nejkrat¥i cesty v (neorientovaném) grafu*

Vstup: Neorientovany graf G = (V, E) s ohodnocenim hran, a
dvojice vrcholl u,v € V.

Vystup: Nejkratsi cesta z vrcholu u do vrcholu v.
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Optimalizaéni problémy

Problém ,Barveni grafu”

Vstup: Neorientovany graf G.

Vystup: Minimalni pocet barev, kterymi je mozné obarvit vrcholy
grafu G tak, aby Zadné dva vrcholy spojené hranou nemély
stejnou barvu, a konkrétni pfiklad obarveni vrcholi
pouzivajici tento minimalni pocet barev.

11. dnora 2026 14 /674
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Optimalizaéni problémy

Problém ,Barveni grafu”

Vstup: Neorientovany graf G.

Vystup: Minimalni pocet barev, kterymi je mozné obarvit vrcholy
grafu G tak, aby Zadné dva vrcholy spojené hranou nemély
stejnou barvu, a konkrétni pfiklad obarveni vrcholi
pouzivajici tento minimalni pocet barev.

Barvy: 3
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Optimalizaéni problémy pfeformulované jako rozhodovaci

Problém , Barveni grafu k barvami”

Vstup: Neorientovany graf G a pfirozené &islo k.

Otazka: Je mozné obarvit vrcholy grafu G k barvami tak, aby zadné
dva vrcholy spojené hranou nemély stejnou barvu?
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Algoritmicky fesitelné problémy

Pt¥edpokladejme, Ze mame dén né&jaky problém P.

Jestlize existuje n&jaky algoritmus, ktery ¥esi problém P, pak fikdme, Ze
problém P je algoritmicky FeSitelny.

JestliZze P je rozhodovaci problém a jestliZze existuje n&jaky algoritmus,
ktery problém P ¥esi, pak ¥ikdme, Ze problém P je (algoritmicky)
rozhodnutelny.

KdyZ chceme ukazat, Ze problém P je algoritmicky YeSitelny, sta&i ukazat
n&jaky algoritmus, ktery ho ¥esi (a p¥ipadné ukazat, Ze dany algoritmus

N4

problém P skute¢né Yesi).
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Algoritmicky nefeSitelné problémy

Problém, ktery neni algoritmicky FeSitelny, je algoritmicky nefesitelny.

Rozhodovaci problém, ktery neni rozhodnutelny, je nerozhodnutelny.

Kupodivu existuje ¥ada algoritmickych problémd (pfesn& definovanych),
o kterych je dokazano, Ze nejsou algoritmicky FeSitelné.

Teorie vy¢islitelnosti — oblast teoretické informatiky, kterd se zabyva
zkoumdanim toho, které problémy jsou a které nejsou algoritmicky feSitelné.
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Teorie sloZitosti

Rada problémi je algoritmicky Yesitelnych, ale neexistuji (nebo nejsou
znamy) efektivni algoritmy, které by je ¥eSily:

TSP - Problém obchodniho cestujiciho
Vstup: Neorientovany graf G s hranami ohodnocenymi p¥irozenymi
Cisly.
Vystup: Nejkratsi uzavifena cesta, kterd projde vSemi vrcholy a skon&i
v tom vrcholu, kde zacina.

11. dnora 2026 18 /674
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Teoreticka informatika

Né&které dalsi oblasti teoretické informatiky:

teorie sloZitosti

teorie formalnich jazykd

°
°

@ vypocetni modely

@ paralelni a distribuované algoritmy
°
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Teorie formalnich jazyki

Oblast teoretické informatiky zabyvajici se otdzkami tykajicimi se syntaxe.

e Jazyk — mnoZina slov
@ Slovo — sekvence symboli z ur&ité abecedy

e Abeceda — mnoZina symboli (nebo téZ znaki)

Slova a jazyky se v informatice objevuji na mnoha mistech:
@ Reprezentace vstupnich a vystupnich dat
Reprezentace kédu programi

°
@ Manipulace s Fetézci znakl nebo se soubory
°
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Teorie formalnich jazyk(i — motivace

P¥iklady typl problémi, p¥i jejichZ FeSeni se vyuzivd poznatki z teorie
formalnich jazykd:

@ Tvorba prekladaci:

o lexikalni analyza
o syntaktickd analyza

@ Vyhledavani v textu:

o hledani zadaného vzorku
o hledani textu zadaného regularnim vyrazem
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Abeceda, slovo

e Abeceda — libovolna neprdzdna kone¢nd mnozina symboli (znakii)
P¥iklad: ¥ = {a,b,c,d}

@ Slovo — libovolnd koneéna posloupnost symbolil z dané abecedy
Ptiklad: cabcbba
e v v - L, . *
MnoZina vSech slov nad abecedou ¥ se oznaduje zapisem .

Pro proménné, jejichZ hodnoty jsou slova, budeme pouZivat ndzvy
w,u, v, x,y,z, apod., pfipadn& s indexy (nap¥. wy, wy)

Zapis w = cabcbba tedy znamend, Ze hodnotou proménné w je
slovo cabcbba.

v ;. * VY v P . v P
Podobné zdpis w € ¥~ znamenad, Ze hodnotou proménné w je né&jaké
slovo tvorené symboly z abecedy .
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Formalni jazyky

Definice

(Formalni) jazyk L v abeced& ¥ je n&jaka libovolnd podmnoZina
mnoziny ¥, tj. L € ¥*.

P¥iklad: P¥edpoklddejme, 7e ¥ = {a, b, c}:
e Jazyk L; = { aab, bcca, aaaaa}

o Jazyk L, ={w € ¥ | pocet vyskyti symboli b ve slove w je sudy }
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Formalni jazyky
P¥iklad:
Abeceda ¥ je mnoZina viech ASCII znakd.

P¥iklad slova:
#include <stdio.h>
int main()

{

printf ("Hello, world!\n");
return O;

#include <stdio.h> <« int main() < { <, printf ("He---

Z. Sawa (VSB-TUO)
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Formalni jazyky

Prostfedky pouZivané pro popis formalnich jazykd:
@ automaty
@ gramatiky

@ reguldrni vyrazy

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 25 /674



Kdédovani vstupu a vystupu

U algoritmickych problémi &asto predpokldadame, Ze vstupy i vystupy jsou
kédovany jako slova v néjaké abecedé .

P¥iklad: Nap¥iklad u problému ,, T¥idéni* bychom mohli zvolit jako
abecedu ¥ ={0,1,2,3,4,5,6,7,8,9,,}.

Vstupem by pak mohlo byt nap¥iklad slovo
826,13,3901,128,562

a vystupem slovo
13,128,562,826,3901

Poznamka: Ne kazdé slovo ze ¥* musi reprezentovat n&jaky vstup.
Kdédovani bychom ale méli zvolit tak, abychom byli schopni snadno poznat
ta slova, kterd né&jaky vstup reprezentuji.
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Cinnost algoritmu

P¥edpokladame, Ze algoritmus je vykonavan néjakym druhem stroje.

Input

Output
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Kdédovani vstupu a vystupu

P¥iklad: Pokud je vstupem né&jakého problému nap¥iklad graf, mizeme ho
reprezentovat jako seznam vrcholid a hran:

Napftiklad nésledujici graf

miZeme reprezentovat jako slovo

1,2,3,4,5),0(1,2),(2,4),04,3),(3,1),(1,1),(2,5),(4,5),(4,1))

v abeced® ¥ = {0,1,2,3,4,5,6,7,8,9,,,(,)}.
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Uvod do teoretické informatiky
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Vztah mezi rozpoznavanim formalnich jazykdi

a rozhodovacimi problémy

Mezi rozpoznavanim slov z daného jazyka a rozhodovacimi problémy je
lzky vztah:

o KaZdému jazyku L nad né&jakou abecedou ¥ odpovidd nasledujici
rozhodovaci problém:

Vstup: Slovo w nad abecedou ¥.

Otazka: Pat¥i slovo w do jazyka L?
o Ke kazdému rozhodovacimu problému P, jehoz vstupy jsou kédovédny
jako slova nad abecedou X, existuje jemu odpovidajici jazyk:

Jazyk L obsahujici pravé ta slova w nad abecedou ¥, pro ktera je odpovéd
na pfisludnou otazku specifikovanou v zadani problému P “"ANO".
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Vztah mezi rozpoznavanim formalnich jazykdi

a rozhodovacimi problémy

P¥iklad: Na nasledujici rozhodovaci problém se miiZeme divat jako na niZe
uvedeny jazyk L a naopak.

Vstup: Slovo w nad abecedou {a,b}.

Otazka: Obsahuje slovo w sudy po&et vyskyti symboll b ?

Jazyk L= {w € {a, b}* | slovo w obsahuje sudy pocet vyskytt symboli b }
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Vypocetni modely

MiiZeme uvazovat rlizné druhy stroji, které mohou provadét néjaky
algoritmus.
Tyto rGzné druhy stroji se mohou ligit v mnoha ohledech:

@ jaké instrukce jsou schopny provadét
@ jaky druh dat jsou schopny uklddat do své paméti a jak je tato pamét
organizovana

Rdzné druhy takovychto strojdi se oznaluji jako riizné vypocetni modely.

V ptipadé velmi jednoduchych druhi stroji se béZné tyto stroje v teorii
formalnich jazyk( oznaluji jako automaty.

V tomto pfedmétu se sezndmime s nékolika druhy takovychto automat.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 32/674



Vypocetni modely

Pro rizné druhy vypoletnich modell miZeme zkoumat naptiklad:

@ jaké algoritmické problémy jsou schopny Fesit &i jaké jazyky jsou
schopny rozpozndvat.

@ jak efektivn& jsou schopny realizovat riizné algoritmy

@ jakym zplisobem miiZe urdity druh stroje simulovat ¢innost jiného
druhu stroje

@ jak pti takové simulaci narlista pocet instrukci provedenych danym
strojem
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Formalni jazyky
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Abeceda a slovo

Abeceda je libovolnd neprazdna konetnd mnozina symboli (znak).

Poznamka: Abeceda se &asto oznaluje feckym pismenem ¥ (velké sigma).

Definice

Slovo v dané abecedé je libovolna koneéna posloupnost symbolil z této
abecedy.

Priklad 1:
> = {A,B,C,D,E,F, G,H,I,J,K,L,M,N,0,P,Q,R,S,T,U,V, W, X,Y,Z}

Slova v abecedé ¥: AHOJ XYZZY COMPUTER
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Abeceda a slovo

P¥iklad 2:
Y, = {A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,Z,}
Slovo v abeced& ¥,: HELLO_WORLD

Priklad 3:

¥3=1{0,1,2,3,4,5,6,7,8,9}
Slova v abeced& X 3: 0, 31415926536, 65536

P¥iklad 4:
Slova v abeced& ¥, = {0,1}: 011010001, 111, 1010101010101010

Ptiklad 5:
Slova v abecedé Y5 = {a,b}: aababb, abbabbba, aaab
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Jazyk

MnoZina viech slov tvofenych symboly z abecedy ¥ se oznaduje ¥ .

Definice

(Formalni) jazyk L v abeced& ¥ je n&jaka libovolnd podmnoZina
mnoziny ¥*, tj. LS X"
P¥iklad 1: MnoZina {00,01001,1101} je jazyk v abeced& {0,1}.

P¥iklad 2: MnoZina v3ech syntakticky spravnych programii v jazyce C je
jazyk v abecedg tvofené mnoZinou viech ASCII znakd.

Ptiklad 3: MnoZina vSech textll obsahujicich sekvenci znakl ahoj je jazyk
v abeced& tvofené mnozinou vdech ASCII znaka.
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Nékteré zakladni pojmy

Délka slova je potet znaki ve slové.

Napfiklad délka slova abaab je 5.

Délku slova w oznaujeme |w/|.
Pokud tedy nap¥. w = abaab, pak |w| = 5.

Potet vyskytl znaku a ve slov& w oznalujeme |w|,.

P¥iklad: Pokud w = cabcbba, pak |w| =7, |w|, =2, |w|, =3, |w|. =2,
|wlq = 0.

Prazdné slovo je slovo délky 0, tj. slovo neobsahujici Zddné znaky.

Prazdné slovo se oznaluje Yeckym pismenem ¢ (epsilon).

lel =0
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/¥etézeni slov

Se slovy je moZné provadé&t operaci zfetézeni:

Naptiklad zfetézenim slov cabc a bba vznikne slovo cabcbba.

Operace zfetézeni se oznaluje symbolem - (podobné& jako ndsobenf). Tento
symbol je mozné vypoustét.

Pokud u,v € £, pak ztetézeni slov u a v tedy zapisujeme bud jako u - v
nebo jen jako wuv.

Priklad: Pokud u = cabc a v = bba, pak

u - v = cabcbba
Poznamka: Z formalniho hlediska je zfetézeni slov nad abecedou ¥ funkci

typu
Y'xy ot
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/¥etézeni slov

Z¥etézeni je asociativni, tj. pro libovolna tfi slova u, v a w plati

(u-v)-w=u-(v-w)

Diky tomu miiZeme pfi zapisu vice zfetézeni vypoustét zavorky a psat
nap¥iklad wy + ws - wa - wy - ws misto (wy - (wo - w3)) - (wy - ws).

Slovo ¢ je pro operaci zfetézeni neutrdlnim prvkem, pro libovolné slovo w
tedy plati:
EW=WwW-e=Ww

Poznamka: Je zjevné, Ze pokud dana abeceda obsahuje alespoi dva rizné
symboly, tak operace zfetézeni neni komutativni, nap¥.

a*b#b-a

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 40 /674



Mocnina slova

. , * . , oy . k
Pro libovolné slovo w € ¥~ a libovolné k € N muZeme definovat slovo w
jako slovo, které vznikne zfetézenim k kopii slova w.

Ptiklad: Pro w = abb je w” = abbabbabbabb.

oo (. 5.3 4 .
Pt¥iklad: Zapis a” b a” oznaluje slovo aaaaabbbaaaa.

Ponékud formalné&jsi induktivni definice vypada takto:

0 k+1 k
w =g, w =w -w prok€N
To znamen3d 0
w = €
1
who= w
2
w” o= wew
3
woo= wew-ew
4
W= wewewew
5
W= WewWewW W W
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Zrcadlovy obraz slova

Zrcadlovy obraz slova w je slovo w zapsané , pozpdtku".

Zrcadlovy obraz slova w znaéime wh
Priklad: w =abbab  w'* = babba
Pokud tedy w = a1a5+-+a,, (kde a; € ¥), pak wh = apan—1°++ay.

oy oy : R . o C .
Formaln& mazeme definovat w™ pomoci nasledujici induktivng definované
* * .
funkce rev : ¥ — ¥ jako hodnotu rev(w).
Funkce rev je definovana ndsledovné:
o rev(e) =¢

° pranZaWEZ*jerev(a°W)=rev(w)~a

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 42 /674



Prefix slova

Slovo x je prefixem slova y, jestliZze existuje slovo v takové, Ze y = xv.

y

o

X v

P¥iklad: Prefixy slova abaab jsou ¢, a, ab, aba, abaa, abaab.
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Sufix slova

Slovo x je sufixem slova y, jestliZe existuje slovo u takové, Ze y = ux.

T2

u X

P¥iklad: Sufixy slova abaab jsou ¢, b, ab, aab, baab, abaab.
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Podslovo

Slovo x je podslovem slova y, jestliZze existuji slova u a v takova, Ze
Yy = uxv.

y

O

u X "4

Ptiklad: Podslova slova abaab jsou ¢, a, b, ab, ba, aa, aba, baa, aab,
abaa, baab, abaab.
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Podsekvence

Definice

Slovo x je podsekvenci slova y, jestliZe existuje &islo n
aslova ug, us,...,u, a vy, vq,...,V, takova, Ze x = uyuy--u,
ay = VuiVvilsVvo~UpVy,.

P¥iklad: Slovo cbab je podsekvenci slova acabccabbaa.
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Usporadani na slovech

P¥edpoklddejme urtité (linedrni) uspofadani < symboll abecedy ¥,
tj. pokud ¥ = {ay,a,...,a,}, tak plati

ap<a<...<a,.
Pt¥iklad: ~ = {a,b,c}, pfitem? a < b < c.

.
I

N * o\ . 7 AT 7 s v 12
Na mnozing€ ¥ muizZeme definovat nasledujici (linedrni) uspo¥adan
x <y y pravé tehdy, kdyz:

<r:

e |x| < |y|, nebo
o |x| = |y| a existuji slova u,v,w € " a symboly a, b € ¥ takové, e
plati
X = uav y = ubw a<b

Neformalné miiZeme ¥ict v uspo¥adani <; ¥adime slova podle délky a
v rdmci stejné délky lexikograficky (podle abecedy).
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Usporadani na slovech

V8echna slova nad abecedou ¥ miZeme pomoci usporadani <; sefadit do
posloupnosti

wo, Wi, Wa, . ..
ve které se kazdé slovo w € ¥* vyskytuje prévé jednou a kde pro libovoln3
i,j € N plati, Ze w; < w; prdvé& tehdy, kdyZ i < j.

P¥iklad: Pro abecedu ¥ = {a,b,c} (kde a < b < c) bude za&itek
posloupnosti vypadat ndsledovné:

€,a,b,c,aa,ab,ac,ba,bb, bc, ca, cb, cc,aaa, aab, aac, aba, abb, abc, ...
Pokud budeme mluvit nap¥iklad o prvnich deseti slovech jazyka L € ¥*,

mame tim na mysli deset slov, kterd patfi do jazyka L a jsou mezi viemi
slovy z jazyka L nejmensi vzhledem k uspo¥addani <;.
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Operace na jazycich

Rekné&me, Ze jsme n&jaké jazyky jiz popsali. Z té&chto jazykd mizeme
vytvaret dalsi nové jazyky pomoci nejriiznéjSich operaci na jazycich.
Popis n&jakého komplikovaného jazyka miZeme tedy ,dekomponovat” tim
zplsobem, Ze tento jazyk vyjad¥ime jako vysledek aplikovani néjakych
operaci na né&jaké jednodussi jazyky.

P¥iklady dllezitych operaci na jazycich:
@ sjednoceni

@ prinik

o doplnék

o zfetézeni

@ iterace

°

Poznamka: P¥i operacich nad jazyky pfedpokladame, Ze jazyky, se
kterymi operaci provadime, pouZivaji tutéZ abecedu .
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MnoZinové operace na jazycich

Vzhledem k tomu, Ze jazyky jsou mnoZiny, miiZzeme s nimi provadét
mnoZinové operace:

Sjednoceni — L; U L, je jazyk tvoreny slovy, kterd pat¥ bud do jazyka L;
nebo do jazyka L, (nebo do obou).

Prinik — L; N L, je jazyk tvoteny slovy, kterd patfi sou€asné do jazyka
Lq i do jazyka L.

Doplnék — L; je jazyk tvoFeny t&mi slovy ze ¥, kterd nepat¥ do L;.
Rozdil — L; — L, je jazyk tvoteny slovy, kterad patfi do Ly, ale nepat#
do L2.

Poznamka: Predpokladime, 7e L1, L, € X" pro néjakou danou abecedu .
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MnoZinové operace na jazycich

Formalné:
Sjednoceni: LiUlL,={weX* |wel;VvwelL)}

Primik: Linl,={weX"|wel Awe L)
Doplngk: [; ={weX|w¢L;}
Rozdil: Ly —Ly={weX*|welirw¢l,}
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MnoZinové operace na jazycich

P¥iklad:
UvaZujme jazyky nad abecedou {a,b}.

@ L, — mnozina vSech slov obsahujicich podslovo baa

@ L, — mnozina v3ech slov se sudym poctem vyskytd symbolu b

Pak

@ [; ULy, — mnoZzina v3ech slov obsahujicich podslovo baa nebo sudy
pocet symbold b

e [y N L, — mnoZina v3ech slov obsahujicich podslovo baa a sudy
pocet symboli b

@ [; — mnoZina v8ech slov, kterd neobsahuji podslovo baa

e L, — L, — mnoZina vSech slov, ve kterych se vyskytuje podslovo baa,
ale kde polet symbold b neni sudy
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Ltetézeni jazyki

Definice

Zietézeni jazykt Lq a Ly, kde Ly, Ly € ¥, je jazyk L € £* takovy, Ze
pro kazdé w € ©* plati

weLlL < (Juel)(Fvel)(w=u-v)

Z¥etézeni jazykl( L; a L, oznalujeme zdpisem Lq « L,.

ELl €L2
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Ltetézeni jazyki

Ptiklad:

L
Ly

{abb, ba}
{a, ab, bbb}

Jazyk Ly - L, obsahuje slova:

abba abbab abbbbb baa baab babbb

Poznamka: VSimnéte si, Ze zfetézeni jazykl je asociativni, tj. pro
libovolné jazyky L, Ly, L3 plati:

Ly-(Ly-L3) = (Ly-Lo)- L3
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Mocnina jazyka

Zapis Lk, kde L € ¥* a k € N, oznaluje z¥etézeni tvaru
Lol «eo |
kde se jazyk L vyskytuje k-krat, tj.

L = {e}

r= 1L

> = L-L

2 o= L-L-L

[ = L-L-L-L
[> = L-L-L-L-L

Ptiklad: Pokud L = {aa, b}, pak jazyk I obsahuje nasledujici slova:

aaaaaa aaaab aabaa aabb baaaa baab bbaa bbb
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Mocnina jazyka

P¥iklad: Slovo w patfici do jazyka L’ vznikne zfetézenim péti slov
z jazyka L:

w
wm | ow [ ws | wy | ws |
/H/_/
eL eL eL eL eL

Gox ey Lo k 4 o ;o oy
Formalné miZeme mocninu jazyka L~ definovat pomoci nasledujici
induktivni definice:

°=1{c}, "'=1"-L prokeN
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lterace jazyka

Iterace jazyka L, oznalovana zapisem L™, je jazyk tvoreny slovy vzniklymi
zfetézenim libovolného potltu slov z jazyka L.

Tj., slovo w patii do L™ pravé tehdy, kdy? existuje posloupnost
Wi, Wo, ..., W, slov z jazyka L takova, Ze

W = WiWo**W,.

Pt¥iklad: L = {aa, b}

*
L = {E, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaab, aabaa, aabb, .. }

Poznamka: Pocet slov, kterd zfetézujeme, miize byt i 0, coZ znamen3, zZe
vzdy plati € € L™ (bez ohledu na to, zda € € L nebo ne).
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lterace jazyka

Formaln& miizeme definovat jazyk L™ jako sjednoceni véech mocnin
jazyka L. Tj. slovo w pat¥ do jazyka L* pravé tehdy, kdy? existuje k € N
takové, Ze w € Lk

Definice

Iterace jazyka L je jazyk

Poznamka:
Jo=rPututuu-
k=0
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lterace jazyka

s + oo ~ , L% vt s .
Zapis L™ oznaluje jazyk tvoreny pravé témi slovy, kterd vzniknou
zfetézenim né&jakého nenulového pottu slov z jazyka L.

L+=ULk

k=1

Plati tedy

.
tf=rtvitulu.-

21 ¥ o\ . + . Iy s [ °
Formaln& mizeme jazyk L definovat téZ nasledujicim zplsobem:
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Zrcadlovy obraz jazyka

Zrcadlovy obraz jazyka L je jazyk tvofeny zrcadlovymi obrazy vSech slov
z jazyka L.
Zrcadlovy obraz jazyka L znadime LR

LF={wf|wel}

Ptiklad: L = {ab, baaba, aaab}
LR = {ba, abaab, baaa}

Z. Sawa (VSB-TUO)
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Nékteré vlastnosti operaci na jazycich

Z. Sawa (VSB-TUO)

LU (LU L3)
LV L,
LU L,
LU

Lin (LN L3)
LinL,
LinL
LN

Ly-(Ly- L3)
Ly - {e}
{e}- L

L@
21

(Liu L) ULz
LryU Ly

Ly

Ly
(LinLy))N L3
L2 N Ll

Ly

Uvod do teoretické informatiky
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Z. Sawa (VSB-TUO)

Li-(Luls) = (Li-L)u(Ly-Ls)
(Liuly) Lz = (Ly-L3)V(Ly-Ls)
(L) = L3
2" = {e}
Li = {e}u(Ly-Ly)
Ly = {e} U (L]-Ly)
(Lul)" = L1 (L L)

R R R
(Ll ‘L2) = Ly L

Uvod do teoretické informatiky

Nékteré vlastnosti operaci na jazycich
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Regularni vyrazy
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Regularni vyrazy

Regularni vyrazy popisujici jazyky nad abecedou ¥:

® 3, ¢, a(kde a € X) jsou regularni vyrazy:

@ ... oznaluje prazdny jazyk
g ... oznaluje jazyk {e}
a ... oznaluje jazyk {a}

e Jestlize o, B jsou reguldrni vyrazy, pak i (o + ), (- B), (a*) jsou
reguldrni vyrazy:

(a+ ) ... oznatuje sjednoceni jazykii oznaenych o a 3
(- B) ... oznaluje zfetézeni jazyki oznalenych o a 3
* v . - .. v ,
(a”) ... oznaluje iteraci jazyka oznaZeného «

o Neexistuji Zadné dalsi regularni vyrazy nez ty definované podle
predchozich dvou bod.
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Regularni vyrazy

P¥iklad: abeceda ¥ = {0, 1}

@ Podle definice jsou 0 i 1 reguldrni vyrazy.
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Regularni vyrazy

P¥iklad: abeceda ¥ = {0, 1}
@ Podle definice jsou 0 i 1 reguldrni vyrazy.

e ProtoZe 0 i 1 jsou reguldrni vyrazy, je i (0 + 1) reguldrni vyraz.
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Regularni vyrazy

P¥iklad: abeceda ¥ = {0, 1}
@ Podle definice jsou 0 i 1 reguldrni vyrazy.
e ProtoZe 0 i 1 jsou reguldrni vyrazy, je i (0 + 1) reguldrni vyraz.

e Protoze 0 je reguldrni vyraz, je i (0*) reguldrni vyraz.
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Regularni vyrazy

P¥iklad: abeceda ¥ = {0, 1}
@ Podle definice jsou 0 i 1 reguldrni vyrazy.
e ProtoZe 0 i 1 jsou reguldrni vyrazy, je i (0 + 1) reguldrni vyraz.
@ ProtoZe 0 je regularni vyraz, je i (O*) regularni vyraz.
e Protoze (0+1) i (0%) jsou reguldrni vyrazy, je i ((0+1)-(0™))
reguldrni vyraz.
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Regularni vyrazy

P¥iklad: abeceda ¥ = {0, 1}
@ Podle definice jsou 0 i 1 reguldrni vyrazy.
e ProtoZe 0 i 1 jsou reguldrni vyrazy, je i (0 + 1) reguldrni vyraz.
@ ProtoZe 0 je regularni vyraz, je i (O*) regularni vyraz.

e Protoze (0+1) i (0%) jsou reguldrni vyrazy, je i ((0+1)-(0™))
reguldrni vyraz.

Poznamka: Jestlize o je reguldrni vyraz, zapisem L£(a) oznalujeme jazyk
definovany regularnim vyrazem o.

L(((0+1)-(0"))) = {o, 1, 00, 10, 000, 100, 0000, 1000, 00000, ... }
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Regularni vyrazy

Strukturu reguldrniho vyrazu si miZeme znazornit abstraktnim
syntaktickym stromem:

(((((0-1)") - 1)+ (1 1))+ (((0-0) +1)"))
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Regularni vyrazy

Formalni definice sémantiky reguldrnich vyrazi:

e 6 ¢ o
/\/\/\/\/\
Q
*
~—
1l
o
—
Q
~—
*
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Regularni vyrazy

Ve a

Aby byl zapis reguldrnich vyrazi ptrehledn&jsi a stru¢néjsi, pouzivame
ndsleduji pravidla:

@ Vynechdavame vné&jsi par zdvorek.

@ Vynechdavame zdvorky, které jsou zbyte¢né vzhledem k asociativité
operaci sjednoceni (+) a zfetézeni (-).

@ Vynechdavame zavorky, které jsou zbyte¢né vzhledem k priorit& operaci
(nejvy&&i prioritu ma iterace (*), men¥i zietézeni (+) a nejmensi
sjednoceni (+)).

@ Nepiseme tetku pro zfetézeni.

P¥iklad: Misto
(((((0-1)*)-1)- (1-1)) + (((0-0) +1)"))

obvykle piseme

(01)*111 + (00 + 1)*
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Regularni vyrazy

Ptiklady: Ve viech p¥ipadech ¥ = {a,b}.

a ... jazyk tvoreny jedinym slovem a
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Regularni vyrazy

Ptiklady: Ve viech p¥ipadech ¥ = {a,b}.
a ... jazyk tvoreny jedinym slovem a

ab ... jazyk tvofeny jedinym slovem ab
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Regularni vyrazy

Ptiklady: Ve viech p¥ipadech ¥ = {a,b}.

a ... jazyk tvoreny jedinym slovem a
ab ... jazyk tvofeny jedinym slovem ab
a+b ... jazyk tvofeny dvéma slovy a a b

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026



Regularni vyrazy

Ptiklady: Ve viech p¥ipadech ¥ = {a,b}.

a ... jazyk tvoreny jedinym slovem a
ab ... jazyk tvofeny jedinym slovem ab
a+b ... jazyk tvofeny dvéma slovy a a b
* . v s
a ... jazyk tvofeny slovy ¢, a, aa, aaa, ...

70 /674
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Regularni vyrazy

Ptiklady: Ve viech p¥ipadech ¥ = {a,b}.

a ... jazyk tvoreny jedinym slovem a
ab ... jazyk tvofeny jedinym slovem ab
a+b ... jazyk tvofeny dvéma slovy a a b
* . v s
a ... jazyk tvofeny slovy ¢, a, aa, aaa, ...

. jazyk tvorteny slovy ¢, ab, abab, ababab, ...

70 /674
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Regularni vyrazy

Ptiklady: Ve viech p¥ipadech ¥ = {a,b}.

a ... jazyk tvoreny jedinym slovem a
ab ... jazyk tvofeny jedinym slovem ab
a+b ... jazyk tvofeny dvéma slovy a a b
* . v s
a ... jazyk tvofeny slovy ¢, a, aa, aaa, ...
(ab)* ... jazyk tvoreny slovy €, ab, abab, ababab, ...
(a+b)* ... jazyk tvoreny véemi slovy nad abecedou {a,b}
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Ptiklady: Ve viech p¥ipadech ¥ = {a,b}.

a
ab

at+b

(ab)”
(a + b)*

(a+b)*aa

... jazyk tvoreny jedinym slovem a
. jazyk tvoteny jedinym slovem ab
. jazyk tvofeny dvéma slovy a a b
. jazyk tvoreny slovy ¢, a, aa, aaa, ...
. jazyk tvorteny slovy ¢, ab, abab, ababab, ...
. jazyk tvoreny v&emi slovy nad abecedou {a, b}

. jazyk tvoreny v8emi slovy kon&icimi aa

Regularni vyrazy
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Regularni vyrazy

Ptiklady: Ve viech p¥ipadech ¥ = {a,b}.

a ... jazyk tvoreny jedinym slovem a

ab ... jazyk tvofeny jedinym slovem ab

a+b ... jazyk tvofeny dvéma slovy a a b
a®t L. jazyk tvoreny slovy ¢, a, aa, aaa, ...

(ab)* ... jazyk tvoreny slovy €, ab, abab, ababab, ...

(a+1b)" ... jazyk tvoreny viemi slovy nad abecedou {a,b}
(a+ b)*aa ... jazyk tvoreny v8emi slovy kond&icimi aa
(ab)*bbb(ab)* ... jazyk tvofeny viemi slovy obsahujicimi podslovo bbb

predchazené i ndsledované libovolnym poctem slov ab
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Regularni vyrazy

(a+b)*aa+ (ab) bbb(ab)™ ... jazyk tvoteny viemi slovy, kterd bud
kon&i aa nebo obsahuji podslovo bbb pfedchizené
i nasledované libovolnym poétem slov ab

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 71/674



Regularni vyrazy

(a+b)*aa+ (ab) bbb(ab)™ ... jazyk tvoteny viemi slovy, kterd bud
kon&i aa nebo obsahuji podslovo bbb pfedchizené
i nasledované libovolnym poétem slov ab

(a+ b)*b(a + b)* ... jazyk tvofeny v8emi slovy obsahujicimi alespon
jeden symbol b
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Regularni vyrazy

(a+b)*aa+ (ab) bbb(ab)™ ... jazyk tvoteny viemi slovy, kterd bud
kon&i aa nebo obsahuji podslovo bbb pfedchizené
i nasledované libovolnym poétem slov ab

(a+ b)*b(a + b)* ... jazyk tvofeny v8emi slovy obsahujicimi alespon
jeden symbol b

a* (ba*ba*)’k ... jazyk tvofeny v&emi slovy obsahujicimi sudy pocet
symboll b
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Koneéné automaty
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
vyskytuje sudy polet symboli b.

Chceme navrhnout za¥izeni, které ptette slovo, a sdéli nam, zda toto slovo
pat¥i do jazyka L &i ne.

Z. Sawa (VSB-TUO)
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
vyskytuje sudy polet symboli b.

Chceme navrhnout za¥izeni, které ptette slovo, a sdéli nam, zda toto slovo
pat¥i do jazyka L &i ne.
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
vyskytuje sudy polet symboli b.

Chceme navrhnout za¥izeni, které ptette slovo, a sdéli nam, zda toto slovo
pat¥i do jazyka L &i ne.
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
vyskytuje sudy polet symboli b.

Chceme navrhnout za¥izeni, které ptette slovo, a sdéli nam, zda toto slovo
pat¥i do jazyka L &i ne.
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
vyskytuje sudy polet symboli b.

Chceme navrhnout za¥izeni, které ptette slovo, a sdéli nam, zda toto slovo
pat¥i do jazyka L &i ne.
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
vyskytuje sudy polet symboli b.

Chceme navrhnout za¥izeni, které ptette slovo, a sdéli nam, zda toto slovo
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
vyskytuje sudy polet symboli b.

Chceme navrhnout za¥izeni, které ptette slovo, a sdéli nam, zda toto slovo
pat¥i do jazyka L &i ne.
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
vyskytuje sudy polet symboli b.

Chceme navrhnout za¥izeni, které ptette slovo, a sdéli nam, zda toto slovo
pat¥i do jazyka L &i ne.
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
vyskytuje sudy polet symboli b.

Chceme navrhnout za¥izeni, které ptette slovo, a sdéli nam, zda toto slovo
pat¥i do jazyka L &i ne.
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Rozpoznavani jazyka

Ptiklad: UvaZujme slova nad abecedou {a,b}.

Chtéli bychom rozpozndvat jazyk L, ktery je tvofen slovy, ve kterych se
vyskytuje sudy polet symboli b.

Chceme navrhnout za¥izeni, které ptette slovo, a sdéli nam, zda toto slovo
pat¥i do jazyka L &i ne.
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Rozpoznavani jazyka

Prvni napad: Pocitat polet vyskyt symboli b.
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Rozpoznavani jazyka

Prvni napad: Pocitat polet vyskyt symboli b.
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Rozpoznavani jazyka
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Rozpoznavani jazyka

Chovani tohoto zafizeni miizeme popsat grafem:
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Rozpoznavani jazyka

Chovani tohoto zafizeni miiZzeme popsat grafem:
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Deterministicky koneény automat

Deterministicky kone¢ny automat se sklada ze stavii a prechodu.
Jeden ze stavil je oznalen jako pocatecni stav a nékteré ze stavi jsou
oznadeny jako pFijimajici.
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Deterministicky koneény automat

Formaln& je deterministicky kone¢ny automat (DKA) definovén jako
pétice

(@,%,4,q0,F)
kde:
@ @ je neprazdna kone&nd mnoZina stavii
@ Y je abeceda (neprazdnd kone&na mnoZina symboli)
@ 0: QXX — Q je prechodova funkce
@ go € @ je pocatecni stav

e F S @ je mnozina pFijimajicich stavi
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Deterministicky koneény automat

e Q=1{1,2,3,4,5} 5(1,a) =2  6(1,b) =1
o ¥ ={ab} 5(2,a)=4  §(2,p)=5
o1 5(3,a) =1  4(3,b) = 4

7 5(4,2)=1  6(4,p)=3
o F={145} 5(5,a)=4  §(5,b) =5
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Deterministicky koneény automat

Misto zapisu

5(1,a)=2  &6(1,b) =1
5(2,a) =4  6(2,b) =5
5(3,a)=1  &(3,b) =4
5(4,a)=1  6(4,p)=3
5(5,a) =4  §(5,b) =5
budeme radg&ji pouZivat stru¢négjsi tabulku nebo grafické znazornéni:
dla b
=12 1
214 5
3|11 4
—~4|1 3
<54 5
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Deterministicky koneény automat
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Deterministicky koneény automat
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Deterministicky koneény automat

125225
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Deterministicky koneény automat

1522552
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Deterministicky koneény automat

15225254253
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Deterministicky koneény automat

., e,
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Deterministicky koneény automat

Definice
Mg&jme DKA A = (Q, %, 4, qo, F).

Zapisem q = q', kde q, q' € Q awe X", budeme oznatovat to, e
pokud je automat ve stavu g, tak pfectenim slova w prejde do stavu q'.

Pozndmka: —< QX ¥ " x Q je ternarni relace.

Misto (q, w,q') €E— piéeme ¢ — q'.

Pro DKA plati, Ze pro libovolny stav g a libovolné slovo w existuje pravé
. v w
jeden stav q' takovy, Ze ¢ — q'.
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Deterministicky koneény automat

Relaci — mdZeme formaln& definovat nasledujici induktivni definici:
15 . ,
@ g — q pro libovolné g € Q
eProweXaaey:
wa

qg— q' pravé tehdy, kdyZ existuje q" € @ takové, Ze
w n 1 I
g—q ad(q,a)=gq
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Deterministicky koneény automat

151 6(1,a) =2
152 5(2,b) =5
125 ) =4
a b \ /
12 1 1S, aap)=3
214 5 \ /
3|1 4
—~411 3 1@13 )=4
«5|4 5 \ /
ababb
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Deterministicky koneény automat

Slovo w € X" je pfijimano deterministickym koneZnym automatem
A=(Q,X,d,qg, F) pravé tehdy, kdy? existuje stav q € F takovy, Ze

w
o — 4.

Definice

Jazyk rozpoznavany (pFijimany) danym deterministickym kone&nym
automatem A = (Q, X, 4, qo, F), oznatovany L(.A), je mnoZina vech slov
pfijimanych timto automatem, t;.

L(A)={wexz"|IgeF:q— q}
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Regularni jazyky

Jazyk L je regularni pravé tehdy, kdyz existuje néjaky deterministicky
koneny automat A, ktery jej p¥ijima, tj. DKA A takovy, 7e £(A) = L.
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Ptiklady deterministickych kone¢nych automati

Ptiklad: Automat rozpoznavajici jazyk L nad abecedou {a, b} tvoreny
slovy, kterd obsahuji alespoii jeden vyskyt symbolu b, tj.

L= {WE {a,b}* | |W|b > 1}

)
o
o’
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Ptiklady deterministickych kone¢nych automati

Ptiklad: Automat rozpoznavajici jazyk L nad abecedou {a, b} tvoreny
slovy, kterd obsahuji alespoii jeden vyskyt symbolu b, tj.

L= {WE {a,b}* | |W|b > 1}

o
o
N~
N N T

11. dnora 2026
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Ptiklady deterministickych kone¢nych automati

P¥iklad: Automat rozpozndvajici jazyk L nad abecedou {a,b} tvoreny
slovy, kterd obsahuji pravé t¥i vyskyty symbolu b, tj.

L={we{ab}"||w] =3}
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Ptiklady deterministickych kone¢nych automati

P¥iklad: Automat rozpozndvajici jazyk L nad abecedou {a,b} tvoreny
slovy, kterd obsahuji pravé t¥i vyskyty symbolu b, tj.

L={we{ab}"||w] =3}

P
o

a a a

a
b a b

D
=D
@0
&0

[V
o

N
A W DNREREO
AP OODND R
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Ptiklady deterministickych kone¢nych automati

Ptiklad: Automat rozpozndvajici jazyk nad abecedou {0, 1} tvoreny slovy,
kde kazdy vyskyt symbolu 0 je bezprostfedné nasledovan symbolem 1.

0,1

1
o
Q
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Ptiklady deterministickych kone¢nych automati
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kde kazdy vyskyt symbolu 0 je bezprostfedné nasledovan symbolem 1.

0,1

@
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Ptiklady deterministickych kone¢nych automati

P¥iklad: Automat rozpozndvajici jazyk nad abecedou {0, 1} tvoreny slovy,
kde kaZzda dvojice symboll 0 je bezprostfedné nasledovdna symbolem 1.
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Ptiklady deterministickych kone¢nych automati

P¥iklad: Automat rozpoznavajici jazyk
L={w e {ab}" | (lw], mod 5) € {0,1,3}}
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Ptiklady deterministickych kone¢nych automati

Ptiklad: Automat rozpozndvajici jazyk nad abecedou {a,b} tvoFeny slovy,
ktera za&inaji prefixem ababb.
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Ptiklady deterministickych kone¢nych automati

Ptiklad: Automat rozpoznavajici jazyk nad abecedou {a,b} tvoFeny slovy,
ktera kon&i sufixem ababb.
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Ptiklady deterministickych kone¢nych automati

Konstrukce tohoto automatu je zaloZena na nasledujici myslence:
e Predpokladejme, Ze chceme vyhleddvat slovo u délky n (tj. |u| = n).
Stavy automatu jsou oznaleny &isly 0,1,...,n.
@ Stav s &islem i odpovida situaci, kdy i je délka nejdelsiho slova, které
je zaroveii:
o prefixem hledaného vzorku u
e sufixem té &asti vstupniho slova, kterou automat zatim precetl

Napftiklad pro slovo ababb stavy automatu odpovidaji nasledujicim slovim:

@ Stav0 ... ¢ @ Stav3 ... aba
@ Stavl ... a @ Stav4 ... abab
@ Stav2 ... ab @ Stavb ... ababb
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Ptiklady deterministickych kone¢nych automati

Ptiklad: Automat rozpozndvajici jazyk nad abecedou {a,b} tvoFeny slovy,
kterd obsahuji podslovo ababb.
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Ekvivalence automatu

o

©
4o~
OBk

o

©
OBk
&

o

©
WIW
©D-

Vsechny t¥i automaty pfijimaji jazyk vSech slov se sudym poctem a.
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Ekvivalence automatu

O kone¢nych automatech A;, A, Fekneme, Ze jsou ekvivalentni, jestliZe

E(Al) = »C(Az)-

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 97 /674



Nedosazitelné stavy automatu

e Automat p¥ijima jazyk L = {w € {a,b}* | w obsahuje podslovo ab}
@ Pro zadnou posloupnost vstupnich symbolii se automat nedostane do
stavi 3, 4 nebo 5.

11. dnora 2026 98 /674
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Nedosazitelné stavy automatu

e Automat p¥ijima jazyk L = {w € {a,b}* | w obsahuje podslovo ab}
@ Pro zadnou posloupnost vstupnich symbolii se automat nedostane do
stavi 3, 4 nebo 5.

o Pokud tyto stavy odstranime, pofad automat pfijima stejny jazyk L.
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Nedosazitelné stavy automatu

Definice
Stav g kone&ného automatu A = (Q, X, 6, qo, F) je dosazitelny pokud
existuje néjaké slovo w takové, Ze qqg AN qg.

V opaéném ptipadé stav nazyvame nedosazitelny.

@ Do nedosaZitelnych stavii nevede v grafu automatu 23dnda orientovana
cesta z pocate¢niho stavu.

o NedosaZitelné stavy miiZzeme z automatu odstranit (spolu se viemi
prechody vedoucimi do nich a z nich). Jazyk pfijimany automatem se

nezméni.
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Automaty a operace na jazycich

P¥i konstrukci automati maze byt obtizné p¥imo zkonstruovat automat
pro dany jazyk L.

Pokud je mozné jazyk L popsat jako vysledek n&jakych jazykovych operaci
(pranik, sjednoceni, dopln&k, z¥et&zeni, iterace, ...) aplikovanych na
néjaké jednodussi jazyky Lq a Ly, miZe byt vyhodné postupovat
moduldrnim zpisobem:

@ Nejprve zkonstruovat automaty pro jazyky L a L,.

o Poté pouzit nékterou z obecnych konstrukci, které umoziuji k danym
automatlim rozpoznavajicim jazyky Ly a L, algoritmicky zkonstruovat
automat pro jazyk L, ktery je vysledkem aplikace dané jazykové
operace na jazyky Ly a Ls.
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Automat pro prinik jazyk

Mame nasledujici dva automaty:

P¥{jmou oba slovo abbaaba?
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Automat pro prinik jazyk

Mame nasledujici dva automaty:

b
a b a a
b a a,b b b

P¥{jmou oba slovo abbaaba?

w
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Automat pro prinik jazyk

Formaln& mizeme popsat tuto konstrukci nasledovné:

Pt¥edpokladame, Ze méame dva deterministické kone¢né automaty
A = (Q1,%,01,q01, F1) a Ay = (@2, %, 02, qoz, F2).
K nim setrojime DKA A = (Q, %, 6, qq, F) kde:

0 Q=G X

o 6((q1,92),a) = (01(q1,a),62(q2,a) ) pro v8echna q; € Q1, g2 € Qo,
aeE Y

@ go = (%17%2)
o F=F Xk

Neni tezké ov&fit, Ze pro libovolné slovo w € X* plati, e w € £(A) pravé
tehdy, kdy?z w € £(A;) a w € L(A>), tj.

L(A) = L(A1) N L(A2)
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Prinik regularnich jazyki

Véta
Jestlize jazyky Ly, L, € ¥ jsou reguldrni, pak také jazyk Ly N Ly je

reguldrni.

Dakaz: Predpoklddejme, Ze A; a A5 jsou deterministické kone&né
automaty takové, Ze

Ly = L£(A;) L, = L(A)

Popsanou konstrukci k nim miizeme sestrojit deterministicky konecny
automat A takovy, Ze

L(A)=L(A)NL(A) =LiNLy
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Sjednoceni regularnich jazyki

Konstukce automatu A, ktery p¥ijima sjednoceni jazyk( pfijimanych
automaty A; a Ay, tj. jazyk

L(A1) U L(A;)
je tém&¥ stejnd jako v p¥ipad& automatu p¥ijimajiciho £(A;) N L(A5).
Jediny rozdil je v definici mnoZiny pfijimajicich stavi:
o F=(FAxQ)uU(QxF)
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Doplnék regularniho jazyka

K DKA A = (Q,%,d, qo, F) sestrojime DKA A' = (Q,%,6, g0, Q — F).

Je otividné, e pro kazdé slovo w € ¥ plati, 7e w € £(A") pravé tehdy,
kdy? w ¢ L(A), tj.

£(A) = £(A)
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Je otividné, e pro kazdé slovo w € ¥ plati, 7e w € £(A") pravé tehdy,
kdy? w ¢ L(A), tj.

L(A) = L(A)

Jestlize jazyk L je reguldrni, pak také jeho dopln&k L je regularni.
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Nedeterministicky kone¢ny automat

@ Z jednoho stavu mize vézt libovolny (i nulovy) polet prechodi
oznacenych stejnym symbolem.
@ V automatu miZe byt vic nez jeden polatetni stav.
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Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 110 /674



Nedeterministicky kone¢ny automat

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 110 /674



Nedeterministicky kone¢ny automat

1—>3—4

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 110 /674
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Nedeterministicky kone¢ny automat

Nedeterministicky koneény automat pfijima dané slovo, jestlize existuje
alespori jeden jeho vypodet, ktery vede k pfijeti tohoto slova.
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Nedeterministicky kone¢ny automat

Nedeterministicky koneény automat pfijima dané slovo, jestlize existuje
alespori jeden jeho vypodet, ktery vede k pfijeti tohoto slova.
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Nedeterministicky kone¢ny automat

Ptiklad: Les reprezentujici vdechny mozné vypolty nad slovem bba.
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Nedeterministicky kone¢ny automat

Formaln& je nedeterministicky kone¢ny automat (NKA) definovén jako
pétice

(Q7 Z’ 67 I? F)
kde:

@ @ je kone¢nd mnoZina stavi

@ 2 je kone¢nd abeceda

0 0:QxX — P(Q) je prechodova funkce
o /| € @ je mnoZina pocatecnich stavii

e F S @ je mnozina pFijimajicich stavi
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P¥iklady nedeterministickych koneénych automati

Ptiklad: Automat rozpozndvajici jazyk nad abecedou {a,b} tvoFeny slovy,
kde kaZdému vyskytu symbolu b bezprostfedné pfedchazi dva symboly a.
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P¥iklady nedeterministickych koneénych automati

Ptiklad: Automaty rozpoznavajici jazyky nad abecedou {a,b}:

@ slova za&inajici prefixem ababb:
O——0—0——0—0—0

@ slova kond&ici sufixem ababb:
a,b

ababb

@ slova obsahujici podslovo ababb:
a,b a,b
8 —O0——0—=—0——0—
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P¥iklady nedeterministickych koneénych automati

Ptiklad: Automat rozpozndvajici jazyk nad abecedou {a,b} tvoFeny slovy,
kde paty symbol od konce je a.
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-{1,2} | {2,3} {2,3} —1[2 2
{2,3} | {1,2,3} {3} 3 4
—{1,2,3} | {1,2,3} {2,3} <33 2
{3} {1} % 415 6
{1} @ {2,3} 5|6 2
@ @ % 6|6 6
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Pfevod NKA na DKA

Poznamka: P¥i pfevodu nedeterministického automatu, ktery ma n stavi,
miZe mit vysledny deterministicky automat a¥ 2" stavil.

Napfiklad p¥i pfevodu automatu, ktery ma 20 stavli, mdze vzniknout
automat, ktery ma 2% = 1048576 stavil.

Casto ma sice vysledny automat podstatn& méné& nez 2" stavii, nicméng
tyto nejhorsi p¥ipady oblas nastavaji.
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Zobecnény nedeterministicky koneény automat
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Zobecnény nedeterministicky koneény automat
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Zobecnény nedeterministicky koneény automat

1—>3—>4
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Zobecnény nedeterministicky koneény automat

1532515
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Zobecnény nedeterministicky koneény automat

12532151 250
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Zobecnény nedeterministicky koneény automat

153215150255
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Zobecnény nedeterministicky koneény automat

1532151502 25555
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Zobecnény nedeterministicky koneény automat

Oproti nedeterministickému kone&nému automatu ma zobecnény
nedeterministicky kone¢ny automat tzv. s-pfechody, tj. pfechody
oznalené symbolem «¢.

P¥i provadéni e-pfechodu se méni pouze stav ¥idici jednotky, ale hlava na
pasce se neposouva.

Poznamka: Vypolty zobecnéného nedeterministického automatu mohou
byt libovoln& dlouhé a dokonce i nekone¢né (pokud graf obsahuje cyklus
tvoteny e-pfechody) bez ohledu na délku slova na pésce.
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Zobecnény nedeterministicky koneény automat

Formdln& je zobecnény nedeterministicky koneény automat (ZNKA)
definovan jako pétice
(Q,X,0,1,F)
kde:
Q je konetnd mnoZina stavi
> je kone¢nd abeceda
§:Q@x(Xu{e}) —» P(Q) je prechodova funkce

I € Q je mnoZina pocatecnich stavi

F ¢ Q je mnoZina p¥ijimajicich stavi

Poznamka: Na NKA miZeme nahlizet jako na specidlni p¥ipad ZNKA,
kde 5(g,e) = @ pro véechna q € Q.
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Pfevod na deterministicky kone¢ny automat

Zobecnény nedeterministicky koneény automat je mozné prevést na
deterministicky podobnou konstrukci jako nedeterministicky kone¢ny
automat, s tim rozdilem, Ze do mnoZin stavii musime vZdy p¥idat navic i
v8echny stavy dosazitelné z jiz pfidanych stavii néjakou sekvenci
e-prechodd.
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Prevod ZNKA na DKA

PY¥edtim, neZ formaln& popiseme prevod ZNKA na DKA, zaved me si
né&kolik pomocnych definic.

P¥edpoklddejme n&jaky dany ZNKA A = (Q,%,45,/,F).
Definujme funkci § : P(Q) x (Z U {e}) —» P(Q) tak, Ze pro K € Q a

ae X uU{e}je
§(K,a) =[] d(q,a)
qeK
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Prevod ZNKA na DKA

Pro K € Q ozna¢me CI.(K) mnoZinu viech stavii dosaZitelnych ze stavii
z mnoziny K né&jakou libovolnou sekvenci e-pfechodd.

To znamen3, e funkce Cl. : P(Q) — P(Q) je definovana tak, e pro
K < Q je CI.(K) nejmensi (vzledem k inkluzi) mnoZina spliujici
nasledujici dv& podminky:

e K c Cl.(K)

e Pro kazdé q € CI.(K) plati, Ze 6(q,¢) € Cl.(K).

Poznamka: V&imn&me si, %e pro libovolné K je CI.(Cl.(K)) = Cl.(K).

VEimn&me si také, e v p¥ipadé NKA (kde 6(qg,e) = @ pro kazdé g € Q) je
ClL.(K) = K.
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Prevod ZNKA na DKA

K danému ZNKA A = (Q, X, 6,1, F) nyni miZeme sestrojit DKA
A'=(Q,%,8, qp, F'), kde:

e Q' =PQ) (K € Q' tedy znamena, 7e K € Q)
05 :Q' x¥ - Q’je definova tak, Ze pro K € Q' a aEeY je

§'(K,a) = CI.(6(Cl.(K),a))

® qo = Cl(I)
o FF={KeQ|C.(K)NF + o}

Nenf tezké ovéfit, ze £(A) = £(A").
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Ltetézeni jazyki

Z = {a7b7 C7d}

Ay Ap:
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Ltetézeni jazyki

Z = {a7b7 C7d}

Ay Ap:
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Ltetézeni jazyki

Z = {a7b7 C7d}

Ay Ap:

Chybna konstrukce:

acdbac € L(A), ale acdbac ¢ L( A1) - L(Ay)
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Ltetézeni jazyki
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Ltetézeni jazyki
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lterace jazyka
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lterace jazyka
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Sjednoceni jazykd

Alternativni konstrukce pro sjednoceni jazyki:
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Sjednoceni jazykd

Alternativni konstrukce pro sjednoceni jazyki:
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Uzavrenost tfidy regularnich jazyki

MnoZina (v3ech) reguldrnich jazyki je uzaviend vi&i operacim:

sjednoceni
prinik
doplnék
zfetézeni

iterace

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Ptevod regularniho vyrazu na koneény automat

Tvrzeni

Kazdy jazyk, ktery je mozné vyjadfit regularnim vyrazem, je regularni
(tj. rozpoznavany n&jakym kone&nym automatem).

Dakaz: Stali ukazat, jak k danému regularnimu vyrazu « zkonstruovat
kone&ny automat, ktery rozpoznava jazyk L£(a).

Konstrukce je rekurzivni a postupuje podle struktury vyrazu a:
o Pokud je o elementdrni vyraz (tj. @, € nebo a):
e Sestrojime pfimo odpovidajici automat.

e Pokud je o tvaru (B +7), (8- v) nebo (ﬁ*):

o Rekurzivné sestrojime automaty rozpoznavajici jazyky £(3) a L(7).
o Z nich sestrojime automat rozpoznavajici jazyk £(a).
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Ptevod regularniho vyrazu na koneény automat

Automaty pro elementarni vyrazy:

-0 0O —0—0 —0——0

%] € a
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Ptevod regularniho vyrazu na koneény automat

Automaty pro elementarni vyrazy:

-0 0O —0—0 —0——0

Konstrukce pro sjednocent:
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Ptevod regularniho vyrazu na koneény automat

Automaty pro elementarni vyrazy:

-0 0O —0—0 —0——0

Konstrukce pro sjednocent:
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Ptevod regularniho vyrazu na koneény automat

Konstrukce pro zfetézeni:
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Ptevod regularniho vyrazu na koneény automat

Konstrukce pro zfetézeni:

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 136 /674



Ptevod regularniho vyrazu na koneény automat

Konstrukce pro zfetézeni:

Konstrukce pro iteraci:
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Ptevod regularniho vyrazu na koneény automat

Konstrukce pro zfetézeni:

Konstrukce pro iteraci:
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Ptevod regularniho vyrazu na koneény automat

P¥iklad: Konstrukce automatu pro vyraz ((a +b) - b)™:
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Ptevod regularniho vyrazu na koneény automat

P¥iklad: Konstrukce automatu pro vyraz ((a +b) - b)™:

—~0—2-0
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Ptevod regularniho vyrazu na koneény automat

P¥iklad: Konstrukce automatu pro vyraz ((a +b) - b)™:

—~0—2-0

Cbc
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Ptevod regularniho vyrazu na koneény automat

P¥iklad: Konstrukce automatu pro vyraz ((a +b) - b)™:
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Ptevod regularniho vyrazu na koneény automat

P¥iklad: Konstrukce automatu pro vyraz ((a +b) - b)™:
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Ptevod regularniho vyrazu na koneény automat

P¥iklad: Konstrukce automatu pro vyraz ((a +b) - b)™:
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Ptevod regularniho vyrazu na koneény automat

P¥iklad: Konstrukce automatu pro vyraz ((a +b) - b)™:
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Ptevod regularniho vyrazu na koneény automat

Pokud se vyraz « sklddd z n znakd (nepo&itame-li zavorky), ma vysledny
automat:

@ nejvySe 2n stavil,
@ nejvySe 4n prechodi.
Poznamka: Pfevodem ze zobecnéného nedeterministického automatu na

deterministicky vSak miZe polet stavi vzrlst exponencialnég, tj. vysledny
o\ oy A2N n o
automat pak mize mit az 2° = 4" stavi.
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Pfevod kone¢ného automatu na regularni vyraz

Tvrzeni

Kazdy regularni jazyk je mozné popsat néjakym reguldrnim vyrazem.

Dakaz: Stadi ukazat, jak pro libovolny koneény automat A zkonstruovat
reguldrni vyraz o takovy, e L(a) = L(A).

o A upravime tak, aby mé&l pravé jeden polatecni a pravé jeden
pFijimajici stav.

@ Budeme postupné odebirat jednotlivé stavy.

@ Ptechody budou oznaleny reguldrnimi vyrazy.

@ Zbude automat se dvéma stavy — pocatecnim a koncovym, a jednim
prechodem ohodnocenym vyslednym reguldrnim vyrazem.
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Pfevod kone¢ného automatu na regularni vyraz

Hlavni my$lenka: P¥i odstrafiovani stavu g nahradit pro kazdou dvojici
zbylych stavii g;, g cestu z g; do gy vedouci ptes q.

Po odstranéni stavu g:
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Pfevod kone¢ného automatu na regularni vyraz

Ptiklad:

@
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Pfevod kone¢ného automatu na regularni vyraz

Ptiklad:
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Pfevod kone¢ného automatu na regularni vyraz

Ptiklad:
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Pfevod kone¢ného automatu na regularni vyraz

Ptiklad:

a(b + aa)>l<

b+a(b+aa)*ab 5+(a+ba)(b+aa)*

bb + (a + ba)(b + aa)*ab
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Pfevod kone¢ného automatu na regularni vyraz

Ptiklad:
a(b + aa)*+
(b + a(b + aa)*ab)
(bb + (a +ba)(b + aa)*ab)”

(e + (a+ba)(b+aa)")
—() ©
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Ekvivalence kone¢nych automati a regularnich vyrazii

Jazyk je regularni pravé tehdy, kdyZ je ho moZzné popsat reguldrnim
vyrazem.
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Nereguldrni jazyky

Ne vSechny jazyky jsou reguldrni.

Existuji jazyky, pro které neexistuje Zadny koneény automat, ktery by je
rozpoznaval.

Ptiklady nereguldrnich jazyka:
o L;={a"b" | nz0}
o L, ={ww|we{ab}}
o [3= {WWR | w e {a, b}*}
Poznamka: Existence nereguldrnich jazyk( vyplyva jiz z faktu, Ze

automati pracujicich nad néjakou abecedou X je jen spofetné mnoho,
zatimco jazyk( nad abecedou X je nespoletné mnoho.
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Nereguldrni jazyk

Jak dokazat o n&jakém jazyce L, Ze neni regularni?

Jazyk neni reguldrni, jestlize neexistuje (tj. neni moZné sestrojit) kone¢ny
automat, ktery by ho rozpoznaval.

Jak ale dokazat, Ze néco neexistuje?
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Nereguldrni jazyky

Jak dokazat o n&jakém jazyce L, Ze neni regularni?

Jazyk neni reguldrni, jestlize neexistuje (tj. neni moZné sestrojit) kone¢ny
automat, ktery by ho rozpoznaval.

Jak ale dokazat, Ze néco neexistuje?

Odpovéd: Sporem.

Nap¥. pfedpokladat, Ze existuje n&jaky automat A rozpoznavajici jazyk L,
a ukdzat, Ze tento predpoklad vede k logickému sporu.
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Nereguldrni jazyky

UkaZeme, Ze jazyk L = {a"b" | n = 0} neni regularni.

Dikaz sporem.

P¥edpoklddejme, Ze existuje DKA A = (Q, %, 6, qo, F) takovy, Ze
L(A) = L.
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Nereguldrni jazyky

UkaZeme, Ze jazyk L = {a"b" | n = 0} neni regularni.

Dikaz sporem.

P¥edpoklddejme, Ze existuje DKA A = (Q, %, 6, qo, F) takovy, Ze
L(A) = L.

Reknéme, e | Q|

[
>
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Nereguldrni jazyky

UkaZeme, Ze jazyk L = {a"b" | n = 0} neni regularni.

Diikaz sporem.

P¥edpoklddejme, Ze existuje DKA A = (Q, %, 6, qo, F) takovy, Ze
L(A) = L.

Rekn&me, %e |Q| = n.

v . n,n
Vezmé&me sislovoz=a b .
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Nereguldrni jazyky

UkaZeme, Ze jazyk L = {a"b" | n = 0} neni regularni.

Dikaz sporem.

P¥edpoklddejme, Ze existuje DKA A = (Q, %, 6, qo, F) takovy, Ze
L(A) = L.

Rekn&me, %e |Q| = n.

Vezméme si slovo z = a"b".

ProtoZe z € L, musi existovat pfijimajici vypocet automatu A

a a a a a b b b b
Qo ——q1 —qQ — " —qp-1 — > qn — > qQp+1 T """ T Qop-1 — > Q2

kde qq je pocateéni stav a go, € F.
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Nereguldrni jazyk

Vezméme si nyni prvnich n + 1 stavli ve vypoltu

a a a a a b b b b
Qo ——q1 — Q" —qn-1 — > qp — > qp+1 — " T > Qop-1 — > Q2p

tj. posloupnost stavili qg, g1, - - -, Gn-
Je zfejmé, Ze v8echny stavy v této posloupnosti nemohou byt navzajem
riizné, protoze |Q| = n a tato posloupnost ma n + 1 prvkii.

To znamend, Ze existuje n&jaky stav g € Q, ktery se v této posloupnosti
vyskytuje (alespofi) dvakrat.
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Nereguldrni jazyky

Vezméme si nyni prvnich n + 1 stavli ve vypoltu

a a a a a b b b b
Qo ——q1 — Q" —qn-1 — > qp — > qp+1 — " T > Qop-1 — > Q2p

tj. posloupnost stavili qg, g1, - - -, Gn-

Je zfejmé, Ze v8echny stavy v této posloupnosti nemohou byt navzajem
riizné, protoze |Q| = n a tato posloupnost ma n + 1 prvkii.

To znamend, Ze existuje n&jaky stav g € Q, ktery se v této posloupnosti

vyskytuje (alespofi) dvakrat.

Jde o aplikaci tzv. holubnikového principu (pigeonhole principle).

Holubnikovy princip

Jestlize mam n + 1 holubii rozmisténych do n kleci, pak jsou alespori
v jedné kleci minimdlné€ dva holubi.
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Nereguldrni jazyk

Vezméme si nyni prvnich n + 1 stavli ve vypoltu

a a a a a b b b b
Qo ——q1 — Q" —qn-1 — > qp — > qp+1 — " T > Qop-1 — > Q2p

tj. posloupnost stavili qg, g1, - - -, Gn-

Je zfejmé, Ze v8echny stavy v této posloupnosti nemohou byt navzajem
riizné, protoze |Q| = n a tato posloupnost ma n + 1 prvkii.

To znamend, Ze existuje n&jaky stav g € Q, ktery se v této posloupnosti
vyskytuje (alespofi) dvakrat.

Tj. existuji indexy i,/ takové, Ze 0 <i<j=<na
qi = gj

~ Y Vv e o v n;n .
coZ znamend, Ze automat A pfi ¢teni symbolil a ve slové z = a b~ projde
cyklem.
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Nereguldrni jazyky

a
YN w

gi+1
\
Ji+2

a

q0 q1 q2 qi-1 4i = 9j, 9j+1  qj+2 q -1 An p dn+l ) Gn+2 p92n=1 92n

Dqi+3

n,n o v vt v v/ . 7~
Slovo z = a ' b" miZeme rozdélit na t¥i ¢asti u, v, w takové, Ze z = uvw:

i j—i n—j,n
u=a v=4 w=a"’b
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Nereguldrni jazyky

i j—i n—j,n .
Proslovau=a', v=2a"aw=a""’b" plati
u v w

do — q; a — q; qg; — Qon

Oznatme r délku slova v, tj. r = j — i (zjevn& r > 0, protoze i < j).

ProtoZe g; = g;, tak automat p¥ijme slovo uw = 2" "b", které nepat¥i do
jazyka L:

u w
o — Gqi — Q2

n+r

Rovn&? slovo uvww = a"" " b", které také nepat¥i do L, bude p¥ijato:

u v v w
Go —q;i —>q; —>q; — Q2
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Nereguldrni jazyky

Podobn& miZeme zdlvodnit, Ze kaZdé slovo tvaru uvvvv:--vww, tj. tvaru
u w pro n&jaké k = 0, bude automatem A pf¥ijato:

u v v v v v w
qo —qi——qi——4qi " —qi 4 =/ Q2

k o . _n—r+rk
Slovo tvaru uv"w vypada nasledovné: a" """ b".

Protoze r > 0, tak nasledujici rovnost plati jen pro k = 1:

n—r+rk=n

Pokud je tedy k # 1, tak slovo v w nepat¥i do jazyka L.

Automat A vsak kazdé takové slovo p¥ijme, coZ je spor s predpokladem,
ze L(A)={a"p"|n=0}.
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Bezkontextové gramatiky
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Bezkontextové gramatiky

Pt¥iklad: Chtéli bychom popsat jazyk aritmetickych vyrazl obsahujici
vyrazy jako napftiklad:

175 (9+15) (((10-4)*((1+34)+2))/(3+(-37)))

Pro jednoduchost ptedpokladejme:
@ Vyrazy jsou plné uzdvorkované.

o Jediné aritmetické operace jsou “+", “=", “¥" “/" a undrni

@ Hodnoty operandi jsou pFirozena &isla zapsand v desitkové soustavé
— z4pis &isla je neprdzdna posloupnost &islic.

Abeceda jazyka: ¥ ={0,1,2,3,4,5,6,7,8,9,+,—-,%,/,(,)}

Z. Sawa (VSB-TUO)
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Bezkontextové gramatiky

P¥iklad (pokr.): Popis pomoci induktivni definice:

o Cislice je libovolny ze znaki 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

o Cislo je neprizdna posloupnost &islic, tj.:
e Pokud je « ¢&islice, tak a je &islo.

o Pokud « je Cislice a 3 je &islo, tak i af je &islo.

@ Vyraz je libovolnd posloupnost symboll vytvofend podle nasledujicich

pravidel:
o Pokud je « ¢&islo, tak « je vyraz.
o Pokud « je vyraz, tak i (-a) je vyraz.
e Pokud a a f3 jsou vyrazy, tak i (a+3) je vyraz.
e Pokud « a (3 jsou vyrazy, tak i (a=) je vyraz.
e Pokud « a (8 jsou vyrazy, tak i (a*x() je vyraz.
e Pokud « a 8 jsou vyrazy, tak i (a/f) je vyraz.
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Bezkontextové gramatiky

P¥iklad (pokr.): Zpisob zapisu téZe informace jako v pfedchozi induktivni
definici pomoci bezkontextové gramatiky:

Zavedeme nasledujici pomocné symboly — témto symbolim se ¥ika
neterminaly:

e D — zastupuje libovolnou &islici

@ C — zastupuje libovolné &islo

e E — zastupuje libovolny vyraz

D -0 D—5 E-C
D—1 D—6 £E= 0B
D — 2 D—7 ¢=D £ - (E+E)
C - DC E - (E-E)
D -3 D -8
D -4 D -9 £ - (ExE)
E —- (E/E)
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Bezkontextové gramatiky

P¥iklad (pokr.): Strugn&jsi zplisob zapisu:

D—o|1]2]|3|4|5|6]|7]|8]9
C-D|DC
E—- C| GE)|(E+E) | (E-E) | (E*E) | (E/ED

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 154 /674



Bezkontextové gramatiky

P¥iklad: Jazyk, kde slova jsou (p¥ipadng i prazdné) posloupnosti vyrazi
popsanych v pfedchozim pfikladé, kde jednotlivé vyrazy jsou oddéleny
tarkami (abecedu je tfeba roziifit o symbol “,"):

S—>T|e

T—-E|E,T
D—-o|1]2]|3]|4|5|6|7]|8]9
C—-D|DC

E— C| (-E) | (E+E) | (E-E) | (ExE) | (E/E)

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 155 /674



Bezkontextové gramatiky

P¥iklad: P¥ikazy n&jakého programovaciho jazyka (fragment gramatiky):

S—>E; | T|if (E) S|if (E) S else S
| while (E) S |do S while (E); | for (F;F;F) S
| return F;

T—-{U}
U-e|SU
F—-c|E
E —
Poznamka:
e S — prikaz

o T — blok p¥ikazi

@ U — sekvence pfikazl

o E — vyraz

o F — vyraz, ktery je mozno vynechat
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Bezkontextové gramatiky

Formalné je bezkontextova gramatika definovana jako ¢tvefice

G=(Nx%,5S,P)

kde:

M je kone€nd mnoZina neterminalnich symboli (neterminali)

e Y je kone¢nd mnoZina terminalnich symbolii (terminali),
pficemz[INY =@

S € I je potate&ni neterminal

PcNx(MUX)* je konetnd mnozina piepisovacich pravidel
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Bezkontextové gramatiky

Pozndmky:

@ Pro oznadeni netermindlnich symbolli budeme pouZivat velkd pismena
A B, C, ...

@ Pro oznaceni termindlnich symboli budeme pouZivat mald pismena a,
b, ¢, ... nebo ¢&islice 0, 1, 2, ...

v /v v o * v 7 ,
@ Pro oznaleni ¥etézcii z (MU X)" budeme pouZivat mald pismena
fecké abecedy «, 5, 7, ...

e Misto zapisu (A, ) budeme pro pravidla pouZivat zapis
A-a

A — leva strana pravidla
« — prava strana pravidla

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 158 /674



Ptiklad: Gramatika G = (1, %, S, P), kde

e N={AB,C}

e ¥ ={a, b}

e S=A

@ P obsahuje pravidla
A — aBBb
A — AaA
B —¢
B — bCA
C - AB
C—a
C—-b

Bezkontextové gramatiky

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Bezkontextové gramatiky

Poznamka: Pokud mdme vice pravidel se stejnou levou stranou, jako tfeba
A - aq A - Qi A - a3
miZeme je strunéji zapsat jako

A-ar|al|as

Napf¥iklad pravidla dfive uvedené gramatiky miZeme zapsat jako

A — aBBb | AaA
B — ¢ | bCA
C—>AB|al|b
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Bezkontextové gramatiky

Gramatiky slouzi ke generovani slov.

P¥iklad: G = (MM, X, A, P), kde M = {A, B, C}, ¥ = {a, b} a P obsahuje
pravidla

A — aBBb | AaA

B — ¢ | bCA

C—-AB|a|b

Napf¥iklad slovo abbabb je mozné v gramatice G vygenerovat nasledujicim
zplsobem:
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Bezkontextové gramatiky

Na Yetézcich z (MU X)* definujeme relaci =< (MU X)* x (Mux)*
takovou, Ze
a = Oé’

pravé kdy? o = B1ABs a &' = 175> pro né&jaka b1, B, € (MU T)* a
A€, kde (A = ~) € P.
P¥iklad: Jestlize (B — bCA) € P, pak

aCBbA = aCbCAbA

Poznamka: Neformalné ¥eleno zapis a = o' znamen3, ¥e z je mozné
jednim krokem odvodit o', ato tak, Ze vyskyt néjakého netermindlu A v «
nahradime pravou stranou néjakého pravidla A — ~, kde se A vyskytuje
na levé strané.
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Na Yetézcich z (MU X)* definujeme relaci =< (MU X)* x (Mux)*
takovou, Ze
a = Oé’

pravé kdy? o = B1ABs a &' = 175> pro né&jaka b1, B, € (MU T)* a
A€, kde (A = ~) € P.
P¥iklad: Jestlize (B — bCA) € P, pak

aCBbA = aCbCAbA

Poznamka: Neformalné ¥eleno zapis a = o' znamen3, ¥e z je mozné
jednim krokem odvodit o', ato tak, Ze vyskyt néjakého netermindlu A v «
nahradime pravou stranou néjakého pravidla A — ~, kde se A vyskytuje
na levé strané.

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 162 /674



Bezkontextové gramatiky

Derivace délky n je posloupnost 8y, 31, B2, ***, Bn, kde ;€ (MU Z)* a
kde 5;_1 = [; pro v8echna 1 < i < n, coZ miZeme stru¢négji zapsat

Bo=P1=Ba=...= Bh1= b
SkuteZnost, e pro dané a, ' € (MU X)* a n € N existuje n&jaka derivace
Bo=pP1=0r=...= Lr-1= B kde a = [ a Oé’ = [3,, zapisujeme
a= «
Skutenost, e a =" o pro n&jaké n = 0, zapisujeme
* !

a = «

L, * . . , . ’ s v
Poznamka: Relace =" je reflexivnim a tranzitivnim uzavérem relace =
(tj. nejmensi reflexivni a tranzitivni relaci obsahujici relaci =).
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Bezkontextové gramatiky

Vétné formy jsou ty a € (MU X)*, pro které plati
s="a

kde S je pocateéni neterminal.
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Bezkontextové gramatiky

Jazyk £(G) generovany gramatikou G = (I, %, S, P) je mno%ina viech
slov v abecedé ¥, kterd |ze odvodit néjakou derivaci z pocate¢niho
netermindlu S pomoci pravidel z P, tj.

L£G)={wexr"|s="w}

Definice

Jazyk L je bezkontextovy, jestlize existuje bezkontextovd gramatika G
takovd, %e L = L(G).
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Derivaéni strom

A — aBBb | AaA
B — = | bCA
C—AB|alb
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Derivaéni strom

A — aBBb | AaA
B — = | bCA
C—AB|alb
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Derivaéni strom

A

A — aBBb | AaA
B — = | bCA
C—AB|alb

>

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 166 /674



A
a/ﬁ \E\lz

A — aBBb | AaA
B — ¢ | bCA
C—AB|lalb

A= aBBb

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 166 /674



//A\\
a B B b

A — aBBb | AaA
B — = | bCA
C—AB|alb

A = aBBb
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//A\\
a B B b

A — aBBb | AaA
B — ¢ | bCA
C—AB|alb

A= aBBb
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Derivaéni strom

A = aBBb | AaA g/g/_\é

B — ¢ | bCA
C—AB|alb

A = aBBb = abCABb
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Derivaéni strom

A — aBBb | AaA b/C/ \A

B — ¢ | bCA
C—AB|al|b

A = aBBb = abCABb
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Derivaéni strom

A — aBBb | AaA b/C/ \A

B — ¢ | bCA
C—AB|al|b

A = aBBb = abCABb
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Derivaéni strom

A
A - aBBb | AaA b/c/ \A
ALY N

A = aBBb = abCABb = abCaBBbBb
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Derivaéni strom

A
A — aBBb | AaA b/C/ \A
SRS VAN

a B B b

A = aBBb = abCABb = abCaBBbBb
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Derivaéni strom

a B
A > aBBb | AaA b/C/ \
B — ¢ | bCA
CoAB|a|b VZANN

A = aBBb = abCABb = abCaBBbBb
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Derivaéni strom

a B
A — aBBb | AaA //7\

b'C A
B —c | bCA

C—AB|alb AN

A = aBBb = abCABb = abCaBBbBb = abCaBbBb

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Derivaéni strom

A
N
a B B b
A — aBBb | AaA b/C/ \A
B — ¢ | bCA
C—>EAB|a|b 3/19/\>b

\

3

A = aBBb = abCABb = abCaBBbBb = abCaBbBb
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Derivaéni strom

A
N
a B B b
A — aBBb | AaA b/C/ \A
B — ¢ | bCA -
g—»EAB|a|b 3/19/\>b

\

3

A = aBBb = abCABb = abCaBBbBb = abCaBbBb
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Derivaéni strom

//A\B\b
A — aBBb | AaA // \
EROTATAN / // N\,
\

3

A = aBBb = abCABb = abCaBBbBb = abCaBbBb = abbaBbBb
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Derivaéni strom

A
A—>aB|Bb|AaA b/C/ \A

B — ¢ | bCA

C—~ABlalb b/ a/B/\B\b

\

3

A = aBBb = abCABb = abCaBBbBb = abCaBbBb = abbaBbBb
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Derivaéni strom

A
A — aBBb | AaA b/C/ \A
ERpTANA YA/

b a B B b

\

3

A = aBBb = abCABb = abCaBBbBb = abCaBbBb = abbaBbBb
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Derivaéni strom

A
A — aBBb | AaA b/C/\A \§
I TATA AVZRN

b a B B b

\

3

A = aBBb = abCABb = abCaBBbBb = abCaBbBb = abbaBbBb =
abbaBbb

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 166 /674



Derivaéni strom

A
A—>aB|Bb|AaA b/C/\A \
B — ¢ | bCA

C—~ABlalb b/ a/B/\B\b

\

3

3

A = aBBb = abCABb = abCaBBbBb = abCaBbBb = abbaBbBb =
abbaBbb
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Derivaéni strom

A
A — aBBb | AaA b/C/\A \
OTATAN VRN

b a B B b

\

3

3

A = aBBb = abCABb = abCaBBbBb = abCaBbBb = abbaBbBb =
abbaBbb
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Derivaéni strom

A — aBBb | AaA b/C/ \ \

A €

AR TANA A/

b a B B b
[
3

3

A = aBBb = abCABb = abCaBBbBb = abCaBbBb = abbaBbBb =
abbaBbb = abbabb
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Derivaéni strom

A
A > aBBb | AaA b/C/\A \8
AR AVZRN

A = aBBb = abCABb = abCaBBbBb = abCaBbBb = abbaBbBb =
abbaBbb = abbabb

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 166 /674



Derivaéni strom

KaZdé derivaci odpovidd né&jaky derivaéni strom:

Vrcholy stromu jsou ohodnoceny termindly a netermindly.

Kofen stromu je ohodnocen pocateénim netermindlem.

Listy stromu jsou ohodnoceny termindly nebo symboly ¢.

Ostatni vrcholy stromu jsou ohodnoceny netermindly.

Pokud je vrchol ohodnocen netermindlem A, pak jeho potomci jsou

ohodnoceni symboly pravé strany néjakého prepisovaciho pravidla

A - .

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Bezkontextové gramatiky

Ptiklad: Gramatika generujici jazyk

L={a"p"| n=0}
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Bezkontextové gramatiky

Ptiklad: Gramatika generujici jazyk
L={a"p"| n=0}
Gramatika G = (M, %, S, P), kde N = {S}, ¥ = {a, b} a P obsahuje

S —ce|aSh
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Bezkontextové gramatiky

Ptiklad: Gramatika generujici jazyk
L={a"p"| n=0}
Gramatika G = (M, %, S, P), kde N = {S}, ¥ = {a, b} a P obsahuje

S —ce|aSh

S=¢

S=aSb= ab

S = aSb = aaSbb = aabb

S = aSb = 3aSbb = aaaSbbb = aaabbb

S = aSb = aaSbb = aaaSbbb = aaaaSbbbb = aaaabbbb
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Bezkontextové gramatiky

Ptiklad: Gramatika generujici jazyk L tvofeny vSemi palindromy nad
abecedou {a, b}, tj.

L={we{ab} |w=w"}

c R o , :
Poznamka: w oznaluje tzv. zrcadlovy obraz slova w, tj. slovo w
zapsané pozpatku.
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Bezkontextové gramatiky

Ptiklad: Gramatika generujici jazyk L tvofeny vSemi palindromy nad
abecedou {a, b}, tj.

L={we{ab} |w=w"}

c R o , :
Poznamka: w oznaluje tzv. zrcadlovy obraz slova w, tj. slovo w
zapsané pozpatku.
Reseni:

S—c|al|b]|aSal bSh
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Bezkontextové gramatiky

Ptiklad: Gramatika generujici jazyk L tvofeny vSemi palindromy nad
abecedou {a, b}, tj.

L={we{ab} |w=w"}

c R o , :
Poznamka: w oznaluje tzv. zrcadlovy obraz slova w, tj. slovo w
zapsané pozpatku.

Reseni-
S—c|al|b]|aSal bSh

S = aSa = abSbha = abaSaba = abaaaba

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 169 /674



Bezkontextové gramatiky

P¥iklad: Gramatika generujici jazyk L tvofeny vemi dob¥e
uzavorkovanymi sekvencemi symbold ‘(" a ‘)’.

Nap¥iklad (O O)(O) €L, ale)()) ¢ L.

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky 11. dnora 2026
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Bezkontextové gramatiky

P¥iklad: Gramatika generujici jazyk L tvofeny vemi dob¥e
uzavorkovanymi sekvencemi symbold ‘(" a ‘)’.

Nap¥iklad (O O)(O) €L, ale)()) ¢ L.

Regeni-
A—c| (A | AA

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026

170/ 674



Bezkontextové gramatiky

P¥iklad: Gramatika generujici jazyk L tvofeny vemi dob¥e
uzavorkovanymi sekvencemi symbold ‘(" a ‘)’.

Nap¥iklad (O O)(O) €L, ale)()) ¢ L.

Regeni-
A—c| (A | AA

A= AA= (AA= (A (A = (AA) (A) = ((AA A =
(OA)(A) = (O A A = (O0O)A) = (OO)(A) =
OO)O)
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Bezkontextové gramatiky

Ptiklad: Gramatika generujici jazyk L tvofeny vSemi dob¥e vytvofenymi
aritmetickymi vyrazy, kde operandy jsou vzdy tvaru ‘a’, a kde jako
operatory miZeme pouzivat symboly + a *.

Naptiklad (a+a) * a+ (a* a) € L.
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Bezkontextové gramatiky

Ptiklad: Gramatika generujici jazyk L tvofeny vSemi dob¥e vytvofenymi
aritmetickymi vyrazy, kde operandy jsou vzdy tvaru ‘a’, a kde jako
operatory miZeme pouzivat symboly + a *.

Naptiklad (a+a) * a+ (a* a) € L.

Resent:

E—al|E+E|ExE|(E)
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Bezkontextové gramatiky

Ptiklad: Gramatika generujici jazyk L tvofeny vSemi dob¥e vytvofenymi
aritmetickymi vyrazy, kde operandy jsou vzdy tvaru ‘a’, a kde jako
operatory miiZzeme pouZzivat symboly + a *.

Naptiklad (a+a) * a+ (a* a) € L.

Regeni:
E—a|lE+E|E*E](E)

EFmE+E=FE+E+E= (E)*E+E= (E+E)*E+E=
(a+E)*E+E = (a+a)*xE+E = (a+a)*a+E = (a+a)*a+(E)=
(a+a)*a+(ExE)= (a+a)*xa+(a*xE)=(a+a)*a+(a*a)
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Leva a prava derivace

E—a|E+E|E*E|(E)
Leva derivace je derivace, ve které v kazdém kroku nahrazujeme vZzdy
nejlevéjsi netermindl.

E=E+E=ExE+E=a*E+E=>axa+E=a%xa+a

Prava derivace je derivace, ve které v kazdém kroku nahrazujeme vidy
nejpravéjsi netermindl.

E=E+E=E+a=E*E+a=E*xat+a=axa+a

Derivace v8ak nemusi byt ani leva ani prava:

E=E+E=ExE+E=Exa+E=>E*ata=a%*xa+a
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Leva a prava derivace

o Jednomu derivaénimu stromu miZe odpovidat vice rliznych derivaci.

o Kazdému derivaénimu stromu odpovida pravé jedna leva a pravé
jedna prava derivace.
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Ekvivalence gramatik

Gramatiky G; a G> jsou ekvivalentni, jestlize generuji tentyZ jazyk,

tj. jestlize £(G1) = £(G»).

Poznamka: Problém ekvivalence bezkontextovych gramatik je
algoritmicky nerozhodnutelny. D34 se dokazat, Ze neni moZné vytvofit
algoritmus, ktery by pro libovolné dvé bezkontextové gramatiky rozhodl,
zda jsou ekvivalentnfi &i ne.

Dokonce je algoritmicky nerozhodnutelny i problém, zda gramatika
generuje jazyk PR
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Nejednoznaéné gramatiky

Gramatika G je nejednoznaina, jestlize existuje n&jaké slovo w € £(G),
kterému p¥islusi dva riizné derivani stromy, resp. dvé& riizné levé &i dvé
riizné pravé derivace.

P¥iklad:
E=E+E=>ExE+E=a%xE+E=a%a+E=ax%xa+a
E=ExE=E*E+E=axE+E=axa+E=a%xa+a

/\\ /\\
N PN

E x E a a E + E
| | | |
a a a a
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Nejednoznaéné gramatiky

Nékdy je mozZné nejednozna¢nou gramatiku nahradit gramatikou, kterd
generuje tentyZ jazyk, ale neni nejednoznaéna.

P¥iklad: Gramatiku
E—al|E+E|E*E|(E)

muzeme nahradit ekvivalentni gramatikou

E-T|T+E
T—F|FxT
F—al(E)

Poznamka: Pokud se nejednoznaénd gramatika Zadnou ekvivalentni

jednoznacnou gramatikou nahradit neda, ¥ikdme, Ze je podstatné
nejednoznacna.

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Bezkontextové jazyky

T¥ida bezkontextovych jazyki je uzavfena viidi:
o zfetézeni
@ sjednoceni

@ iteraci

T¥ida bezkontextovych jazyki vsak neni uzavfend vidi:
o dopliiku

@ priiniku
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Bezkontextové jazyky

Mdame dany gramatiky G; = (M1, %, 51, P1) a Go = (M, X, S5, Py),
pFicem? mizeme predpoklddat, 2e My NMy =@ a S ¢ My UT,.

e Gramatika G takova, 7e £(G) = L(G1) - L(G»):

G=(MNuMUu{S}, X, S, PLUPU{S = 55})

e Gramatika G takovd, 2e £(G) = L(G1) U L(G»):

G=(MuMyu{S}H ¥, S, PLUP,U{S = 5,5 = S,})

o Gramatika G takovd, %e £(G) = £(G;)™:

G=(Mu{S}L ¥, S PU{S—c¢eS— 55}
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Pfevod regularniho vyrazu na bezkontextovou gramatiku

P¥iklad: Konstrukce bezkontextové gramatiky k regularnimu vyrazu
((a+b)-b)*:
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Pfevod regularniho vyrazu na bezkontextovou gramatiku

P¥iklad: Konstrukce bezkontextové gramatiky k regularnimu vyrazu
((a+b)-b)*:

o e 51-’8
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Pfevod regularniho vyrazu na bezkontextovou gramatiku

P¥iklad: Konstrukce bezkontextové gramatiky k regularnimu vyrazu
((a+b)-b)*:

52—’b
51-’8
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Pfevod regularniho vyrazu na bezkontextovou gramatiku

P¥iklad: Konstrukce bezkontextové gramatiky k regularnimu vyrazu
((a+b)-b)*:

S$3-5 15
52—’b
51-’8
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Pfevod regularniho vyrazu na bezkontextovou gramatiku

P¥iklad: Konstrukce bezkontextové gramatiky k regularnimu vyrazu
((a+b)-b)*:

54—’5352
S$3-5 15
52—’b
51-’8
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Pfevod regularniho vyrazu na bezkontextovou gramatiku

P¥iklad: Konstrukce bezkontextové gramatiky k regularnimu vyrazu
((a+b)-b)*:

55—’€|5455
54—’5352
S$3-5 15
52—’b
51-’8
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Pfevod kone¢ného automatu na bezkontextovou gramatiku

Ptiklad:
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Pfevod kone¢ného automatu na bezkontextovou gramatiku

Ptiklad:

S—A|C
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Pfevod kone¢ného automatu na bezkontextovou gramatiku

Ptiklad:

S—A|C

A — aB | aC | bA
B — aD | bE

C — bD

D — bC | bE | A
E — bE
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Pfevod kone¢ného automatu na bezkontextovou gramatiku

Ptiklad:

S—A|C

A — aB | aC | bA
B — aD | bE

C — bD

D — bC | bE | A
E — bE

A—- ¢
E — ¢
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Pfevod kone¢ného automatu na bezkontextovou gramatiku

Ptiklad:

Alternativni konstrukce:
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Pfevod kone¢ného automatu na bezkontextovou gramatiku

P¥iklad:
Alternativni konstrukce:

S—A|E
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Pfevod kone¢ného automatu na bezkontextovou gramatiku

P¥iklad:
Alternativni konstrukce:
S—>A|E
A— Ab| D
B — Aa
C - Aa| Db

D — Ba| Ch
E — Bb| Db | Eb
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Pfevod kone¢ného automatu na bezkontextovou gramatiku

Ptiklad:

Alternativni konstrukce:

S—-A|E

A— Ab| D

B — Aa

C - Aa| Db

D — Ba| Cb

E — Bb| Db | Eb
A—-c¢e

C—-e

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 180 /674



Regularni gramatiky

Gramatika G = (M1, X, S, P) je prava regularni gramatika, jestlize
vdechna pravidla v P jsou nékterého z nasledujicich tvard (kde A, B €1,
aeY):

e A— B
e A— aB

e A—o ¢

Gramatika G = (1, X, S, P) je leva regularni gramatika, jestlize v&echna
pravidla v P jsou n&kterého z ndsledujicich tvari (where A, B €11, a € ¥):
e A—- B
e A—- Ba

e A— ¢
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Regularni gramatiky

Definice

Gramatika G je regularni, jestlize je prava reguldrni nebo leva regularni.

N4

Poznamka: Né&kdy se téZ uvadi ponékud obecngjsi definice pravé
(resp. levé) regularni gramatiky, kde jsou povolena pravidla nésledujicich
tvari:
e A— wB (resp. A— Bw)
e A—-w
kde A,BeM, wex".

Takova pravidla je moZné snadno ,rozloZit” na pravidla odpovidaji d¥ive
uvedené definici.
Ptiklad: Pravidlo A — abbB je mozno nahradit pravidly

A- aX1 Xl - bX2 X2 — bB

kde Xi, X5 jsou nové netermindly nepouZité nikde jinde v gramatice.
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Regularni gramatiky

Tvrzeni

Ke kazdému reguldrnimu jazyku L existuje leva regularni gramatika G
takova, Ye £(G) = L, a pravé reguldrni gramatika G' takova, ze £(G') = L.

Tvrzeni

Ke kazdé reguldrni gramatice G existuje kone&ny automat A takovy, Ze

L(A) = £(9).
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Zasobnikové automaty
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Zasobnikovy automat

P¥iklad: Vezméme si jazyk nad abecedou ¥ = {(,), [,1,<,>} tvoreny
»spravné uzavorkovanymi* sekvencemi, tj. sekvencemi, kde kazda leva
zavorka ma odpovidajici pravou a naopak kazda pravd ma odpovidajici

NN s

levou, p¥itemz se zdvorky ,nek¥izi" (jako tfeba ve slov& <[>]).

Tento jazyk je moZné popsat bezkontextovou gramatikou

A—c| (A) | [A] | <A> | AA

Typicky ptiklad slova, které pat¥i do tohoto jazyka:

<[1CO>1)>[]

Neni t&zké ukdzat, Ze tento jazyk neni reguldrni.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 185 /674



Zasobnikovy automat

Chteéli bychom navrhnout za¥izeni podobné koneénému automatu, které by
bylo schopno rozpoznavat slova z tohoto jazyka.

Jako vhodnd moZnost se nabizi vyuZit p¥i tomto rozpoznavani (neomezené
velky) zasobnik.

186 / 674
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.

[Fl<]

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 187 /674



Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.

[Fl<]
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.

=
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.
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Zasobnikovy automat

@ Slovo <[] () [<>])>[] patfi do jazyka.

@ Automat preletl celé slovo a skon&il s prdzdnym zdsobnikem, takze
slovo pf¥ijal.
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Zasobnikovy automat

@ Slovo <[] () [<>))>[] nepatti do jazyka.
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Zasobnikovy automat

@ Slovo <[] () [<>))>[] nepatti do jazyka.
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Zasobnikovy automat
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Zasobnikovy automat
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Zasobnikovy automat
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Zasobnikovy automat
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Zasobnikovy automat

@ Slovo <[] () [<>))>[] nepatti do jazyka.
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Zasobnikovy automat

@ Slovo <[] () [<>))>[] nepatti do jazyka.

@ Automat narazil na neodpovidajici zavorku, takZe slovo nepfijal.

Ne

[El<] ] ]
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Zasobnikovy automat

Priklad:
o Cht&li bychom rozpoznavat jazyk L = {a"b" | n = 1}

Opét se jednd o typicky pfiklad neregularniho jazyka.
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Zasobnikovy automat

Priklad:
o Cht&li bychom rozpoznavat jazyk L = {a"b" | n = 1}

Opét se jednd o typicky pfiklad neregularniho jazyka.

Zasobnik miZeme pouZzivat jako &itac:
e Budeme do n&j uklddat symboly jednoho druhu (nazvéme ho nap¥. /).

@ Pocet téchto symboll / na zdsobniku bude reprezentovat hodnotu

&itace.
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Zasobnikovy automat

o Slovo aaaabbbb pat¥i do jazyka L = {a"b" | n = 1}

d1
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Zasobnikovy automat

o Slovo aaaabbbb pat¥i do jazyka L = {a"b" | n = 1}

d1
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Zasobnikovy automat

o Slovo aaaabbbb pat¥i do jazyka L = {a"b" | n = 1}
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Zasobnikovy automat

o Slovo aaaabbbb pat¥i do jazyka L = {a"b" | n = 1}
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Zasobnikovy automat
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Zasobnikovy automat
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Zasobnikovy automat
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Zasobnikovy automat

o Slovo aaaabbbb pat¥i do jazyka L = {a"b" | n = 1}
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Zasobnikovy automat

o Slovo aaaabbbb pat¥i do jazyka L = {a"b" | n = 1}
@ Automat preletl celé slovo a skoncil s prazdnym zdsobnikem, takze
slovo pfijal.
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Zasobnikovy automat

e Slovo aaaabbb nepat¥i do jazyka L = {a"b" | n = 1}

d1
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Zasobnikovy automat

e Slovo aaaabbb nepat¥i do jazyka L = {a"b" | n = 1}

d1
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Zasobnikovy automat

e Slovo aaaabbb nepat¥i do jazyka L = {a"b" | n = 1}

@ Automat preletl celé slovo, ale nevyprazdnil zdsobnik, takZe slovo
nepfijal

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 191 /674



Zasobnikovy automat

o Slovo aaaabbbbb nepat¥i do jazyka L = {a"b" | n = 1}

d1
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Zasobnikovy automat
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d1
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Zasobnikovy automat

o Slovo aaaabbbbb nepat¥i do jazyka L = {a"b" | n = 1}

@ Automat &te b, ma smazat symbol na zasobniku a tam Zadny nent,
takZe slovo nepfijal.

Ne
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Zasobnikovy automat
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Zasobnikovy automat
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Zasobnikovy automat

o Slovo aababbab nepat¥i do jazyka L = {a"b" | n = 1}

o Automat preletl a, ale jiz byl ve stavu, kdy maZe, takZe slovo nepfijal.
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Zasobnikovy automat

@ Zasobnikovy automat mize byt nedeterministicky a mize mit
e-prechody.
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Zasobnikovy automat

Zasobnikovy automat miZe byt nedeterministicky a miZe mit
e-prechody.

Ptiklad:

v - . * R
Uvazujme jazyk L = {w € {a,b} | w=w"}.
Prvni polovinu slova miZeme uloZit na zasobnik.

P¥i ¢teni druhé poloviny maZeme symboly ze zdsobniku, pokud jsou
stejné jako na vstupu.

Pokud bude zdsobnik prazdny po pteéteni celého slova, byla druha
polovina stejna jako prvni.

Misto, kde se nachazi ,,hranice" mezi prvni a druhou polovinou slova
miZe automat nedeterministicky uhodnout. Vypocty, pfi kterych bude
hadat chybng&, nepovedou k pFijeti slova.
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Zasobnikovy automat

o Slovo abbabababba pat do jazyka L = {w € {a, b}* | w = w"*}

d1
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Zasobnikovy automat

o Slovo abbabababba pat do jazyka L = {w € {a, b}* | w = w"*}
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Zasobnikovy automat

o Slovo abbabababba pat do jazyka L = {w € {a, b}* | w = w"*}

x[>[=]
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Zasobnikovy automat
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Zasobnikovy automat
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Zasobnikovy automat
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Zasobnikovy automat

Zasobnikovy automat (ZA) je uspofadang Zestice
M = (Qa Za r7 67 q0, XO)v kde
Q je konetnd neprazdnd mnoZina stavi

> je konecnd neprazdnd mnoZina zvana vstupni abeceda

[" je kone¢na neprazdnd mnoZina zvana zasobnikova abeceda
6: QX (Xu{e})xT = P(QxT") je (nedeterministickd)
pfechodova funkce

go € Q je polateéni stav
Xo € I je pocatedni zasobnikovy symbol
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Zasobnikovy automat

Priklad: L = {a"b" | n=1}
= (Q,Z, r757 q1, O)' kde

o Q=1{q1,q}
e ¥ ={a, b}
o ={0,I}

o (q1,a,0)={(q.1)} 6(qu.b,0) =

6(qu,a,1) = {(ql,//)} 6(qu, b, 1) = {(a2,¢)}
6(qg2,a,1) = 6(q2, b, 1) = {(q2,¢)}
6(g2,2,0) = 6(g2,b,0) = @

Poznamka: Casto se uvadi jen ty hodnoty p¥echodové funkce, které
p¥ifazuji dané trojici néco jiného neZ prazdnou mnoZzinu.
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Zasobnikovy automat

Pro zapis pfechodové funkce budeme téZ pouzivat zplsob zdpisu, kdy se
na pfechodovou funkci divime jako na sadu pravidel:

o KaZzdému q,q'e Q,aexu{e}, XelTaae ", kde
odpovida jedno pravidlo
gX SN q'oz.
P¥iklad: Pokud

6(gs, b, C) = {(qg3,ACC), (g5, BB), (q13,¢)}

miZeme to reprezentovat jako tfi pravidla:

b b b
g5 C — g3 ACC gsC — gsBB g5C — qi3
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Zasobnikovy automat

P¥iklad: D¥ive popsany zdsobnikovy automat rozpoznavajici jazyk
L={a"p" | n=1}:

M = (Q,Z, r767 a1, O)v kde

° Q={q,q}
o ¥ ={a, b}
o ={0,/}
o q10 > gl
a
g1l — qill
b
ql — @
b
Q! — g2
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Zasobnikovy automat

Piiklad: L = {w € {a,b}* | w = w™}
M = (Qaza raéa qlaX)v kde

o Q=1{q,a}

o ¥ ={a b}

o I'={X,A B}

° 5(qlvavx) = {(thX),(QQ,X)}
(5((]1,37/4) = {(q17AA)7 (q27A)}
o(qu,a,B) = {(q1,AB), (a2, B)}
(g, X) = {(q2,X)}
5(q17€7A) = {(QQ,A)}
5(q17€vB) = {(Q2,B)}
6(q27‘3>A) = {(q275)}
5(g,a,B) = @
5(q,a,X) =@

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky

(a1, b, X) = {(aq1, BX), (g2, X)}
(g1, b, A) = {(q1, BA), (g2, A)}
5(q17b B) = {(qlaBB) (q27 )}
6(q2,6,X) = {(q2,¢)}
3(qo,e,A) = @

(q,e,B) = @

5(q2,b A) =0

(a2, b, B) = {(g2,¢)}

5(Q2, b X) =0
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Zasobnikovy automat

Piiklad: L = {w € {a,b}* | w = w™}
M = (Qaza raéa qlaX)v kde

° Q={q, q}

o ¥ ={a b}

o ={X,A B}

o aX > qAX @ X — qBX X~ g
@A qAA @A — q1BA @A g
@B — AB @B —> BB @B — g
BX —> X a1 X = X @X — X
@A - g2A q1A = QA @A — g:A
@B —> B ChBi’CIzB @B — @B

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky

11. dnora 2026
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Vypocet zdsobnikového automatu

Vezmé&me si zasobnikovy automat M = (Q, X, T, 6, go, Xo).

Konfigurace automatu M:

o Konfigurace ZA je trojice

(q,w,a)
kdegeQ wexXaaerl™

o Potatetni kofiguraci je kofigurace (qg, w, Xp), kde w € £*.

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026



Vypocet zdsobnikového automatu

Kroky vykonané automatem M:
@ Binarni relace — na konfiguracich M reprezentuje mozné kroky
vypoctu, které mize ZA M provést.
To, e M miiZe pejit jednim krokem z konfigurace (g, w, ) do
konfigurace (q', w', @), zapisujeme

(q7 W,Oé) - (q’7 W’,Oé,).

@ Tato relace — je definovana nasledovné:
(q7 anxﬂ) - (q’a an/B) A (q,aa) € 5(q737X)
kde g,qd € Q ae (T ufe}), wex" Xel a,Berl”.
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Vypocet zdsobnikového automatu

Vypocty M:
o Na konfiguracich M definujeme bindrni relaci —* jako reflexivni
a tranzitivni uzavér relace —, tj.,

W. o _)* 'W,O['
(q,w,a) (q,w,

jestlize existuje posloupnost konfiguraci

(qO’ Wo,Oéo), (q17W17a1)a tee (qun?an)
takova, Ze
(q, w, a) = (g0, wo, o),
))= (qn7 Wn7an)v

(qH Wnal (ql+17 l+1?ai+1) pro kazdé i = 0717- -, N 1, t.j'

(qu WO>a0) - (qla leal) O (qm Wman)

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 203 /674



Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

a
@ X — qAX
@A -5 g1 AA
@B — q1AB
a
X — X
a
QA — qA
@B —— ¢B
&

X — g X
qlA - q2A
ChB - a2 p
le 6 Zz

X — q
a

QA — g2
b

@B — g

X — g BX
QA ¢ BA
7B — ¢ BB
aX = @X
a1A = @A
@B = @B

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky

11. dnora 2026
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Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

(g1, abbabababba, X) nX —’ nAX
q1A — q1AA
@B — qAB
aX —> X
@A > A
@B —— ¢B
nX — X
@A~ A
@B — ¢B
BX — q
BA—> @
@B = G2

X — g BX
QA g BA
0B — q1BB
aX = @X
q1A = @A
@B = @B

Vypocet zdsobnikového automatu

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky

11. dnora 2026
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Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

(g1, abbabababba, X) nX = qAX
— (qy, bbabababba, AX) g A -5 g AA
@B —— q1AB
aX —> X
@A > A
@B —— ¢B
nX — X
@A~ A
@B — ¢B
@X — g
BA - g
@B = G2

X — g BX
QA g BA
0B — q1BB
aX = @X
q1A = @A
@B = @B

Vypocet zdsobnikového automatu

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky

11. dnora 2026
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Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

(g1, abbabababba, X) nX = G AX
— (qy, bbabababba, AX) g A -5 g AA
— (qu, babababba, BAX) @B - g, AB

@ X —> X
@A > A
@B —— ¢B
nX — X
BA— A
@B — ¢B
@X — g
BA - g
@B = G2

QX — g BX
QA ¢ BA
7B — ¢ BB
aX = @X
a1A = @A
@B = @B

Vypocet zdsobnikového automatu

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

(g1, abbabababba, X) nX - nAX
— (g1, bbabababba, AX) G A = g AA
— (qi, babababba, BAX) @B - g, AB

—> (qy, abababba, BBAX) @ X = g X

@A - A
@B —— ¢B
nX — X
BA— A
@B — ¢B
BX — g
BA—> @
@B = G2

X — g BX
QA g BA
7B — ¢ BB
aX = @X
a1A = @A
@B = @B

Vypocet zdsobnikového automatu

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky

11. dnora 2026
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Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X,A B}

(g1, abbabababba, X) nX = qAX
— (qy, bbabababba, AX) G A -5 g AA
— (qu, babababba, BAX) @B - g, AB
—> (qy, abababba, BBAX) GX =5 X
— (g, bababba, ABBAX) A = gA

@B —— ¢:B
nX — X
BA— A
@B — ¢:B
BX — g
BA - g
BB —> o

X — g BX
QA ¢ BA
0B — q1BB
aX = @X
qA = @A
@B = @B

Vypocet zdsobnikového automatu

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

(g1, abbabababba, X)

— (g1, bbabababba, AX)

— (qy, babababba, BAX)
(g1, abababba, BBAX)

— (g, bababba, ABBAX)
(g1, ababba, BABBAX)

E—

—

a
@ X — qAX
@A -5 g1 AA
@B — q1AB
a
X — X
a
QA — qA
@B —— ¢B
&

X — g X
qlA - q2A
ChB - a2 p
le 6 Zz

X — q
a

@A — g2
b

@B — q

X — g BX
QA ¢ BA
7B — ¢ BB
aX = @X
qA = @A
@B = @B

Vypocet zdsobnikového automatu

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky

11. dnora 2026
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

(g1, abbabababba, X)

— (g1, bbabababba, AX)

— (qy, babababba, BAX)
(g1, abababba, BBAX)

— (g, bababba, ABBAX)
(
(

E—

—

G, ababba, BABBAX)
G», babba, BABBAX)

E—

a
@ X — qAX
@A > q1AA
@B — qAB
a
X — X
a
QA — qA
@B —— ¢B
&

X — g X
qlA - QZA
ChB - q2 p
le 6 Zz

X — q
a

QA — g2
b

@B — q

X — g BX
QA ¢ BA
7B — ¢ BB
aX = @X
a1A = @A
@B = @B

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

(g1, abbabababba, X)

— (g1, bbabababba, AX)

— (qy, babababba, BAX)
(g1, abababba, BBAX)
(g1, bababba, ABBAX)

— (qi, ababba, BABBAX)
(
(

E—

—_—

E—

Ga, babba, BABBAX)
G», abba, ABBAX)

—_—

a
@ X — qAX
@A > q1AA
@B — qAB
a
X — X
a
QA — qA
@B —— ¢B
&

X — g X
qlA - QZA
ChB - q2 p
le 6 Zz

X — q2
a

QA — q2
b

@B — q

X — g BX
qA - ¢ BA
7B — ¢ BB
aX = @X
q1A = @A
@B = @B

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X,A B}

(g1, abbabababba, X) aX — qAX
— (qy, bbabababba, AX) G A 5 g AA
— (qu, babababba, BAX) @B - g, AB
—> (qy, abababba, BBAX) GX =5 X
— (g, bababba, ABBAX) a
— (1, ababba, BABBAX) DA A
— (g, babba, BABBAX) @B —aB
— (q,, abba, ABBAX) @ X - @ X
— (qg,, bba, BBAX) G A — A

@B — ¢B
@X — g
BA - g
@B i’ a2

X — g BX
QA ¢ BA
7B — ¢ BB
aX = @X
q1A = @A
@B = @B

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X,A B}

(g1, abbabababba, X) aX — qAX
— (qy, bbabababba, AX) @A -5 g AA
— (qu, babababba, BAX) @B - g, AB
—> (qy, abababba, BBAX) GX =5 X
— (g, bababba, ABBAX) a
— (1, ababba, BABBAX) DA A
— (g, babba, BABBAX) @B —aB
— (q,, abba, ABBAX) @ X - @ X
— (qg,, bba, BBAX) G A — A
— (o, ba, BAX) @B — ¢:B

BX — g
BA - g
@B i’ a2

X — g BX
qA - g BA
7B — ¢ BB
aX = @X
q1A = @A
@B = @B

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X,A B}

(g1, abbabababba, X) aX — qAX
— (qy, bbabababba, AX) g A -5 g AA
— (qu, babababba, BAX) @B - g, AB
—> (qy, abababba, BBAX) GX =5 X
— (g, bababba, ABBAX) a
— (1, ababba, BABBAX) DA @A
— (g, babba, BABBAX) @B —aB
— (q,, abba, ABBAX) @ X - @ X
— (qg,, bba, BBAX) G A — A
— (o, ba, BAX) @B — ¢B
- (q27 a, AX) (I2X i’ g2

BA - g
@B i’ a2

X — g BX
QA ¢ BA
7B — ¢ BB
aX = @X
q1A = @A
@B = @B

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'
r={X,A B}

(g1, abbabababba, X) @X = @ AX aX Tb' q1BX
— (qu, bbabababba, AX) @A -5 qiAA @A — q1BA
— qu, babababba, BAX)) 1B - q1AB @B - ¢.BB
— (q,, abababba, BBAX 2, b,

— (g, bababba, ABBAX) nX X BX = @X
— (a1, ababba, BABBAX) A @24 A" @A
— (g, babba, BABBAX) @B —aB B — g8
— (q,, abba, ABBAX) aX - 92X
— (qg,, bba, BBAX) @A — A
— (o, ba, BAX) @B — ¢:B
- (q2a a, AX) @X = 92
— (g2, &, X) @A —> g
b
@B — q
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

(ql, abbabababba, X)
— (g1, bbabababba, AX)
(g1, babababba, BAX)
(ql, abababba, BBAX)
(g1, bababba, ABBAX)
(g1, ababba, BABBAX)
(qz, babba, BABBAX)
— (g, abba, ABBAX)
(g2, bba, BBAX)
(qz, ba, BAX)
(q2a a, AX)
(q27 g, X)
(q2a g, 5)

a
@ X — qAX
@A > q1AA
@B — qAB
a
X — X
a
QA — qA
@B —> ¢B
&

X — g X
qlA - QZA
ChB - a2 p
le 6 Zz

X — q
a

QA — g2
b

@B — q

X — g BX
QA ¢ BA
7B — ¢ BB
aX = @X
a1 A = @A
@B = @B

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Vypocet zdsobnikového automatu

V prtedchozi definici byla mnoZina konfiguraci definovana jako
Conf = Qx¥X*xTr*

a relace — byla podmnoZinou mnoZiny Conf X Conf.

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 205 /674



Vypocet zdsobnikového automatu

Alternativné bychom mohli definovat konfigurace tak, Ze by nezahrnovaly

vstupni slovo: .
Conf = QXT

Relaci — bychom pak definovali jako podmnoZinu mnoZiny
Conf x (£ U {e}) x Conf, pfitem? zapis

a I 1
go — qa

by oznaZoval, Ze pfetenim symbolu a (nebo nep¥ettenim niceho,
pokud a = €) miiZe prejit dany zasobnikovy automat z konfigurace (g, a)
do konfigurace (¢', '), tj.

gXB——qv8 = (d.7)€d(q,2,X)
kde g, € Q aexu{e}, XelapB,yerl™

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 206 /674



Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

@ X = qAX
@A > g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — gq»B
qlx - q2X
ChA =~ Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

X — qBX

QA —> g BA

@B q,BB
b

@ X — X
b

@A — qA
b

@B — q:B

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

X a
o @ X -5 g AX

@A > g AA
@B > q1AB
a
G X — X
a
q1A — @A
@B — B
X 5 g X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q

b
@B —

@ X — qBX

qA — g BA

@B qBB
b

@ X — @X
b

@A — qA
b

@B — q:B

Vypocet zdsobnikového automatu

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

a
@aX — qAX @ X 2, G AX

@A > g AA
@B > q1AB
a
G X — X
a
G1A — @A
@B — B
X 5 g X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q

b
@B — q

X — qBX

QA —> g BA

@B — qBB
b

@ X — @X
b

@A — gA
b

@B — q:B

Vypocet zdsobnikového automatu

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

BX — qAX

» aX = @ AX
— q,BAX

@A > g AA
@B > q1AB
a
G X — X
a
q1A — @A
@B — B
X 5 g X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q

b
@B — q

X — qBX

qA — g BA

@B qBB
b

@ X — @X
b

@A — qA
b

@B — q:B

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

BX — qAX

» aX — @ AX
— q,BAX

) @A~ g AA
— qlBBAX q1B i, q1AB
BX —> X
@A > A
@B — B
BX — @X
@A — A
@B — B
BX — @
RA > g
@B - G2

X — qBX

QA — g BA

@B q,BB
b

@ X — @X
b

@A — qA
b

@B — q:B

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

a

@ X — qAX
— g BAX

X = g AX
GA = G AA
— qlBBAX q.1B _2, q1AB
. G ABBAX X = X
BA > A
@B — B
BX — X
MA— A
@B — B
BX — @
BA > g
@B = G2

@ X = qBX

QA — g BA

@B qBB
b

@ X — X
b

@A — qA
b

@B — q:B
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

@ X — qAX
— q;BAX
— q;BBAX
— q;ABBAX
— qBABBAX

@ X = qAX
@A > g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — gq»B
qlx - q2X
ChA =~ Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

@X — qBX

qA—> g BA

@B — qBB
b

@ X — @X
b

@A — qA
b

@B — q:B
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

aX — qAX
— q;BAX
— q;BBAX
— q;ABBAX

— g BABBAX
-~ g,BABBAX

@ X = qAX
@A - g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — ¢q»B
qlx - q2X
ChA =~ Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

@ X — qBX

QA — g BA

@B — qBB
b

@ X — @X
b

@A — gA
b

@B — qB

11. dnora 2026 207 /674

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky



Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'

r={X, A B}

@ X — qAX
— g BAX

— ¢, BBAX
5 G ABBAX

— g BABBAX
-~ g,BABBAX

— g, ABBAX

@ X = qAX
@A > g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — ¢q»B
qlx - q2X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

@X — qBX

QA — g BA

@B — qBB
b

@ X — @X
b

@A — qA
b

@B — q:B

11. dnora 2026 207 /674
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'
r={X,A B}

®X = mAX @X o qAX X o quBX

) @Bax @A @AA @A qiBA
-, mBBAX @B @AB @B qiBB
_b) @ ABBAX BX —> X @ X - @X
— @BABBAX anA " @A @A - oA
— @BABBAX 08— 0,8 @B —> 0B
— g, ABBAX @X — @X
-, ¢,BBAX @A ~ RA

@B — q:B

BX — @

RA— g

B = G2
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'
r={X,A B}

®X = mAX aX o qAX  aX o quBX

) @Bax @A @AA @A qiBA
-, mBBAX @B @AB @B qiBB
_b) @ ABBAX BX —> X @ X - @X
— q.BABBAX @A goA @A A
. @BABBAX @B~ ¢;B @B —> 0,8
— q,ABBAX nX — @X
-, ¢,BBAX @A ~ RA
i) g, BAX qlB_E’q2B

@X — q2

RA > g

@B = G2
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'
r={X,A B}

axX - mAX X D @AX X o g BX
) @Bax @A @AA @A qiBA
-, mBBAX @B @AB @B qiBB
_b) @ ABBAX BX —> X @ X - @X
— @ BABBAX MA > A q1A - GA
— q,BABBAX @B —> @B aB = @B
. g, ABBAX @X —> X
-, ¢,BBAX @A — A
i) g, BAX qlB_i’q2B
b @X — q2
— @AX BA—> g
@B = G2
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'
r={X,A B}

®X = mAX aX o qAX  aX o quBX
) @Bax @A @AA @A qiBA
-, mBBAX @B @AB @B qiBB
_b) @ ABBAX BX —> X @ X - @X
— q.BABBAX BnA > gA @A~ oA
. @BABBAX @B~ ¢;B @B —> 0B
— q,ABBAX nX — @X
-, ¢,BBAX @A ~ RA
i) g, BAX qlB_E’q2B
b, G AX G X @

| @A — q

— @X @B = G2
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Vypocet zdsobnikového automatu

Ptiklad: M = (Qazvr767 q17X)' kde Q = {Q1aCI2}v Y = {3, b}'
r={X,A B}

nX —= @ AX aX 5 qAX  gX -5 gBX
— BAX a b
, T @A~ g AA aA— g BA
— @BBAX @B~ q1AB 0B > ¢,BB
b
= @ABBAX @ X 5 g X @X — X
b
— @BABBAX BA > A nA — A
- 9:BABBAX @B —> @B 7B — g8
£
— q,ABBAX X — X
a €
— 4. BBAX qlg B ng
— g, BAX q1 R 92
b AX @X — q2
N a
R q2X @A — q
—_ b
R 92 @B — q2
— Q2
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Zasobnikovy automat — pfijimani slov

PouZivaji se dvé rizné definice toho, kdy automat pfijima dané slovo:

o Jestlize zasobnikovy automat M p¥ijima prazdnym zasobnikem,
pfijme slovo w tehdy, jestliZze existuje vypolet automatu M nad
slovem w takovy, Ze automat preclte celé slovo w a po jeho precteni
ma prazdny zasobnik.

o Jestlize zasobnikovy automat M p¥ijimd pomoci pFijimajicich stavii,
pFijme slovo w tehdy, jestliZze existuje vypolet automatu M nad
slovem w takovy, Ze automat prelte celé slovo w a po jeho precteni
je Fidici jednotka automatu M v nékterém z pfijimajicich stavi
z mnoziny F.
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Zasobnikovy automat — pfijimani slov

e Slovo w € £* je p¥ijimano ZA M prazdnym zasobnikem pravé
tehdy, kdyz
*
(qO’W’XO) - (q7575)

pro néjaké g € Q.

Jazyk L£(M) ptijimany ZA M prazdnym zasobnikem je definovan jako
mnozina vSech slov pfijimanych ZA M prazdnym zasobnikem, tj.

‘C(M) = {W € Z* | (Hq € Q)((q07 W7X0) —" (q757€)) } :

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 209 /674



Zasobnikovy automat — pfijimani slov

Rozsifme definici ZA M o mnoZinu pfijimajicich stavi F (kde F € Q).

o Slovow e X* je prijimano ZA M prijimajicim stavem pravé tehdy,
kdyZ
*
(q07W7X0) B (q,E,O&)

pro néjaké g € F aa € .

Jazyk £(M) p¥ijimany ZA M pf¥ijimajicim stavem je definovan jako

LM)={wex"|(Ige F)(Fael")((qow, %) —" (g,6,a))}.
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Druhy zasobnikovych automati

V ptipadé nedeterministickych zdsobnikovych automati neni z hlediska
jazykl, jaké jsou schopny tyto automaty rozpoznavat, rozdil mezi
rozpoznavanim prazdnym zasobnikem a rozpoznavanim p¥ijimajicim
stavem.

Snadno sestrojime:

e K danému (nedeterministickému) zdsobnikovému automatu
rozpoznavajicimu néjaky jazyk L prazdnym zdsobnikem ekvivalentnfi
(nedeterministicky) zdsobnikovy automat rozpoznavajici jazyk L
pomoci pFijimajicich stavi.

e K danému (nedeterministickému) zdsobnikovému automatu
rozpoznavajicimu néjaky jazyk L pomoci p¥ijimajicich stavi
ekvivalentni (nedeterministicky) zdsobnikovy automat rozpoznavajici
jazyk L prazdnym zasobnikem.
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Deterministické zasobnikové automaty

Z3asobnikovy automat M = (Q,X,T, 4, qp, Xp) je deterministicky, jestlize:

e Prokazdé g€ Q, a€ (X U{c}) a X €T plati:
|6(q,2,X)| =1
@ Pro kazdé g € Q a X €T plati nejvySe jedna z nasledujicich dvou
moZnosti:
e Existuje pravidlo gX — qa pro n&jaké deQaacl”.

e Existuje pravidlo gX = qa pro néjaké a € ¥, de€Qaacerl”
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Deterministické zasobnikové automaty

Vsimnéme si, Zze deterministické zasobnikové automaty ptijimajici
prazdnym zasobnikem jsou schopny rozpozndvat jen bezprefixové jazyky,
tj. jazyky L, kde:

. . v / I 7 v .
o pokud w € L, pak neexistuje Zadné slovo w € L takové, Ze w je
, - I
vlastnim prefixem slova w'.

Poznamka: Misto jazyka L € ¥*, ktery miZe a nemusi byt bezprefixovy,
miZeme vzit bezprefixovy jazyk

L'=L-{-}

nad abecedou ¥ U {-}, kde —¢ ¥ je specialni ,zard?ka" oznalujici konec
slova.

Tj. misto zjistovani, zda w € L, kde w € £*, miizeme zjiétovat, zda
(w—)el
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Deterministické zasobnikové automaty

o Ke kazdému deterministickému zasobnikovému automatu
pfijimajicimu prazdnym zdsobnikem je moZné snadno sestrojit
ekvivalentni deterministicky zasobnikovy automat pfijimajici pomoci
p¥ijimajicich stavi.

o Ke kaZzdému deterministickému zasobnikovému automatu
pijimajicimu jazyk L (kde L € ¥™) pomoci p¥ijimajicich stavii je
moZné snadno sestrojit deterministicky zdsobnikovy automat p¥imajici
prazdnym zdsobnikem jazyk L - {—}, kde ¢ ¥.
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Ekvivalence bezkontextovych gramatik a zas. automati

Ke kaZdé bezkontextové gramatice G lze sestrojit nedeterministicky
zasobnikovy automat M pfijimajici prdzdnym zasobnikem takovy, Ze

L(M) = L(G).

Diikaz: Pro BG G = (1, X, S, P) vytvofime M = ({qo}, %, T, 6, qo, S), kde
e =MNMuX
e Pro kazdé pravidlo (X — «) € P z bezkontextové gramatiky G (kde

X eMaae(MUX)) pridime do prechodové funkce &
zasobnikového automatu M odpovidajici pravidlo

3
goX — qocx.
@ Pro kaZzdy symbol a € ¥ p¥iddme do pfechodové funkce ¢

zasobnikového automatu M pravidlo

a
Goda — Qo -
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Ekvivalence bezkontextovych gramatik a zas. automati

Ptiklad: UvaZujme bezkontextovou gramatiku G = (MM, X, S, P), kde
e N={S,E, T, F}
o Y ={a,+x* (), -}
@ Mnozina P obsahuje ndsledujici pravidla:

S—E-
E—T|E+T
T — F| TxF
Foal (E)
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Ekvivalence bezkontextovych gramatik a zas. automati

K dané gramatice G = (I, %, S, P) s pravidly

S — E

E—T|E+T
T — F| T*F
F—al(E)

sestrojime zasobnikovy automat M = ({qo}, Z,T, 4, g0, S), kde
°z={a’+7*7(’)’_|}
°r:{S7E?T7F7a7+7*7(7)7_|}

@ PYechodova funkce § obsahuje ndsledujici pravidla:

e e a (

GoS — qoE - GF — qoa Ga—q G(— q
5 e + )

GE — qoT GoF — qo(E) dot — G0  Go) — do
c * =

QE — qoE+T Go* —do G0 1— Qo
€

QT — qF

aT — qT+F
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Ekvivalence bezkontextovych gramatik a zas. automati

19)
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Ekvivalence bezkontextovych gramatik a zas. automati

EE]
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Ekvivalence bezkontextovych gramatik a zas. automati
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Ekvivalence bezkontextovych gramatik a zas. automati

EEITAE]

S =Ed =T+ = T*FH
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Ekvivalence bezkontextovych gramatik a zas. automati

EEEE]

S=EHd=TH = TxF4 = FxFH
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Ekvivalence bezkontextovych gramatik a zas. automati

KNENEEE

S=E4d=TH = TxF-4 = FxFH4 = (E)*F-
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Ekvivalence bezkontextovych gramatik a zas. automati

[ED [« ]FH]

S=E4d=TH = TxF-4 = FxFH4 = (E)*F-
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Ekvivalence bezkontextovych gramatik a zas. automati

el [T [« ]FH]

= T = T+F-H = FxFH = (E)*F- = (E+T)*F-
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Ekvivalence bezkontextovych gramatik a zas. automati

EESEAPEESTAE]

= FxF- = (E)*F— = (E+T)*F— = (T+T)*F
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Ekvivalence bezkontextovych gramatik a zas. automati

LT« ]FlH]

= (E)¥F- = (E+T)*F— = (T+T)*F- = (F+T)xF -
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Ekvivalence bezkontextovych gramatik a zas. automati

ol [T [« ]F]H]

= (E+T)*FH = (T+T)*FH = (F+T)*F-H = (a+T)*F-
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Ekvivalence bezkontextovych gramatik a zas. automati

EERIEITEE]

= (E+T)*FH = (T+T)*FH = (F+T)*F-H = (a+T)*F-
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Ekvivalence bezkontextovych gramatik a zas. automati

EdREEIVAE]

= (E+T)*FH = (T+T)*FH = (F+T)*F-H = (a+T)*F-
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Ekvivalence bezkontextovych gramatik a zas. automati

LFD ]

= (T+T)*FH = (F+T)*FH = (a+D)*F- = (a+F)*xF
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Ekvivalence bezkontextovych gramatik a zas. automati

2D [« ]FH]

= (F+T)*F- = (a+T)*F- = (a+F)*F- = (at+a)*F -

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026



Ekvivalence bezkontextovych gramatik a zas. automati

BIEIIEE]

= (F+T)*F- = (a+T)*F- = (a+F)*F- = (at+a)*F -

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026



Ekvivalence bezkontextovych gramatik a zas. automati

EEE]

= (F+T)*FH = (a+T)*xF- = (a+F)*F—- = (a+a)*xF
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Ekvivalence bezkontextovych gramatik a zas. automati

EE]

= (F+T)*FH = (a+T)*xF- = (a+F)*F—- = (a+a)*xF
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Ekvivalence bezkontextovych gramatik a zas. automati

KENE]

= (a+T)*F- = (a+F)*F = (a+a)*F - = (a+a)*(E) -
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Ekvivalence bezkontextovych gramatik a zas. automati

EHRIE]

= (a+T)*F- = (a+F)*F = (a+a)*F - = (a+a)*(E) -
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Ekvivalence bezkontextovych gramatik a zas. automati

EHEIEARIE]

= (ata)xF— = (ata)*(E) - = (a+a)*(E+T) -
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Ekvivalence bezkontextovych gramatik a zas. automati

EEIEAPIE]

= (a+a)*(§)—| = (a+a)*(£+T)—| = (a+a)*(I+T)—|
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Ekvivalence bezkontextovych gramatik a zas. automati

EAEIAEIEAPIE]

= (ata)*(E+T) - = (a+a)*(T+T) - = (at+a)*x(T*F+T)
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Ekvivalence bezkontextovych gramatik a zas. automati

EEEEERIE]

= (ata)*(T*F+T)- = (a+a)*(FxF+T) -
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Ekvivalence bezkontextovych gramatik a zas. automati

ol «[Fl+]T]> 4]

= (ata)*(FxF+T) - = (ata)*(axF+T) -
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Ekvivalence bezkontextovych gramatik a zas. automati

B EARIE]

= (ata)*(FxF+T) - = (ata)*(axF+T) -
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Ekvivalence bezkontextovych gramatik a zas. automati

IEAEIEARIE]

= (ata)*(FxF+T) - = (ata)*(axF+T) -
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Ekvivalence bezkontextovych gramatik a zas. automati

B EIEAPIE]

= (ata)*(axF+T) - = (a+ta)*(axa+T)
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Ekvivalence bezkontextovych gramatik a zas. automati

EIEARIE]

= (ata)*(axF+T) - = (a+ta)*(axa+T)
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Ekvivalence bezkontextovych gramatik a zas. automati

EdRIE]

= (ata)*(axF+T) - = (a+ta)*(axa+T)
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Ekvivalence bezkontextovych gramatik a zas. automati

IERIE]

= (ata)*(axa+T) - = (ata)*(axa+F) -
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Ekvivalence bezkontextovych gramatik a zas. automati

ERIE]

= (ata)*(axa+F) - = (a+a)*(axa+a) -

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026



Ekvivalence bezkontextovych gramatik a zas. automati

BIE]

= (ata)*(axa+F) - = (a+a)*(axa+a) -
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Ekvivalence bezkontextovych gramatik a zas. automati

El

= (ata)*(axa+F) - = (a+a)*(axa+a) -
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Ekvivalence bezkontextovych gramatik a zas. automati

= (ata)*(axa+F) - = (a+a)*(axa+a) -
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Ekvivalence bezkontextovych gramatik a zas. automati

Z predchoziho ptikladu je vidét, Ze zasobnikovy automat M bé&hem
vypoctu v zdsadé provadi levou derivaci v gramatice G.

Snadno se ukaZe, Ze:

o Kazdé levé derivaci v gramatice G odpovida néjaky vypocet
automatu M.

o KaZdému vypoltu automatu M odpovida né&jaka leva derivace
v gramatice G.

Poznamka: Vyse uvedeny postup odpovidd syntaktické analyze shora
dolii.
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Ekvivalence bezkontextovych gramatik a zas. automati

Alternativné lze p¥i syntaktické analyze postupovat téZ zdola nahoru.
Tomu odpovidd nésledujici konstrukce nedeterministického zdsobnikového
automatu M = (Q, %, T, 4, gy, Xp) k dané gramatice G = (MM, %, S, P),
kde:
e M=NUXu{r} kde¢ (MuUY)
(] Xo =+
@ @ obsahuje stavy odpovidajici véem sufixiim pravych stran pravidel
z P a déle specidlni stav (S) (kde S € I je po&ate¢ni netermindl
gramatiky G) a specialni stav g,cc.
Stav odpovidajici suffixu o (kde & € (MU £)*) budeme oznatovat
zapisem (a).
Specidlnim p¥ipadem je stav odpovidajici sufixu €. Tento stav budeme
oznadovat ().

°CI0=<)
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Ekvivalence bezkontextovych gramatik a zas. automati

@ Pro kaZzdy vstupni symbol a € X a kaZdy zasobnikovy symbol W €T
p¥iddme do § nasledujici pravidlo:

(YW = ()aw
@ Pro kazdé pravidlo X — Y;Y,:+-Y, z gramatiky G (kde X €1, n 20

aY;e€(NMUX)prol=ix< n) priddme do prechodové funkce &
automatu M nésledujici sadu pravidel:

€
(Yo = (%)
(Yn>yn—1 ? <Yn—1Yn)
€
(Yn—l Yn>Yn—2 ? <Yn—2 Yn—l Yn)

(YaYs... Vo) Yo — (V1 Y2 Y3-Y,)
a déle pro kazdé W € I pravidla
(Y1 Yor Vo) W — ()XW
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Ekvivalence bezkontextovych gramatik a zas. automati

o Pokud napfiklad bude gramatika G obsahovat pravidlo

B — CaADb

bude pfechodova funkce § automatu M obsahovat pravidla
()b i’ (b)
(b)D — (Db)
(Db)A — (ADb)
(ADb)a — (aADb)
(aADb) C = (CaADD)

a déle pro kazdé W € I pravidlo

(CaADBYW —— ()BW
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Ekvivalence bezkontextovych gramatik a zas. automati

@ Specidlné pro e-pravidla z gramatiky G budou p¥idana pravidla
vypadat ndsledovné: e-pravidlu

X — ¢
z gramatiky G, kde X € I1, budou odpovidat pravidla v § tvaru
W — (xw
kde W eT.

o Nakonec p¥iddme do § dv& specidlni pravidla (kde S € I je po&ateni
netermindl gramatiky G):

)

()s —(S) (S)F = Gace

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 223 /674



Ekvivalence bezkontextovych gramatik a zas. automati

P¥iklad: Vezméme si opét stejnou gramatiku G jako v pfedchozim pfikladé:

S—- E-

E—T|E+T
T - F| T*F
F—al (E)

K ni sestrojime zasobnikovy automat M = (Q, X, T, 6, go, Xo), kde
o Y ={a,+x* (), -}
o M={S E, T,F,a,+* (), -}
o Q=A{(), (), (EA), (T), (+T), (E+T), (F), (xF), {TxF),
(a), 00, (ED), ((ED), (S): Gace }
® qo = ()
o Xp=F
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Ekvivalence bezkontextovych gramatik a zas. automati

Pro kaZzdé X € I pfiddme do § nasledujici pravidla:

()x % ()ax
(X = ()+x
(X =5 ()X
()X — ()¢

(X = (HX
OX ()

()s —(S)
(S)F = Gace

Z. Sawa

(VSB-TUO)

(04— ()
(H)E = (EH)
()T —=(T)
(T)+ — (+T)
(+T)E = (E+T)
()F = (F)
(F)x — (xF)
(xF)T — (T*F)
(Ja— (a)
(H—=0)
0)E—(B))
(B))( = ((B))

Uvod do teoretické informatiky

(E-H)X = ()sXx
(T)X = ()EX

(E+T)X = ()EX
(F)X — ()TX

(T*F)X — ()TX
(a)X — ()FX

((E))X = ()FX



Ekvivalence bezkontextovych gramatik a zas. automati

=

(a+a)*(axa+a) -
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Ekvivalence bezkontextovych gramatik a zas. automati

=

(a+a)*(axa+a) -
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Ekvivalence bezkontextovych gramatik a zas. automati

Fla]

(a+a)*(axa+a) -
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Ekvivalence bezkontextovych gramatik a zas. automati

=

(a+a)*(axa+a) -
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Ekvivalence bezkontextovych gramatik a zas. automati

HeE

(F+a)*(axa+a) 4 = (a+a)*(a*xat+a) -
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Ekvivalence bezkontextovych gramatik a zas. automati

=

(F+a)*(axa+a) 4 = (a+a)*(a*xat+a) -
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Ekvivalence bezkontextovych gramatik a zas. automati

HLdT]

(T+a)*(axat+a) 1 = (F+a)*(axa+ta) 1 = (at+a)*(axata) -
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Ekvivalence bezkontextovych gramatik a zas. automati

=

(T+a)*(axat+a) 1 = (F+a)*(axa+ta) 1 = (at+a)*(axata) -
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Ekvivalence bezkontextovych gramatik a zas. automati

lFlE]

(E+a)*(axa+a) 1 = (T+a)*(a*a+a) 1 = (F+a)*(axata) 4 =
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Ekvivalence bezkontextovych gramatik a zas. automati

HeEE

(E+a)*(axa+a) 1 = (T+a)*(a*a+a) 1 = (F+a)*(axata) 4 =
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Ekvivalence bezkontextovych gramatik a zas. automati

[HISEEN

(E+a)*(axa+a) 1 = (T+a)*(a*a+a) 1 = (F+a)*(axata) 4 =
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Ekvivalence bezkontextovych gramatik a zas. automati

HeEE

(E+a)*(axa+a) 1 = (T+a)*(a*a+a) 1 = (F+a)*(axata) 4 =
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Ekvivalence bezkontextovych gramatik a zas. automati

HNEEE

(E+F)*(axat+a) 1 = (E+a)*(a*xa+a) 1 = (T+a)*(axata) - =
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Ekvivalence bezkontextovych gramatik a zas. automati

HeEE

(E+F)*(axat+a) 1 = (E+a)*(a*xa+a) 1 = (T+a)*(axata) - =
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Ekvivalence bezkontextovych gramatik a zas. automati

[HISEEE

(E+T)*(axa+a) | = (E+F)*(a*a+a) 41 = (E+a)*(a*a+a) 1 =
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Ekvivalence bezkontextovych gramatik a zas. automati

HeEE

(E+T)*(axa+a) | = (E+F)*(a*a+a) 41 = (E+a)*(a*a+a) 1 =
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Ekvivalence bezkontextovych gramatik a zas. automati

lFlE]

(E+T)*(axa+a) | = (E+F)*(a*a+a) 41 = (E+a)*(a*a+a) 1 =
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Ekvivalence bezkontextovych gramatik a zas. automati

=

(E+T)*(axa+a) | = (E+F)*(a*a+a) 41 = (E+a)*(a*a+a) 1 =
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Ekvivalence bezkontextovych gramatik a zas. automati

lFlE]

(E)*(a*xat+a) 1 = (E+T)*(axata) 1 = (E+F)*(axata) 1 = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

HEEN

(E)*(a*xat+a) 1 = (E+T)*(axata) 1 = (E+F)*(axata) 1 = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

lFlE]

(E)*(a*xat+a) 1 = (E+T)*(axata) 1 = (E+F)*(axata) 1 = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

=

(E)*(a*xat+a) 1 = (E+T)*(axata) 1 = (E+F)*(axata) 1 = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

=

(E)*(a*xat+a) 1 = (E+T)*(axata) 1 = (E+F)*(axata) 1 = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[FLF]

Fx(axata) 4 = (E)*(a*xat+a) 4 = (E+T)*(axata) 1 = -
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Ekvivalence bezkontextovych gramatik a zas. automati

=

Fx(axata) 4 = (E)*(a*xat+a) 4 = (E+T)*(axata) 1 = -
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Ekvivalence bezkontextovych gramatik a zas. automati

lFI7]

T*x(axata) 1 = Fx*x(axa+ta) 4 = (E)*(axa+ta) 1 = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[EL7] ]

T*x(axata) 1 = Fx*x(axa+ta) 4 = (E)*(axa+ta) 1 = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEdEIN

T*x(axata) 1 = Fx*x(axa+ta) 4 = (E)*(axa+ta) 1 = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEEINEY

T*x(axata) 1 = Fx*x(axa+ta) 4 = (E)*(axa+ta) 1 = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEdEIN

T*x(axata) 1 = Fx*x(axa+ta) 4 = (E)*(axa+ta) 1 = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

HEENE

Tx(F*ata) 1 = Tx*(a*ata) 1 = Fx(a*ata) 4 = -
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEdEIN

Tx(F*ata) 1 = Tx*(a*ata) 1 = Fx(a*ata) 4 = -
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEAEINSE

Tx(T*a+a) 1 = Tx(Fxa+a) 1 = Tx(axa+a)d = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEAEIRS kIR

Tx(T*a+a) 1 = Tx(Fxa+a) 1 = Tx(axa+a)d = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

Elrf«ldT]+]a]

Tx(T*a+a) 1 = Tx(Fxa+a) 1 = Tx(axa+a)d = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEAEIRS kIR

Tx(T*a+a) 1 = Tx(Fxa+a) 1 = Tx(axa+a)d = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

L=l T]«]F]

Tx(T*F+a) 4 = Tx(T*a+ta) 1 = Tx(Fxa+ta)d = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEAEIRS kIR

Tx(T*F+a) 4 = Tx(T*a+ta) 1 = Tx(Fxa+ta)d = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEAEINSE

Tx(T*F+a) 4 = Tx(T*a+ta) 1 = Tx(Fxa+ta)d = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEdEIN

Tx(T*F+a) 4 = Tx(T*a+ta) 1 = Tx(Fxa+ta)d = ---
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEAEINSE

T*(T+a) 4 = T*(T*F+a) 4 = Tx(T*a+ta) 1 = -
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEdEIN

T*(T+a) 4 = T*(T*F+a) 4 = Tx(T*a+ta) 1 = -
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Ekvivalence bezkontextovych gramatik a zas. automati

[Elr]« ] ]E]

T*(E+a) 4 = T*(T+a) 4 = Tx(TxF+a) < = --
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEAEIKEE

T*(E+a) 4 = T*(T+a) 4 = Tx(TxF+a) < = --
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Ekvivalence bezkontextovych gramatik a zas. automati

Flrf«lJel+]a]

T*(E+a) 4 = T*(T+a) 4 = Tx(TxF+a) < = --
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEAEIKEE

T*(E+a) 4 = T*(T+a) 4 = Tx(TxF+a) < = --
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Ekvivalence bezkontextovych gramatik a zas. automati

ElTf«lJel+]F]

Tx(E+F)— = Tx(E+a)-d = T*(T+a) - = T*(TxF+a) - =
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEAEIKEE

Tx(E+F)— = Tx(E+a)-d = T*(T+a) - = T*(TxF+a) - =
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Ekvivalence bezkontextovych gramatik a zas. automati

Elrf«lJel+]T]

T*(E+I)—| = T*(E+£)—| = T*(§+a)—| = T*(I+a)_| — ...

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 226 /674



Ekvivalence bezkontextovych gramatik a zas. automati

[HEAEIKEE

T*(E+I)—| = T*(E+£)—| = T*(§+a)—| = T*(I+a)_| — ...
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Ekvivalence bezkontextovych gramatik a zas. automati

[Elr]« ] ]E]

T*(E+I)—| = T*(E+£)—| = T*(§+a)—| = T*(I+a)_| — ...

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 226 /674



Ekvivalence bezkontextovych gramatik a zas. automati

[HEdEIN

T*(E+I)—| = T*(E+£)—| = T*(§+a)—| = T*(I+a)_| — ...
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Ekvivalence bezkontextovych gramatik a zas. automati

[Elr]« ] ]E]

Tx(E) - = T*(E+T)— = T*(E+F)- = Tx(E+a)— = -
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Ekvivalence bezkontextovych gramatik a zas. automati

HEEINEN

Tx(E) - = T*(E+T)— = T*(E+F)- = Tx(E+a)— = -
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Ekvivalence bezkontextovych gramatik a zas. automati

[Elr]« ] ]E]

Tx(E) - = T*(E+T)— = T*(E+F)- = Tx(E+a)— = -
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEdEIN

Tx(E) - = T*(E+T)— = T*(E+F)- = Tx(E+a)— = -

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 226 /674



Ekvivalence bezkontextovych gramatik a zas. automati

[EL7] ]

Tx(E) - = T*(E+T)— = T*(E+F)- = Tx(E+a)— = -
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Ekvivalence bezkontextovych gramatik a zas. automati

[HEdEIE

T+F— = T+(E)- = T*(E+T)— = T*(E+F)— = -
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Ekvivalence bezkontextovych gramatik a zas. automati

[EL7] ]

T+F— = T+(E)- = T*(E+T)— = T*(E+F)— = -
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Ekvivalence bezkontextovych gramatik a zas. automati

lFI7]

T+F— = T+(E)- = T*(E+T)— = T*(E+F)— = -
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Ekvivalence bezkontextovych gramatik a zas. automati

=

T+F— = T+(E)- = T*(E+T)— = T*(E+F)— = -
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Ekvivalence bezkontextovych gramatik a zas. automati

lFI7]

TH = TxFH4 = Tx(E)d = T*x(E+T) = T*x(E+F)d =
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Ekvivalence bezkontextovych gramatik a zas. automati

=

TH = TxFH4 = Tx(E)d = T*x(E+T) = T*x(E+F)d =
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Ekvivalence bezkontextovych gramatik a zas. automati

=E

E- = TH = T+F-d = T*(E)d = T+(E+T) - = -
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Ekvivalence bezkontextovych gramatik a zas. automati

EEE]

E- = TH = T+F-d = T*(E)d = T+(E+T) - = -
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Ekvivalence bezkontextovych gramatik a zas. automati

=E

E- = TH = T+F-d = T*(E)d = T+(E+T) - = -

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 226 /674



Ekvivalence bezkontextovych gramatik a zas. automati

=

E- = TH = T+F-d = T*(E)d = T+(E+T) - = -
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Ekvivalence bezkontextovych gramatik a zas. automati

[Fls]

S = E-d = TH = T+Fd = Tx(E)- = T*(E+T) - = -
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Ekvivalence bezkontextovych gramatik a zas. automati

=

S = E-d = TH = T+Fd = Tx(E)- = T*(E+T) - = -
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Ekvivalence bezkontextovych gramatik a zas. automati

S = E-d = TH = T+Fd = Tx(E)- = T*(E+T) - = -
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Ekvivalence bezkontextovych gramatik a zas. automati

Jak je vidét z pfedchoziho pt¥ikladu, zasobnikovy automat M v zasad&
provadi pravou derivaci v gramatice G pozpdtku.
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Dalsi tfidy bezkontextovych gramatik

Existuje ¥ada riznych t¥id bezkontextovych gramatik, pro které je mozné
sestrojit dany zasobnikovy automat tak, aby byl deterministicky:

o Pt¥istup shora dolii — vytvé¥i levou derivaci:

o LL(0), LL(1), LL(2), ...

o Pt¥istup zdola nahoru — vytva¥i pravou derivaci pozpatku:

o LR(0), LR(1), LR(2), ...
o LALR (resp. LALR(1), ...)
o SLR (resp. SLR(1), ...)
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Generatory parsert

Generatory parserii — nastroje, které umoZiiuji z popisu dané gramatiky
automaticky vygenerovat kéd v n&jakém programovacim jazyce, ktery de
facto implementuje &innost odpovidajiciho zasobnikového automatu.

P¥iklady generatorii parserii:

Yacc
Bison
ANTLR
JavaCC
Menhir
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Ekvivalence bezkontextovych gramatik a zas. automati

Ke kazdému zdsobnikovému automatu M s jednim stavem a pfijimajicim
prazdnym zasobnikem Ize sestrojit bezkontextovou gramatiku G takovou,

ze L(G) = LIM).

Diikaz: Pro ZA M = ({qo}, %, T,6, qo, Xo), kde ¥ N T = @, vytvoFime
BG G = (I, X, Xp, P), kde

(A-aa)eP = (qo,a)€d(q,aA)
pro kazdé AeTl, ae X u{e}, aerl™.
Indukci miizeme dokazat
Xo =" ua (vG) = goXo — qor (v M)

* Kooy g P
kde v € X" a a € (pfitemZ v G uvaZujeme pouze levé derivace).
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Ekvivalence bezkontextovych gramatik a zas. automati

M: g:

QA — goBC A — aBC
b
doB — qo B—b

‘A|C|B|A|C| abaACBAC
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Ekvivalence bezkontextovych gramatik a zas. automati

M: g:

QA — goBC A — aBC
b
doB — qo B—b

ba ACBAC
BlclclBlA|c] =:Zb2;§CCBAC
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Ekvivalence bezkontextovych gramatik a zas. automati

M: g:

QA — goBC A — aBC
b
doB — qo B—b

baACBAC
clclBla[c] :szEQCCBAC
= abaabCCBAC

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026



Ekvivalence bezkontextovych gramatik a zas. automati

Ke kaZdému zdsobnikovému automatu M Ize sestrojit zasobnikovy
automat M' s jednim stavem tZ. E(M') = L(M).

Myslenka dikazu:
@ Stav automatu M si budeme pamatovat na zdsobniku.

e Prod(q,a,X) = {(q',s)} musime kontrolovat nejen, Ze jsme ve
stavu g, ale také, Ze se dostaneme do stavu q'. (Dal3i p¥ipady jsou
primotaré.)

o Kazdy zasobnikovy symbol automatu M je tedy trojice, kde si
pamatujeme zasobnikovy symbol, aktualni stav a aktudlni stav ze
symbolu o jedna niZze na zasobniku.

L s

o ZA M' nedeterministicky ,hada" ¥idici stavy, do kterych se dostane
M v okamZiku, kdy se dany zasobnikovy symbol ocitne na vrcholu
zasobniku.
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Ekvivalence bezkontextovych gramatik a zas. automati

Chybna myslenka:

A g5A
E B
| C
A A
A A
B| B
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Ekvivalence bezkontextovych gramatik a zas. automati

Chybna myslenka:

E q13B
C C
E B
| C
A A
A A
B8] B
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Ekvivalence bezkontextovych gramatik a zas. automati

Chybna myslenka:

WI> (>0 3O

[=[>[>[n]=[o]
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Ekvivalence bezkontextovych gramatik a zas. automati

Dalsi chybna myslenka:

gsA
QB
qsC
qi5A
GaA
qu B

(= [>][>[o]=[>]
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Ekvivalence bezkontextovych gramatik a zas. automati

Dalsi chybna myslenka:

q13B

QB
qsC
qi5A
GaA
qu B

[=]>[>[o]w][o]=]
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Ekvivalence bezkontextovych gramatik a zas. automati

Dalsi chybna myslenka:

q:C
QB
qsC
qi5A
GaA
qu B

[=[>[>[n]=[o]
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Ekvivalence bezkontextovych gramatik a zas. automati

Korektni konstrukce:

qsA qa
q4B g
qsC q15
q15A g4
q4A q11
q11B qo

(=[>[>[o]=[>]
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Ekvivalence bezkontextovych gramatik a zas. automati

Korektni konstrukce:

q13B g7
q7:C a4
94B qg
qsC q15
q15A g4
q4A q11
q11B qo

[=]>[>[n]=][o]=]
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Ekvivalence bezkontextovych gramatik a zas. automati

Korektni konstrukce:

q7:C a4
q4B g
qsC q15
q15A g4
q4A q11
q11B qo

[=[>[>[o]=[n]
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Ekvivalence bezkontextovych gramatik a zas. automati

Tvrzeni

K libovolné bezkontextové gramatice G je mozné sestrojit
(nedeterministicky) zdsobnikovy automat M takovy, 2e £(G) = L(M).

Tvrzeni

K libovolnému zasobnikovému automatu M je moZné sestrojit
bezkontextovou gramatiku G takovou, ze £(M) = L(G).
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Turingovy stroje
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Turingtv stroj

Turingliv stroj — za¥izeni podobné kone¢nému automatu s ndsledujicimi
rozdily:

@ pohyb hlavy obéma sméry

@ moznost zapisu na pasku na aktudlni pozici hlavy

@ paska je nekoneéna
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Turingtv stroj
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Turingtv stroj

Alan M. Turing, ,On Computable Numbers, with an application to the
Entscheidungsproblem”, Proceedings of the London Mathematical Society,
42 (1936), pp. 230-265, Erratum: Ibid., 43 (1937), pp. 544-546.

Z. Sawa (VSB-TUO)
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Formaln& je Turingiiv stroj definovdn jako ¥estice M = (Q,%,T, 4, qo, F)
kde:
@ @ je kone¢na neprazdnd mnoZina stavii
o [ je kone¢nd neprdzdnd mnoZina paskovych symboli (paskova
abeceda)

@ ¥ T je kone¥na neprazdna mnozina vstupnich symboli (vstupni
abeceda)

0:(Q—-—F)XI—> QXTI x{-1,0,+1} je ptechodova funkce

go € Q je pocateéni stav

F € @ je mnoZina koncovych stavii

Predpokladame, Ze v [ — ¥ je vZdy specidlni prvek O ozna&ujici prazdny
znak (blank).
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Konfigurace Turingova stroje

Konfigurace Turingova stroje je dana:

@ stavem Fidici jednotky
@ obsahem pasky

@ pozici hlavy
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Konfigurace Turingova stroje

Viypotet Turingova stroje M = (Q, X, T, 6, go, F) nad slovem w € £*,
kde w = aja,--a,, zalind v pocateéni konfiguraci:

@ stav Fidici jednotky je qg

@ na pasce je zapsano slovo w, zbyvajici poli¢cka pasky jsou vyplnéna
prazdnymi symboly (0O)

@ hlava se nachdazi na prvnim symbolu slova w (nebo na symbolu 0O,
pokud je w = ¢)
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Turingtv stroj

Jeden krok Turingova stroje:
Predpokladejme, Ze:
@ stav Fidici jednotky je g

@ na poli¢ku, kde se pravé nachazi hlava, je zapsdn symbol b
Reknéme, 7e §(q,b) = (¢, b, d), kde d € {~1,0, +1}.

Jeden krok Turingova stroje se provede nasledovné:
@ stav Fidici jednotky se zméni na q'
@ na poli¢tko na pozici hlavy se misto symbolu b zapiSe symbol b
@ V zdvislosti na hodnoté d se hlava posune:

e pro d = —1 se posune o jedno poli¢ko doleva
e pro d = +1 se posune o jedno poli¢ko doprava
e pro d = 0 se pozice hlavy nezméni

Z. Sawa (VSB-TUO)
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Turingiv

@ Turingiv stroj provadi kroky tak dlouho, dokud stav F¥idici jednotky

neni stav z mnoziny F.

@ Konfigurace, kde stav Fidici jednotky patfi do mnoziny F, jsou
koncové konfigurace.

@ V koncovych konfiguracich vypocet kon&i.

o Vypocet stroje M nad slovem w mize byt nekoneény.
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Casto volime mnozinu koncovych stavil F = {Gaces q,ej}.
Muizeme pak pro slovo w € ¥* definovat, zda ho dany Turingiv stroj
p¥ijima:

@ Pokud je po skon&eni vypoctu nad slovem w Fidici jednotka ve

stavu @,cc, stroj slovo w pFijima.

@ Pokud je po skon&eni vypoctu nad slovem w Fidici jednotka ve
stavu qrej, stroj slovo w nepfijima.

@ Pokud je vypocet nad slovem w nekoneny, stroj slovo w nepftijima.

Jazyk £(M) Turingova stroje M je mnoZina véech slov nad abecedou ¥,
ktera stroj M pfijima.
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Jazyk L € ¥ je Turingovym strojem M piijiman (accepted), jestlize:

e pro kazdé slovo w € X plati, e w € L pravé tehdy, kdy? vypotet
stroje M nad w skon&i v koncovém stavu q,cc.

(Vypotty nad slovy, kterd nepat¥i do L, tedy mohou skon&it ve stavu gye;
nebo byt nekonené.)

Jazyk L € ¥ je Turingovym strojem M rozpoznavan (recognized),
jestlize:
@ pro kazdé slovo w € L vypolet stroje M nad w skon&i v koncovém
stavu gaec-

e pro kazdé slovo w € (X" — L) vypotet stroje M nad w skon&i
v koncovém stavu qye;.
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Jazyk L ={a"b"c" | n = 0}
Q = {90, 91. 92, G3, G4, Gace, Grej } F = {Gace, Grej}

T = {a,b,c} r={o.ab.cx}
0 u] a b c x
qo0 (qaccaD 0) (qlzx7+1) (qrejab 0) (qrejvcyo) (quXy+1)
qa (qrep‘:‘ 0) (Q]_,a,+1) (q27x +1) (qrej7C70) (q1,X,+1)
a2 (qreJaD 0) (qrejva7 0) (q27b +1) (q3,x,+1) (qz,X,+1)
a3 (q47 (qrejva 0) (qrejvb 0) (q3,C,+1) (q3axa+1)
qs (q09D +1) (q47a7_1) (q47 ) ) (q4»c»_1) (q4,X,—1)
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Turingiv

@ Turingiiv stroj nemusi ddvat jen odpovéd ANO nebo NE, ale miiZe
. v . s v 17 ¥ yey . N T 7
realizovat néjakou funkci, kterd kaZzdému slovu ze ¥~ pfifazuje néjaké
o, *
jiné slovo (z ).

@ Slovo pfifazené slovu w je slovo, které ziistane zapsdno na pdsce po
vypo&tu nad slovem w, kdyz odstranime v3echny znaky O.
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Turinglv stroj — ndsobeni tfemi
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Nedeterministické Turingovy stroje

MiZeme uvazovat i nedeterministické Turingovy stroje, kde pro kazdy
stav g a symbol b pfechodova funkce 6(q, b) uréuje vice riiznych trojic

(¢, b, d).
Stroj si miZe vybrat libovolnou z nich.

Stroj pF¥ijima slovo w, jestlize existuje alespoii jeden jeho vypo&et vedouci

k ptijeti slova w.

Poznamka: Ke kaZzdému nedeterministickému Turingovu stroji je mozné
sestrojit ekvivalentni deterministicky Turingliv stroj.
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Nedeterministické Turingovy stroje

Formalné se v definici deterministického a nedeterministického Turingova
stroje M = (Q,X,T,6, qg, F) lié pouze definice prechodové funkce &:

o Deterministicky Turinglv stroj:

§: (Q—F)XT - Q@xTx{-1,0,+1}

o Nedeterministicky Turingiiv stroj:

§: (Q-F)xT - P(QxTx{-1,0,+1})

Poznamka: U nedeterministickych Turingovych stroji také nedava pfilis
smysl jind mnoZina koncovych stavii ne F = {q,cc, q,ej}.
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Varianty Turingovych strojii

o Dt¥ive uvedena definice Turingova stroje je jen jednou z mnoha
moznych variant.

@ Uvedeme nékolik p¥ikladl toho, v &¢em se mohou nékteré jiné varianty
Turingovych stroji lisit.

@ Prakticky vSechny tyto varianty Turingovych strojl jsou schopny
pFijimat &i rozpoznavat tytéz jazyky a poditat tytéZ funkce.

o Co se tyka doby vypo&tu a mnoZstvi pouZité paméti, mezi rliznymi
variantami mohou, ale nemusi byt vyznamné rozdily.

@ Vsechny niZe uvedené varianty miZeme uvazovat v deterministické
i nedeterministické verzi.
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Varianty Turingovych strojii

Jednostranné ¢&i oboustranné nekonecnd paska:

@ V predchozi definici jsme uvaZzovali pasku, kterd je nekone¢nd jak
smérem doleva, tak smérem doprava.

@ Misto toho se nékdy v definici Turingova stroje uvaZuje paska, ktera
je nekonecnd jen smé&rem doprava.
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Varianty Turingovych strojii

Je tfeba néjak definovat, co ma stat, kdyz se hlava nachazi na nejlevéjsim
poli¢ku pasky a ma se posunout doleva.

Dvé nejbézné&jsi moznosti:

o Nastane ,chybovy" stav, kdy se vypocet (nedsp&sng&) ukonii:

6(q5a a) = (ql?nba _1)
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Varianty Turingovych strojii

@ Na levém konci pasky je ,,zardZka" reprezentovana specidlnim
symbolem € (- X).

Tuto zardZku neni moZné prepsat a neni na ni mozny pohyb smérem
doleva, tj. pro kazdé g € Q plati, e pokud 6(q,F) = (q'7 b,d), tak
b=F ade{0,+1}.

5(q5a |_) = (q177 |_7 +1)

11. dnora 2026
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Varianty Turingovyc I

Poznamka: S mozZnosti, Ze vypolet miZe skonlit nelispé$n&, protoze
nastane néjakd chyba, kdy z dané konfigurace neni moZné pokracovat, ale
pfitom to neni koncova konfigurace, se setkdme i u ¥ady dalSich stroja,
kterymi se budeme zabyvat.

Obecn& mohou p¥i vypoltu libovolného stroje nastat nasledujici p¥fipady:

@ Vypocet skondi tsp&sné v koncové konfiguraci, kterda odpovida
korektnimu zastaveni.

@ Vypodlet skonéi nelspésné v konfiguraci, kterd neni koncova, ale neni
v ni mozné pokracovat ve vypoltu — toto chdpeme tak, Ze vypoclet
skond&il chybou.

@ Vypodet se nikdy nezastavi.
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Varianty Turingovych strojii

Casto se také uvaZuji vicepaskové Turingovy stroje.

EERODBR0DE
D 4
herifol [z o]o]1]
Y
P ARNROEEE
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Varianty Turingovych strojii

V pfipadé vicepdskového stroje:

o Kazda z k pasek ma svou vlastni paskovou abecedu, tj. mdme
paskové abecedy 1, 5, ..., k.

@ PYechodova funkce ¢ je typu

(Q-F)XTyxxXT, » QxTyx{=1,0,+1} X -+ x [, x {~1,0, +1}

Pr¥iklad:
5(q57 a, 17 D) = (q12a a, _17X7 Oa 17 +1)
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Varianty Turingovych strojii

Ptiklad:

EERODBR00E

Shetifo Al o o]1]
Y

[op+[o]i[o[#[5]=]e]

5((]5, a, 1’ D) = (q12a a, _17X7 07 17 +1)
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Varianty Turingovych strojii

Ptiklad:

[o]e]afa]e]=]e o ]a]

tfoft]s]ofof1]

[of#[oft]o]#]1][a]a]

5((]5, a, 1’ D) = (q12a a, _17X7 07 17 +1)
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Varianty Turingovych strojii

Ptiklad: Stroj provadéjici s¢itani dvou bindrné zapsanych &isel
ohrani¢enych znaky # (nap¥. &isla 6 a 11 budou zapsana jako slova
“#110#" a “#1011#").

| L[ [ [#[g]afo]e]

4
RS
Y

| | | T _lof]e]

[1]2]]
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Varianty Turingovyc oj

Vicepdskové stroje maji ¢asto jednu z pasek vy&lenénu jako vstupni pasku
a jednu z pdsek jako vystupni pasku. Ostatni pasky pak pouZivaji jako
pracovni:

@ Vstupni paska — obsahuje vstupni slovo, neni moZné na ni zapisovat
(je read-only), neni nekone&na

e Pracovni pasky — je mozné z nich &ist i na n& zapisovat (jsou typu
read/write), na zatatku vypottu jsou prazdné (obsahuji pouze
symboly O)

e Vystupni paska — je na ni moZné pouze zapisovat (je write-only),
neni z ni mozné &ist, na za¢dtku vypoctu je prazdnd, pohyb hlavy je
moZny jen zleva doprava
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Varianty Turingovych strojii

[o]a]alalp]#]o]o]]

[o}p]#[o]t]1]#[a]a]
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Varianty Turingovyc oj

Pokud m3 stroj vy&len&nou specidlni vstupni pasku (kterd je read-only),
pouZivaji se typicky dvé nasledujici varianty:
@ Na této vstupni pasce je mozny pohyb hlavy doleva i doprava.
Vstupni slovo w € £~ je v takovém pfipadé ohraniceno zleva a zprava

pomoci ,zaraZek", tj. specidlnich symbolti -, - € (I - X).

@ Na vstupni pasce je mozny pohyb hlavy pouze zleva doprava.

Poznamka: Varianta s moZnym pohybem hlavy na obé& strany a se
zardzkami je obvyklejsi.

Pokud nebude feceno jinak, budeme uvaZovat tuto variantu.
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Varianty Turingovych st

Misto vice pasek je mozné téZ uvazovat vice hlav na jedné pdsce:
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Varianty Turingovych strojii

V pfipadé vice hlav na jedné pasce, je tfeba specifikovat:
@ Zda se miZe vice hlav nachdzet sou¢asné na jednom poli¢ku pasky.

@ A pokud ano, jak je definovdno chovani daného stroje v p¥ipadég, Ze
hlavy nachdzejici se na stejném poli¢ku budou chtit na toto poli¢ko
zapsat rozdilné symboly.

@ Zda je dany stroj schopen detekovat to, Ze se dvé& nebo vice hlav
nachdzeji sou¢asné na témzZe poli¢ku.

Poznamka: Samozfejmé& obecn& miizeme uvaZovat stroje s vice paskami,
kde kazda z t&chto pasek mlze byt vybavena vice hlavami.
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Varianty Turingovyc

UvaZujme stroj s vice paskami a s libovolnym poctem hlav na kazdé pasce.

Misto toho, aby stroj pracoval v kazdém kroku zadroveri se viemi hlavami,
miZeme jeho &innost popisovat jako ,program” skladajici se
z jednodussich instrukci nasledujicich typa:

@ posunout danou hlavu o jedno poli¢ko doleva

@ posunout danou hlavu o jedno poli¢ko doprava

@ zapsat na pozici dané hlavy dany specifikovany symbol

@ prelist z pozice dané hlavy jeden symbol a provést vétveni programu
(tj. jit do riiznych stavd Fidici jednotky) v zavislosti na tom, o jaky
symbol se jedna
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Varianty Turingovych strojii

Zatim jsme uvaZovali jen linearni (jednorozmé&rné) pésky.

Misto jednorozmé&rné pasky miiZze mit pamét s politky (kde kazdé politko
obsahuje jeden znak z n&jaké dané abecedy) n&jakou jinou strukturu.

Napf¥iklad:

@ dvourozmérnd ctvereckova rovina
— pohyb hlavy do ¢tyf sméri: doleva, doprava, nahoru, dolii

@ d-rozmérna pamét pro n&jaké d = 3,4, ...
(tfirozmé&rna, CtyFrozmérnd, atd.)

e pamé&t organizovana ve form& (nekonetného) stromu
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Linedrné omezeny automat

Linearné omezeny automat (LBA — linear bounded automaton):

o Nedeterministicky Turingliv stroj, ktery miZe vyuZivat jen Usek pasky,
kde je zapsano vstupni slovo.

@ Politka pasky, kterd na zalatku obsahuji symboly vstupniho slova, je
mozné b&hem vypoltu libovolné prepisovat.

@ Levd a prava zardzka kolem slova. Tyto zardZzky nemohou byt
prepsany.

o / levé zarazky je mozny pohyb jen vpravo, z pravé zarazky jen vlevo.
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Linedrné omezeny automat

@ Linedrné omezené automaty je moZzné uvazovat v deterministické
i nedeterministické verzi.

e Jako standardni (tj. pokud neni uvedeno jinak) se bere
nedeterministickd verze.

o Otdzka, zda je mozné jakykoli jazyk, ktery je rozpoznavan
nedeterministickym LBA, rozpoznavat také deterministickym LBA, je
otevienym problémem.

Poznamka: Z hlediska jazyki, jaké jsou schopné pfijimat nebo
rozpoznavat, a z hlediska funkci, jaké jsou schopné poéitat, jsou linedrné
omezené automaty vyrazné slabsi neZz Turingovy stroje, které maji

k dispozici neomezeng velkou pamét (ve form& nekonetné pasky).
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Chomského hierarchie
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Generativni gramatiky

Generativni gramatika je ddna &tvefici parametri G = (M1, %, S, P), kde

@ [1 je kone¢nd mnoZzina netermindld
@ ¥ je kone¢na mnoZina termindli, MMN X = @
@ S €11 je potateéni neterminal

@ P je kone¢na mnoZina pravidel typu o« — (3, kde
ce(Mu) N(Nux)*apge(Nux)”.

Pt¥iklad pravidla:

CaECb — bDFbBDaC

Poznamka: Tento druh gramatik byva téZ oznalovan jako
gramatiky typu 0, neomezené gramatiky & obecné gramatiky.
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Generativni gramatiky

P¥edpoklddejme, e mame danu generativni gramatiku G = (I, %, S, P).

Relace = c (MU X)* x (Mux)™:
@ iy = pu1Pun pokud o — B je pravidlo v P
Priklad: Jestlize (BcE — DDaBb) € P, pak

CaBCBcEAccABb = CaBCDDaBbAccABb

Jazyk £(G) generovany gramatikou G = (I, %, S, P) je mno¥ina viech
slov v abecedé ¥, kterd lze odvodit n&jakou derivaci z poéate¢niho
netermindlu S pomoci pravidel z P, tj.

L£G)={weX"|s="w}
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Generativni gramatiky

P¥iklad: Gramatika generujici jazyk L = {a"b"c" | n = 1}

S — aSQ

S — abc
cQ — Qc

bQc — bbcc

Derivace slova aaaaabbbbbccccc:

)
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=

=
=
=
=
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Kontextové gramatiky

Kontextové gramatiky, oznalované téz jako gramatiky typu 1, jsou
specidlnim p¥ipadem generativnich gramatik.

Gramatika G = (MM, X, S, P) se nazyva kontextova, jestlize viechna jeji
pravidla (s jednou nize uvedenou vyjimkou) jsou tvaru

aXp = ayp
kde X €M, o, 8,y € (MU X)*, pritemz || = 1.

Jedinou vyjimkou je, Ze gramatika G miZe obsahovat pravidlo S — «¢.

Pokud toto pravidlo obsahuje, nesmi se po&ite¢ni nerminal S vyskytovat
na pravé strané zadného pravidla.

P¥iklad pravidla:

BaEC — BaDAcBC
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=
=
=
=
=
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Kontextové gramatiky
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bQC — bbCC XY — QY
C—-c QY — QC

Derivace slova aaaaabbbbbccccc:

= a3aaaabbbbbCCCCC = aaaaabbbbCXQCC
= aaaaabbbbbcCCCC = aaaaabbbbCXYCC
= gaaaabbbbbccCCC = aaaaabbbbCQQYCC
= aaaaabbbbbcccCC = aaaaabbbbCQCCC
= aaaaabbbbXQCCC
= aaaaabbbbXYCCC
= agaaabbbbQYCCC
= aaaaabbbbQCCCC
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Bezkontextové gramatiky

Dalsim specialnim typem generativnich gramatik jsou bezkontextové
gramatiky.

Bezkontextové gramatiky jsou oznalovény téZ jako gramatiky typu 2.

Gramatika G = (MM, X, S, P) se nazyvd bezkontextova, jestlize véechna jeji
pravidla jsou tvaru
X = v

kde X €N, ye (Mux)*.

P¥iklad pravidla:

C — DaBBc
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Bezkontextové gramatiky

Poznamka: Ne kaZzda bezkontextova gramatika je kontextovd, protoZe
bezkontextova gramatika miZe obsahovat i jind e-pravidla (tj. pravidla
tvaru X — €)nez S — ¢,

Libovolna bezkontextova gramatika bez e-pravidel (resp. nanejvy¥ s jednim
g-pravidlem S — ¢, pfitemz se neterminal S nenachdzi na pravé stran&
Zadného pravidla) je specidlnim p¥ipadem kontextové gramatiky.

Ke kazdé bezkontextové gramatice G je mozné sestrojit ekvivalentni
bezkontextovou gramatiku bez e-pravidel.

Ke kazdé bezkontextové gramatice tedy existuje ekvivalentni kontextova
gramatika.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 278 /674



Regularni gramatiky

P¥ipomeiime, Ze gramatika je prava (resp. leva) regularni gramatika,
jestlize v8echna jeji pravidla jsou ndsledujicich dvou tvarii:

e A= wB (resp. A— Bw)

e A—-w

kde AABe wexX".

Gramatika je regularni, jestliZze se jedna o pravou nebo levou regularni
gramatiku.

Regularni gramatiky jsou oznafovany jako gramatiky typu 3.

Je zjevné, Ze regularni gramatiky jsou specidlnim pfipadem
bezkontextovych gramatik.
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Chomského hierarchie

Podle tvaru pravidel, kterd jsou v gramatice povolena, je tedy moZné
rozdélit gramatiky na nasledujici tyfi typy:

o Typ 0 — obecné generativni gramatiky

pravidla bez omezenf

o Typ 1 — kontextové gramatiky

pravidla tvaru aX3 — a3, kde |y| = 1
(Vyjimka S — ¢, ale S pak neni na pravé stran& Zadného pravidla.)

o Typ 2 — bezkontextové gramatiky
pravidla tvaru X —

o Typ 3 — regularni gramatiky
pravidla tvaru X — wY (resp. X — Yw) nebo X — w

kde o, B,y € (MUE)", XeMaweX"
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Chomského hierarchie

Jednotlivym typlim gramatik odpovidaji jednotlivé typy jazyki:

e Typ 0: Jazyk L je rekurzivné& spocetny (i typu 0),
jestlize existuje generativni gramatika, ktera tento jazyk generuje.

e Typ 1: Jazyk L je kontextovy (¢&i typu 1),
jestlize existuje kontextova gramatika, kterad tento jazyk generuje.

e Typ 2: Jazyk L je bezkontextovy (&i typu 2),
jestliZe existuje bezkontextova gramatika, kterd tento jazyk generuje.

e Typ 3: Jazyk L je regularni (&i typu 3),
jestliZe existuje reguldrni gramatika, kterd tento jazyk generuje.
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Chomského hierarchie

T¥idy jazykd:
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Chomského hierarchie

o Ptiklad jazyka, ktery je bezkontextovy, ale neni reguldrni:
{a"b" | n=1)

o P¥iklad jazyka, ktery je kontextovy, ale neni bezkontextovy:
{a"b"c" | n= 1}
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Chomského hierarchie

o Priklady jazyki, které jsou typu 0, ale nejsou kontextové:
e Jazyk tvoreny slovy, kterd reprezentuji logicky platné formule
predikatové logiky.
e Jazyk tvoreny slovy, kterd reprezentuji kédy téch Turingovych strojd,

které pfi vypoltu nad prazdnym slovem po kone¢ném po&tu krokd
zastavi.

o Priklady jazyki, které nejsou typu 0:

e Jazyk tvoreny slovy, kterd reprezentuji pravé ty formule predikitové
logiky, které nejsou logicky platné.

o Jazyk tvoreny slovy, kterd reprezentuji kédy téch Turingovych strojd,
které pfi vypoltu nad prazdnym slovem nikdy nezastavi.
e Jazyk tvofeny slovy, kterd reprezentuji kédy téch Turingovych strojd,

které pfi vypoltu nad libovolnym slovem vZzdy po kone&ném poctu
kroki zastavi.
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Chomského hierarchie

o Dalsi mozné charakterizace regularnich jazyki:

o jazyky pfijimané kone¢nymi automaty (deterministickymi,
nedeterministickymi, zobecn&nymi nedeterministickymi)

o jazyky, které je moZné popsat pomoci regularnich vyrazi

o Dalsi moZna charakterizace bezkontextovych jazykd:

e jazyky pfijimané nedeterministickymi zdsobnikovymi automaty

o Dalsi moZna charakterizace kontextovych jazyki:

o jazyky pfijimané nedeterministickymi linedrn& omezenymi automaty

o Dal%i mozna charakterizace jazykl typu 0:

o jazyky pfijimané (deterministickymi & nedeterministickymi)
Turingovymi stroji
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Chomského hierarchie

Chomského hierarchie — shrnuti:
o Typ 0 — rekurzivné spocetné jazyky:
e obecné generativni gramatiky
o Turingovy stroje (deterministické, nedeterministické)
o Typ 1 — kontextové jazyky:
o kontextové gramatiky
o nedeterministické linedrné omezené automaty
o Typ 2 — bezkontextové jazyky:
o bezkontextové gramatiky
o nedeterministické zdsobnikové automaty
o Typ 3 — regularni jazyky:

e regularni gramatiky
o konetné automaty (deterministické, nedeterministické)
o regularni vyrazy

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 286 /674



Vypocetni modely
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Vypocet algoritmu

Algoritmy jsou vykondvdny stroji — miZze to byt napftiklad:
@ skuteény pocitaé — vykonava instrukce strojového kédu
@ virtudlni stroj — vykondva instrukce bytekddu
@ néjaky idealizovany matematicky model potitace

Stroj maZe byt:
@ jednoulelovy — vykonava jen jeden algoritmus

@ obecnéjsi — algoritmus dostdva ve formé& programu

Stroj pracuje po krocich.

Algoritmus b&hem vypo&tu zpracovava konkrétni vstup a produkuje
prislusny vystup.
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Vypocetni modely

Vypocetni model — néjaky idealizovany matematicky model poéitace

@ abstrahujeme od rliznych nepodstatnych implementaénich detaill

@ chceme analyzovat ty vlastnosti algoritmi, které pokud moZno co
nejméné zavisi na detailech stroje, ktery bude dany algoritmus
vykondvat

P¥iklady nékterych vypoéetnich modeli:

kone¢né automaty
zasobnikové automaty

o
o
@ Turingovy stroje
@ stroje RAM

o
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Vypocetni modely

B&hem vypoctu si stroj typicky musi pamatovat:
o kterd instrukce se pravé provadi

@ obsah své pracovni paméti

Podle typu stroje je uréeno:
@ s jakym typem dat stroj pracuje
@ jak jsou tato data v paméti organizovana

@ jaké operace s t€mito daty miZe stroj vykondvat

Podle typu algoritmu a typu analyzy, kterou chceme provddét, se miizeme
rozhodnout, zda ma smysl mezi obsah paméti zahranout i mista

o odkud se &tou vstupni data

@ kam se zapisuji vystupni data
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Vypocetni modely

Jednim z vyuziti vypocetnich modell je to, Ze mohou slouZit pro presné
definovani pojmd, dileZitych pro stanoveni vypoéetni sloZitosti daného
algoritmu:
o doby vypoctu daného algoritmu A pro dany vstup w
(pozn.: v&tsinou je to potet krokl vykonanych strojem b&hem
vypo&tu)

@ mnozstvi pouzité paméti b&hem tohoto vypoltu

Obecné je pro riizné vypoletni modely také dileZité
@ zda je dany typ stroje schopen simulovat vypocty n&jakého jiného
typu stroje
@ jak se pti této simulaci lisi doba vypoltu &i mnoZstvi pouzité paméti
oproti pivodnimu stroji
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Simulace vypoctu

v s /v . . . - . I
Vysvétleni toho, co to znamend, Ze stroj M je simulovan strojem M

o Vypotet stroje M pro vstup w je (kone&nad nebo nekonena)
posloupnost konfiguraci stroje M

Qg —> (xp —> Qp —

@ Tomuto vypoctu odpovidd vypolet stroje M tvoteny konfiguracemi
Bo— 51— B — -

kde kazdé konfiguraci a; odpovidd n&jaka konfigurace (¢ (;), kde
f : N — N je funkce, pro kterou plati f(i) < f(j) pro kazdé i a j, kde
i<

o Existuje relace mezi vzdjemné si odpovidajicimi konfiguracemi
stroje M a jim odpovidajicimi konfiguracemi stroje M.

o Existuji funkce mapujici vstup w na odpovidajici po¢ateéni
konfigurace o a [y a analogicky funkce mapujici koncové konfigurace
na vysledek vypod&tu.
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Simulace vypoctu

M M
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Vypocetni modely

N&které vypoletni modely jsou slabsi (kone¢né automaty, zasobnikové
automaty, ...) a neni pomoci nich mozné implementovat libovolny
algoritmus.

My se ted zamé&Fime na vypoletni modely, které jsou dostate¢né silné na
to, aby byly schopny vykondvat libovolny algoritmus (nap¥. takovy, jaky je
mozné zapsat jako program v n&jakém programovacim jazyce).
Takovym vypocetnim modeliim se ¥ikd Turingovsky tplné:

@ samy jsou schopny simulovat &innost libovolného Turingova stroje

@ jejich &innost mize byt simulovdna Turingovym strojem
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Oboustranné nekoneénd paska pomoci jednostranné

Oboustrann& nekone&nd paska:

6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Jednostranné nekoneénd paska:
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Abeceda {0, 1}

Cinnost stroje s libovolnou paskovou abecedou I' miiZe byt simulovana
strojem s paskovou abecedou {0, 1}.

Stadi zvolit néjaké vhodné kédovani symbolli abecedy ' pomoci k-bitovych
sekvenci.

Ptiklad: Paskova abeceda ' = {O0,a,b,c,d, e, f, g}

O « 000
a < 001
b « 010
¢ o 011
d o 100
e o 101
f o 110
g « 111
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Abeceda {0, 1}

Stroj s paskovou abecedou I

3 4 5 6 7 8 9 10 11 12 13 14 15

6(qg7,c) = (gi2,a, +1)
6(q127f) = (q57b7 _1)

Stroj s abecedou {0, 1}:
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Abeceda {0, 1}

P¥i vySe uvedené simulaci je jeden krok piivodniho stroje simulovan
k + 1 kroky, kde k je pocet bitl kddujici jeden symbol abecedy I.

Pokud tedy plvodni stroj provede b&hem vypocltu t kroki, simulujici stroj
provede O(t) kroka.
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7 7

Zmenseni poctu stavi Fidici jednotky

Poznamka: Tak, jako je moZné zmensit paskovou abecedu na pouhé dva
symboly za cenu ndristu velikosti poctu stavi Fidici jednotky, je rovnéz
moZné sniZit polet stavi Fidici jednotky:
o Cinnost libovolného Turingova stroje je mozné simulovat Turingovym
strojem, ktery ma pouze dva nekoncové stavy Fidici jednotky
(a pfipadn& n&jaké koncové stavy), oviem za cenu naristu velikosti
paskové abecedy.

Podobné jako v pfedchozim p¥ipadé je jeden krok plvodniho stroje
simulovan s kroky, kde s je konstanta zavisejici pouze na poctu stavi Fidici
jednotky pivodniho stroje (tj. na velikosti mnoZziny Q).

Opét zde tedy plati, Ze pokud piivodni stroj provede b&hem vypo&tu
t krokd, simulujici stroj provede O(t) krokd.
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Simulace vice hlav na pasce pomoci jedné

Vice hlav na péasce:

- [|ofalala]ela]e]e]a]=]r a]a]afa] -

1234

Paska s jednou hlavou:

O«

o4

o 4w
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Simulace vice pasek pomoci jedné

Vice pasek:

EEBBEEEEE

[i[d]dfeli]djofo]d]

[of=]oli o] s [E]m]a]

Jedna péska s vice hlavami:

OjO|la|la|b|la|b|b|O
1({1(1(0|1|1(0]|0]|1
O|# |0 (1|0 |#|O|O|0O
A 4 v A 4
2 1 3
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Vice pasek:

EEBBEEEEE

[i[d]dfeli]djofo]d]

[of=]oli o] s [E]m]a]

Jedna paska s jednou hlavou: varianta, kde se posunuji znacky hlav

v
OjO|lala|b|la|b|b|O
v
111110 10|01
v
O|# |0 |1 |0 |#|O|0O|0O

Simulace vice pasek pomoci jedné
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Simulace vice pasek pomoci jedné

Vice pasek:

EEBBEEEEE

[i[d]dfeli]djofo]d]

[of=]oli o] s [E]m]a]

Jedna paska s jednou hlavou: varianta, kde se posunuji obsahy pdsek

v
o|o|lo|%|alalblalb|b]|$
o|$|/ojof|1|1f1]0|1]|1]O
#/0|1|o|#|O0|%|o|jOo|O|O

v
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Pdsky, zasobniky a &itace

MiiZeme uvazovat rlizné stroje, které maji konecnou Fidici jednotku
doplnénou o néjaky druh neomezené velké paméti.

Tato pam&t miiZe byt tvorena jednou nebo vice strukturami, jako jsou
tfeba:

o Paska — ¢teni a zapis symbolu na aktudlni pozici, posun hlavy
doleva a doprava

Poznamka: Piska mize byt jednostranné nebo oboustranné
nekoneéna.

@ Zasobnik — push, pop, test prazdnosti zasobniku

o Citat — hodnotou je pFirozené &islo, operace p¥itteni nebo odedteni
hodnoty jedna, test rovnosti nule
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Zasobnik

Na zdsobnik je moZné se divat jako na specidlni p¥ipad jednostrann&
nekonetné pasky.

Z3asobnik:

[Flefela]c]a]a]p]

Paska:
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Zasobnik

Na zdsobnik je moZné se divat jako na specidlni p¥ipad jednostrann&
nekonetné pasky.

Z3asobnik:

[Fle]ele]cla]a]r]e]

Paska:
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Zasobnik

Na zdsobnik je moZné se divat jako na specidlni p¥ipad jednostrann&
nekonetné pasky.

Z3asobnik:

[Flefela]c]a]a]p]

Paska:
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Zasobnik

Na zdsobnik je moZné se divat jako na specidlni p¥ipad jednostrann&
nekonetné pasky.

Z3asobnik:

[Flefela]c]=]a]

Paska:
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Zasobnik

Na zdsobnik je moZné se divat jako na specidlni p¥ipad jednostrann&
nekonetné pasky.

Z3asobnik:

[Flefela]<]z]

Paska:
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Zasobnik

Oboustrann& nekone&nou pasku je mozné simulovat pomoci dvou
zasobniki:

Stroj se dv&ma zasobniky:

[Ele]e]e]

2[efele]e=]H]

Z. Sawa (VSB-TUO)
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Zasobnik

Oboustrann& nekone&nou pasku je mozné simulovat pomoci dvou
zasobniki:

Stroj se dv&ma zasobniky:

[E[=]vl=]c]

plafv]e]a]]

Z. Sawa (VSB-TUO)
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Citad

s

Cita¢ — hodnotou &itale miiZe byt libovoln& velké pFirozené ¢&islo,

tj. prvek mnoziny N = {0,1,2,3,...}.
Zakladni operace:

@ zvySeni hodnoty o jedna:

x = x+1

@ sniZeni hodnoty o jedna:

x =x-1

o test, jestli je hodnota &itale nula:

if (x = 0) goto ¢
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Citad

Na &ital je mozné se divat jako na specidlni p¥ipad zasobniku &i pasky.

Z3asobnik:

EEHEHEEH

Paska:

Uvod do teoretické informatiky 11. dnora 2026
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Citad

Na &ital je mozné se divat jako na specidlni p¥ipad zasobniku &i pasky.

Z3asobnik:

EEHEBHBEHE

Paska:
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Citad

Na &ital je mozné se divat jako na specidlni p¥ipad zasobniku &i pasky.

Z3asobnik:

EEHEHEEH

Paska:
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Citad

Na &ital je mozné se divat jako na specidlni p¥ipad zasobniku &i pasky.

Z3asobnik:

EEHEEBHE

Paska:
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Citad

Na &ital je mozné se divat jako na specidlni p¥ipad zasobniku &i pasky.

Z3asobnik:

HlI|I|I|I|I
FIEEEEG)

Paska:

Uvod do teoretické informatiky 11. dnora 2026
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Minského stroj — stroj, ktery ma koneénou Fidici jednotku a konegny
pocet &italll xq, X0, ..., Xg:

70 928 14 0 1024 0

X1 X> X3 Xq X Xp

Poznamka: Pro oznaleni ¢&ita¢l budeme kromé symbolid xq, x5, . ..
pouzivat také symboly jako x,y, z, ...
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Minského stroj

Na Minského stroj se miZeme divat jako na program tvoteny posloupnosti
instrukci nasledujicich péti typa:

@ zvySeni hodnoty daného &itade o jedna:
Xi ‘= X+ 1
@ snizeni hodnoty daného ¢&itace o jedna:
Xj = Xj— 1
o test, jestli je hodnota daného &itace nula:
if (x; =0) goto ¢
@ nepodminény skok:

goto /

@ zastaveni programu:

halt
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Minského stroj

Vynulovani &itale x:

=> [, :if (x=0) goto L,
xi=x-1

gOtO Ll 3 14 2
L2 [ X y Z
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Minského stroj

Vynulovani &itale x:

Ly :if (x =0) goto L,
—> x=x-1

gOtO Ll 3 14 2
L2 [ X y Z

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 309 /674



Minského stroj

Vynulovani &itale x:

Ly :if (x =0) goto L,
xi=x-1

— goto L 2 14 2

L2: X y Z
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Minského stroj

Vynulovani &itale x:

=> [, :if (x=0) goto L,
xi=x-1

goto L4

L2: X y Z
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Minského stroj

Vynulovani &itale x:

Ly :if (x =0) goto L,
—> x=x-1

goto L4

L2: X y Z
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Minského stroj

Vynulovani &itale x:

Ly :if (x =0) goto L,
xi=x-1

— goto L 1 14 2

L2: X y Z
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Minského stroj

Vynulovani &itale x:

=> [, :if (x=0) goto L,
xi=x-1

goto L4

L2: X y Z
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Minského stroj

Vynulovani &itale x:

Ly :if (x =0) goto L,
—> x=x-1

goto L4

L2: X y Z
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Minského stroj

Vynulovani &itale x:

Ly :if (x =0) goto L,
xi=x-1

— gOtO Ll 0 14 2

L2: X y Z
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Minského stroj

Vynulovani &itale x:

=> [, :if (x=0) goto L,
xi=x-1

gOtO Ll 0 14 2
L2 [ X y Z
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Minského stroj

Vynulovani &itale x:

Ly :if (x =0) goto L,

x = x—1

gOtO Ll 0 14 2

- L2: X y Z
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Minského stroj

P¥i¢teni obsahu &itate z k &itadi y (a vynulovani &itale z):

> [,:if (z=0) goto L3
Z:=Z—1 0 14 2
y=y+l1 X y z
goto [,

L3:
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Minského stroj

P¥i¢teni obsahu &itate z k &itadi y (a vynulovani &itale z):

L, : if (z =0) goto L3
I, 0| |14| |2
y=y+l X y z
goto [,
L3:
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Minského stroj

P¥i¢teni obsahu &itate z k &itadi y (a vynulovani &itale z):

L, : if (z =0) goto L3
z = Z—]. 0 14 1
—> yi=y+1 X y z
goto [,

L3:
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Minského stroj

P¥i¢teni obsahu &itate z k &itadi y (a vynulovani &itale z):

L, : if (z =0) goto L3
z:=z-1 0 15 1
y=y+l1 X y z
—> goto [,

L3:
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Minského stroj

P¥i¢teni obsahu &itate z k &itadi y (a vynulovani &itale z):

> [,:if (z=0) goto L3
z:=z-1 0 15 1
y=y+l1 X y z
goto [,

L3:
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Minského stroj

P¥i¢teni obsahu &itate z k &itadi y (a vynulovani &itale z):

L, : if (z =0) goto L3
- z:=2z-1 0 15 1
y=y+l X y z
goto [,
L3:
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Minského stroj

P¥i¢teni obsahu &itate z k &itadi y (a vynulovani &itale z):

L, : if (z =0) goto L3
z:=z-1 0 15 O
—> yi=y+1 X y z
goto [,

L3:
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Minského stroj

P¥i¢teni obsahu &itate z k &itadi y (a vynulovani &itale z):

L, : if (z =0) goto L3
z:=z-1 0 16 0
y=y+l1 X y z
—> goto [,

L3:
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Minského stroj

P¥i¢teni obsahu &itate z k &itadi y (a vynulovani &itale z):

> [,:if (z=0) goto L3
z:=z-1 0 16 0
y=y+l1 X y z
goto [,

L3:
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Minského stroj

P¥i¢teni obsahu &itate z k &itadi y (a vynulovani &itale z):

L, : if (z =0) goto L3
z:=z-1 0 16 0
yi=y+l X y z
goto [,
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Minského stroj

Vyndsobeni hodnoty &itade x &islem 5:

Ly :if (x =0) goto L,
x =x-1
yi=y+l
yi=y+1
yi=y+1
yi=y+1
yi=y+1
goto L,

Ly :if (y = 0) goto L3
yi=y-1
x =x+1
goto L,

Ly:

Z. Sawa (VSB-TUO)
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Minského stroj

Vydéleni hodnoty &itace x &islem 5 a zjisténi zbytku po déleni:

L]_I

if (x =0) goto M,
x=x-1

if (x =0) goto M,
xi=x-1

if (x =0) goto M,
x:=x-1

if (x =0) goto M3
x=x-1

if (x =0) goto M,
xi=x-1
yi=y+1
goto [,

Z. Sawa (VSB-TUO)
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Minského stroj

Zasobnik je mozné simulovat pomoci dvou &itaéli — hodnota jednoho
Citale reprezentuje obsah zasobniku jako &islo, jehoZ zéapis v &iselné
soustavé o zakladu k = || + 1 (kde I je zdsobnikovd abeceda) odpovida
obsahu zdsobniku.

@ Symbol na vrcholu zasobniku — zbytek po déleni &islem k
o Pop — vydélit &islem k

@ Push — vynasobit &islem k a pfidist kod prislusného symbolu

Druhy ¢&ita€ slouzi jako pomocny pfi provadéni vySe uvedenych operaci.
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Minského stroj

Ptiklad:

ae—1
b« 2
ce3
d—14
e 5
f—6
g7
h« 38
ie—9

[#]c]efalc]a]n]p]

63513182

Z. Sawa (VSB-TUO)
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Minského stroj

Ptiklad:

ae—1
b« 2
ce3
d—14
e 5
f—6
g7
h« 38
ie—9

[#]e]efalc]a]n]b]a]

635131821

Z. Sawa (VSB-TUO)
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Minského stroj

Ptiklad:

ae—1
b« 2
ce3
d—14
e 5
f—6
g7
h« 38
ie—9

[#]c]efalc]a]n]p]

63513182

Z. Sawa (VSB-TUO)
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Minského stroj

Ptiklad:

ae—1
b« 2
ce3
d—14
e 5
f—6
g7
h« 38
ie—9

[#lc]efalc]a]n]

6351318

Z. Sawa (VSB-TUO)
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Minského stroj

Ptiklad:

ae—1
b« 2
ce3
d—14
e 5
f—6
g7
h« 38
ie—9

[£]ec]efele]2]

635131

Z. Sawa (VSB-TUO)
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P¥ipomeiime, Ze oboustranné nekoneénou pasku je moZné simulovat
pomoci dvou zasobniki.

V Minského stroji miZe byt obsah kaZdého z téchto zasobniki
reprezentovan jemu odpovidajicim &itaem.

Navic potfebujeme jesté jeden pomocny ¢&ital pro implementaci operaci

nasobeni a déleni na téchto &italich reprezentujicich obsahy zdsobniki.

Vidime, Ze Turinglv stroj s k paskami je mozné simulovat Minského
strojem s 2k + 1 ¢&itadi.
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Minského stroj

N

Libovolny konegny podet &italli je mozné simulovat pomoci dvou &ita&i.

@ Jeden &itat (oznatme jej C) reprezentuje hodnoty viech &itada —
napf. hodnoty t¥i &itakd x, y, z mohou byt v &ita&i C reprezentovany
. Ny XAYpZ
jako ¢&islo 27375".

@ Druhy ¢&itat je pouZivan jako pomocny pfi provadéni operaci nasobeni
a déleni na ¢itadi C.

o P¥itteni jednitky k &itaci x je simulovano jako vynasobeni &itate C
hodnotou 2, pFic¢teni jedni¢ky k &itadi y jako vyndsobeni
hodnotou 3, atd.

@ Analogicky je odecteni jedni¢ky od &itate x simulovdno pomoci

vydéleni &itate C hodnotou 2, odeéteni jedni¢ky od &itale y
vydélenim hodnotou 3, atd.

@ Test podminky x = 0 odpovida testu, zda je hodnota C délitelna
dvémi, atd.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 314 /674



Minského stroj

Vidime, Ze &innost libovolného Turingova stroje je moZné simulovat
Minského strojem s dvéma ¢&itadi.

Tato simulace je v8ak mimo¥adné neefektivni:

o Uz simulace pédsky Turingova stroje pomoci tfi &itacli vyZaduje
exponencialné vétsi polet krokd, neZ kolik by jich vykonal tento
Turingiiv stroj.

@ Simulace &innosti téchto t¥i ¢itacd pomoci dvou &itadd tento pocet
krok(i dale exponencidlné zvysuje.
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Stroje RAM
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Stroj RAM

Stroj RAM (Random Access Machine) je idealizovany model potitace.

Sklad3a se z té&chto &astf:

@ Programova jednotka — obsahuje program stroje RAM a ukazatel na
pravé provadénou instrukci

e Pracovni pamét tvorend butikami o&islovanymi 0,1,2, ...
Tyto buriky buiiky budeme oznadovat Ry, Ry, R, . ..

Obsah bun&k je moZno &ist i do nich zapisovat.
@ Vstupni paska — je z ni moZné pouze &ist
@ Vystupni paska — je na ni mozno pouze zapisovat

Buiiky paméti i vstupni a vystupni pasky obsahuji jako hodnoty celd &isla
(tj. prvky mnoZziny Z).
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programova
jednotka

Ry =3

R1 == Ry

Ry := READ ()

if (R> = 0) goto 10

[Ri] = R

Ry =R +1

goto 2

Ry =R -1

R = [Ri]

o|lo|N|lo(a(d|lw]|N (P |[o

WRITE (Rp)

=
o

if (R1 > Ro) goto 7

halt

-
[

Z. Sawa (VSB-TUO)

vstup

7[sl2fo] [ |

vystup

Uvod do teoretické informatiky

pracovni
pamét

oOjlo|lojlojlo|lo|o|oO| O
IS
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Stroj RAM

P¥ehled instrukci:

R = ¢ — ptirazeni konstanty

Ri = R; — pfifazenfi

R = [R;] — load (&teni z paméti)

[Ri] =R, — store (zépis do paméti)

R; := R; op Ry — aritmetické instrukce, op € {+, —, *, [}
nebo R; := Rjopc

if (R; rel R;) goto ¢ — podmin&ny skok, rel € {=, #, =, 2, <,>}
nebo if (R; rel c) goto ¢

goto / — nepodminény skok

R; := READ () — &teni ze vstupu

WRITE (R;) — zapis na vystup

halt — zastaveni programu
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Z. Sawa (VSB-TUO)

Rs := 42

R = R3

Rg := [R:]
[Ris] := Ry
R; := R3 + Rg
Rig = Rig—1

if (R, = Ry) goto 2801
if (R, # 0) goto 3581
goto 537

Ry3 := READ ()

WRITE (Ry7)

halt

Uvod do teoretické informatiky

— pFifazeni konstanty
— ptirazeni

— load (&teni z paméti)
— store (zapis do paméti)
— aritmeticka instrukce
— aritmetickd instrukce
— podminény skok

— podminény skok

— nepodminény skok

— Cteni ze vstupu

— z4apis na vystup

— zastaveni programu

11. dnora 2026
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Stroj RAM

0
R =Ry

: Ry := READ () 2
if (R, = 0) goto L3 3
[Ri] := R, 4
Ry := R +1 5
goto [, 6
R, :i= R —1 .
Ry := [Ri] 8

WRITE (R,)
Lif (Ry > Ry) goto Ly ’
TTITIIT1™
Output 1

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky
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Stroj RAM

0
R =Ry

: Ry := READ () 2
if (R, = 0) goto L3 3
[Ri] := R, 4
Ry := R +1 5
goto [, 6
R, :i= R —1 .
Ry := [Ri] 8

WRITE (R,)
Lif (Ry > Ry) goto Ly ’
TTITIIT1™
Output 1

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky
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321/ 674



Stroj RAM

0
Rl = RO )
: Ry := READ ()
if (R, =0) goto L 3
[R1] = R 4
Rl = Rl +1 5
goto L, 6
Ry := R -1 7
Ry := [Ri] 8
WRITE (R,)
Lif (Ry > Ry) goto Ly ’
TTTTIIT®
Output 1

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
R =Ry
: Ry := READ () 2] 13
if (R, = 0) goto L; 3 °?
[Ri] = R, 4. 7
R = R +1 5 7
goto [, 61 2
R, := R —1 e
Ry := [Ri] sl 2
WRITE (R»)
1 if (Ry > Ry) goto L, oL 7
TTTTTIT
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
R =Ry
: Ry := READ () 2] 13
if (R, = 0) goto L; 3 °?
[Ri] = R, 4. 7
R := R +1 5 7
goto [, 61 2
R, := R —1 e
Ry := [Ri] sl 2
WRITE (R»)
1 if (Ry > Ry) goto L, oL 7
TTTTTIT
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
R =Ry
: Ry := READ () 2] 13
if (R, = 0) goto L; 313
[Ri] = R, 4. 7
R := R +1 5 7
goto [, 61 2
R, := R —1 e
Ry := [Ri] sl 2
WRITE (R»)
1 if (Ry > Ry) goto L, oL 7
TTTTTIT
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0 3

Ry = Ry
: Ry := READ () 2 (8
if (R, = 0) goto L; 313
[Ri] := R, 41"
R = R +1 5 7
goto L, 6| ?
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
1| 7

Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0 3

Ry = Ry
: Ry := READ () 2 (8
if (R, = 0) goto L; 313
[Ri] := R, 41"
R = R +1 5 7
goto L, 6| ?
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
1| 7

Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0 3

Ry = Ry
: Ry := READ () 2| 2
if (R, = 0) goto L; 313
[Ri] := R, 41"
R = R +1 5 7
goto L, 6| ?
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
1| 7

Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0 3

Ry = Ry
: Ry := READ () 2| 2
if (R, = 0) goto L; 313
[R1] :== R, 41"
R := R +1 5 7
goto L, 6| ?
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
1| 7

Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0 3
R =Ry
: Ry := READ () 2] 2
if (R, = 0) goto L; 313
[Ri] = R, 4 2
R := R +1 5 7
goto [, 61 2
R, := R —1 e
Ry := [Ri] sl 2
WRITE (R»)
1 if (Ry > Ry) goto L, oL 7
TTTTTIT
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
R =Ry
: Ry := READ () 2] 2
if (R, = 0) goto L; 313
[Ri] = R, 4 2
R = R +1 5 7
goto [, 61 2
R, := R —1 e
Ry := [Ri] sl 2
WRITE (R»)
1 if (Ry > Ry) goto L, oL 7
TTTTTIT
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
R =Ry
: Ry := READ () 2] 2
if (R, = 0) goto L; 313
[Ri] = R, 4 2
R = R +1 5 7
goto [, 61 2
R, := R —1 e
Ry := [Ri] sl 2
WRITE (R»)
1 if (Ry > Ry) goto L, oL 7
TTTTTIT
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
R =Ry
: Ry := READ () 2| 42
if (R, = 0) goto L; 313
[Ri] = R, 4 2
R = R +1 5 7
goto [, 61 2
R, := R —1 e
Ry := [Ri] sl 2
WRITE (R»)
1 if (Ry > Ry) goto L, oL 7
TTTTTIT
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
R =Ry
: Ry := READ () 2| 42
if (R, = 0) goto L; 313
[Ri] = R, 4 2
R := R +1 5 7
goto [, 61 2
R, := R —1 e
Ry := [Ri] sl 2
WRITE (R»)
1 if (Ry > Ry) goto L, oL 7
TTTTTIT
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
: Ry := READ () 2| 42
if (R, = 0) goto L; 313
[R1] = R 4] 2
R := R +1 5| 42
goto L, 6| ?
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTTIIT ™"
1| 7
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
: Ry := READ () 2| 42
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto L, 6| ?
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTTIIT ™"
1| 7
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
: Ry := READ () 2| 42
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto L, 6| ?
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTTIIT ™"
1| 7
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
: Ry := READ () 2| 5
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto L, 6| ?
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTTIIT ™"
1| 7
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
: Ry := READ () 2| 5
if (R, = 0) goto L; 313
[R1] == R 4] 2
R := R +1 5| 42
goto L, 6| ?
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTTIIT ™"
1| 7
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
: Ry := READ () 2| 5
if (R, = 0) goto L; 313
[R1] = R 4] 2
R := R +1 5| 42
goto [, 6
R, :i= R —1 N
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
: Ry := READ () 2
if (R, = 0) goto L; 313
[R1] := R 4] 2
R = R +1 5| 42
goto [, 6
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTITTT
m| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
: Ry := READ () 2
if (R, = 0) goto L; 313
[R1] := R 4] 2
R = R +1 5| 42
goto [, 6
Ry := R —1 e
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTITTT
m| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
: Ry := READ () 2 [k
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto [, 6
R, :i= R —1 N
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
: Ry := READ () 2 [k
if (R, = 0) goto L; 313
[R1] == R 4] 2
R := R +1 5| 42
goto [, 6
R, :i= R —1 N
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
1| ?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0

Ry = Ry
: Ry := READ () 2 [k
if (R, = 0) goto L; 313
[R1] = R 4] 2
R := R +1 5| 42
goto [ 6| 5
Rii= R -1 71 17
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
Output mpe

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0

Ry = Ry
: Ry := READ () 2 [k
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto [ 6| 5
Rii= R -1 71 17
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
Output mpe

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0

Ry = Ry
: Ry := READ () 2 [k
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto [ 6| 5
Rii= R -1 71 17
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
Output mpe

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry

: Ry := READ () 2
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto [ 6| 5
Rii= R -1 71 17
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
Output mpe

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry

: Ry := READ () 2
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto [ 6| 5
Rii= R -1 71 17
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
Output mpe

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry

: Ry := READ () 2
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto [ 6| 5
Rii= R -1 71 17
Ry = [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
Output mpe

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry

: Ry := READ () 2
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto [ 6| 5
Rii= R -1 71 17
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
Output mpe

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0

Ry = Ry
: Ry := READ () 2 [k
if (R, = 0) goto L; 313
[R1] = R 4] 2
R = R +1 5| 42
goto [ 6| 5
Rii= R -1 71 17
Ry := [Ri] sl 2
WRITE (R,) ?
Lif (Ry > Ry) goto Ly o
TTTIIT "
Output mpe

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky

11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
L1 : R, :=READ () 2 17
if (R, = 0) goto L; 313
[R1] := R 4] 2
R = R +1 5| 42
goto [ 6| 5
lry: R == Ry —1 71 17
Ry := [Ri] sl 2
WRITE (R,) ?
—  L3:if (R, > Ry) goto Ly N 9
halt 2 I O I
1| 7
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
L1 : R, :=READ () 2 17
if (R, = 0) goto L; 313
[R1] := R 4] 2
R = R +1 5| 42
goto [ 6| 5
> LiRi=R-1 71 17
Ry := [Ri] sl 2
WRITE (R,) ?
Ly :if (R, > Ry) goto Ly N 9
halt 2 I O I
1| 7
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
L1 : R, :=READ () 2 17
if (R, = 0) goto L; 313
[R1] := R 4] 2
R = R +1 5| 42
goto [ 6| 5
lry: R == Ry —1 71 17
—> Ry := [Ri] sl 2
WRITE (R,) ?
Ly :if (R, > Ry) goto Ly N 9
halt 2 I O I
1| 7
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
L1 : R, :=READ () 21 5
if (R, = 0) goto L; 313
[R1] := R 4] 2
R = R +1 5| 42
goto [ 6| 5
lry: R == Ry —1 71 17
Ry := [Ri] sl 2
—> WRITE (R,) ?
Ly :if (R, > Ry) goto Ly N 9
halt 2 I O I
1| 7
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0

Rl = RO ) 5
L1 : R, :=READ ()

if (R, = 0) goto Ls 3] 13
[Ri] := R, 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
L2 Rl = Rl -1 7 17
WRITE (R,) ?
—  L3:if (R, > Ry) goto Ly N 9
0] ?
@ T TTT °
Output i

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0

Rl = RO ) 5

L1 : R, :=READ ()
if (R, = 0) goto Ls 3] 13
[R1] = R 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
> LiRi=R-1 71 17
WRITE (R,) ?
Ly :if (R, > Ry) goto Ly N 12 .
@[T TTT
Output i

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry
L1 : R, :=READ () 21 5
if (R, = 0) goto L; 313
[R1] := R 4] 2
R = R +1 5| 42
goto [ 6| 5
lry: R == Ry —1 71 17
—> Ry := [Ri] sl 2
WRITE (R,) ?
Ly :if (R, > Ry) goto Ly N 9
halt s TT 1T °
1| 7
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0

Rl = RO ) 42

L1 : R, :=READ ()
if (R, = 0) goto Ls 3] 13
[Ri] := R, 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
L2 Rl = Rl -1 7 17
—> WRITE (R,) ?
Ly :if (R, > Ry) goto Ly N 12 .
@ T TTT °
Output i

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0

Rl = RO ) 42

L1 : R, :=READ ()
if (R, = 0) goto Ls 3] 13
[R1] = R 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
L2 Rl = Rl -1 7 17
WRITE (R,) ?
—  L3:if (R, > Ry) goto Ly N 9
halt [i7]sfae] T T [ "7
?
Output i

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0

Rl = RO ) 42

L1 : R, :=READ ()
if (R, = 0) goto Ls 3] 13
[R1] = R 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
> LiRi=R-1 71 17
WRITE (R,) ?
Ly :if (R, > Ry) goto Ly N ’ .
halt r]sfa] [ | [ ™1
?
Output i

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0 3
fu = Fo 2 | 42

L1 : R, :=READ ()
if (R, =0) goto L3 3| 13
[Ri] = Ro 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
L2 Rl = Rl -1 7 17
—p R2 = [Rl] 8 2
WRITE (R,) o [
L3 if (Rl > Ro) goto L2 o ?
halt r]sfa] [ | [ ™1
?
Output i

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0 3
Rl = RO

Ly : Ry :=READ () 2] 2
i = 3| 13

if (R, =0) goto L3
[Ri] := R, 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
L2 Rl = Rl -1 7 17
—> WRITE (R,) ?
Ly :if (R, > Ry) goto Ly N ’ .
halt r]sfa] [ | [ ™1
?

Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0 3
Rl = RO

Ly : Ry :=READ () 2] 2
i = 3| 13

if (R, =0) goto L3
[Ri] := R, 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
L2 Rl = Rl -1 7 17
WRITE (R,) ?
—  L3:if (R, > Ry) goto Ly N 9
halt (7]sfaf2] [ [ "7
?

Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0 3
Rl = RO

Ly : Ry :=READ () 2] 2
: - 3| 13

if (R, =0) goto L3
[Ri] := R, 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
> LiRi=R-1 7| 17
WRITE (R,) o [
L3 if (Rl > Ro) goto L2 o ?
halt [17]saz]-2] | | ™|
?

Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0
Rl = RO
Ly : Ry :=READ () 2] 2
i = 3| 13
if (R, =0) goto L3
[Ri] := R, 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
L2 Rl = Rl -1 7 17
WRITE (R,) ?
Ly :if (R, > Ry) goto Ly N ’ .
halt [17]saz]-2] | | ™|
?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0
Rl = RO
L1 : R, :=READ () 2] 13
if (R, =0) goto L3 3| 13
[R1] = R 4] 2
Rl = Rl +1 5 42
goto L, 6| 5
L2 Rl = Rl -1 7 17
—> WRITE (R,) ?
Ly :if (R, > Ry) goto Ly N 9
0| ?
halt 117 5 |a2|-2] | |
?
Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry

L1 : R, :=READ () 2] 13
if (R, = 0) goto L; 313
[Ri] := R, 4] 2
R = R +1 5| 42
goto [ 6| 5
lry: R == Ry —1 71 17
Ry = [Ri] sl 2
WRITE (R,) ?
—  L3:if (R, > Ry) goto Ly 9
halt \17|5|42|—2|13|AW 0] *
m| 2

Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Stroj RAM

0
Ry = Ry

L1 : R, :=READ () 2] 13
if (R, = 0) goto L; 313
[Ri] := R, 4] 2
R = R +1 5| 42
goto [ 6| 5
lry: R == Ry —1 71 17
Ry = [Ri] sl 2
WRITE (R,) ?
Ly :if (R, > Ry) goto Ly 9
— halt \17|5|42|—2|13|AW 0] *
m| 2

Output

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026

321/ 674



Rozdily oproti skute¢nému poditadi:
@ Velikost paméti neni omezena (adresa miize byt libovolné pfirozené
&islo).
@ Velikost obsahu jednotlivych bun&k neni omezena (buitka mize

obsahovat libovolné celé &islo).

o Cte data sekvenéné ze vstupu, ktery je tvofen sekvenci celych &isel.
Ze vstupu lze pouze &ist.

@ Zapisuje data sekven&né na vystup, ktery je tvoten sekvenci celych
¢isel. Na vystup je moZné pouze zapisovat.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 322 /674



Stroj RAM

@ Operace jako pfistup k butice pamé&ti na adrese men3i neZ nula nebo
dé&leni nulou vedou k chyb& — vypolet se (nelspéiné) zastavi.

o Co se tyka po&atetniho obsahu paméti, jsou dvé& moZznosti, jak ho
definovat:
e V3echny buriky jsou inicializovany hodnotou 0.
o Cteni obsahu buiiky, do které nebylo dosud nic zapsano, zpiisobi chybu.

Buiiky na zatatku obsahuji specidlni hodnotu (ozna&enou zde
symbolem ‘?7"), kterd reprezentuje to, Ze buiika nebyla dosud
inicializovana.

o UvaZuji se i varianty stroji RAM, kde buitky paméti (a vstupu
a vystupu) neobsahuji celd &isla (tj. prvky mnoZiny Z), ale mohou
obsahovat jen pfirozend &isla (tj. prvky mnoZiny N).
Naptiklad operace od¢itani (R; := R; — Ry) se pak chova tak, Ze
pokud by vysledkem mélo byt zaporné &islo, je jako vysledek operace
pfitazena hodnota 0.
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Stroj RAM

@ Rizné varianty stroji RAM se mohou liSit tim, jaké konkrétni operace
v aritmetickych instrukcich podporuji nebo naopak nepodporuji.
Napf¥iklad:

e podpora bitovych operaci (and, or, not, xor, ...), bitovy posund, ...

e varianta stroje RAM, kterd nem3d operace nasobeni a délen{

@ Mohli bychom také uvaZovat variantu stroje RAM, kde misto instrukci

tvaru
if (R; rel R;) goto ¢ nebo if (R; rel c) goto ¢

jsou v8echny podmin&né skoky jen tvaru
if (R; rel 0) goto /¢

Misto v&ech relaci {=, #, <, =2, <, >} miiZe byt podporovdna jen n&jak4
podmnoZina z nich, nap¥. {=,>}.
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Stroj RAM

@ V nékterych variantdch stroje RAM nemaji vstup a vystup podobu
sekvence disel.

Misto toho pracuje stroj z hlediska vstupu a vystupu s paskami
obsahujicimi sekvence symboli z n&jaké dané abecedy, nap¥. {0, 1}.

Stroj ma pak napftiklad instrukce, které mu umoZiiuji v&tvit vypotet
podle symbolu ptetteného ze vstupu.

Vniténi pamé&t ovdem i v této variant& pracuje s &isly.

@ Pokud m3 stroj jako vysledek davat jen odpovéd Ano/Ne (t]. p¥ijmout
nebo nepfijmout dany vstup), nemusi mit vystupni pasku.

Instrukce halt je pak nahrazena instrukcemi accept a reject.
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Stroj RAM

@ Ve standardni definici stroje RAM se v&tSinou neuvaZuji instrukce
skoku na adresu instrukce uloZenou v buiice paméti, tj. instrukce typu

goto R;

Stroj RAM bychom mohli roz&i¥it o tento druh instrukci.

@ Jako standardni se u stroje RAM bere to, Ze kéd programu nenf
uloZen v pracovni paméti, ale ma zvldétni samostatnou pamét, kterd
je jen pro Cteni.

V pribéhu vypoctu se tedy kéd programu nemize ménit.
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Stroj RASP

@ Druh stroje podobny stroji RAM, kde je ovSem program ulozen
v pracovni paméti (instrukce jsou kédovany &isly) a je mozné ho
prab&hu vypo&tu ménit, se oznaluje jako stroj RASP
(random-access stored program).

Stroj RASP tak umoZiiuje provadét Cinnost sebemodifikujicich se
program.
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Turingdv stroj simulujici ¢innost stroje RAM

Neni tézké si rozmyslet, Ze ¢innost libovolného Turingova stroje je mozné
simulovat pomoci stroje RAM.

Promyslet si, Ze i naopak &innost kaZdého stroje RAM je moZné simulovat
Turingovym strojem, je o néco komplikovangjsi.

P¥i popisu toho, jak simulovat &innost stroje RAM pomoci Turingova
stroje, budeme postupovat po mensich krocich:

o UkdZeme, jak Cinnost stroje RAM ve variant&, kterou jsme si popsali,
simulovat variantou stroje RAM s ponékud jednodusdimi instrukcemi.

o UkdZeme, jak ¢Cinnost této jednodussi varianty stroje RAM simulovat
vicepaskovym Turingovym strojem.

o Uz dFive jsme vidéli, jak &innosti vicepaskového Turingovat stroje
simulovat pomoci jednopdskového Turingovat stroje.
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Jednodussi varianta stroje RAM

Tato jednodussi varianta stroje RAM bude mit kromé& pracovni paméti t¥i
registry:

o registr A — témé&¥ vSechny instrukce pracuji s timto registrem,
vysledky v&ech operaci se uklddaji do tohoto registru

Poznamka: Tento druh registru se ¢asto oznaluje jako akumulator.

o registr B — tento registr slouZi k uloZeni druhého operandu pro
aritmetické instrukce (prvni operand je vzdy v akumuldtoru)

o registr C — tento registr slouZi k uloZeni adresy, na kterou bude
zapisovat instrukce store
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Jednodussi varianta stroje RAM

P¥ehled instrukei:

A:=c — pFifazeni konstanty

B:=A — prifazeni do registru B

C:=A — p¥ifazeni do registru C

A= [A] — load (&teni z paméti)

[C]:=A — store (zapis do pamé&ti)

A:=AopB — aritmetické instrukce, op € {+, —, *, [}
if (A rel0) goto / - podmin&ny skok, rel € {=,#, =, <,>}
goto / — nepodminény skok

A := READ () — &teni ze vstupu

WRITE (A) — z4apis na vystup

halt — zastaveni programu
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Jednodussi varianta stroje RAM

Naptiklad instrukce

R7 = R3+R6

muize byt nahrazena posloupnosti instrukci:

A:=7
C:=A
A:=6
A := [A]
B:=A
A:=3
A := [A]
A:=A+B
[C]:= A
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Jednodussi varianta stroje RAM

Naptiklad instrukce

[Ris] := Ry

muize byt nahrazena posloupnosti instrukci:

Il
—_
(6;]

(D
I
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Jednodussi varianta stroje RAM

Naptiklad instrukce

if (R4 = Ry1) goto /¢

muize byt nahrazena posloupnosti instrukci:

=11

= [A]

= A

=4

= [A]

= A-B
(A=0) goto ¢

> > > T > >

=
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Turingtv stroj simulujici ¢innost stroje RAM

Turingiiv stroj pracuje se slovy nad né&jakou abecedou, zatimco stroj RAM
s &isly. Cisla ale miZeme zapisovat jako sekvence symbolli a naopak
symboly néjaké abecedy miZeme zapisovat jako &isla.

Naptiklad nasledujici vstup stroje RAM

muize byt v pfipadé Turingova stroje reprezentovan jako

[#[e]o]s]e[e]s]ofs]e]-[a]s][#]o]#]1]1]o]#]

Z. Sawa (VSB-TUO)
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Turingdv stroj simulujici ¢innost stroje RAM

Turingtiv stroj simulujici ¢innost stroje RAM bude mit nékolik pasek:

@ Pasku, na které bude uloZen obsah pracovni paméti stroje RAM.

T¥i pasky, na kterych budou uloZeny hodnoty registri A, B a C.

(Hodnoty registri A, B a C budou na téchto paskach zapsany bindrng
bez vedoucich nul a zleva a zprava budou ohraniteny symboly #.)

Pdasku reprezentujici vstupni pasku stroje RAM.

Pésku reprezentujici vystupni pasku stroje RAM.

Jednu pomocnou pésku pouzivanou pfi implementaci simulace
jednotlivych instrukci.
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Turingtv stroj simulujici ¢innost stroje RAM

Turingtiv stroj si bude v Fidici jednotce pamatovat, kterd instrukce stroje
RAM se pravé provadi.
Provedeni vé&tsiny instrukci nenfi slozité:

e A:=c

zapiSe jednotlivé bity konstanty ¢ na pasku registru A

@ B := Anebo C := A
zkopiruje obsah pasky registru A na pasku registru B nebo C

@ goto /

s

zméni se jen stav Fidici jednotky Turingova stroje

o if (A rel 0) goto /, kde rel € {=,#,<,2,<,>}

snadno se otestuje obsah registru A a podle vysledku se zmé&ni stav
Fidici jednotky Turingova stroje
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Turingtv stroj simulujici ¢innost stroje RAM

e A:=READ ()

zkopirovani hodnoty (ohranitené znaky “#") ze vstupni pasky na
pasku registru A

@ WRITE (A)

zkopirovani hodnoty registru A na vystupni pasku.

o halt

vypodlet se zastavi
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Turingtv stroj simulujici ¢innost stroje RAM

Také aritmetické instrukce jsou pomérné jednoduché, i kdyZ o néco
sloZit&jsi nez predchozi instrukce:

o A:= AopB, kde op € {+,—, %, /}

P¥islusnou operaci (nap¥. s¢itani nebo od&itani) provede Turinglv
stroj bit po bitu, vysledek je ukladan do registru A.

Poznamka: Nasobeni a déleni je mozné realizovat pomoci série s¢itani,
odd¢itani a bitovych posund.

P¥i implementaci nasobeni a déleni miZe byt potfeba pouZit pomocnou
pasku k ukladani mezivysledkd.
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Turingdv stroj simulujici ¢innost stroje RAM

Asi nejsloZitéjsi je realizace pracovni paméti stroje RAM.

Jednou z moZnosti je pamatovat si jen obsah t&ch bunék, se kterymi stroj
RAM v prib&hu své &innosti nékdy pracoval.

Ptiklad: Stroj RAM zatim pracoval jen s burikami 2, 3 a 6:
@ Burika 2 obsahuje hodnotu 11.
@ Buiika 3 obsahuje hodnotu —1.
o Burtika 6 obsahuje hodnotu 2.

Obsah pasky Turingova stroje reprezentujici buiiky pamé&ti stroje RAM
bude nasledujici:

sl fol= o lela = ele]= =]t ]o] -] o]#]s]
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Turingtv stroj simulujici ¢innost stroje RAM

Instrukce load, tj. A := [A]:

@ Turingiv stroj bude hledat pFislusnou adresu uloZenou v registru A na
pasce reprezentujici obsah paméti stroje RAM.
(Pokud ji nenajdeme, p¥ida ji na konec, s tim, Ze obsahuje hodnotu 0.)

@ P¥isludnou hodnotu zkopituje na pasku registru A.
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Turingtv stroj simulujici ¢innost stroje RAM

Instrukce store, tj. [C] := A:

@ Podobné jako u instrukce load se najde pfislusné misto na pdsce
reprezentujici pracovni pamé&t, kde se nachdzi obsah bufky, jejiz
adresa je v registru C.

@ Zbytek pasky s obsahem paméti stroje RAM se zkopiruje na
pomocnou pasku.

@ Na pfislusné misto se zkopiruje obsah pasky registru A.

o Zbytek pasky, ktery byl zkopirovdn na pomocnou pasku, se zkopiruje
zp&t (za nov& zapsanou hodnotu).
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Algoritmy
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Pseudokdd

Algoritmy vétSinou nebudeme zapisovat jako programy pro stroj RAM, ale
spise jako programy v néjakém vyssim programovacim jazyce.

Nebudeme se vazat na néjaky konkrétni programovaci jazyk.

Programy budeme zapisovat pomoci pseudokddu, jehoZ syntaxi si

budeme libovoln& pfizplsobovat podle pot¥eby (nap¥. pouZiti libovolné
matematické notace, slovnich popist, apod.).

Ptiklad:

Algoritmus: Algoritmus pro nalezeni nejvétsiho prvku v poli

FIND-MAX (A, n):
k:=0
fori:=1ton—-1do
L if A[i]> A[k] then
| k=i

return Al k]
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Algoritmy

Pozndmka:
Z hlediska analyzy toho, jak dany algoritmus funguje, vétSinou neni p¥ili§
podstatny rozdil v tom, jestli algoritmus:

@ (te vstupni data z n&jakého vstupniho zafizeni (nap¥. ze souboru na
disku, z klavesnice, apod.)

@ zapisuje data na n&jaké vystupni za¥izeni (nap¥. do souboru, na
obrazovku, apod.)

nebo
@ (te vstupni data z pamé&ti (nap¥. jsou mu predany jako parametry)

@ zapisuje data na do paméti (nap¥. je vrati jako ndvratovou hodnotu)

V pseudokdédu tak tedy vétSinou budou vstupni data preddvana jako
argumenty dané funkce a vystup bude pfedstavovan navratovou hodnotou
této funkce.
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Ridici tok

Instrukce Ize zhruba rozdélit na dvé skupiny:
@ instrukce p¥imo pracujici s daty:
e pfifazeni

e vyhodnoceni hodnot vyrazi v podminkdach
e Ctenf vstupu, zapis na vystup
o

@ instrukce ovlivitujici Fidici tok — ur&uji, které instrukce se budou
provadét, v jakém poradi, apod.:

vétven/ (if, switch, ...)

cykly (while, do .. while, for, ...)

usporadani instrukci do bloki

ndvraty z podpogrami (return, ...)
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Graf Fidiciho toku

i=i+1
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Nékteré zakladni konstrukce strukturovaného programovani

(8] \[-B]
Q
o
if B then 5; else S, if B then S
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Nékteré zakladni konstrukce strukturovaného programovani

Q
[-B
@)
[B]
[-B]
©
while B do S do S while B

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 346 / 674



Nékteré zakladni konstrukce strukturovaného programovani

i:=a
while / <= b do
S
=il it=i+l

fori:=atobdo S
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Nékteré zakladni konstrukce strukturovaného programovani

Zkracené vyhodnocovani slozenych podminek, napt.:

while i < nand A[i]> x do ...

if B; and B, then S; else 5, if B; or B, then S; else 5,
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Ridici tok realizovany pomoci goto

@ goto / — nepodminény skok
o if B then goto / — podminény skok

Ptiklad:

k:=0

=1

goto 6

if A[i] < A[k] then goto 5
k=i

it=i+1

if i < n then goto 3
return Al k]

NSRS
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Ridici tok realizovany pomoci goto

@ goto / — nepodminény skok
o if B then goto / — podminény skok

P¥iklad:
start: k:=0
=1
goto L3
L1: if A[i] = A[k] then goto L2
k=i
L2: j:=i+1

L3: if i < n then goto LI
return Al k]
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Vyhodnoceni sloZitych vyrazii

Vyhodnoceni sloZitého vyrazu, jako t¥eba

Ali+s]:=(B[3*j+1]+x)*y+38

v/

jako tfeba

tii=i+s

tr = 3*]

bhi=th+1
t3 := B[t;]
t3 :=1t3 +Xx
tzi=t3%y
t3:=t3+8
Alt]:=1t3
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Vypocet algoritmu

Konfigurace — popis celkového stavu stroje v néjakém okamziku bé&hem
vypo&tu

P¥iklad: Konfigurace tvaru

(g, mem)

kde
@ g — aktudlni Fidici stav

@ mem — predstavuje aktudlni obsah paméti stroje — jaké hodnoty
jsou momentaln& pt¥ifazeny jednotlivym promé&nnym.

P¥iklad obsahu paméti mem:

(A:[3,8,1,3,6], nm:5, i1, k:0, result:?)

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026

351/ 674



Vypocet algoritmu

P¥iklad konfigurace:

(2, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))

Vypocet stroje M provadéjiciho algoritmus Alg, kde zpracovava vstup w,
je posloupnost konfiguraci.

@ Zalina se v pocatecni konfiguraci.

o Kazdym krokem stroj pfechazi z jedné konfigurace do dalsi.

@ Vypoclet kon&i v koncové konfiguraci.
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Vypocet algoritmu

i=i+1
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Vypocet algoritmu

P¥iklad: Vypocet, kde algoritmus FIND-MAX zpracovava vstup, kde
A=[3,8,1,3,6]an=5.
ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
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Vypocet algoritmu

P¥iklad: Vypocet, kde algoritmus FIND-MAX zpracovava vstup, kde
A=[3,8,1,3,6]an=5.

ag: (0, (A:[3,8,1,3,6],

] , 0?7, ki 7?7, result: 7))
Qg (lr ( [37871 376]:

5
5, i:?, k0, result:?))
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Vypocet algoritmu

P¥iklad: Vypocet, kde algoritmus FIND-MAX zpracovava vstup, kde
A=[3,8,1,3,6]an=5.

ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
ag: (1, (A:[3,8,1,3,6], nm:5, i:?, k:0, result:?))
ar: (2, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
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Vypocet algoritmu

P¥iklad: Vypocet, kde algoritmus FIND-MAX zpracovava vstup, kde
A=[3,8,1,3,6]an=5.

ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
ag: (1, (A:[3,8,1,3,6], nm:5, i:?, k:0, result:?))
ar: (2, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
a3 (3, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
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Vypocet algoritmu

P¥iklad: Vypocet, kde algoritmus FIND-MAX zpracovava vstup, kde
A=[3,8,1,3,6]an=5.

ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
ag: (1, (A:[3,8,1,3,6], nm:5, i:?, k:0, result:?))
ar: (2, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
az: (3, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
ay: (4, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
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Vypocet algoritmu

P¥iklad: Vypocet, kde algoritmus FIND-MAX zpracovava vstup, kde
A=[3,8,1,3,6]an=5.

ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
ag: (1, (A:[3,8,1,3,6], nm:5, i:?, k:0, result:?))
ar: (2, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
az: (3, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
ay: (4, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
as: (5, (A:[3,8,1,3,6], n:5, i:1, k:1, result:?))
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Vypocet algoritmu

P¥iklad: Vypocet, kde algoritmus FIND-MAX zpracovava vstup, kde
A=[3,8,1,3,6]an=5.

ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
ag: (1, (A:[3,8,1,3,6], nm:5, i:?, k:0, result:?))
ar: (2, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
az: (3, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
ay: (4, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
as: (5, (A:[3,8,1,3,6], n:5, i:1, k:1, result:?))
ag: (2, (A:[3,8,1,3,6], n:5, i:2, k:1, result:?))
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Vypocet algoritmu

P¥iklad: Vypocet, kde algoritmus FIND-MAX zpracovava vstup, kde
A=[3,8,1,3,6]an=5.

ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
ag: (1, (A:[3,8,1,3,6], nm:5, i:?, k:0, result:?))
ar: (2, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
az: (3, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
ay: (4, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
as: (5, (A:[3,8,1,3,6], n:5, i:1, k:1, result:?))
ag: (2, (A:[3,8,1,3,6], n:5, i:2, k:1, result:?))
a7 (3, (A:[3,8,1,3,6], n:5, i:2, k:1, result:?))
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Vypocet algoritmu

Provedenim instrukce | se prejde z konfigurace a do konfigurace o

a— «
Vypolet miZe byt:
o Konecny:
Iy L b [ Iy le-2 le-1
Qo = Q1 T2 Qp T2 3 T Qg T 0t T O] T Oy

kde o, je bud koncové konfigurace nebo konfigurace, kde do%lo
k chyb& a neni mozné pokradovat
o Nekonecny:

Io I h I Iy
Qg 7> Q] 7> Qp —> Q3 /> Qg —>
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Vypocet algoritmu

Vypolet je mozné popsat dvéma rliznymi zplsoby:
@ jako posloupnost konfiguraci g, ag, as, . ..

@ jako posloupnost provedenych instrukei Iy, 1, b, . ..
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Churchova-Turingova teze

Z prechoziho by mélo byt jasné, Ze:

@ Program v libovolném programovacim jazyce je mozné prelozit do
podoby programu pro stroj RAM.

o Cinnost stroje RAM je mo¥né simulovat Turingovym strojem.

Cinost kazdého programu v n&jakém libovolném programovacim jazyce je
tedy mozné vykondvat Turingovym strojem.

Churchova-Turingova teze

KaZdy algoritmus je mozné realizovat néjakym Turingovym strojem.

Neni to véta, kterou by bylo mozno dokdzat v matematickém smyslu —
neni formalné definovano, co je to algoritmus.

Tezi formulovali nezavisle na sobé v poloviné 30. let 20. stoleti Alan Turing

a Alonzo Church.
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Churchova-Turingova teze

P¥iklady matematickych formalism( zachycujicich pojem algoritmus:

Turingovy stroje
stroje RAM
lambda kalkulus

rekurzivni funkce

Dale miZeme uvést:

e Libovolny (obecny) programovaci jazyk (jako nap¥. C, Java, Python,
Lisp, Haskell, Prolog apod.).

VSechny tyto modely jsou ekvivalentni z hlediska algoritm, které jsou
schopny realizovat.
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Dokazovani korektnosti algoritmi
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Korektnost algoritmu

Algoritmy slouZi k feSeni problémi.

@ Problém — specifikace toho, co ma algoritmus délat:
e Popis vstupu
e Popis vystupu
o Vztah mezi vstupy a vystupy

o Algoritmus — konkrétni postup, jak pFi vypoltu postupovat

Algoritmus je korektnim ¥eSenim daného problému, jestlize se pro viechny
vstupy zastavi a vyda spravny vysledek.

P¥iklad:
Problém: Problém tfidéni
Algoritmus: Quicksort
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Korektnost algoritmu

Ptiklad:

Problém nalezeni maximalniho prvku v poli:

Vstup: Pole A indexované od nuly a &islo n udavajici poéet prvki
v tomto poli, pficemz se predpoklddd, ze n = 1.

Vystup: Hodnota result, kterd je hodnotou maximalniho prvku
v poli A, tj. hodnota result, pro kterou plati:
e A[j] = result pro véechna j €N, kde 0 <j < n, a

e existuje j € N takové, e 0 < j < n a A[j] = result.

Instance problému — konkrétni vstup, nap¥.
A=[3,8,1,5,8,6,11,4,10,5], n = 10.
Pro tuto instanci je vystupem hodnota 11.
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Korektnost algoritmu

Algoritmus: Algoritmus pro nalezeni nejvétsiho prvku v poli

FIND-MAX (A, n):
k:=0
fori:=1ton—-1do
L if A[i]> A[k] then

Lk:=i

return Al k]
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Korektnost algoritmu

Algoritmus Alg Fesi problém P, jestlize pro kaZzdou instanci w problému P
jsou splnény nasledujici dvé podminky:

@ Vypodet algoritmu Alg nad vstupem w se po kone¢ném poctu kroki
(korektn&) zastavi.

@ Algoritmus Alg vygeneruje pro vstup w vystup, ktery odpovida
podminkdm kladenym na vystup ve specifikaci problému P.

Algoritmus, ktery ¥esi problém P, je korektnim ¥eSenim tohoto problému.
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Korektnost algoritmu

Algoritmus Alg neni korektnim ¥eSeni problému P, jestliZe existuje
vstup w takovy, Ze pfi vypoltu nad timto vstupem nastane nékterd
z nasledujicich chyb:

e provedeni n&jaké chybné nepovolené operace (pfistup k prvku pole
mimo povoleny rozsah indexd, d&leni nulou, ...),

@ vygenerovany vystup neodpovidd podminkdm specifikovanym v zadani
problému P,

@ vypolet se nikdy nezastavi.

Testovani — spusténi algoritmu nad riiznymi vstupy a zkontrolovani, zda

b

se algoritmus pro tyto vstupy chovd ,spravné&”.

Testovani miize prokazat p¥itomnost chyb, ale ne to, Ze se algoritmus
chova korektné pro vSechny vstupy.
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Korektnost algoritmu

Typicky je mnoZina moznych instanci daného problému nekone&na (nebo
prinejmen3dim velmi velkd), takZe neni mozné otestovat &innost algoritmu
na vSech instancich.

Pro zdivodnéni a ovéFeni toho, Ze algoritmus je korektnim ¥eSenim daného
problému je tfeba podat diitkaz, ktery bere v tGivahu vSechny moZné
vypolty na vsech moznych vstupech.

Dikaz korektnosti algoritmu je obecné vhodné rozdélit na dvé &asti:

o Zdlvodnéni toho, Ze algoritmus pro Zadny vstup nikdy neudéld nic

»Spatné’:

o bé&hem vypoltu nedojde k zadné chybné operaci
e pokud program skond&i, vystup bude ,spravné"

@ Zdlvodnéni toho, Ze se algoritmus pro kazdy vstup po kone¢ném
poctu krok( zastavi.
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Invarianty

Uvazujme libovolny systém skladajici se z:
e mnoziny stavi (& konfiguraci) — miZe byt nekonena
@ prechodli mezi témito stavy

@ né&které ze stavill jsou urtené jako polateéni

Stav je dosazitelny, jestlize je moZné se do né&j dostat z n&kterého
pocateéniho stavu pouzitim néjaké posloupnosti prechodd.

Invariant je né€jakd podminka vymezujici néjakou podmnoZinu stavi
takova, Ze plati ve v8ech dosaZitelnych stavech:

@ je splnéna ve v8ech pocatecnich stavech

@ pokud je splnéna v n&jakém stavu a z tohoto stavu systém prejde

jednim krokem do né&jakého dal$iho stavu, bude splnéna i v tomto
stavu
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Invarianty

dosazitelné stavy

v8echny stavy

stavy,
kde plati invariant
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Invarianty

P¥iklad: Budeme skdkat s figurkou jezdce po $achovnici a zaroveli budeme
poditat polty provedenych tahi, p¥icemz zalindme na né&jakém bilém poli
v nejlevéjsim sloupci:

Z. Sawa (VSB-TUO)
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Invarianty

e Stavy — dvojice skladajici se z aktudlni pozice figurky jezdce na
Sachovnici a hodnoty &itace uddvajici polet zatim provedenych tah(

e Prechody — provedeni jednoho tahu jezdcem (podle pravidel 3achu)
a zvySeni ¢itale o jedna
o Podatetni stavy — jezdec se nachdzi na nékterém bilém poli

v nejlevéjsim sloupci a hodnota &itace ja 0

Plati zde napfiklad nasledujici invariant:

@ jestlize je hodnota &itale sudd, jezdec se nachazi na bilém poli

@ jestliZze je hodnota &itale licha, jezdec se nachazi na ¢erném poli
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Invarianty

Pt¥iklad: Algoritmus FIND-MAX reprezentovany formou grafu Fidiciho toku

it=i+1

11. dnora 2026 370 /674
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Invarianty

Vypotet pro vstup A =[3,8,1,3,6] a n =5 jako posloupnost konfiguraci:
ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
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Invarianty

Vypotet pro vstup A =[3,8,1,3,6] a n =5 jako posloupnost konfiguraci:

ag: (0, (A:[3,8,1,3,6], n:5,
ag: (1, (A:[3,8,1,3,6], n:5,

, result: 7))

i ? ?
? 0, result: ?))

i k:
it k:

L)
L)
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Invarianty

Vypotet pro vstup A =[3,8,1,3,6] a n =5 jako posloupnost konfiguraci:
3,8,1,3,6], n:5, i:?, k:?, result:?))
3,8,1,3,6], m5, i:? k:0, result:?))
3,8,1,3,6], n:5, i:1, k:0, result:?))
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Invarianty

Vypotet pro vstup A =[3,8,1,3,6] a n =5 jako posloupnost konfiguraci:
ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
ag: (1, (A:[3,8,1,3,6], nm:5, i:?, k:0, result:?))
ar: (2, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
az: (3, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 371 /674



Invarianty

Vypotet pro vstup A =[3,8,1,3,6] a n =5 jako posloupnost konfiguraci:
ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
ag: (1, (A:[3,8,1,3,6], nm:5, i:?, k:0, result:?))
ar: (2, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
az: (3, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
ag: (4, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
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Invarianty

Vypotet pro vstup A =[3,8,1,3,6] a n =5 jako posloupnost konfiguraci:
ap: (0, (A:[3,8,1,3,6], n:5, i:?, k:?, result:?))
ag: (1, (A:[3,8,1,3,6], nm:5, i:?, k:0, result:?))
ar: (2, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
az: (3, (A:[3,8,1,3,6], n:5, i:1, k:0, result:?))
ag: (4, (A:[3,8,1,3,6], n:5, i1, k:0, result:?))
as: (5, (A:[3,8,1,3,6], n:5, i:1, k:1, result:?))
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Invarianty

@ Stavy — konfigurace sklddajici se ze stavu Fidici jednotky a obsahu
paméti reprezentovaného hodnotami jednotlivych promé&nnych.

o P¥echody — dany jednotlivymi instrukcemi na hranadch grafu, ménf
zaroven Fidici stav i obsah paméti pfifazovanim hodnot do
proménnych

o Pocatetni stavy — viechny mozné pocatecni konfigurace pro
v8echny mozné vstupni instance, které jsou pFipustné podle
specifikace problému

Invarianty budou mit formu tvrzeni vyjad¥ujicich se o konfiguracich,
tj. o stavech Fidici jednotky a o hodnotadch jednotlivych proménnych, nap¥.

@ Pokud je stav Fidici jednotky 2, pak v dané konfiguraci plati 1 </ < n,
0 < k <ia A[k] je nejv&tsi z prvki A[0], A[1],...,A[i —1].
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Invarianty

s 17 s

U systémil, kde je soulasti konfigurace néjaky F¥idici stav, mize byt
vyhodné formulovat invarianty ve formé:

s s

@ jestliZe je stav Fidici jednotky 0, pak plati (g
@ jestliZe je stav Fidici jednotky 1, pak plati ¢
o jestlize je stav Fidici jednotky r, pak plati ¢,

pfi¢emZ tvrzeni ¢q, @1, - .., @, se vyjadfuji pouze o obsahu paméti, nikoli
o Fidicich stavech.

Konfigurace miizeme rozd&lit do (kone&n& mnoha) skupin podle stavi
fidici jednotky.
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Invarianty

invariant ¢,

Fidici stav 2

invariant g
invariant 3

Fidici stav 6
¥idici stav 3
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Invarianty

Invariant — podminka, kterd musi byt v uréitém misté kédu algoritmu
vzdy (tj. ve vdech moznych vypoctech pro v8echny mozné vstupy) splné&na
v okamziku, kdy algoritmus timto mistem prochazi.

Invarianty miZeme zapisovat formulemi predikatové logiky:

@ volné proménné odpovidaji promé&nnym programu

@ valuace je ddna hodnotami proménnych programu v dané konfiguraci

P¥iklad: Formule
(1=i)n(i=<n)

bude platit nap¥iklad v konfiguraci, kde proménna i ma hodnotu 5 a
proménnad n ma hodnotu 14.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 375 /674



Invarianty

Zjisténé invarianty mohou slouZit k ¥adé rliznych Géeli:

@ Napomohou lepsimu porozuméni chovani algoritmu.

@ Lze pomoci nich ové&¥it, Ze nenastanou uréité typy chyb —
nap¥. pfistup k poli mimo povolené rozsahy indexi, déleni nulou, ...

Ové¥ime, Ze v mistech v kédu, kde by mohla dana chyba nastat,
budou platit invarianty, které zaru&i, Ze proménné budou mit vidy
takové hodnoty, aby chyba nenastala.

P¥iklad: P¥i p¥istupu k prvku A[i] bude vZdy platit 0 < i < n,
kde n je délka pole.

v

@ Invariant, ktery bude platit v koncovych konfiguracich, zarudi, Ze
vystup algoritmu bude odpovidat specifikaci v zaddni problému.

o P¥i analyze vypoletni sloZitosti napomohou p¥i zkoumani toho,
kolikrat se provedou které instrukce nebo jak velké mnoZstvi paméti je
p¥i vypoltu pot¥eba.
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Invarianty

Stanoveni invariant( neni Gpln& mechanicky proces. VyZaduje ur&ité
pochopeni chovani algoritmu.

P¥ed formulovdanim hypotéz o tom, jaké invarianty plati v jednotlivych
Fidicich stavech, miiZe byt vhodné se podivat na to, jak se dany algoritmus
chova na né&jakych konkrétnich vstupech.

Ptiklad: Vypodet algoritmu FIND-MAX pro vstup

A=[3,8,1,5,8,6,11,4,10,5], n = 10.

k n
! !
o 1 2 3 4 5 6 7 8 9
Al8]s|1|s5]8]6]11]4]10]5]
1

i
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Invarianty

P¥iklady invarianti:

@ invariant v fidicim stavu g zapiseme formuli ¢4

Invarianty v jednotlivych ¥idicich stavech (zatim jen hypotézy):

° po: (n=1)

e p1: (n=1)A(k=0)

o pri(n=21)A(1=<isn)A(0=k<i)
ez (n=21)A(l<si<n)A(0=sk<i)
e (nz1)A(l=si<nA(0=sk<i)
o ps:(nz21)A(1=i<n)A(0=<k=<i)
e wo: (n=1)A(i=n)A (0= k<n)

e wr(n=1)A(i=n)A(0<k<n)
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Invarianty

Zkontrolovani toho, Ze invarianty opravdu plati:

@ Musime zkontrolovat, zda invarianty plati v po¢ate¢nich konfiguracich
— toto je vé&tSinou jednoduché.

@ Pro kaZdou instrukci algoritmu je t¥eba zkontrolovat, zda za
predpokladu, Ze bude platit pFislusny invariant pt¥ed provedenim této
instrukce, bude platit i p¥islusny invariant po provedeni této instrukce.

P¥edpokladejme algoritmus ve formé grafu Fidiciho toku:
@ hrany odpovidaji instrukcim
@ vezméme si hranu ze stavu g do stavu q' oznadenou instrukci /

v ~ ~ , vy s\ - . I .
e feknéme, Ze (zatim neové&fené) invarianty pro stavy g a ¢ jsou
vyjadfeny formulemi ¢ a
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Invarianty

<P

-~

OK.

@ pro tuto hranu musime zkontrolovat, Ze pro viechny konfigurace
Ly / sy
a = (g, mem) a ' = (g, mem') takové, fe a — o', plati, Ze pokud
e v konfiguraci « plati ¢,
pak
o v konfiguraci o' plati 1)
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Invarianty

Zkontrolovani instrukci, které jsou testy podminek:

@ hrana oznatend testem podminky [ B]
OM
[B]
@

Obsah paméti se neméni, takZe sta&i ovéFit, Ze plati implikace

(¢ AB) =1
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Invarianty

Ptiklad:

(nz1)A(l=si<nA(0=sk<i)

Stal&i ové¥it, Ze plati nasledujici implikace:

o Jestlize (n21)A(1<i<n)A(0=k<i)A(i<n),
pak (n=21)A(1<si<n)A(0sk<i).
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Invarianty

Ptiklad:

Stal&i ové¥it, Ze plati nasledujici implikace:

o Jestlize (n21)A(1<i<n)A(0=k<i)Aa(i=n),
pak (n=1)A(i=n)A(0=<k<n).
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Invarianty

Zkontrolovani instrukci, které p¥ifazuji hodnoty prom&nnym (mé&ni obsah
paméti):

@ hrana oznadena pfifazenim x :=
OM
x:=E

(@) ¢

Je t¥eba rozlisovat mezi hodnotou proménné x pred timto pFfifazenim a po
tomto pfifazeni.

11. dnora 2026 383 /674
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Invarianty

Pro nésledujici konstrukce budeme potfebavat operaci substituce na
formulich:

o[ E[x]

oznaluje formuli, kterou dostaneme z formule ¢ dosazenim vyrazu E za
v8echny volné vyskyty proménné x ve formuli ¢.
P¥iklad: Rekn&me, Ze ¢ je formule (1 < /i) A (i < n).
Zapis gp[i'/i] pak oznacuje formuli
(1<i)A(i'<n)
a zapis o[ (i + 1)/i] formuli

(1=i+1)A(i+1=n)
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Invarianty

<P

OK.

v 1 sy s v 7
Zavedeme novou proménnou x reprezentujici hodnotu proménné x po
provedeni tohoto p¥ifazeni.

Je tfeba ovéFit nasledujici implikaci:

(o n(x'=E)) = o[x/x]
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Invarianty

Ptiklad:

o (nz1)A(l=i<n)A(0=<k<i)

(65) (n=1)A(l=i<n)A(0=k=i)

Stal&i ové¥it, Ze plati nasledujici implikace:

o Jestlize (n=1)A(1<i<n)A(0<k<i)a(k'=1i),
pak (n=1)A(1<i<n)A(0=k <i).
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Invarianty

Ptiklad:
(nz1)A(1=i<n)A(0=k=i)

i=i+1
(nz1)A(l=sisnA(0=sk<i)

Stal&i ové¥it, Ze plati nasledujici implikace:

o Jestlize (n=1)A(1<i<n)A(0<k<i)A(i'=i+1),
pak (n=1)A(1<i'<n)A(0sk<i).
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Invarianty

Dokonéeni ovéfeni toho, Ze algoritmus FIND-MAX vraci spravny vysledek

(za predpokladu, Ze skonti):

® o o
o w]_: ©1 A V_] € N
o 1][}2: QD2/\ V_]EN

)
)
o 13 w3 A (V) € N)(
)
)
)

@ Us5: 5 A
@ Ui e A

o Y7t 7 A (result = A[k]) A (VjeN)(0=<j<n— Aj] =

(
(
(
o Y4 4 A(VjEN
(
(
(
(

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Invarianty

Casto nenf t¥eba specifikovat invarianty ve viech ¥idicich stavech, ale jen
v nékterych ,dllezitych” — zejména stavy, kde se vstupuje do nebo
vystupuje z cykli:

Je pak t¥eba ovéfit:
e Ze invariant plati pted vstupem do cyklu.

e Ze pokud invariant plati p¥ed provedenim cyklu, tak bude platit i po
jeho provedeni.

o Ze invariant plati p¥i opusténi cyklu.
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Invarianty

Ptiklad: V algoritmu FIND-MAX je takovym , dilezitym" stavem stav 2.

Ve stavu 2 plati:

n=1
1<i<n

O0<sk<i

IA

Pro viechna j takovd, ¥e 0 < j < i, plati A[j] = A[k].

11. dnora 2026

389 /674
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Invarianty

Ptiklady toho, jak urcit invarianty u nékterych dalSich stavii, pokud uz
u n&kterych stavi invarianty mame:

80
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Invarianty

Ptiklady toho, jak urcit invarianty u nékterych dalSich stavii, pokud uz
u n&kterych stavi invarianty mame:

80
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Invarianty

Ptiklady toho, jak urcit invarianty u nékterych dalSich stavii, pokud uz
u n&kterych stavi invarianty mame:
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Invarianty

Ptiklady toho, jak urcit invarianty u nékterych dalSich stavii, pokud uz
u n&kterych stavi invarianty mame:

@ vlE/x]

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 390 /674



Invarianty

Ptiklady toho, jak urcit invarianty u nékterych dalSich stavii, pokud uz
u n&kterych stavi invarianty mame:
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Invarianty

Ptiklady toho, jak urcit invarianty u nékterych dalSich stavii, pokud uz
u n&kterych stavi invarianty mame:
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Invarianty

Ptiklady toho, jak urcit invarianty u nékterych dalSich stavii, pokud uz
u n&kterych stavi invarianty mame:
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Invarianty

Ptiklady toho, jak urcit invarianty u nékterych dalSich stavii, pokud uz
u n&kterych stavi invarianty mame:

(B= 1) A (=B = 1)
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Invarianty

Ptiklad:

Algoritmus: T¥idéni pfimym vkladanim

INSERTION-SORT (A, n):
for j:=1ton—-1do
x = A[j]
it=j-1
while i = 0 and A[i] > x do
L Ali+1] := A[/]

it=i-1

Ali+1]:=x
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

0 1 2 3 4 5 6 7 8 9
13]8|1|5]8]6[11]4]10]5]

x =7
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[3]8|1]s]8[6]11]4]10]5] . =7
T
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

] n
l l
0 1 2 3 4 5 6 7 8 9
Sl :[5]8]6[11][4]0]5] <=8
1
J

11. dnora 2026 392 /674
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[3[8l1]s]8[6]11]4]10]5] x=38
,
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[3[8l1]s]8[6]11]4]10]5] x=38
:
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
A=1[3,8,1,5,8,6,11,4,10,5], n = 10.
i n
1 1
o 1 2 3 4 5 6 7 8 9
(3]s 5[8]6]r1]4]10]5]
1

J

x=1

Z. Sawa (VSB-TUO)
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

] n
l l
0 1 2 3 4 5 6 7 8 9
[SIle]5 86 [11][4]0]5] x=1
)
J

11. dnora 2026 392 /674
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n

o 1 2 3 4 5 6 7 8 9 l
Bl s[8]s5]8]6]r]4]10]5]
!

J

— —.

x=1
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1[sf8]s]8[6]11]4]10]5) =1
1
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1[sfs]s]8[6]11]4]10]5) =1
:
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
! !
o 1 2 3 4 5 6 7 8 9
[1]s]eBl 8]6]r1]4]10]5]
!

x=5

J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
A=1[3,8,1,5,8,6,11,4,10,5], n = 10.
] n
l !
0 1 2 3 4 5 6 7 8 9
(1] B8] s]6]r]4]10]5]
1

J

x=5

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky

11. dnora 2026 392 /674



Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1[sfsl8]s[6]11]4]10]5) x=5
,
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1[sfsl8]s[6]11]4]10]5) x=5
T
J

11. dnora 2026 392 /674

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky



Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
[a[s]sTel 6[11]4]10]5] <=8
1
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0O 1 2 3 4 5 6 7 8 9
[1[sfs]e]8f6]11]4]10]5) x=38
,
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0O 1 2 3 4 5 6 7 8 9
[1[sfsl8]8f6]11]4]10]5) x=38
T
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
4

0 1 2 3 5 6 7 8 9
als]s]ele @4 0]s] .-
f

J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
[i[s]s[e 8 11]4]0]5] x=6
)
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
(i[5 I8 8 11]4]0]5] x=6
)
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1[sfsle]8f8]11]4]10]5) x=6
,
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1[sfsle]8f8]11]4]10]5) x=6
T
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n

| \
0 1 2 3 4 5 6 7 8 9
‘1|3|5|5|8|8.4|1O|5‘ x =11
!

J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1]sfsle]8f8ft]4]i0]5 =11
T
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1]sfsle]8f8ft]4]t0]5 =11
T
J

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 392 /674



Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
! l
0 1 2 3 4 5 6 7 8 9
(1]3]5]6[8]s 0[5 <=4
)
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
! l
0 1 2 3 4 5 6 7 8 9
(1][3]5]6 88 [[11[10]5] <=4
)
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
HEBOE  BEE =4
)
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
(1]3]5]c @88 11]0]5] =4
)
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
HEH BEBENE =4
)
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
(1[3[Bls[6]8]8]11]10]5] <=4
)
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
(1[s]4]s]6[8]s]1t]10]5 =4
T
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
(1[s]4]s]6[8]s]1]10]5 =4
7
J
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Invarianty

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
) l
0 1 2 3 4 5 6 7 8 9
(1][3]4]5]6[8]8[11[H0] 5 =10
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Invarianty

P¥edpoklddejme, Ze vstupem je pole A =[ag,a1,...,an,_1] a &islo n

(kde n = 1) udavajici délku tohoto pole, tj. Ze na zatatku pro kazdé i,

kde 0 < i< n, plati A[i] = a;.

o Na zalatku cyklu for (tj. vzdy pr¥ed provedenim testu j < n,
resp. j < n— 1) plati nasledujici invarianty:

e l=<j=<n

o Prvky pole A[0], A[1],...,A[j — 1] obsahuji hodnoty ag, a1, . . .

sefazené od nejmensi po nejvétsi, tj.
Al0] = A[1] == A[j - 1]
o Prvky pole A[j], A[j +1],...,A[n— 1] obsahuji hodnoty
3j,3j+15 - - -5 an-1, Y.
Alj] = aj, Alj+1] = Aj41s s Aln—1]=a,1

ydj-1
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Invarianty

o Na zatatku cyklu while (tj. vzdy pfed provedenim testu i = 0) plati
nasledujici invarianty:

1<j<n

-1=<i<j

Proménna x obsahuje hodnotu aj, tj. x = a;.

Prvky pole A[0], A[1],..., Ali]a A[i +2],A[i + 3],..., A[j] obsahuji
hodnoty ag, a1, . .., aj—1 sefazené od nejmensi po nejvétsi, tj.

A0l = A[l] == A[i]=Ali+2] < A[i+3] = - < A[J]
VEechny prvky A[i + 2], A[i +3],..., A[j] jsou ostfe v&t¥i ne? x.
Prvky pole A[j + 1], A[j +2],...,A[n— 1] obsahuji hodnoty
34153425+ > 3an-1, T

Alj+1] = aj41, Alj+2] = Aj42, s Aln—=1]=a,1
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Koneénost vypoctu

Dva mozné p¥ipady, jak mize vypadat nekoneény vypocet:

@ né&jaka konfigurace se zopakuje — ndasledujici konfigurace se opakuji
stale dokola

@ objevuji se stdle nové a nové konfigurace
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Koneénost vypoctu

Jeden z b&Znych zplsobii dokazovani toho, Ze se algoritmus zaruéené pro
kazdy vstup po kone¢ném poctu krokil zastavi:

o kazdé (dosazitelné) konfiguraci p¥itadit hodnotu z n&jaké vhodné
zvolené mnoziny W

@ na mnoziné W definovat usporadani < takové, ze ve W neexistuji
nekone&né (ostte) klesajici posloupnosti
@ ukazat, Ze s provedenim kaZzdé instrukce se hodnota p¥ifazena
konfiguraci zmensuje, tj. pro « L o je
fla) > f(a')
(f(('x), f(a’) jsou hodnoty z mnoziny W pf¥itazené konfiguracim «
aa)
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Koneénost vypoctu

Jako mnozinu W je moZno pouZit napfiklad:

@ MnoZinu pfirozenych &isel N = {0,1,2,3,...} s uspofaddnim <.

@ MnoZinu vektorl pfirozenych &isel s lexikografickym usporadanim,
tj. s usporadanim, kde vektor (a;, a0, ..., a,) je men¥i ne? vektor
(bl, by, ..., bn), jestlize

o existuje / takové, 7e 1 </ <ma i< n, kde a; < b; a pro viechna j
takova, Ze 1 = j </, plati a; = b;, nebo

e m < na pro viechna j takovd, Ze 1 < j = m, je a; = by.
Naptiklad (5,1,3,6,4) < (5,1,4,1) a (4,1,1) < (4,1,1,3).

Poznamka: Poclet prvk{ vektorl musi byt omezen néjakou
konstantou.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 397 /674



Koneénost vypoctu

i=i+1
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Koneénost vypoctu

Pt¥iklad: Vektory pfifazené jednotlivym konfiguracim:

e Stav 0: f(a) = (4)
e Stav 1: f(a) = (3)
e Stav 2: f(a) =(2,n—1,3)
e Stav 3: f(a) =(2,n—1,2)
e Stav 4: f(a) =(2,n—1i,1)
e Stav 5: f(a) =(2,n—1,0)
e Stav 6: f(a) = (1)
e Stav 7: f(a) = (0)
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Koneénost vypoctu

(2,’7_/’0)
it=i+1
(2an_i73)

Je t¥eba brat v dvahu, Ze se touto instrukci hodnota proménné i méni.

Z konfigurace s p¥irazenym vektorem (2, n—i,0) se prejde do konfigurace
s p¥itazenym vektorem (2, n — i',3), kde i' = i + 1.

Zjevn& plati n—i' < n—1i nebot n— (i +1) < n~—1i.
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Vypocetni slozitost algoritmu
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SloZitost algoritmu

@ Pocitale pracuji rychle, ale ne nekone&né rychle. Provedeni kazdé
instrukce trva n&jakou (i kdyZ velmi kratkou) dobu.

@ Stejny problém muZe ¥edit vice rliznych algoritmii a doba vypottu
(dand hlavn& pottem provedenych instrukci) miZe byt pro rizné
algoritmy rlizna.

@ Algoritmy bychom chtéli mezi sebou porovnavat a zvolit si ten lepsi.

o Algoritmy miZeme naprogramovat a zméfit ¢as vypoctu. Tim zjistime
jak dlouho trva vypolet na konkrétnich datech, na kterych algoritmus
testujeme.

N4

o Chtéli bychom mit i néjakou presnégjsi pfedstavu o tom, jak dlouho
bude trvat vypocet na vSech moZnych vstupnich datech.
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SloZitost algoritmu

@ Doba vypoltu je ovlivnéna mnoha faktory, nap¥.:

pouZzity algoritmus

mnoZstvi vstupnich dat

pouzity hardware (dileZitda miZe byt nap¥. taktovaci frekvence
procesoru)

e pouZity programovaci jazyk — a jeho konkrétni implementace
(pFekladat/interpreter)

@ Pokud potfebujeme Fesit problém pro ,mald“ vstupni data, doba
vypoctu je vétSinou zanedbatelnd.

@ S nardstajicim mnoZstvim vstupnich dat (velikosti vstupu) mizZe doba
vypoltu rist, nékdy velmi vyrazné.
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SloZitost algoritmu

o Casova slozitost algoritmu — jak zvisi doba vypottu na mno¥stvi
vstupnich dat

e Pameétova (resp. prostorova) slozitost algoritmu — jak z3visi
mnozstvi pouZzité pamé&ti na mnoZsti vstupnich dat

Poznamka: PYesné definice téchto pojmi budou uvedeny za chvili.

Poznamka:

o Existuji i dalsi typy vypocetni sloZitosti, kterymi se nebudeme zabyvat
(nap¥. komunika&ni sloZitost).

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 404 / 674



SloZitost algoritmu

Vezméme si n&jaky konkrétni stroj vykondvajici n&jaky algoritmus —
nap¥. stroj RAM, Turinglv stroj, ...

Budeme p¥edpokladat, Ze pro dany stroj M mame néjak definované pro
libovolny vstup w z mnoZiny vSech vstupt In nasledujici dvé funkce:

e timep, : In = N — vyjadfuje dobu vypo&tu stroje M nad vstupem w

@ spacey, : In » N — vyjadFfuje mnoZstvi paméti pouZité strojem M
p¥i vypoltu nad vstupem w

Poznamka: P¥edpokladame, Ze vypolet stroje M nad libovolnym
vstupem w se po koneéném po&tu krokl zastavi.
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SloZitost algoritmu

P¥iklad:
o Jednopaskovy Turingiiv stroj M:
o time(w) — potet krokii, které vykond M p¥i vypoétu nad
vstupem w
o space (w) — potet poligek navitivenych na pasce b&hem
vypoltu nad vstupem w

e Stroj RAM:
o timep(w) — potet krokii, které vykond dany stroj RAM p¥i
vypoltu nad vstupem w
o space (w) — polet bun&k pométi, které byly pouZity b&hem
vypo&tu nad vstupem w (bylo do nich né&co zapsano nebo z nich

bylo ¢teno)
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Velikost vstupu

Pro riizné vstupy provede program rlizny pocet instrukci.

Pokud chceme polet provedenych instrukci néjak analyzovat, je vhodné si
zavést pojem velikost vstupu.

Z 4

Typicky je velikost vstupu &islo, které udavd, jak je dand instance ,velkd
(&im v&tsi &islo, tim v&tSi instance).

Poznamka: Velikost vstupu si v daném konkrétnim p¥ipadé mizeme
definovat, jak chceme a jak je to pro dalsi analyzu vyhodné.

Co presné zvolime jako velikost vstupu neni pfedem déno, ale z podstaty
zadaného problému vétSinou néjak ptirozené vyplyvd, co za velikost vstupu
zvolit.
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Velikost vstupu

Ptiklady:
@ Pro problém , T¥idéni", kde vstupem je sekvence &isel ay, as, ..., a,
a vystupem jsou tato &isla setfidéna, mizZeme vzit jako velikost vstupu
hodnotu n.

@ Pro problém , Prvotiselnost”, kde vstupem je pfirozené &islo x, a kde
se ptame, zda x je prvocislo, miizeme vzit jako velikost vstupu pocet
bith ¢isla x.

(Jinou moznosti by bylo vzit jako velikost vstupu pfimo hodnotu x.)
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Velikost vstupu

Nékdy je vhodné popsat velikost vstupu pomoci vice &isel.

Napfiklad u problémi, kde vstupem je graf, miZeme definovat velikost
vstupu jako dvojici &isel n, m, kde:
@ n — pocet vrcholl grafu

@ m — polet hran grafu

Poznamka: Jinou moZnosti by bylo definovat velikost vstupu jako jediné
¢islo n+ m.
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Velikost vstupu

Obecn& miZeme pro libovolny problém definovat velikost vstupu
ndsledovné:

@ Pokud je vstupem slovo w z néjaké obecedy ¥ :
délka slova w

e Pokud je vstupem sekvence bitl (tj. slovo z abecedy {0, 1}):
pocet bitd v této sekvenci

o Pokud je vstupem pFirozené &islo x:
polet bitd nutnych k zapisu &isla x
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Casova sloZitost

Chceme analyzovat konkrétni algoritmus (jeho konkrétni implementaci).

Zajima nas, kolik instrukci se provede, pokud algoritmus dostane vstup
velikosti 0,1,2,3,4,....

Je zfejmé, Ze i pro vstupy, které maji stejnou velikost, mlze byt pocet
provedenych instrukci rizny.

Oznaéme si velikost vstupu w € In jako size(w).

Nyni definujme nasledujici funkci T : N — N takovou, Ze pro n € N je

T(n) = max{ timey(w) | w € In, size(w) =n}
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Casova a prostorova slozitost v nejhorsim p¥

Takto definované funkci T(n) (tj. funkci, kterd pro dany algoritmus a
danou definici velikosti vstupu p¥ifazuje kazdému p¥irozenému &islu n
maximalni polet instrukci, které algoritmus provede, pokud dostane vstup
velikosti n) se ¥ikd Casova sloZitost algorimu v nejhorsim pf¥ipadé.

T(n) = max{ timey(w) | w € In, size(w) = n}

Analogicky miZeme definovat prostorovou (pamé&tovou) sloZitost
algoritmu v nejhor$im ptipadé jako funkci S(n), kde as a function S(n)
where:

S(n) = max{ space\((w) | w € In, size(w) =n}
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Casova sloZitost v primérném pripadé

Kromé Casové slozitosti v nejhorSim p¥ipadé md smysl zkoumat i &asovou
sloZitost v primérném prFipadé.

V tomto p¥ipadé T(n) nedefinujeme jako maximum, ale jako aritmeticky

primér z hodnot

{ timey(w) | w € In, size(w) =n}

o Urcit Casovou slozZitost v primérném ptipadé je vétSinou téZsi nez
uréit ¢asovou slozitost v nejhorsim pfipadé.

o Casto se tyto dvé& funkce p¥ili§ nelisi, n&kdy je ale rozdil vyznamny.

Poznamka: Zkoumat sloZitost v nejlepSim pFipadé vétSinou moc smysl

nema.
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Casova sloZitost v primérném pripadé
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Vypocetni slozitost algoritmu

Z definice vidime, Ze jak €asovd, tak prostorovid, sloZitost algoritmu jsou
funkce, jejichZ pfesné hodnoty zavisti nejen na daném algoritmu Alg, ale
také na ndsledujicich vécech:

@ na stroji M, na kterém algoritmus Alg bézi,

@ na definici doby vypottu time(w) a mnoZstvi pouZité
paméti space v (w) algoritmu Alg na stroji M pro vstup w € In,

@ na definici velikosti vstupu (tj. definici funkce size).
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Vypocetni slozitost algoritmu

P¥esné uréeni doby vypoltu nebo mnoZstvi pouzité paméti miize byt
extrémné komplikované.

Vétsinou se pfi analyze vypodletni sloZitosti algoritmu pouZiva celd ¥ada
zjednoduseni:
@ VEétsinou se neanalyzuje, jak zavisi doba vypo¢tu nebo mnoZstvi
pouZité pamé&ti na konkrétnich vstupnich datech, ale pouze, jak zavisti
na velikosti vstupu, tj. na mnoZstvi téchto dat.

@ Funkce vyjadfujici, jak roste doba vypo¢tu nebo mnoZstvi pouZité
paméti v zavislosti na velikosti vstupu, se nepoditaji presné — pocitaji
se odhady téchto funkci.

@ Odhady téchto funkci se vyjad¥uji pomoci tzv. asymptotické notace

— nap¥. se fekne, Ze Casovi sloZitost algoritmu MergeSort je
O(nlog n), zatimco Easov4 slogitost algoritmu BubbleSort je O(n?).
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Casova slozitost algoritmu

P¥iklad analyzy ¢asové sloZitosti algoritmu bez pouZiti asymptotické
notace:

o Takto podrobné se analyza vypocetni sloZitosti algoritmu témé&¥ nikdy
nedéla — je to pfilis pracné a komplikované.

o Uvidime tak ale, co v8e je p¥i pouZiti asymptotické notace zanedbdno
a o kolik je analyza s pouZitim asymptotické notace jednodussi.

@ Budeme poéitat s konstantami ¢, ¢y, . . ., Ck, které udavaji dobu
trvani jednotlivych instrukci — nebudeme poéitat s konkrétnimi &isly.
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Reknéme, Ze mame algoritmus reprezentovan ve formé grafu ¥idiciho toku:

o Kazdé instrukci (tj. kazdé hran&) pfifadime hodnotu udévajici, jak
dlouho trva provedeni této instrukce.

@ Provedeni riiznych instrukci mize trvat rliznou dobu.

@ Pro jednoduchost pfedpoklddejme, Ze provedeni té samé instrukce
trvd pokazdé stejnou dobu — hodnota p¥ifazena dané instrukci je
gislo z mnoziny Ry (mnoZina nezdpornych redlnych &isel).
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Doba vypodtu

Ptiklad:

Algoritmus: Nalezeni nejvétsiho prvku v poli

FIND-MAX (A, n):
k:=0
fori:=1ton-1do
L if A[i]> A[k] then
| k=i

return Al k]
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result := Al k]

Z. Sawa (VSB-TUO)

it=i+1

Uvod do teoretické informatiky

Doba vypodtu

Instr doba
k= Co
i=1 c1
[i <n] [
|:I = n] C3
[A[i]= A[K]] | <
[Ali]> ALK]] | s
k=1 Co
i=i+1 cy
result := A[k] | ¢

11. dnora 2026
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Doba vypodtu

P¥iklad: Doby provedeni jednotlivych instrukci by mohly byt t¥eba:

Instr. oznaceni | doba
k:=0 Co 4
=1 C1 4
[I < I'I] Co 10
[i=n] C3 12
A< AlK]] | 14
[A[i] > A[k]] Cs 12
k=i Cé 5
i=i+1 C7 6
result 1= Al k] cs 5

Pro konkrétni vstup w, nap¥. pro w = ([3,8,4,5,2],5), bychom mohli
vypolet odsimulovat a uréit konkrétni dobu vypo&tu t(w).
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Casova slozitost algoritmu

P¥edpoklddadme vstupy tvaru (A, n), kde A je pole a n poZet prvkii tohoto
pole (p¥fitemz n = 1).
Jako velikost vstupu (A, n) zvolme n.
UvaZujme nyni o n&jaké jednom vstupu w = (A, n) velikosti n:
e Dobu vypottu t(w) nad vstupem w miizeme vyjadfit jako
t(w) = co - mo(w) + ci - mi(w) + - +cg - mg(w),
kde mg, my, ..., mg jsou funkce udavajici, kolikrat je dana instukce pfi
vypoltu nad vstupem w provedena.
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Casova slozitost algoritmu

Instr doba | potet provedeni | hodnota m;(w)

k:= o) mo(w) 1

= C1 ml(w) 1

[i < n] I my(w) n—1

[i=n] 3 mz(w) 1
[A[] < ALK]] | < ma(w) n-1-1¢
[ALi] > A[K]] | s ms(w) ¢

k=1 Cp mﬁ(W) Y4

it=i+1 cr mz(w) n—1

result := A[k] | cg mg(w) 1

¢ — potet prichodli cyklem, kdy plati A[i] > A[k] (zjevné je 0 < ¢ < n)

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Casova slozitost algoritmu

Dosazenim do

t(w) = co-mo(w) +cy - my(w)+ - +cg- mg(w),
dostaneme

t(w) = dy + do-(n—1) + ds-(n=1—-10) + dy- ¥,
kde

di=c+tc+ca+c d3 =¢y
dr =0+ ¢ dy = c5 + ¢

Po Gpravé je
t(w) = (da+d3)-n + (dyg—ds)- ¢ + (dp—do— d3)

Poznamka: t(w) neni &asova sloZitost, ale doba vypo&tu pro konkrétni
vstup w
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Casova slozitost algoritmu

Naptiklad pokud budou doby provedeni jednotlivych instrukci nasledujici:

Instr. ozna&eni | doba
k:=0 Co 4
=1 c1 4
[i <n] G 10
[i=n] G 12
A= ALK | o 14
[A[]> ALK | o 12
k=i Cs 5
it=i+1 cy 6
result := Al k] Cs 5

bude d]_ = 25, d2 = 16, d3 =14 a d4 = 17.
V takovém p¥ipadé je t(w) = 30n + 3¢ — 5.

Pro konkrétni vstup w = ([3,8,4,5,2],5) je n =5 a £ =1, takze
t(w)=30-5+3-1-5=148.
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Casova slozitost algoritmu

Pro které vstupy velikosti n bude vypotet trvat nejdéle (tj. které vstupy
predstavuji nejhor¥i p¥ipad), miZe zdviset na detailech implementace a
presnych hodnotach konstant:

Doba vypo¢tu algoritmu FIND-MAX pro vstup w = (A, n) velikosti n:
t(w) = (da+d3)-n+ (da—d3) € + (di —dr— ds)
@ Pokud d3 = dy — nejhorsi jsou pFipady, kdy ma ¢ co nejmensi hodnotu

¢ =0 — naptiklad vstupy tvaru [0,0,...,0] nebo t¥eba
[n,n=1,n-2,...,2, 1]

@ Pokud d3 < dj — nejhorsi jsou pt¥ipady, kdy ma ¢ co nejvétsi hodnotu

¢ =n-1 — napftiklad vstupy tvaru [0,1,...,n—1]
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Casova slozitost algoritmu

Casovs slo¥itost T(n) algoritmu FIND-MAX v nejhor§im piipadé je tedy
dana ndsledovné:
o Pokud d3 = dj:
T(n) = (dy+d3) n+(dy—dy— )
o Pokud d3 < dy:

(b+ds3)-n+ (dy—d3)-(n—=1) + (dy — dr — ds)
(d2+d4)'n + (dl—dg—d4)

T(n)

Priklad: Pro d; = 25, d, = 16, d3 = 14 a dy = 17 bude

(16 +17) - n + (25—16 — 17)
33n -8

T(n)
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Casova slozitost algoritmu

V obou p¥ipadech (at u? ds3 = ds nebo ds < d;) bude &asova sloZitost
algoritmu FIND-MAX funkce tvaru

T(n)=an+b

kde a a b jsou néjaké konstanty, jejichZ pfesné hodnoty zavisi na délce
trvani jednotlivych instrukei.

Poznamka: Konkrétné bychom tyto konstanty mohli vyjadfit jako
a = d, + max{ds, ds} b = d; — d» — max{ds, ds}
Napftiklad

T(n)=33n-8
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Casova slozitost algoritmu

Pokud bychom se spokojili s tim, Ze ¢asova sloZitost algoritmu FIND-MAX
je n&jaka funkce tvaru

T(n)=an+b,

kde by nas ale nezajimaly konkrétni hodnoty konstant a a b, celd analyza
mohla byt vyrazné jednodussi.

@ Ve skute&nosti ani vé&tdinou nechceme v&dét, jak presné& funkce T(n)
vypadd (obecn& to mize byt n&jaka velmi komplikovana funkce),
a stadilo by ndm, Ze vime, %e hodnoty funkce T(n) ,zhruba“
odpovidaji hodnotdm n&jaké funkce S(n) = an+ b, kde a a b jsou
néjaké konstanty.
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Casova slozitost algoritmu

U dané funkce T(n) vyjadtujici €asovou nebo pamé&tovou sloZitost se tak
vétsinou spokojime s jejim pfFibliznym vyjadfenim — odhadem, kde

@ zanedbame méné& vyznamné &leny
(nap¥. ve funkci T(n) = 15n” + 40n — 5 zanedbéme ¢leny 40na -5 a
misto piivodni funkce budeme uvaZovat jen o funkci T(n) = 15n2),

@ zanedbame konstanty, kterymi se ndsobfi

(nap¥. misto funkce T(n) = 15n° budeme uva¥ovat
o funkci T(n) = n2)

@ konstanty v exponentech ignorovat nebudeme — napftiklad je
podstatny rozdil mezi funkcemi T;(n) = n’ a To(n) = n.

@ bude nds zajimat, jak se funkce T(n) chova pro ,velké" hodnoty n,
chovani na malych hodnotach budeme ignorovat
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Rychlost riistu funkci

Program zpracovédva vstup velikosti n.
P¥edpoklddejme, e pro vstup velikosti n provede T(n) operaci, a Ze
provedeni jedné operace trva 1 us (10_6 s).

n

T(n) 20 40 60 80 100 200 500 1000
n 20 ps 40 s 60 s 80 us 0.1ms 0.2ms 0.5ms 1ms

nlogn | 86us 0.213ms 0.354 ms 0.506 ms 0.664 ms 1.528ms 4.48ms 9.96 ms
n 0.4 ms 1.6ms 3.6ms 6.4 ms 10ms 40ms 0.25s 1s
n 8ms 64 ms 0.216s 0.512s s 8s 125s 16.7 min.
0 0.16s 2568 12965 425 100s 26.6min.  17.36hod.  11.57dni
2" | 1055 1275dni  36560let  383-10°let  40.1-10"let 50-10*let 10.4-10™let
nl | 771470t 250-10 let 2.64-10%let 2.07-10let 296101t - - -
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Rychlost riistu funkci

UvaZujme 3 algoritmy se sloZitostmi T1(n) = n, To(n) = n3, T3(n) =2"

N&3 potital zvlddne v redlném &ase (kolik jsme ochotni pockat) 10"
krokii.

SloZitost  Velikost vstupu

Ti(n)=n 10"
To(n) = n® 10*
T3(n) = 2" 40

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Rychlost riistu funkci

UvaZujme 3 algoritmy se sloZitostmi T1(n) = n, To(n) = n3, T3(n) =2"

N&3 potital zvlddne v redlném &ase (kolik jsme ochotni pockat) 10"
krokii.

SloZitost  Velikost vstupu

Ti(n) =n 10"
To(n) = n® 10*
T3(n) = 2" 40

Nyni po¢itat 1000 nasobné zrychlime. Zvladne tedy 10" kroka.

SloZitost  Velikost vstupu

Narust
Ti(n) = n 107 1000x
To(n) = n’ 10° 10x
T3(n) = 2" 50 +10

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Asymptoticka notace

~ 7

V nasledujicim se zamé&¥ime na funkce typu f : N — R, kde:

@ Hodnota f(n) nemusi byt definovana pro véechny hodnoty n € N, ale
musi existovat n&jaka konstanta ny takovd, Ze hodnota f(n) je
definovana pro v8echna n € N takova, Ze n = ng.

P¥iklad: Funkce f(n) = log,(n) neni definovand pro n = 0, ale pro
véechna n = 1 uZ definovana je.

o Musi existovat takovd konstanta ng, Ze pro viechny hodnoty n € N,
kde n = ng, plati f(n) = 0.

Ptiklad: Pro funkci (n) = n® — 25 plati f(n) = 0 pro véechna n = 5.
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Asymptoticka notace

Vezmé&me si libovolnou funkci g : N — R. Zapisy O(g), Q(g), ©(g), o(g)
a w(g) oznatuji mnoziny funkci typu N — R, kde:

e O(g) — mnoZina vdech funkci, které rostou nejvy¥e tak rychle jako g
e Q(g) — mnoZina vdech funkci, které rostou alespoii tak rychle jako g
e O(g) — mnozina viech funkci, které rostou stejn& rychle jako g

e o(g) — mnoZina véech funkci, které rostou pomaleji neZ funkce g

e w(g) — mnoZina vdech funkci, které rostou rychleji nez funkce g

Poznamka: Toto nejsou definice! Ty ndsleduji na nasledujicich slidech.

O — velké , 0"
Q — velké Yecké pismeno ,omega"“
© — velké ¥fecké pismeno ,theta"

o — malé , 0"

w — malé ,,omega“
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Asymptoticka notace — symbol O

Neformalné:

O(g) — mnoZina vdech funkci, které rostou nejvy3e tak rychle jako g

Jak formaIn& definovat, kdy plati f € O(g)?

Prvni pokus:

@ porovnat hodnoty funkci

(VneN)(f(n) = g(n))

Problém: NeumoZiiuje zanedbat konstanty, nap¥. neni pravda, Ze
(Vne N)(?m2 < 2n2).
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Neformalné:
O(g) — mnoZina vdech funkci, které rostou nejvy3e tak rychle jako g

Jak formalIn& definovat, kdy plati f € O(g)?

Druhy pokus:

@ prendsobit funkci g n&jakou dostateéné velkou konstantou ¢

(Ic>0)(VneN)(f(n) =c-g(n))

Problém: Nerovnost nemusi ani po pfenasobeni libovoln& velkou
konstantou platit pro malé hodnoty n.

Naptiklad funkce g(n) = n oZividn& roste rychleji nez funkce
f(n) = n+5. Ovéem bez ohledu na to, jak velkou zvolime
konstantu ¢, pro n = 0 nikdy nebude platit n+5 =< ¢ - n?.

Asymptoticka notace — symbol O
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Asymptoticka notace — symbol O

Neformalné:

O(g) — mnoZina vdech funkci, které rostou nejvy3e tak rychle jako g

Jak formaIn& definovat, kdy plati f € O(g)?

Tteti pokus:

@ nerovnost nemusi platit pro v8echna n, stadi, Ze bude platit pro
v8echny , dostate¢né velké" hodnoty n

(3c>0)(Ang =2 0)(Yn = ng)(f(n) = c-g(n))
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Asymptoticka notace — symbol O

c-g(n)

no

Vezméme si libovolnou funkci g : N — R. Pro funkci f : N — R plati
f € O(g) pravé tehdy, kdy#

(3c>0)(Fng 2 0)(Vn = ng)(f(n) = c-g(n)).
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Asymptoticka notace — symbol O

Poznamky:
o c je kladné redlIné &islo (tj. c € R a ¢ > 0)

® ng a n jsou piirozena &isla (tj. ng € N a n € N)

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 438 /674



Asymptoticka notace — symbol O

Ptiklad: Vezm&me si funkce f(n) = 2n° +3n+7 a g(n) = n°.

Chceme ukdzat f € O(g), tj. f € O(nz):
o Postup 1:

Zvolme naptiklad ¢ = 3.
c-g(n)=3n"=2n"+ %nz + %nz

Potfebujeme najit takové ng, aby pro kaZzdé n = ng platilo sou¢asné

2 2 2 2
2n° = 2n %n = 3n %n >7

Snadno ovéfime, Ze naprtiklad ny = 6 vyhovuje témto pozadavkim.

Pak pro ka?dé n = 6 plati c - g(n) = f(n):

cg(n) = 3n° = 2n° + %nz + %nz =21 +3n+7= f(n)
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Asymptoticka notace — symbol O

P¥iklad, kde f(n) = 2n° +3n+7a g(n) = n:

o Postup 2:

Zvolme ¢ = 12.
c-g(n)= 12n% = 2n° + 3n° + 7n°

Potfebujeme najit takové ng, aby pro kaZzdé n = ng platilo sou¢asné

2n2 > 2n2 3n2 = 3n n~ =7

Uvedené vztahy zjevné plati pro ng = 1, takZe pro kazdé n = 1 platfi
f(n) < c-g(n):

c-gn)=12n" =20 +3n° + 70> = 2n° +3n+7 = f(n)
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Asymptoticka notace — symbol 2

No

Vezméme si libovolnou funkci g : N — R. Pro funkci f : N — R plati
f € Q(g) pravé tehdy, kdy

(3c>0)(Fng 2 0)(Vn = ng)(c- g(n) = f(n)).
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Asymptoticka notace — symbol 2

Neni tézké zdlvodnit, Ze plati nasledujici tvrzeni:

Pro libovolné funkce f a g plati:

feo(g) pravé tehdy, kdy# g € Q(f)
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Asymptotickd notace — symbol ©

no

Vezméme si libovolnou funkci g : N — R. Pro funkci f : N — R plati
f € ©(g) pravé tehdy, kdy?

(Jc; > 0)(Fc, > 0)(Ing 2 0)(Vn=ng)(cy - g(n) = f(n) < - g(n)).
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Asymptotickd notace — symbol ©

Z definice © snadno vyplyva nésledujici:

Pro libovolné funkce f a g plati:

feo(g) pravé tehdy, kdyz feO(g)afeQg)
feo(g) pravé tehdy, kdyz feO(g)age Of)
feo(g) pravé tehdy, kdyz g € O(f)
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Asymptoticka notace — symboly o and w

Vezméme si libovolnou funkci g : N — R. Pro funkci f : N — R plati
f € o(g) pravé tehdy, kdy?
_ f(n)
lim =0
n— +00 g n)

Definice

Vezméme si libovolnou funkci g : N = R. Pro funkci f : N — R plati
f € w(g) pravé tehdy, kdy?
f(n)

olim o
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Asymptoticka notace

Pro libovolné funkce f a g plati nasledujici tvrzeni:

JestliZe existuje hodnota ¢ = 0 takov4, Ze

lim M =
n=+eo g(n)

pak f € O(g).

JestliZe existuje hodnota ¢ = 0 takov4d, Ze

lim M =
=T £(n)

pak f € Q(g).
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Asymptoticka notace

Zjevné plati:

e Pokud f € o(g), pak f € O(g).
e Pokud f € w(g), pak f € Q(g).

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 447 / 674



Asymptoticka notace

Na asymptotickou notaci se mizZeme divat jako na urdity druh porovnani
rychlosti ristu funkci:

feo(g)
feQlg)
feo(g)
feolg)
few(g)

Poznamka:

rychlost ristu f
rychlost ristu f
rychlost ristu f
rychlost ristu f

rychlost ristu f

o Existuji dvojice funkci f a g takové, Ze

fEO(g) a  g¢o(f)

naptiklad

<

>

<

>

rychlost ristu g
rychlost riistu g
rychlost ristu g
rychlost ristu g
rychlost riistu g

pokud n mod 2 =1

jinak

Z. Sawa (VSB-TUO)

Uvod do teoretické informatiky
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Asymptoticka notace

o O funkci f Fekneme, Ze je:
linearni, pokud f(n) € ©(n)
kvadraticka, pokud f(n) € ©(n°)
kubicka, pokud f(n) € ©(n°)
polynomialni, pokud f(n) € O(nk) pro n&jaké k > 0

k
exponencialni, pokud f(n) € O(c" ) pro néjaké ¢ >1a k >0
logaritmicka, pokud f(n) € ©(log n)
polylogaritmicka, pokud £(n) € ©(log" n) pro n&jaké k > 0

@ O(1) je mnoZina vech omezenych funkci, tj. funkci jejichZ funk&ni
hodnoty jsou shora omezeny né&jakou konstantou.

@ Exponencidlni funkce se v asymptotické notaci ¢asto uvadi ve
k
O(n y ey , ¥ o s _2
tvaru 2% ), protoZe potom jiZz nemusime uvaZzovat rlizné ziklady
mocniny.
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Asymptoticka notace

Obecné plati:

@ jakakoliv polylogaritmicka funkce roste pomaleji nez jakakoli
polynomialni funkce

@ jakdkoli polynomidlni funkce roste pomaleji neZ jakdkoli exponencidln{
funkce

- (oo o PR S A

@ pfi porovnavani polynomidlnich funkci n” a n stadi porovnat
hodnoty k a ¢

@ pfi porovnavani polylogaritmickych funkci Iogk na Iogé n stadi
porovnat hodnoty k a /¢

@ pfi porovnavani exponencialnich funkci 2p(n) a 2q(")

polynomy p(n) a q(n).

stadi porovnat
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Asymptoticka notace

Tvrzeni

Ptredpokladejme, Ze a a b jsou né&jaké konstanty takové, ze a >0 a b > 0,
a k a ¢ jsou néjaké libovolné konstanty, kde k 20, /=20 a k < /.

UvaZujme funkce
f(n)=a'nk g(n)=b-n£

Pro kaZdé takové funkce f a g plati f € O(g):

Dukaz: Zvolme ¢ =

oy

Vzhledem k tomu, Ze pro n = 1 zjevn& plati n*<nt (protoze k < /), tak
pro n = 1 plati

c-g(n)=3b~g(n)=%-b-ne=a~n£23-nk=f(n)
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Asymptoticka notace

Tvrzeni
Pro libovolna a, b > 1 a libovolné n > 0 plati

logy, n
logy, a

log, n =

Ditkaz: Z n = 2°%" plyne log,, n = log,(a°%").

5 [ (s
Protoze log,(a°%") = log, n - log,, a, dostavame log, n = log, n - log, a,
z ¢ehoz plyne vySe uvedeny zavér. O

Z toho diivodu se pFi pouziti asymptotické notace zdklad logaritmu obvykle
vynechava: naptiklad misto ©(nlog, n) miizeme napsat ©(nlogn).
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Asymptoticka notace

Ptiklady:
ne O(n2) n® e O(n )
1000n € O(n) 0.00001n° - 10'°n € ©(10"°1?)
2°82" € ©(n) n® = n” logs n + 1000n — 10'% € ©(n?)
n® ¢ O(n2) n® +1000n — 10'% € O(n )
n® ¢ 0(n) n® +n° ¢ (n’
n® 42" ¢ O(n2) nl ¢ 0(2")
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Asymptoticka notace

Pro libovolné tfi funkce f, g a h plati:
e jestlize f € O(g) a g € O(h), pak f € O(h)
e jestlize f € Q(g) a g € Q(h), pak f € Q(h)
o jestlize f € ©(g) a g € ©(h), pak f € O(h)
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Asymptoticka notace

@ Pro libovolnou funkci f a libovolnou konstantu ¢ > 0 plati:
ec-fe e(f)

@ Pro libovolné dvé funkce f, g plati:
o max(f,g) € O(f + g)
e pokud f € O(g), pak f + g € O(g)

@ Pro libovolné &ty¥i funkce f1, f>, g1, &> plati:
o pokud i € O(f,) a g1 € O(g2), pak fi + g1 € O(f, + &) a
fi g € O(f- &)
o pokud f; € O(f,) a g1 € O(g2), pak i + g1 € O(f + g2) a
fi-g1 €O(h &)
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Asymptoticka notace

Jak bylo uvedeno, vyrazy O(g), Q(g), ©(g), o(g) a w(g) oznakuji urtité
mnoZiny funkci.

V odbornych textech se v8ak nékdy pouZivaji tyto vyrazy i v ponékud
odlisném vyznamu:

e zapis O(g), Q(g), ©(g), o(g) nebo w(g) nereprezentuje danou
mnoZinu funkci, ale néjakou funkci z dané mnoZiny.

Tato konvence se pouzivd zejména v zdpisu rovnic nebo nerovnic.
- 3 2 3 2
P¥iklad: 3n” +5n" —11n+2 =3n" + O(n")

P¥i pouZiti této konvence je tedy mo¥né naptiklad psit f = O(g) misto
feOo(g).
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SloZitost algoritm{i

Rekn&me, e bychom cht&li analyzovat €asovou sloZitost T(n) n&jakého
algoritmu, ktery se sklada z instrukei f1, b, ..., Ix:

@ Ptedpokladejme, Ze doby provedeni jednotlivych instrukci jsou
€1, Co, ..., Ck, tj. doba provedeni instrukce /; je ddna konstantou c;.

o Ptedpokladejme, Ze In je mnoZina v8ech moznych vstupid pro dany
algoritmus.
Zaved me si pro kaZdou instrukci /; odpovidajici funkci
m;:In— N
udavajici, kolikrdt se provede instrukce /; p¥i vypoctu nad danym
vstupem, tj. hodnota m;(w) udava, kolikrdt se provede instrukce /;
p¥i vypoc¢tu nad vstupem w.
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SloZitost algoritm{i

@ Celkova doba vypoc¢tu nad vstupem w:
t(w) =cy-m(w) +co ma(w) + - + ¢ - me(w).
e P¥ipometime, 7 T(n) = max{t(w) | size(w) = n}.

@ Pro kaZdou z funkci my, ms, ..., m, miZeme nadefinovat odpovidajici
funkci f; : N = R, kde

fi(n) = max{m;(w) | size(w) =n}

tj. f:(n) je maximum z po&tu provedeni instrukce /; pro viechny
vstupy velikosti n.

@ Zjevn& plati T € O(f, + fo + -+ + f;).
o P¥ipomefime si, Ze pokud f; € O(f;), pak ¢; - f; + ¢; - f; € O(F;).

@ Pokud tedy pro n&kterou funkci f; plati, Ze pro viechny f;, kde j # i,
je f; € O(f;), pak
T € O(f:).
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SloZitost algoritm{i

@ Zjevn& také plati, Ze pro libovolnou z funkci i, f, ..., f je T € Q(f).

e P¥i analyze celkové &asové sloZitosti T(n) se tedy v&tSinou miizeme
omezit pouze na analyzu poctu provedeni nejéastéji provadéné
instrukce /;, tj. zkoumdni toho, jak rychle roste funkce f;(n), protoZe
plati

T € ©(f;).

@ Pro ostatni instrukce /; stati ovéfit, ze

fi € O(f),

tj. neni pro n& nutné presné zjistovat, jak rychle rostou, ale jen to, Ze
rostou nanejvys tak rychle jako f;.
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SloZitost algoritm{i

Ptiklad:

Algoritmus: Nalezeni nejvétsiho prvku v poli

FIND-MAX (A, n):
k:=0
fori:=1ton-1do
L if A[i]> A[k] then
| k=i

return Al k]
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SloZitost algoritm{i

P¥i analyze sloZitosti algoritmu FIND-MAX jsme zjistili, Ze ¢asova sloZitost
daného algoritmu v nejhorsim pfipadé je

f(n)=an+b.

Kdybychom to nechtéli takto podrobné& zji$tovat a spokojili se s hrub%im
odhadem, mohli jsme uréit, e &asova sloZitost tohoto algoritmu je ©(n),
protoze:

@ Algoritmus obsahuje jediny cyklus, ktery se pro vstup velikosti n
provede vZdy pravé (n— 1) krat, tj. polet priichodii cyklem je v ©(n).

@ V ramci jednoho priichodu cyklem se provede n&kolik instrukci, jejichZ
polet je shora i zdola omezen né&jakymi konstantami nezdvislymi na
velikosti vstupu. Doba provedeni jedné iterace cyklu je tedy v ©(1).

e Ostatni instrukce se provedou jednou. Cas, ktery se stravi jejich
provadénim, je v ©(1).
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SloZitost algoritm{i

Pokusme se analyzovat ¢asovou sloZitost nasledujiciho algoritmu:

Algoritmus: T¥idéni pfimym vkladdanim

INSERTION-SORT (A, n):

for j:=1ton-1do
x = A[/]
it=j-1
while i = 0 and A[i] > x do
Ali +1] := A[i]
L it=i—-1
Ali +1] := x

Tj. chceme najit funkci T(n) takovou, ¥e &asova sloZitost algoritmu
INSERTION-SORT v nejhor§im p¥ipad& je v ©(T(n)).
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

0 1 2 3 4 5 6 7 8 9
13]8|1|5]8]6[11]4]10]5]

x =7
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[3]8|1]s]8[6]11]4]10]5] . =7
T
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

] n
l l
0 1 2 3 4 5 6 7 8 9
Sl :[5]8]6[11][4]0]5] <=8
1
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[3[8l1]s]8[6]11]4]10]5] =8
,
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[3[8l1]s]8[6]11]4]10]5] =8
:
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
A=1[3,8,1,5,8,6,11,4,10,5], n = 10.
i n
l 1
1

0 2 3 4 5 6 7 8 9
(3]s 5[8]6]r1]4]10]5]
!

x=1

J

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 463 /674



SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

] n
l l
0 1 2 3 4 5 6 7 8 9
[SIle]5 86 [11][4]0]5] x=1
)
J

11. tinora 2026 463 /674
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n

o 1 2 3 4 5 6 7 8 9 l
Bl s[8]s5]8]6]r]4]10]5]
!

J

— ~.

x=1
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

0 1 2 3 4 5 6 7 8 9
l1]3]8]5|8|6[11]4|10]5]
1
J

x=1
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

0 1 2 3 4 5 6 7 8 9
l1]3]8]5|8|6[11]4|10]5]
1
J

x=1
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n

i
l l
2 4 5

0 1 3 6 7 8 9
[1]s]eBl 8]6]r1]4]10]5]
!

J

x=5

Z. Sawa (VSB-TUO)
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
A=1[3,8,1,5,8,6,11,4,10,5], n = 10.
i n
l 1
1

0 2 3 4 5 6 7 8 9
(1] B8] s]6]r]4]10]5]
!

x=5

J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

0 1 2 3 4 5 6 7 8 9
1]3]5[8]8|6[11]4]10]5]
1
J

x=5
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1[sfsl8]s[6]11]4]10]5) x=5
T
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
[a[s]sTel 6[11]4]10]5] <=8
1
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

0 1 2 3 4 5 6 7 8 9
135|888 6[11]4|10]5]
1
J

x =28
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0O 1 2 3 4 5 6 7 8 9
[1[sfsl8]8f6]11]4]10]5) x=38
T
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
4

0 1 2 3 5 6 7 8 9
als]s]ele @4 0]s] .-
f

J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
[i[s]s[e 8 11]4]0]5] x=6
)
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
(i[5 I8 8 11]4]0]5] x=6
)
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1[sfsle]8f8]11]4]10]5) x=6
,
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1[sfsle]8f8]11]4]10]5) x=6
T
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n

1 |
0 1 2 3 4 5 6 7 8 9
‘1|3|5|5|8|8.4|1O|5‘ x =11
1

J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1]sfsle]8f8ft]4]i0]5 =11
T
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[1]sfsle]8f8ft]4]t0]5 =11
T
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

N n
l l
0 1 2 3 4 5 6 7 8 9
[[s]s[elsls[ulvls] .,
)
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

I n
! l
0 1 2 3 4 5 6 7 8 9
Gs[s[ololo Mulo[s .,
)
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
AlsTe[sMeiols| .,
)
J

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 463 /674



SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
ARlsToMslefiols| .,
)
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
A Msleslule[s .,
)
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

i n
l l
0 1 2 3 4 5 6 7 8 9
A[sEs[slelslitls| .,
)
J
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
(1[s]4]s]6[8]s]1t]10]5 =4
T
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.
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SloZitost algoritm{i

Ptiklad: Vypocet algoritmu INSERTION-SORT pro vstup

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.
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SloZitost algoritm{i

Algoritmus: T¥idéni pfimym vkladanim

INSERTION-SORT (A, n):
for j:=1ton-1do
x = A[j]
i=j-1
while i = 0 and A[/] > x do
Ali +1]:= A[i]
L ji=i-1

Ali+1]:=x
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SloZitost algoritm{i

UvaZujme vstupy velikosti n:

o Vnéjsi cyklus for se provede n — 1 krat.

(Promé&nna j nabyva hodnot 1, 2, ..., n—1.)

@ Vnitini cyklus while se pro danou hodnotu j provede maximalné
J krat.
(Prom&nnd i nabyva hodnot j—1,;-2,...,1,0.)

@ Existuji vstupy, pro které plati, Ze pro kazdou hodnotu j od 1 do n—1
se vnit¥ni cyklus while provede pravé j krat.

@ V nejhorsim pfipadé se tedy cyklus while provede celkem m krat, kde

m=1+2+---+(n—1)=(1+(n—1))-%1=%n2—%n

o Celkova &asova slozitost algoritmu INSERTION-SORT v nejhor$im
ptipadé je tedy ©(n?).
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SloZitost algoritm{i

V ptedchozim p¥ipadé jsme p¥esné spoditali celkovy pocet prichodi
cyklem while.
Obecné to neni vZidy moZné spoditat takto p¥esné& nebo to miZe byt hodn&

komplikované. Pokud nds zajima jen asymptoticky odhad, tak to &asto ani
neni nutné.
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SloZitost algoritm{i

Pokud bychom nap¥iklad neuméli spoditat soucet aritmetické posloupnosti,
mohli bychom provést analyzu nasledovné:

@ Vnéjsi cyklus for se neprovede vice neZ n krat, vnitfni cyklus while se
p¥i kazdé iteraci vnéjsiho cyklu provede maximalné n krat. Celkové se
oy, S w2 s
tedy vnit¥ni cyklus provede maximdlné n~ krat.

Plati tedy T € O(n?).

@ Pro nékteré vstupy se pFi poslednich |_n/2J prichodech cyklem for
provede cyklus while alespofi [ n/2] krit.
Pro nékteré vstupy se tedy cyklus while provede alespori
[n/2]-[n/2] krat.

[n/2|-[n/2] = (n/2=1)-(n/2) ——nz—%n

Plati tedy T € Q(n ).
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SloZitost algoritm{i

@ Zatim jsme uvazovali, Ze provedeni dané instrukce trva vzdy stejné
dlouho bez ohledu na to, s jakymi hodnotami pracuje.

o P¥i pouZiti asymptotickych odhadil tedy doba trvani jednotlivych
instrukci nehrala roli a dilezité bylo pouze to, kolikrat se dand
instrukce p¥i b&hu algoritmu provede.

o Napftiklad p¥i pouZiti stroji RAM jako vypocetniho modelu to
odpovida pocitani pottu provedenych instrukci, tj. doba trvani
provedeni jedné instrukce je 1.

Tato se oznaduje jako pouziti tzv. jednotkové miry.

@ Odhady ¢asové slozitosti v jednotkové mife odpovidaji dob& béhu na
skute¢nych pocitatich za predpokladu, Ze operace, které provadi stroj
RAM, miZe skuteény podital provést v konstantnim &ase.

To plati, pokud ¢&isla, se kterymi algoritmus pracuje, jsou mala
(vejdou se napf. do 32 nebo 64 biti).
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SloZitost algoritm{i

e Pokud by stroj RAM pracoval s ,,velkymi* &isly (nap¥. 1000 bitovymi),
bude odhad ¢asové sloZitosti v jednotkové mife nerealisticky v tom
smyslu, Ze vypolet na skute¢ném poditadi bude trvat mnohem déle.

@ Proto se pfi analyze ¢asové sloZitosti algoritmii, u kterych se
predpoklada prace s velkymi &isly, pouziva tzv. logaritmicka mira,
kdy je doba provedeni jedné instrukce umérna po&tu bitovych
operaci, které je tfeba pro provedeni dané instrukce provést.

@ Doba trvani instrukce je tedy zavisld na aktudlnich hodnotach jejich
operandd.

o Napfiklad doba provadéni instrukci s¢itdni a od&itani je rovna soultu
po&ti bitd jejich operandi.

@ Doba provadéni instrukci ndsobeni a déleni je rovna soudinu pocti
bitll jejich operandd.
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SloZitost algoritm{i

Poznamka: Zapisem blen(x) oznaéme potet bitii v bindrnim zapise
pFirozeného &isla x.
Plati

blen(x) = max (1, [loga(x + 1)1
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Prostorovd (pamétova) sloZitost algoritmi

@ Zatim jsme se zajimali o &as, ktery potfebujeme k vypoltu

o Ne&kdy byva kritickou velikost paméti potfebné k provedeni vypoctu.

V ptipadé stroji RAM opét miZeme i z hlediska mnoZstvi pouZité paméti
rozliSovat mezi pouZitim jednotkové a logaritmické miry:

MnoZzstvim paméti stroje RAM M pouZitym pro vstup w rozumime bud
polet bunék paméti nebo polet biti paméti, které stroj M b&hem svého
vypoltu nad vstupem w pouZije.

Definice

Prostorova slozitost stroje RAM M (v nejhorsim p¥ipadg) je funkce
S :N = N, kde S(n) uddvd maximalni mno¥stvi paméti pouZité
strojem M pro vstupy délky n.
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Prostorovd (pamétova) sloZitost algoritmi

@ Pro konkrétni problém miZeme mit dva algoritmy takové, Ze jeden
ma mensi prostorovou sloZitost a druhy zase ¢asovou sloZitost.

@ Je-li ¢asova slozitost algoritmu v O(f(n)) je i prostorovd v O(f(n))
(polet bun&k navitivenych RAMem nemiiZze byt ¥adové vétsi nez
polet krokli, protoZe v kazdém kroku pouZije nejvyse t¥i buiiky paméti
— nejvyse dv& pro &teni a nejvyse jednu pro zépis).
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Ptiklady analyzy slozitosti algoritmu

(a pfiklady technik pouZivanych p¥i ndvrhu efektivnich algoritmi)
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SloZitost algoritm{i

Orientadni typické hodnoty velikosti vstupu n, pro které algoritmus
s danou &asovou sloZitosti jesté vétsinou zvladne na ,,b&Zném PC" spoditat
vysledek ve zlomku sekundy nebo maximalné v ¥adu sekund.

(Zavisi to samozfejm& vyrazn& na konkrétnich detailech. Navic se zde
predpoklada, Ze v asymptotické notaci nejsou skryty né&jaké velké
konstanty.)

O(n) O(nlogn) O(nz) O(n3)
1000000-100000000 100000-1000000 1000-10000 100-1000

20(n) o(n!)
20-30 10-15
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SloZitost algoritm{i

P¥i pouZivani asymptotickych odhad( ¢asové sloZitosti algoritm{ bychom
si méli byt védomi nékterych dskali:

o Asyptotické odhady se tykaji pouze toho, jak roste &as s rostouci
velikosti vstupu.

o Nefikaji nic o konkrétni dobé vypoltu. V asymptotické notaci mohou
byt skryty velké konstanty.

@ Algoritmus, ktery ma lepsi asymptotickou ¢asovou sloZitost nez
néjaky jiny algoritmus, miZe byt ve skute¢nosti rychlejsi az pro né&jaké
hodné velké vstupy.

@ Vétsinou analyzujeme sloZitost v nejhor$im p¥ipadé. Pro nékteré
algoritmy mize byt doba vypo&tu v nejhor§im p¥ipadé mnohem vétsi
nez doba vypoltu na ,typickych” instancich.
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SloZitost algoritm{i

@ MiiZeme si to ilustrovat na algoritmech pro t¥idéni.
Algoritmus ‘ Nejhorsi p¥ipad ‘ Primérny pfipad

Bubblesort @(nz) @(n2)
Heapsort ©(nlogn) ©(nlogn)
Quicksort o(n?) ©(nlogn)

@ Quicksort ma horsi asymptotickou sloZitost v nejhorsim p¥ipadé nez
Heapsort, stejnou asymptotickou sloZitost v primérném p¥ipadé a
pfesto je v praxi nejrychlejsi.
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SloZitost algoritm{i

Polynom — funkce tvaru
k k=1 2
agn + akg_1n + - +an +an+qg

kde ag, a1, . . ., 3k jsou konstanty.

P¥iklady polynomd:

3—2n2+8n+13 2n+1 nt%

Funkce f je polynomialni, jestliZe je shora omezena nejakzm polynomem,
tj. jestlize existuje n&jaka konstanta k takovd, Ze f € O(n

Polynomidlni jsou nap¥iklad funkce, které pat¥i do nasledujicich t¥id:

O(n)  O(nlogn) ~ O(n*)  O(r°)  O(yn)  O(n'*®)
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SloZitost algoritm{i

Funkce jako 2" nebo n! polynomialni nejsou — pro libovolné& velkou
konstantu k plati

2" e Q(nk) nl € Q(nk)

Polynomialni algoritmus — algoritmus, jehoZ ¢asova sloZitost je
polynomidlni (tj. shora omezena n&jakym polynomem)

Zhruba se da ¥ict, Ze:
@ polynomidlni algoritmy jsou efektivni algoritmy, které se daji prakticky
pouZit i pro relativné velké vstupy
@ algoritmy, které polynomidlni nejsou, se daji pouZzit jen pro pomérné
malé vstupy
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SloZitost algoritm{i

Rozdéleni na polynomidlni a nepolynomialni algoritmy je velmi hrubé —
nelze kategoricky tvrdit, Ze polynomidlni algoritmy jsou vZdy prakticky
pouzitelné a nepolynomidlni naopak nikdy nejsou:

@ algoritmus se sloZitosti @(nloo) pravdépodobné p¥ili§ prakticky
pouZitelny nebude,

@ nékteré algoritmy, které nejsou polynomialni, mohou fungovat
efektivné pro velkou &3ast vstupl, a sloZitost vét$i nez polynomidini
maji jen kvili nékterym problematickym vstupim, na kterych miZe
vypocet trvat velmi dlouhou dobu.

Poznamka: Polynomialni algoritmy, kde by konstanta v exponentu bylo

n&jaké velké &islo (nap¥. algoritmy se sloZitosti @(nloo)), se pti reseni
béznych algoritmickych problémi prakticky nevyskytuji.
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SloZitost algoritm{i

Pro vétSinu béznych algoritmickych problémi nastdva jedna ze t¥i
mozZnosti:

o Je znim polynomidlni algoritmus se sloZitosti O(n*), kde k je n&jaké
velmi malé &islo (nap¥. 5 a Cast&ji tfeba 3 a méng).

@ Neni znam zadny polynomidlni algoritmus a nejlepsi znamé algoritmy
maji sloZitosti jako tfeba 26("), ©(n!) nebo n&jaké jestd vitsi.
V nékterych p¥ipadech miZe byt zndm i dikaz, Ze pro dany problém
Zadny polynomidlni algoritmus neexistuje (tj. neda se vytvofit).

e Neni znam Zadny algoritmus, ktery ¥esi dany problém (a p¥ipadné je i
dokazéno, Ze zadny takovy algoritmus neexistuje).
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SloZitost algoritm{i

Typicky ptiklad polynomialniho algoritmu — nasobeni matic s ¢asovou
sloZitosti ©(n°) a pamétovou sloZitosti ©(n?):

Algoritmus: Nasobeni matic

MATRIX-MuULT (A, B, C, n):
for i :=1to ndo
for j:=1to ndo
x:=0
for k:=1 to ndo
| x = x+ ALi][k] * B[K][/]
Clillj]:=x
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SloZitost algoritm{i

@ P¥i hrubé analyze sloZitosti &asto stadi spoditat polet do sebe
vnofenych smyéek — a tento polet pak udava stupeii polynomu

Pt¥iklad: T¥i vnofené cykly p¥i ndsobeni matic — &asova sloZitost
algoritmu je O(n*).

Pokud neprobihaji vSechny smycky nap¥f. od 0 do n, ale pocet
prachodi vnitfnimi smy¢kami se p¥i rliznych iteracich vnéjsi smy¢ky
méni, podrobné&jsi analyza mize byt komplikovangjsi.

Vétsinou to pak vede na poditani souétd riznych typt &iselnych Fad
(nap¥. aritmetické, geometrické, apod.).

Casto d3 takovd podrobn&jéi analyza podobny vysledek jako hrubd

analyza, mnohdy viak mize byt sloZitost zjisténa touto podrobnéjsi
analyzou podstatné nizsi nez by vyplyvalo z hrubého odhadu.
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Aritmetickd posloupnost

Aritmeticka posloupnost — ¢&iselna ¥ada ag, aj, ..., a,—1, kde
aj=ag+i-d,

kde d je néjaka konstanta nezavistld na i.

V aritmetické posloupnosti tedy pro v8echna i plati a;+; = a; + d.
P¥iklad: Aritmetickd posloupnost, kde ag =1, d =1 a n = 100:

1,2,3,4,5 6, ...,96, 97, 98, 99, 100

Soucet aritmetické posloupnosti:

n—1

1
ZQ,’ = gygtayt+--+tap-1 = in(a0+a,,_1)
i=0
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Aritmetickd posloupnost

Ptiklad:

1
1+2+--+n = in(n+1) = zn +3n = 9(”2)

Konkrétné naptiklad pro n = 100 je

1+2+--+100 = 50-101 = 5050.
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Aritmetickd posloupnost

Dikaz: Oznaéme

2s s+s

(ag+ap+--+apq)+ (ag+ar+-+ap1)

(a0 +ay+ - +ap1) + (ap-1 + ap-2 + -+ + ao)

(ag + ap-1) + (a1 + an—2) + ++* + (ap-1 + ao)

((ag +0-d) + (ag + (n—1)-d)) + ((ap + 1:d) + (ag + (n—2)-d)) +
-+ ((ag+ (n—=1)-d) + (ag + 0:d))

n-(ag+ag+(n—1)d)

n-(ag+am-1)
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Aritmetickd posloupnost

Priklad: s = 1 +2+3+---+99+ 100

2s = s+s
= (142+--4100) + (1+2+ -+ 100)
= (14+2+--+100) + (100 + 99 + --- + 1)
= (14+100)+ (2+99) + (3+98) + -+ + (99 +2) + (100 + 1)
= 100 - (1 + 100) = 10100

Takze 1
s =5 - 10100 = 5050
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Geometricka posloupnost

Geometrickd posloupnost — &iselnd fada ag, a1, . . ., a,, kde
i
ai=a-q,
kde g je n&jakd konstanta nezavistld na /.
V geometrické posloupnosti tedy pro vSechna i plati a;+1 = a; * q.

P¥iklad: Geometrickad posloupnost, kde ag =1, g=2a n=14:

1,2, 4,8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384

Soutet geometrické posloupnosti (kde g # 1):
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Geometricka posloupnost

Ptiklad:
) . qn+1_1
l1+g+q ++-+qg = -1
Specialn& pro g = 2:
1 2 3 n 2n+1_1 n n
1+2 +2°+27 4+ 42" = —— =2:2"-1 = 9(2")

2-1
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Geometricka posloupnost

Dikaz: Oznaéme

n

s = ZB,‘ = gygta+--+a,
i=0

0 1
S =a-q tay-q +~~~+ao-q"

0 1
s+q=(a-qg+a-q+-+a-q)q
=ao.q1+ao.q2+...+ao.qn+l
n+1 0
s'q—s =a-q —a-q
+1
s-(g=1) = ag- (¢ -1)
B qn+1_1
S = 4o q—].
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SloZitost algoritm{i

Exponencialni funkce: funkce tvaru ¢”, kde ¢ je konstanta —
nap¥. funkce 2"

Logaritmus — inverzni funkce k exponencialni funkci: pro dané n je
log. n

takova hodnota x, ¥e ¢ = n.
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SloZitost algoritm{i

S

N
El

S

[log, n] n log, n
0 1 0 — 1 0
1 2 1 0 2 1
2 4 2 1 4 2
3 8 3 2 8 3
4 16 4 2 16 4
5 32 5 3 32 5
6 64 6 3 64 6
7 128 7 3 128 7
8 256 8 3 256 8
9 512 9 4 512 9
10 1024 10 4 1024 10
11 2048 11 4 2048 11
12 4096 12 4 4096 12
13 8192 13 4 8192 13
14 16384 14 4 16384 14
15 32768 15 4 32768 15
16 65536 16 4 65536 16
17 | 131072 17 5 131072 17
18 | 262144 18 5 262144 18
19 | 524288 19 5 524288 19
20 | 1048576 20 5 1048576 20
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SloZitost algoritm{i

Pt¥iklady toho, kde se p¥i analyze algoritmi objevuji exponencidlni funkce
a logaritmy:

@ Né&jaka hodnota se opakované& zmensuje na polovinu nebo naopak
zdvojndsobuje.

Nap¥iklad u binarniho vyhledavani (metodou puleni intervalu) se
s kazdou iteraci cyklu zmen3uje velikost intervalu na polovinu.
Predpoklddejme, Ze pole ma velikost n.

Jakd je minimalni velikost pole n, p¥i které se provede alespori
k iteraci?

Odpovid: 2°
Plati tedy k = log,(n). Casova slo¥itost algoritmu je pak ©(log n).
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SloZitost algoritm{i

e Pomoci n bitii je mo¥no reprezentovat &isla od 0 do 2" — 1.

@ Minimalni pocet bitl potfebnych pro uloZeni p¥irozeného &isla x
reprezentovaného binarné je

[logs(x + 1)].

R - [ Ah+l .
@ Dokonale vyvazeny bindrni strom o vySce h ma 2"~ — 1 vrchold,
vy b .
z ¢ehoz 2" jsou listy.

@ Dokonale vyvaZeny bindrni strom o n vrcholech ma vysku zhruba
log, n.

[lustra¢ni p¥iklad: Kdybychom nakreslili vyvaZeny strom

o n = 1000000 vrcholech tak, aby sousedni vrcholy byly vzdéleny
o 1cm a vyska kazdé vrstvy byla také 1cm, mél by tento strom na
$itku 10 km a na vySku zhruba 20 cm.
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SloZitost algoritm{i

Dokonale vyvaZzeny binarni strom vysky h:
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SloZitost algoritm{i

Dokonale vyvaZzeny binarni strom vysky h:
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SloZitost algoritm{i

Efektivni uloZeni Gplného bindrniho stromu v poli:

’1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘
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SloZitost algoritm{i

Efektivni uloZeni Gplného bindrniho stromu v poli:

’1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘

Potomci vrcholu s indexem / maji indexy 2/ a 2/ + 1.
Rodi¢ vrcholu s indexem i ma index [i/2].
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SloZitost algoritm{i

Halda (heap) — uplny binarni strom uloZeny v poli A vy%e uvedenym
zplsobem, kde navic pro kazdé i = 1,2,..., n plati:

e pokud 2/ < n, pak A[i] = A[2i]
e pokud 2/ + 1 = n, pak A[i] = A[2i + 1]

P¥iklady vyuZiti haldy:
o tridici algoritmus HeapSort

o efektivni implementace prioritni fronty — umoZiiuje provadét vétsinu
operaci na této front& s &asovou sloZitosti v O(log n), kde n je potet
prvki ve front&
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SloZitost algoritm{i

Algoritmus: Vytvoreni haldy z nesetfidéného pole

CREATE-HEAP (A, n):

i:=|n/2]

while / =2 1 do

ji=i

x = A[J]

while 2 ¥ j < n do

k:i=2%j

if k+1<nand Ak + 1] < A[k] then
| ki=k+1

if x < A[k] then break

A[j] = A[K]

| Ji=k
Al = x
i=i-1
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SloZitost algoritm{i

Casova slozitost algoritmu CREATE-HEAP:

@ Rychlou a hrubou analyzou lehce zjistime, Ze tato sloZitost je
v O(nlogn) av Q(n):
o Vn&j&i cyklus se provede vidy | n/2] krdt — potet priichodl je tedy
v ©(n).
o Potet priichodl vnitfnim cyklem v rdmci jedné iterace vnéjsiho cyklu je
otividn& v O(log n).

@ Daleko méné zfejmé je, Ze celkovy pocet priichodl vnitfnim cyklem

(tj. dohromady ptes v3echny iterace vn&jsiho cyklu) je ve skutetnosti

v O(n).
Celkové tedy dostavame:

Casova slozitost algoritmu CREATE-HEAP je v ©(n).
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SloZitost algoritm{i

Zdiivodnéni toho, prot je potet priichodii vnitinim cyklem v O(n):

P¥edpokladejme pro jednoduchost, Ze v8echny vétve stromu jsou stejné
dlouhé a maji délku h — plati tedy n = 2" — 1.

Oznalme C;, kde 0 < j < h, celkovy pocet prichodl vniténim cyklem, kdy
je na zadatku cyklu hodnota j v i-té vrstv& stromu (vrstvy jsou &islovény
odshora 0,1,2,...).

Zjevné je celkovy pocet priichodi s dan vztahem
s = C1+Coot-+(G = ZC,

Hodnotu C; spotitame jako celkovy polet vrcholl ve vstvach 0,1,...,1:

i i+1
2 -1 ;
G =2+ + 4 Z ST =%
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SloZitost algoritm{i

Celkovy soulet pak spoditdme nasledovné:

h-1 h-1 h-1 h-1
s=) G=)@"-1)=2:(32)-()1)
i=0 i=0 i=0 i=0
h_
_p.2 1 h=2""—2-h=n-1-h=0(n)
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Rekurzivni algoritmy

Rekurzivni algoritmus je algoritmus, ktery prevede feSeni plivodniho
problému na FeSeni nékolika podobnych problémd pro mensi instance.

Obecné schéma rekurzivnich algoritmd:
@ Pokud se jednd o elementdrni p¥ipad, vy¥e$ ho pfimo a vrat vysledek.
@ V opalném pfipadé vytvo¥ instance podproblémi.
@ Zavolej sam sebe pro kazdou z téchto instanci.

o Z vysledkil pro jednotlivé podproblémy sloz ¥eSeni plvodniho
problému a vrat ho jako vysledek.

Poznamka: Instance podproblémi musi vzdy byt v né&jakém smyslu mensi
neZ instance plvodniho problému. Casto (ne viak vzdy) se zmen3uje
velikost instance.
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Hanojské véze

Ukol: Premistit disky z A na B, p¥icemy:
@ V jednom okamZiku je mozné presouvat jen jeden disk.

@ Neni dovaleno poloZit vétsi disk na mensi.
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Hanojské véze
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Hanojské véze

n=2:
n=1 A= C
A—-B A—-B
C—-B
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Hanojské véze

n=2:
n=1 A= C
A—-B A—-B
C—-B
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Hanojské véze

n=4:

A-C

A- B

C-B

A-C

A—- B B- A

=2: A-C B—C

n=1: A-C B—C A-C
A- B A—- B A—- B A- B
C—-B C—A C—-B

C-B C-A

A—- B B— A

C-B
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Hanojské véze
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Hanojské véze
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Hanojské véze
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Hanojské véze
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Hanojské véze

Algoritmus: Hanojské véze

HaNo1 (n, src, dst, tmp):
if n =0 then return
HaNo1 (n — 1, src, tmp, dst)
print (src, “—", dst)
HaNo1 (n— 1, tmp, dst, src)

MAIN (n):
L Hanot (n, “A”, “B", “C")
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Hanojské véze

Oznaéme P(n) polet tahii, které provede algoritmus pro n diskil.

Tvrzeni
P(n)=2"-1.

Dukaz:
e Pron=0:P(n)=0=2"-1
e Pro n > 0: Predpokladéme, ¥e P(n—1) =2" ' —1.

P(n) = 2P(n—-1)+1=
= 202"t -1)+1=
= 2.2"_241=
= 2"-1
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Hanojské véze

Pro ptesun n diskii je tfeba minimaln& 2" — 1 tahi.

Dukaz:
Indukei.

s

Uvedeny algoritmus nalezne tedy optimalni FeSeni.

Poznamka

Otazka: Jak dlouho by trvalo p¥esunuti 64 diskil, pokud by pfesunuti
jednoho disku trvalo 1s7?
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Hanojské véze

Pro ptesun n diskii je tfeba minimaln& 2" — 1 tahi.

Dukaz:
Indukei.

Uvedeny algoritmus nalezne tedy optimalni FeSeni.

Poznamka

Otazka: Jak dlouho by trvalo p¥esunuti 64 diskil, pokud by pfesunuti
jednoho disku trvalo 1s7?

Odpovéd: 18446744073709551615s, tj. asi 585 miliard let.
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Rekurzivni algoritmy

Vypocet rekurzivniho algoritmu je mozné znazornit jako strom:
@ vrcholy stromu odpovidaji jednotlivym podproblém(im
@ koten je pivodni problém

@ potomci vrcholu odpovidaji podproblémiim daného problému
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P¥istup, kdy do rekurzivnim algoritmu doplnime néjaké vhodné testy, které
zplsobf, Ze se rekurzivni procedura nebude volat pro nékteré podproblémy,
u kterych je jisté, Ze jejich vyfeSeni nepovede k FeSeni celého problému, se
nazyvd pruning.

Cim vice vétvi stromu timto zplsobem odstranime, tim Iépe.

bl
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Problém osmi dam

Problém: Najit v8echny moZnosti, jak rozmistit n dam na 3achovnici
velikosti n X n tak, aby se 7zadné dvé damy navzidjem
neohroZovaly.
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Problém osmi dam

Jedno z moZnych FeSeni.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 511 /674



Problém osmi dam

Vstupem je &islo n.

Algoritmus bude pouZivat nasledujici pole:

@ Y —sindexy 0..n—1, hodnota Y[i] uddva pro ddmu ve sloupci i
&islo ¥adku, na kterém se nachazi

@ A—sindexy 0..n—1, booleovska hodnota A[j] udava, jestli je
tadek j obsazeny

@ B—sindexy 0..2n -2, booleovskd hodnota B[ k] udav4, jestli je
diagondla k ve sméru ~ obsazend

e C—sindexy —(n—1).. +(n—1), booleovskd hodnota C[k]
udava, jestli je diagondla k ve sméru N obsazena

Prohled4vani se spusti zavolanim SEARCH (0).
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Problém osmi dam

Algoritmus: Rozmisténi n dam na Sachovnici

SEACH (k):

if kK = n then
PRINT-SOLUTION ()
return

fori:=0ton—1do
b= k4 iyi=k—i
if =A[i] and =B[i»] and —=C[i3] then
Y[k]:=i
A[i] := TrUE; B[] := TRUE; C[i3] := TRUE
SEARCH (k + 1)
A[i] := FALSE; B[ib] := FALSE; C[i3] := FALSE
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Problém osmi dam

01 2 3 0 2 3
0/0]1]2]3 0|0 213
1112|334 1-1/0]1|2
21213415 21-2|-1]0]1
3|3]4|5]|6 3|=3]-2|-1]0

Xty X=y
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Rekurzivni algoritmy

@ Uvedeny algoritmus pro rozmisténi n dam na Sachovnici je p¥ikladem
prohledavani s navratem (backtracking).

o | pfi pouZiti pruningu m3a tento typ algoritm{ vétSinou exponencialni
sloZitost.

@ Obecné& rekurzivni algoritmy, které prevadi ¥eSeni problému velikosti n
na dva nebo vice problémi velikosti n — 1, mivaji vétSinou
exponencialni sloZitost.

@ Pokud rekurzivni algoritmus prevadi feSeni problému velikosti n na
Yegeni problémi velikosti n/2, sloZitost miize byt (a Zasto byvd)
polynomialni.

Tento postup miZe né&kdy vést k feSenim, kterd mohou byt
efektivnéjsi nez n&jaké p¥imolaré ¥eseni.
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SloZitost algoritm{i

Ptiklad: Algoritmus MERGE-SORT.

Hlavni myslenka algoritmu: Dvé setfidéné posloupnosti snadno spojime do
jediné setfidéné posloupnosti.

Pokud maji obé posloupnosti dohromady n prvki, vyZaduje tato operace
n krok.
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SloZitost algoritm{i

Ptiklad: Algoritmus MERGE-SORT.

Hlavni myslenka algoritmu: Dvé setfidéné posloupnosti snadno spojime do
jediné setfidéné posloupnosti.
Pokud maji obé posloupnosti dohromady n prvki, vyZaduje tato operace
n krokd.

= [10]
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SloZitost algoritm{i

Ptiklad: Algoritmus MERGE-SORT.

Hlavni myslenka algoritmu: Dvé setfidéné posloupnosti snadno spojime do
jediné setfidéné posloupnosti.
Pokud maji obé posloupnosti dohromady n prvki, vyZaduje tato operace
n krokd.

= [10]11]
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SloZitost algoritm{i

Ptiklad: Algoritmus MERGE-SORT.

Hlavni myslenka algoritmu: Dvé setfidéné posloupnosti snadno spojime do
jediné setfidéné posloupnosti.
Pokud maji obé posloupnosti dohromady n prvki, vyZaduje tato operace
n krokd.

= [10]11]34]
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SloZitost algoritm{i

Ptiklad: Algoritmus MERGE-SORT.

Hlavni myslenka algoritmu: Dvé setfidéné posloupnosti snadno spojime do
jediné setfidéné posloupnosti.

Pokud maji obé posloupnosti dohromady n prvki, vyZaduje tato operace
n krokd.

= 10[11]34]42]
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SloZitost algoritm{i

Ptiklad: Algoritmus MERGE-SORT.

Hlavni myslenka algoritmu: Dvé setfidéné posloupnosti snadno spojime do
jediné setfidéné posloupnosti.

Pokud maji obé posloupnosti dohromady n prvki, vyZaduje tato operace
n krokd.

= 10[11]34]42]53]
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SloZitost algoritm{i

Ptiklad: Algoritmus MERGE-SORT.

Hlavni myslenka algoritmu: Dvé setfidéné posloupnosti snadno spojime do
jediné setfidéné posloupnosti.

Pokud maji obé posloupnosti dohromady n prvki, vyZaduje tato operace
n krokd.
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SloZitost algoritm{i

Ptiklad: Algoritmus MERGE-SORT.

Hlavni myslenka algoritmu: Dvé setfidéné posloupnosti snadno spojime do
jediné setfidéné posloupnosti.

Pokud maji obé posloupnosti dohromady n prvki, vyZaduje tato operace
n krokd.
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SloZitost algoritm{i

Ptiklad: Algoritmus MERGE-SORT.

Hlavni myslenka algoritmu: Dvé setfidéné posloupnosti snadno spojime do
jediné setfidéné posloupnosti.

Pokud maji obé posloupnosti dohromady n prvki, vyZaduje tato operace
n krok.

= [10[11]34]42[53]58]61]67]
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SloZitost algoritm{i

Algoritmus: Merge sort

MERGE-SORT (A, p, r):
if r—p>1then
g:=[(p+r)/2]
MERGE-SORT(A, p, q)
MERGE-SORT(A, g, r)
MERGE(A, p, g, r)

Pro set¥idéni pole A, které obsahuje prvky A[0], A[1],--+, A[n—1],
zavoldme MERGE-SORT(A, 0, n).

Poznamka: Procedura MERGE(A, p, q, r) spoji set¥idéné posloupnosti
ulozené v A[p..g—1] a Alg..r—1] do jedné posloupnosti ulozené
vAlp..r—1].

11. dnora 2026 517 /674
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SloZitost algoritm{i

Vstup: 58, 42, 34, 61, 67, 10, 53, 11

|10 11 34 42 53 58 61 67|

— T~

|34 42 58 61| 10 11 53 67|
/ X / X
|42 58| 134 61] 10 67| (11 53]

P N . U . U . ¢

Strom rekurzivnich voldni ma ©(log n) drovni. Na kaZdé Grovni se provede
©(n) operaci. Casova sloZitost algoritmu MERGE-SORT je ©(nlogn).
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The master theorem

Master theorem
P¥edpoklddejme, e a = 1 a b > 1 jsou konstanty, e f(n) je funkce a %e
funkce T(n) je definovdna rekurentnim predpisem

T(n) = a-T(n/b)+ f(n)
(kde n/b miZe byt bud | n/b| nebo [n/b]). Pak plati:
@ Pokud f(n) € O(n'*%°~°) pro n&jakou konstantu e > 0, pak
T(n) = @(nlogba).
@ Pokud f(n) € @(nlogba), pak T(n) = @(nlogbalog n).

@ Pokud f(n) € Q(n'*% ) pro n&jakou konstantu ¢ > 0 a pokud
a-f(n/b) = c-f(n) pro n&akou konstantu ¢ < 1 a viechna
dostate¢n& velka n, pak T(n) = ©(f(n)).
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The master theorem

Master theorem je mozné pouZit pro analyzu sloZitosti libovolného
rekurzivniho algoritmu, kde:

° Iv?eéem'jednoho podproblému velikosti n, kde n > 1, se pfevede na
Yegeni a podproblémii, z nich? kazdy ma velikost n/b.

@ Doba, ktera stravi feSenim jednoho podproblému velikosti n,
nepoditaje v to dobu, kterd se stravi v rekurzivnich volanich, je uréena
funkei f(n).

P¥iklad: Algoritmus MERGE-SORT: a = 2, b =2, f(n) € ©(n)

(v rdmci jednoho voldni — dva podproblémy, kaZdy velikosti n/2, spojeni
dvou set¥id&nych sekvenci v ¢ase ©(n))

Plati f(n) € ©(n'°%?) = ©(n), takze

T(n) € ©(n'%?log n) = ©(nlog n).
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The master theorem

P¥iklad: Nésobeni ¢tvercovych matic A a B velikosti n X n rekurzivnim
zplisobem:

Pro n = 1 se vysledek spocita p¥imo.

Pro n > 1 se kazda z matic A a B rozloZi na ¢tyfi podmatice

velikosti (n/2) x (n/2).

Vysledek se posklddd pomoci s¢itdni a ndsobeni téchto osmi mensich
matic. Pro ndsobeni téchto mensich matic se funkce zavola rekurzivné.

P¥imotary zpiisob vyZaduje 8 ndsobeni matic velikosti (n/2) x (n/2).
Mame tedy a =8, b =2, f(n) € ©(n?).

Plati f(n) € O(nlogb 7)), protoze n’ e O(nIog2 8_6) = O(n3_e) plati
napt. pro € = 1.

Takze T(n) € @(nlogba) = @(nIOgZS) = @(n3).

Tento postup tedy neni lepsi neZ standardni jednoduchy algoritmus pro
nasobeni matic.
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The master theorem

Existuje v8ak chytry zpisob, jak vySe uvedené provést komplikovanéjsim
zplsobem tak, Ze v rdmci jednoho rekurzivniho voldni posta&i rekurzivné

volat funkci 7 krat
(za cenu vétdiho pottu s¢itani a odiitdni).

Jedna se o tzv. Strasseniiv algoritmus.

Zdejea=7 b=2af(n)€0(n).

Opét plati f(n) € O(n'% ™), protoze n* € O(n'°82"™%) plati
napt. pro € = 0.5.
(log, 7 je pFiblizng 2.80735)

Tak¥e T(n) € ©(n'%?) = ©(n'%7) a tedy T(n) € O(n*®").
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The master theorem

Duakaz master theoremu:

Pro jednoduchost se omezime jen na p¥ipady, kdy f(n) = n“ pro n&jakou
konstantu ¢ > 0.

Rovné&? pro jednoduchost predpoklddejme, Ze n je mocninou &isla b, at
nemusime ¥esit zaokrouhlovani.

P¥edstavme si strom rekurzivnich volani pro instanci velikosti n:

o Vyska stromu je log, n.

y . . 0 .1 |
e Potty vrcholii na jednotlivych drovnich jsou a , a*, ..., a =*"

o Cas, ktery se stravi v jednom vrcholu na drovni i je

(3)-(2)

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 523 /674



The master theorem

Plati tedy

- 3] - S () - ()

i=0 i=0

o
o
o

3

o
o
S

3

Oznaéme g = a/b°. Je tieba rozlisit t¥i p¥ipady:
e g >1—tj. kdyZ plati a > b, neboli ¢ < log, a
e g =1—1tj. kdyZ plati a = b, neboli ¢ = log, a

e g <1 —tj. kdyZ plati a < b, neboli ¢ > log, a
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The master theorem

P¥ipad g > 1 — tj. kdy# plati a > b, neboli ¢ < log,, a:

qlogb n+l 1

logy, n 2\
_ c. a _ . ¢ logyn
T(n) = n ; (bc) n -1 € O(n°-q )

Plati
c _logyn _ ¢ a \logsn _ < Iogb(—bac)
n -q = . F = *n
c log,, a—log, (b° c+log, a—c log, a
=n°-n €b g5(b°) = n Eb = n €b

Plati tedy T(n) € ©(n'*®?).

Poznamka: Pocet listd stromi (tj. podproblémi velikosti 1)
. _logyn _ logya

je a =n :

Vétsina Casu se tedy travi feSenim téchto elementarnich p¥ipadi.

525 / 674
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The master theorem

P¥ipad g = 1 — tj. kdy# plati a = b, neboli ¢ = log,, a:

logp, n 2\ logy, n
T(n) = 0% ) (ge) = n) 1= n"(logyn+1) € O(n*logn)
i=0 i=0

< ¥ 14 ¥ <. Ly logy, a
Poznamka: V kazdé vrstvé stromu se stravi zhruba stejny ¢as ©(n°%07).

Vrstev je celkem ©(log n).
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The master theorem

P¥ipad g < 1 — tj. kdy# plati a < b, neboli ¢ > log,, a:

logy, n 2\ ) 2\ 1
T(n)=n'Z(F) <n'Z(F) =n~1_qEO(n)
i=0 i=0

protoZe pro g, kde 0 < g < 1, plati
%) z+1
; -1 1
! = | = =
Yo = m Y d = T -

Zjevné plati T(n) € Q(n“) (protoZe uz v samotném koFeni se stravi
gas ©(n°)), takze celkové plati T(n) € ©(n°).

Poznamka: Vétsina Casu se v tomto pFipadé stravi v kofeni stromu.
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Dynamické programovani

Definice

Slovo v = aja;...a, nad abecedou ¥ (kde v3echna a; € ¥) je
, * . Y . ., *
podsekvenci slova w € Y7, jestlize existuji slova ug, Uy, ...,u, € X

takovd, Ze
W = Ugay Uy ayup -+ Uy—1adpUp

P¥iklad: Slovo bcba je podsekvenci slova abcbdcab.

Nejdelsi spole¢na podsekvence (longest common subsequence)
slov u a v je nejdeldi slovo w, které je podsekvenci slova u a zaroveii
podsekvenci slova v.

Ptiklad: Nejdelsi spole¢nou podsekvenci slov abcbdab a bdcaba je
slovo bcba.

Poznamka: Nejdelsi spole¢nad podsekvence vZdy existuje, ale ne vzdy je
déana jednozna&né — napf. pro aaabb a bbbaa je to aa i bb.
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Dynamické programovani

Problém: Nejdel$i spole¢na podsekvence

Vstup: Slova v a v nad abecedou Y.

Vystup: Nejdelsi slovo w, které je podsekvenci slova u a zaroven
podsekvenci slova v.

P¥edpokladejme, Ze:

@ slova u a v jsou uloZena v polich A a B indexovanych od jedné

@ hodnoty m a n udavaji délku slov v a v

Tj. pokud u = ajar---a,, a v = by1by-++b,, tak:

e prvky A[1], A[2],..., Al m] obsahuji symboly aj, as,...,am
e prvky B[1],B[2],..., B[ n] obsahuji symboly by, by, ..., b,
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Dynamické programovani

Zamé&Fme se nejprve na problém, zjistit pro dana slova u a v, jaka je délka
jejich nejdelsi spole¢né podsekvence.

MiiZeme ¥esit rekurzivné podproblémy nésledujiciho typu:

@ Lcs-LEN (i,j) — prodanéiaj, kdeO<i<ma0=<j<n, vrati
délku nejdel3i spole¢né podsekvence prefixu slova u délky i a prefixu
slova v délky j.

Tj. Les-LEN (i, ) vrati délku nejdel¥i spole¢né podsekvence slov
uloZenych v

AL AL2],... A[i] a  B[1],B[2]....,B[j]

Délku nejdelsi spole¢né podsekvence slov u a v pak miiZeme zjistit pomoci
LCS-LEN (m, n).
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Dynamické programovani

Rekurzivni feSeni:

0 pokud i = 0 nebo j =0
Les-LEN(i—1,j—1)+1 pokud A[i] = B[/]
max(Lcs-LEN (i — 1, j),

Lcs-LEN (i, j — 1) pokud A[i] # B[/]

LCS-LEN (/, j) =
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Dynamické programovani

Rekurzivni feSeni:

0 pokud i = 0 nebo j =0
Les-LEN(i—1,j—1)+1 pokud A[i] = B[/]
max(Lcs-LEN (i — 1, j),

Lcs-LEN (i, j — 1) pokud A[i] # B[/]

LCS-LEN (/, j) =

Toto ¥eSeni ma ocividné exponencialni ¢asovou sloZitost.

Ve skuteénosti potfebujeme Yeit jen (m + 1) - (n+ 1) riiznych
podproblémi (protoze i € {0,1,...,m} aj€{0,1,...,n}).

Vysledky YeSeni jednotlivych podproblémi si mizeme ukladat do tabulky
a nemusime je FeSit opakované.
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Dynamické programovani

Algoritmus: Nalezeni nejdelsi spole¢né podsekvence — vyplnéni tabulky

Lcs-comp (A, m, B, n):

for i := 0 to mdo C[i][0] :=

for j:=1to ndo C[0][j]:=

for i :=1to mdo

for j:=1to ndo

if A[i]= B[] then

| C[illj]:=Cli-1]j-1]+1; D[i][j]:= “~"

else
Cli—1][j] = C[i][j — 1] then
‘I Clilly]:= cli-1][j); D[iI[j]:= “1"
| il := clillj - 1] DLAL] = “

SloZitost algoritmu je O(m - n).
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Dynamické programovani

J 0 1 2 3 4 5 6
i b d c a b a
0 0 ol o| o] o
. T 1] 1]~ N
ol o o] of 1]«1] 1
N 1 N
2 bl ol el a1 1| 2|2
s ¢ T TN T 1
ol 1| 1| 2|e2| 2
. b N T T TN
ol 1| 1| 2| 2| 3|3
s d TN T T T 1
ol 1| 2| 2| 2| 3| 3
6 2 T 1 TN TN
ol 1| 2| 2| 3| 3
2 b N T T TN 1
ol 1| 2| 2| 3| 3
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ynamické programovani

Dynamické programovani:

@ Pokud mame rekurzivni YeSeni, kde se opakované mnohokrat ¥esi
stejné instance podproblémd, je vhodné ukladat YeSeni podproblémd
do né&jaké datové struktury.

@ Jedna moZnost je ponechat rekurzivni ¥eSeni a znadit si, které
podproblémy jiz byly vyfeSeny.

v 7 v

@ Jind moZnost je systematické FeSeni v8ech podproblémi ve vhodném
poradi (od nejmensich po nejvétsi).

P¥i YeSeni daného podproblému jsou rekurzivni volani nahrazena
prectenim jiz d¥ive uloZenych FeSeni.
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Reprezentace grafil

1[ 3=
- f 2| 1]
eprezentace grafu: ]
3| L[5
4| —=2]/]
5| —4l/]
(@ (2) (3) 6| 6]/
1 2 3 4 5 6
1/0 1. 0 1 0 O
o e e 2/0 0 0 0 1 0
3o 0o 00 1 1
40 1.0 0 0 O
50 0 0 1 0 O
6|0 0 0 0 0 1
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Reprezentace grafil

A 3-E3-E3-E1
SAESOESEN
ENESAESAN

Reprezentace grafu:
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Minimalni kostra grafu

Kostra grafu — souvisly podgraf grafu, ktery obsahuje v8echny vrcholy
a neobsahuje Zadné cykly
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Minimalni kostra grafu

Kostra grafu — souvisly podgraf grafu, ktery obsahuje v8echny vrcholy
a neobsahuje Zadné cykly
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Minimalni kostra grafu

UvaZujme neorientovany graf G = (V, E), kde navic mdme dény vihy
hran, tj. funkci w : E — R, pfifazujici kazdé hrané jeji vahu.

Pokud T je podmnoZina hran (tj. T € E), miZeme funkci w rozsifit na

tuto podmnoZinu:
w(T) =) w(e)
eeT

Kostra grafu G je ddna takovou mnozinou hran T (kde T ¢ E), ktera
spliiuje to, Ze graf (V, T) je souvisly a neobsahuje #adny cyklus.

Minimalni kostra T je takova kostra grafu G, kde pro libovolnou jinou

kostru grafu T plati
w(T) = w(T)
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Minimalni kostra grafu

Problém: Minimalni kostra grafu

Vstup: Souvisly neorientovany graf G = (V, E) s ohodnocenim
hran w : E = R,.

Vystup: Nékterda minimalni kostra grafu G.

Algoritmus, ktery by systematicky zkou$el v8echny moZné kostry, ma
oclividné exponencialni sloZitost.

Efektivni algoritmy pro tento problém jsou zaloZeny na tzv. greedy
(hltavém, hladovém) FeZeni:

@ na zdkladé néjakého lokdlniho kritéria vybrat z mnoha moZnosti jen
jednu a nezkouset vSechny moZnosti

— z mnoha hran, které je mozné do kostry pFidat, vybrat vzdy hranu
s co nejmensi vahou, kterd nevytvofi cyklus, a tu pfidat
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Minimalni kostra grafu

Kruskaltv algoritmus:
o Setfidit hrany podle vdhy od nejmensi po nejvétsi.
e [:=0
@ Probirat hrany v daném setfidéném poradi.

Pro kazdou hranu e otestovat, zda jejim p¥idanim do T nevznikne
cyklus, pokud ne, nastavit

T:=Tu{e}
o Vratit T jako vysledek.

Vypocletni sloZitost zavisi na tom, jak je konkrétné implementovano
testovani toho, Ze nevznikne cyklus:

e P¥imotaré Yedeni m4 slozitost O(n - m).

e Existuje efektivni ¥eSeni se sloZitosti O(mlogn).
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Minimalni kostra grafu

7 vz s 7

U greedy algoritmii je obecné& vétSinou neslozitéjsi ¢asti navrhu algoritmu

dikaz korektnosti — zdiivodnéni toho lokdlné optimalni volby skute&né
vzdy vedou ke globdln& optimalnimu ¥eSeni.

U Kruskalova algoritmu miZe byt dlikaz zaloZen na tom, Ze se udrzuje
ndsledujici invariant:

Aktudlni mnoZina T je podmnoZinou hran n&jaké minimalni kostry Tj.
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Minimalni kostra grafu

o Reknéme, Ze T je podmnoZinou minimalni kostry Tg, a algoritmus
v ndsledujicim kroku p¥id4 hranu e takovou, 2e T U {e} neni
podmnoZinou hran Zadné minimalni kostry.

@ P¥idanim hrany e do Ty vznikne cyklus.

Tento cyklus musi obsahovat n&jakou hranu e takovou, ¥e €' ¢T

(jinak by pfidanim e do T vznikl cyklus).
Navic musi platit w(e) < w(e') (jinak by algoritmus nevybral
hranu e).
e Mnozina Tg = (To — {€'}) U {e} je rovn&# kostra.
Navic zjevné plati w(Tp) < w(Ty), takze musi platit w(Ty) = w( Tp)

(jinak by kostra Ty nebyla minimalinf).

@ Kostra Té je tedy minimalni a plati T U {e} € T('), CoZ je ve sporu
s predpokladem, Ye T U {e} neni podmnoZinou hran #4dné minimaln{
kostry.
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Prohleddvani do Sitky

Nalezeni nejkratsi cesty v grafu, kde hrany nejsou ohodnoceny:

@ Algoritmus pro prohledavani grafu do Sitky
@ Vstupem je graf G (s mnoZinou vrcholi V) a potéateéni vrchol s.
@ Algoritmus pro v8echny vrcholy najde nejkratsi cestu z vrcholu s.

@ Pro graf, ktery ma n vrchold a m hran je doba vypo&tu tohoto
algoritmu ©(n + m).
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Ve

Prohleddvani do Sitky

Algoritmus: Prohledavani do &itky

Brs(G,s):

Brs-INIT(G, 5)

ENQUEUE(Q, s)

while QO + @ do

u := DEQUEUE(Q)

for each v € edges[u] do

if color{v] = WHITE then

colof v] := GRAY
dlv]:=d[u]+1
pred[v] :=u
ENQUEUE(Q, v)

| colofu] := BLACK
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Prohleddvani do Sitky

Algoritmus: Prohleddvéni do $itky — inicializace

Brs-IniT (G, s):
for each u € V — {s} do
colof{ u] := WHITE
dlu] :=
pred[u] := NIL
color[s] := GRAY
d[s]:=0
pred[s] := NIL

Qi=o
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Nerozhodnutelné problémy

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 546 /674



Algoritmicky fesitelné problémy

Pt¥edpokladejme, Ze mame dén né&jaky problém P.

Jestlize existuje n&jaky algoritmus, ktery ¥esi problém P, pak fikdme, Ze
problém P je algoritmicky FeSitelny.

JestliZze P je rozhodovaci problém a jestliZze existuje n&jaky algoritmus,
ktery problém P ¥esi, pak ¥ikdme, Ze problém P je (algoritmicky)
rozhodnutelny.

KdyZ chceme ukazat, Ze problém P je algoritmicky YeSitelny, sta&i ukazat
n&jaky algoritmus, ktery ho ¥esi (a p¥ipadné ukazat, Ze dany algoritmus

N4

problém P skute¢né Yesi).
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Algoritmicky nefeSitelné problémy

Problém, ktery neni algoritmicky FeSitelny, je algoritmicky nefesitelny.

Rozhodovaci problém, ktery neni rozhodnutelny, je nerozhodnutelny.

Kupodivu existuje ¥ada algoritmickych problémd (pfesn& definovanych),
o kterych je dokazano, Ze nejsou algoritmicky FeSitelné.
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Halting Problem

Vezméme si n&jaky libovolny obecny programovaci jazyk L.

Navic p¥edpoklddejme, Ze programy v jazyce £ b&Zi na néjakém
idealizovaném stroji, kde maji k dispozici (potencidln&) neomezené

mnoZstvi paméti — tj. kde alokace paméti nikdy neselZe kvili nedostatku
paméti.

P¥iklad: N&sledujici problém zvany Problém zastaveni (Halting
problem) je nerozhodnutelny:

Halting problem

Vstup: Zdrojovy kéd programu P v jazyce L, vstupni data x.

Otazka: Zastavi se program P po néjakém kone¢ném poctu kroki,
pokud dostane jako vstup data x?
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Halting Problem

P¥edpokladejme, Ze by existoval néjaky program, ktery by rozhodoval
Halting problem.

Mohli bychom tedy vytvotit podprogram H, deklarovany jako
Bool H(String kod, String vstup)

kde H(P, x) vrati:
@ true pokud se program P zastavi pro vstup x,

o false pokud se program P nezastavi pro vstup x.

Poznamka: Rekn&me, %e podprogram H(P, x) by vracel false v p¥ipad,
Ze P neni syntakticky spravny kéd programu.
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Halting Problem

S pouZitim podprogramu H bychom vytvo¥ili program D, ktery bude
provadét nasledujici kroky:

o Nat&te svilj vstup do prom&nné x typu String.
@ Zavola podprogram H(x, x).

@ Pokud podprogram H vratil true, sko&i do nekoneéné smycky
loop: goto loop

V pfipadg, ze H vratil false, program D se ukondi.

Co udéla program D, pokud mu p¥edlozime jako vstup jeho vlastni kéd?
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Halting Problem

Pokud D dostane jako vstup sviij vlastni kéd, tak se bud zastavi nebo
nezastavi.

e Pokud se D zastavi, tak H(D, D) vrati true a D sko&i do nekoneZné
smy¢ky. Spor!

o Pokud se D nezastavi, tak H(D, D) vréati false a D se zastavi. Spor!

V obou p¥ipadech dosp&jeme ke sporu a dalsi moznost neni. NemiiZe tedy
platit pfedpoklad, Zze H ¥esi Halting problem.
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Castecné rozhodnutelné problémy

Problém je ¢astecné rozhodnutelny, jestlize existuje algoritmus, ktery:

@ Pokud dostane jako vstup instanci, pro kterou je odpovéd ANO, tak
se po kone¢ném poctu kroki zastavi a vypise "ANQ".

@ Pokud dostane jako vstup instanci, pro kterou je odpovéd NE, tak se
bud zastavi a vypide "NE" nebo se nikdy nezastavi.

Je otividné, Ze naptiklad HP (Halting problem) je &aste¢n& rozhodnutelny.

Nékteré problémy vsak nejsou ani ¢asteéné rozhodnutelné.
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Postova véta

Dopliitkovy problém k danému rozhodovacimu problému P je problém,
kde vstupy jsou stejné jako u problému P a otdzka je negaci otazky
z problému P.

Postova véta

JestliZze problém P i jeho dopliikovy problém jsou &asteéné rozhodnutelné,
pak je problém P rozhodnutelny.
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P¥evody mezi problémy

Pokud mame o n&jakém (rozhodovacim) problému dokazédno, Ze je
nerozhodnutelny, miZeme ukazat nerozhodnutelnost dalSich problémi
pomoci redukci (pfevodil) mezi problémy.

Problém P, je pfeveditelny na problém P,, jestliZe existuje
algoritmus Alg takovy, Ze:

o Jako vstup mize dostat libovolnou instanci problému P;.

e K instanci problému P, kterou dostane jako vstup (ozna¢me ji w),
vyprodukuje jako sviij vystup instanci problému P, (ozna&me ji
Alg(w)).

e Plati, Ze pro vstup w je v problému P; odpov&d ANO pravé tehdy,
kdy? pro vstup Alg(w) je v problému P, odpov&d ANO.
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P¥evody mezi problémy

vstupy problému P; vstupy problému P,
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P¥evody mezi problémy

vstupy problému P; vstupy problému P,

Alg
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P¥evody mezi problémy

Rekn&me, e existuje redukce Alg problému P na problém Ps.

Pokud by problém P, byl rozhodnutelny, pak i problém Py je
rozhodnutelny.

ReZeni problému P; pro vstup x:
@ Zavoldme Alg se vstupem x, vrati nam hodnotu Alg(x).
@ Zavoldme algoritmus ¥eSici problém P, se vstupem Alg(x).

@ Hodnotu, kterou ndm vrati vypiseme jako vysledek.

Je zfejmé, Ze pokud P; je nerozhodnutelny, tak P, nemiiZe byt
rozhodnutelny.
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Dal$i nerozhodnutelné problémy

Redukci z Halting problému se da ukazat nerozhodnutelnost celé fady
problémd, které se tykaji ovéfovani chovani programi:

e Vyd4 dany program pro n&jaky vstup odpovéd ANO?

@ Zastavi se dany program pro libovolny vstup?

o Davaji dva dané programy pro stejné vstupy stejny vystup?
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Halting problem

Pro t&ely ditkazii se Halting problem nejcastéji pouziva v nasledujici
podobé:

Halting problem
Vstup: Popis Turingova stroje M a slovo w.

Otédzka: Zastavi se stroj M po n&jakém koneéném poctu krokd,
pokud dostane jako sviij vstup slovo w?
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Dal$i nerozhodnutelné problémy

S nasledujicim p¥ikladem nerozhodnutelného problému uZ jsme se setkali:

Problém

Vstup: Bezkontextové gramatiky G; a G,.
Otézka: Je L(Gy) = £(G>)?

pfipadné

Problém
Vstup: Bezkontextova gramatika G generujici jazyk nad abecedou Y.
Otézka: Je £(G) = £*?
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Dal$i nerozhodnutelné problémy

Vstupem je mnoZzina typl karti¢ek, jako tfeba:

abb a bab baba aba

bbab aa ab aa a

Otézka je, zda je mozné z téchto typu karti¢ek vytvoFit neprazdnou
kone¢nou posloupnost, kde zfetézenim slov nahote i dole vznikne totéz
slovo. Kazdy typ karti¢ky je moZné pouzivat opakované.

a abb abb baba abb aba

aa bbab bbab aa bbab a

Nahote i dole vznikne slovo aabbabbbabaabbaba.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 561 /674



Dal$i nerozhodnutelné problémy

Redukci z pfedchoziho problému se d& snadno ukdzat nerozhodnutelnost
nékterych dalSich problémi z oblasti bezkontextovych gramatik:

Problém
Vstup: Bezkontextové gramatiky G; a G,.
Otédzka: Je L(G1) N L(G,) = @7

Problém

Vstup: Bezkontextova gramatika G.

Otazka: Je G nejednoznacnd?
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Dal$i nerozhodnutelné problémy

Vstupem je mnoZina typ( kachli¢ek, jako tfeba:

< X

Otéazka je, zda je moZné pouZitim danych typl kachli¢ek pokryt kaZdou
libovolné velkou konegnou plochu tak, aby v8echny kachli¢ky spolu
sousedily stejnymi barvami.

Poznamka: MiiZeme p¥edpokladat, Ze mame v zdsob& neomezené
mnoZstvi kachli¢ek vech typd.

Kachli¢ky neni dovoleno otdcet.
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Dal$i nerozhodnutelné problémy
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Dal$i nerozhodnutelné problémy

Vstup: Uzav¥end formule predikatové logiky (prvniho ¥adu), ve které
mohou byt pouZity jako predikatové symboly pouze = a <,
jako funk&éni symboly pouze + a * a jako konstantni symboly
pouze 0 a 1.

Otazka: Je dand formule pravdiva v oboru pf¥irozenych &isel (pfi

pFirozené interpretaci v8ech funkénich a predikatovych
symboli)?

P¥iklad vstupu:

VxAyVz((x*xy =z) A (y+1=x))

Poznamka: Uzce souvisi s Godelovou vétou o neliplnosti.
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Dal$i nerozhodnutelné problémy

Je zajimavé, Ze analogicky problém, kde ale misto p¥irozenych &isel
uvaZzujeme &isla redlnd, je algoritmicky rozhodnutelny (i kdyZ popis daného
algoritmu a dikaz jeho korektnosti jsou zna&né netrividlni).

Rovn&Z pokud uvaZujeme pfirozend nebo celd &isla a stejné formule jako
v pfedchozim p¥ipadg, ale s tim, Ze v nich nesmi byt pouZzit funkéni
symbol * (ndsobeni), tak je problém algoritmicky rozhodnutelny.
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Dal$i nerozhodnutelné problémy

Pokud miZeme pouZivat *, je ve skute€nosti nerozhodnutelny uz velmi
omezeny pfipad:

Desaty Hilbertiiv problém

Vstup: Polynom f(xi, xo,...,X,) vytvofeny z prom&nnych
X1, X2, ...,Xp a celodiselnych konstant.

Otdzka: Existuji pfirozena &isla xq, xo, . . ., x,, takova, Ze
f(x1,Xx0,...,%,) =07

Pt¥iklad vstupu: 5X2y —8yz + 322 - 15
Tj. ptdme se, zda
AxIyFz(5k x*k xky+ (—8) k y*z+3*xzx z+ (—15) =0)

plati v oboru pfirozenych &isel.
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Dal$i nerozhodnutelné problémy

Také nasledujici problém je algoritmicky nerozhodnutelny:

Problém

Vstup: Uzavfena formule ¢ predikatové logiky prvniho ¥adu.
Otédzka: Plati E ¢?

Poznamka: Zapis F ¢ znamend, Ze formule ¢ je logicky platna,
tj. pravdiva v kazdé interpretaci.
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TFidy slozitosti
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SloZitost problémii

Ukazuje se, Ze riizné (algoritmické) problémy jsou riizn& t&zké.

N NN

o ObtiZngjsi jsou ty problémy, k jejichZ ¥eZeni potfebujeme vice ¢asu a
paméti.

ObtiZnost problémi chceme néjak posuzovat, a to jak
o absolutn& — kolik ¢asu a kolik paméti potfebujeme k jejich FeSeni, tak

vvvvvv

oproti jinym problémdm.

@ Pro¢ se u n&kterych problémi neda¥i nalézt efektivni algoritmy?
MiuzZe viibec né&jaky efektivni algoritmus pro dany problém existovat?

Kde ptesné jsou limity toho, co je mozné prakticky zvladnout?
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SloZitost problémii

Je potfeba rozliSovat slozitost algoritmu a sloZitost problému.

Pokud napftiklad zkoumame ¢asovou sloZitost v nejhorsim p¥ipadé, mohli
bychom neformalné F¥ict:

o slozitost algoritmu — funkce, kterd vyjadfuje, jaka bude pro dany
algoritmus maximalni doba vypoc&tu pro vstup velikosti n

o slozitost problému — jaka je asova sloZitost ,,nejefektivn&jsiho”
algoritmu, ktery ¥esi dany problém

Zavedeni pojmu ,sloZitost problému” ve vySe uvedeném smyslu nardzi na
znatné technické obtize. Pojem ,sloZitost problému” se tedy jako takovy
nedefinuje, ale obchazi se zavedenim tzv. t¥id slozitosti.
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T¥idy sloZitosti

T¥idy sloZitosti jsou podmnoZiny mnoZiny viech (algoritmickych)
problém.

Dand konkrétni t¥ida sloZitosti je vzdy charakterizovdna néjakou vlastnosti,
kterou maji problémy do ni patFici.

Typickym ptikladem takové vlastnosti je vlastnost, Ze pro dany problém
existuje n&jaky algoritmus s urgitym omezenim (nap¥. ¢asové nebo
prostorové sloZitosti):

@ Do dané tfidy pak pat¥i vSechny problémy, pro které takovyto
algoritmus existuje.

@ Naopak do ni nepatFi problémy, pro které Zzadny takovy algoritmus

neexistuje.

Poznamka: V nasledujicim popisu se budeme sousttedit prakticky jen na
t¥idy rozhodovacich problémi.
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T¥idy sloZitosti

Definice

Pro libovolnou funkci f : N = N definujeme t¥idu 7 (£(n)) jako tfidu
obsahujici pravé ty rozhodovaci problémy, pro néz existuje algoritmus
s &asovou sloZitosti O(f(n)).

Pviklad:
e 7 (n) - t¥ida v8ech rozhodovacich problém(i pro n&? existuje
algoritmus s &asovou sloZitosti O(n)
o T(n?) - t¥ida v&ech rozhodovacich problémii pro ne? existuje
algoritmus s ¢asovou sloZitostf O(nz)
e T (nlogn) — t¥ida véech rozhodovacich problémii pro neZ existuje
algoritmus s &asovou sloZitosti O(nlog n)
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T¥idy sloZitosti

Definice

Pro libovolnou funkci f : N — N definujeme t¥idu S(f(n)) jako t¥idu
obsahujici pravé ty rozhodovaci problémy, pro néz existuje algoritmus
s prostorovou sloZitosti O(f(n)).

Pviklad:
e S(n) — t¥ida viech rozhodovacich problém(i pro n&Z existuje
algoritmus s prostorovou sloZitosti O(n)
o S(n?) - t¥ida v&ech rozhodovacich problémii pro ne? existuje
algoritmus s prostorovou sloZitosti O(n2)
e S(nlogn) — t¥ida vdech rozhodovacich problémii pro ne? existuje
algoritmus s prostorovou sloZitosti O(nlog n)
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T¥idy slozitosti

Pozndmka:

VEimnéte si, Ze u tfid 7(f) a S(f) miiZe to, které problémy do dané t¥idy
patfi, zaviset na pouZitém vypoletnim modelu (zda je to stroj RAM,
jednopaskovy Turinglv stroj, vicepdskovy Turinglv stroj, ... ).
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T¥idy slozitosti

Pomoci t¥id T(f(n)) a S(f(n)) mizeme definovat t¥idy PTIME a
PSPACE jako

PTIME = | ] 7(n") PSPACE = |_J 8(n")
k=0 k=0

o PTIME je tfida v8ech rozhodovacich problémd, pro které existuje
algoritmus s polynomidlni ¢asovou slozitosti, tj. s €asovou slozitosti
O(nk), kde k je néjaka konstanta.

o PSPACE je t¥ida v8ech rozhodovacich problémi, pro které existuje
algoritmus s polynomidlni prostorovou sloZitosti, tj. s prostorovou
sloZitosti O(n"), kde k je n&jakd konstanta.
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T¥idy slozitosti

Poznamka: Vzhledem k tomu, Ze viechny (rozumné) vypo&etni modely
jsou schopné se navzdjem simulovat tak, Ze p¥i dané simulaci nevzroste
pocet krokli ani mnoZstvi pouZité paméti vic nez polynomidlné, neni
definice tfid PTIME a PSPACE z&visla na pouZitém vypoetnim modelu.
Pro jejich zadefinovani mizeme pouZit kterykoliv vypoletni model.

Rikdme, Ze tyto t¥idy jsou robustni — jejich definice nezavisi na pouitém
vypocetnim modelu.
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T¥idy slozitosti

Analogicky miiZeme zavést dalsi t¥idy:

EXPTIME — mnozina v8ech rozhodovacich problémd, pro které existuje
k
algoritmus s Casovou sloZitosti 200 ), kde k je n&jaka
konstanta
EXPSPACE — mnoZina v&ech rozhodovacich problémd, pro které existuje
k
algoritmus s prostorovou sloZitosti 200 ), kde k je n&jaka

konstanta

LOGSPACE — mnoZina v8ech rozhodovacich problém, pro které existuje
algoritmus s prostorovou sloZitosti O(log n)

k k
Poznamka: Misto 2°(") bychom mohli psat také O(c" ), kde c a k jsou
néjaké konstanty.
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T¥idy sloZitosti

P¥i definici tfidy LOGSPACE musime ptesnéji specifikovat, co povazujeme
za prostorovou sloZitost algoritmu.

UvaZujeme napfiklad Turingtiv stroj, ktery pracuje se tfemi paskami:

@ Vstupni paskou, na které je na za¢atku vypoctu zapsan vstup.
Z této pasky je mozno pouze C&ist.

@ Pracovni paskou, kterd je na zadatku vypoctu prazdna. Z této pasky
je mozno &ist i na ni zapisovat.

o Vystupni paskou, kterd je také na zacatku vypoctu prazdnd a na
kterou je moZno pouze zapisovat.

Mnozstvi pouzité paméti je pak definovano, jako podet pouzitych poli¢ek
na pracovni pasce.
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T¥idy slozitosti

Dalsi priklady t¥id sloZitosti:

2-EXPTIME — mnoZzina vSech problémd, pro které existuje algoritmus

o(n")
s €asovou slo¥itosti 2°  , kde k je néjaka konstanta

2-EXPSPACE — mnoZina v8ech problémii, pro které existuje algoritmus
k

o(n")
s prostorovou slozitosti 22 kde k je néjaka konstanta

ELEMENTARY — mnoZina v3ech problémd, pro které existuje algoritmus
s Lasovou (&i prostorovou) sloZitosti

kde k je konstanta a podet exponenti je omezen konstantou.
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Vztahy mezi tfidami sloZitosti

Pokud Turinglv stroj provede m kroki, tak pouZije maximaln& m poli¢ek
na pasce.

Pokud tedy existuje pro n&jaky problém algoritmus s ¢asovou
slozitosti O(f(n)), ma tento algoritmus prostorovou sloZitost

(nejvyge) O(f(n)).

Je tedy zfejmé, Ze plati nasledujici vztah.

Pozorovani
Pro libovolnou funkci f : N = N plati 7(f(n)) € S(f(n)).

Poznamka: Analogicky bychom mohli argumentovat naptiklad pro
stroj RAM.
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Vztahy mezi tfidami sloZitosti

Z predchoziho okamZit& plyne:

n

PTIME < PSPACE
EXPTIME ¢ EXPSPACE
2-EXPTIME < 2-EXPSPACE

N

N

Vzhledem k tomu, Ze polynomidini funkce rostou pomaleji nez
exponencialni a logaritmické pomaleji nez polynomidlni, zjevné plati:

PTIME € EXPTIME ¢ 2-EXPTIME ¢ ---

LOGSPACE ¢ PSPACE < EXPSPACE < 2-EXPSPACE ¢ ---
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Vztahy mezi tfidami sloZitosti

@ Pro libovolnd dvé redlna &isla €; a €, takova, Ze 0 < ¢; < €5, plati

S(n") & 8(n")

LOGSPACE & PSPACE
PSPACE ¢ EXPSPACE

Pro libovolna dvé redlna &isla €1 a e, takova, Ze 0 < €1 < ¢y, plati

T(n") € T(n?)

PTIME ¢ EXPTIME
EXPTIME ¢ 2-EXPTIME

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 583 /674



Vztahy mezi tfidami sloZitosti

P¥i zkoumani vztah(i mezi tfidami sloZitosti se ukazuje jako uZite¢ny pojem
konfigurace.

Konfiguraci budeme rozumét celkovy stav, ve kterém se b&hem jednoho
kroku nachazi stroj, provadégjici n&jaky dany algoritmus.

@ U Turingova stroje je konfigurace dana stavem jeho ¥idici jednotky,
obsahem pasky (resp. pasek) a pozici hlavy (resp. hlav).

@ U stroje RAM je konfigurace ddna obsahem paméti, obsahem vSech
registri (vetn& IP), obsahem vstupni a vystupni pasky a pozicemi
Cteci a zapisovaci hlavy.
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Vztahy mezi tfidami sloZitosti

Mg&lo by byt jasné, Ze konfigurace (resp. jejich popisy) miZeme zapisovat
jako slova v néjaké abecedé.

Navic miZeme konfigurace zapisovat tak, Ze délka téchto slov bude zhruba
stejnd jako mnoZstvi paméti pouZité algoritmem (tj. po&et poliek na
pdsce pouZitych Turingovym stojem, pocet bitli paméti pouZitych strojem
RAM apod.).
Poznamka: Pokud mame abecedu ¥, kde || = ¢, tak:

o Potet slov délky n je c", tj. 2®(n),

@ Pocet slov délky nejvyse n je

Xn: n+1 -1

¢ c—1

i=0

tj. také 290",
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Vztahy mezi tfidami sloZitosti

Je jasné, Ze b&hem vypoltu korektniho algoritmu se Zadna konfigurace
nem(iZe zopakovat, protoze jinak by se algoritmus zacyklil a béZel by
donekonedna.

Pokud tedy vime, Ze prostorovd sloZitost n&jakého algoritmu je O(f(n)),

znamena to, Ze podlet riznych konfiguraci dosaZitelnych b&hem vypoc&tu
je 2O(f(”))_

Protoze se konfigurace b&hem zadného vypoctu neopakuji, je i éasova

(F(n)).

. . : s nO
sloZitost daného algoritmu maximalné 2

Pozorovani

Pro libovolnou funkci f : N — N plati, Ze pokud je néjaky problém P
YeSeny algoritmem s prostorovou sloZitosti O(f(n)), pak &asova sloZitost

O(f(n))

tohoto algoritmu je v 2 :
Pokud je tedy problém P ve t¥idé S(f(n)), pak je i ve t¥idé T(ZC'f(”)) pro
néjaké ¢ > 0.
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Vztahy mezi tfidami sloZitosti

Z predchoziho plynou nasledujici disledky:

n

LOGSPACE < PTIME
PSPACE ¢ EXPTIME
EXPSPACE ¢ 2-EXPTIME

[a}
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Vztahy mezi tfidami sloZitosti

Shrnuti:

n

LOGSPACE ¢ PTIME < PSPACE c EXPTIME & EXPSPACE ¢
2-EXPTIME < 2-EXPSPACE < --- € ELEMENTARY

[a}

o PTIME ¢ EXPTIME & 2-EXPTIME & ---

o LOGSPACE & PSPACE & EXPSPACE ¢ 2-EXPSPACE, & ---
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Horni a dolni odhady sloZitosti problémii

Hornim odhadem sloZitosti problému rozumime to, Ze sloZitost problému
neni vyssi nez néjakd uvedena.

VEétsinou je to formulovano tak, Ze dany problém pat¥i do né&jaké urcité
t¥idy sloZitosti.

P¥iklady tvrzeni, které se tykaji hornich odhad( sloZitosti:
@ Problém dosaZitenosti v grafu je v PTIME.

@ Problém ekvivalence dvou regularnich vyrazl je v EXPSPACE.

Pokud chceme zjistit néjaky horni odhad sloZitosti problému, stadi ukazat,
Ze existuje algoritmus s danou sloZitosti.
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Horni a dolni odhady sloZitosti problémii

Dolnim odhadem sloZitosti problému rozumime to, Ze sloZitost problému
je alespoii takovd jako né&jakd uvedena.

Obecné je zjistovani (netrividlnich) dolnich odhadu sloZitosti problémii
mnohem obtiZn&jsi neZ zjistovani hornich odhadi.

Pro odvozeni dolniho odhadu musime totiz ukdzat, Ze kazdy algoritmus
Fesici dany problém ma danou sloZitost.

Z. Sawa (VSB-TUO)
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Horni a dolni odhady sloZitosti problémii

Problém , T¥idéni"
Vstup: Posloupnost prvki ag, as, ..., ap.
Vystup: Prvky aj, ap, ..., a, setfidéné od nejmensiho po nejvétsi.

D34 se dokdzat, Ze kazdy algoritmus, ktery Ye$i problém “T¥idéni” a na
prvcich tfidéné posloupnosti pouZiva pouze operaci porovnavani

(tj. nezkouma obsah t&chto prvki), ma asovou sloZist v nejhorsim p¥ipadé
v Q(nlogn) (tj. pro kazdy takovy algoritmus existuji konstanty ¢ > 0

a ng = 0 takové, Ze pro kazdé n = ng existuje vstup velikosti n, pro ktery
provede algoritmus nejmémé& cn log n operaci).
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Nedeterministické algoritmy a tFidy
sloZitosti

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 592 /674



Nedeterminismus

Nedeterministicky stroj RAM:
o Je definovan velice podobné jako deterministicky RAM.

@ Navic ma instrukci
nd_goto {q, />
ktera umoZiiuje stroji vybrat si jedno z moZnych pokraovani.
@ Pokud ze v8ech moZnych vypoctl takového stroje nad zadanym

vstupem alespo jeden skon&i s odpovédi ANO, je odpovéd ANO.

@ Pokud viechny vypotty skon&i s odpovédi NE, je odpovéd NE.

Podobné miZeme definovat nedeterministické verze jinych vypo&etnich
modell, napf. nedeterministické Turingovy stroje.
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Nedeterminismus

NE NE
NE ANO NE ANO NE

ANO NE NE

e Doba vypottu nedeterministického stroje RAM (nebo jiného
nedeterministického stroje) nad zadanym vstupem je definovana jako
délka nejdelsiho moZného vypoltu nad timto vstupem.
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Nedeterminismus

A

NE ANO NE

ANO

e Doba vypottu nedeterministického stroje RAM (nebo jiného
nedeterministického stroje) nad zadanym vstupem je definovana jako
délka nejdelsiho moZného vypoltu nad timto vstupem.
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Nedeterminismus

Problém , Barveni grafu k barvami”

Vstup: Neorientovany graf G a pfirozené &islo k.

Otazka: Je mozné obarvit vrcholy grafu G k barvami tak, aby zadné
dva vrcholy spojené hranou nemély stejnou barvu?
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Nedeterminismus

Problém , Barveni grafu k barvami”

Vstup: Neorientovany graf G a pfirozené &islo k.

Otazka: Je mozné obarvit vrcholy grafu G k barvami tak, aby zadné
dva vrcholy spojené hranou nemély stejnou barvu?
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Nedeterminismus

Problém , Barveni grafu k barvami”

Vstup: Neorientovany graf G a pfirozené &islo k.

Otazka: Je mozné obarvit vrcholy grafu G k barvami tak, aby zadné
dva vrcholy spojené hranou nemély stejnou barvu?

Nedeterministicky algoritmus pracuje nasledovné:
@ Kazdému vrcholu grafu G nedeterministicky pfifadi jednu z k barev.
@ Projde v8echny hrany grafu G a u kazdé z nich zkotroluje, Ze oba jeji

koncové vrcholy jsou obarveny rliznymi barvami. Pokud ne, skoné&i
s odpovédi NE.

© Pokud prosel vsechny hrany a u v8ech byly koncové vrcholy obarveny
rznymi barvami, skon&i s odpovédi ANO.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 595 /674



Nedeterminismus

Problém , Isomorfismus grafii*

Vstup: Neorientované grafy G; = (V4, E1) a Gy = (Ws, B5).
Otazka: Jsou grafy G; a G, isomorfni?

Poznamka: Grafy G; a Gy jsou isomorfni, jestliZze existuje né&jaka bijekce
f: Vi = V, takova, Ze pro libovolné dva vrcholy u,v € V; plati
(u,v) € Ey pravé kdy? (f(u),f(v)) € E,.

Nedeterministicky algoritmus pracuje nasledovné:
© Nedeterministicky zvoli hodnoty funkce f pro véechny v € V;.

@ Deterministicky ovéFi, Ze f je bijekce a Ze pro v8echny dvojice vrcholi
je splnéna vyse uvedend podminka.

© Pokud je nékterd z podminek porusena, skonéi s odpovédi NE,
v opa¢ném p¥ipadé s odpovédi ANO.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 596 / 674



Nedeterminismus

@ Z hlediska rozhodnutelnosti nepfindsi nedeterministické algoritmy
oproti deterministickym nic dal$iho navic:
Pokud je n&jaky problém mozné Yesit nedeterministickym strojem
RAM nebo TS, tak je ho moZné Yesit i deterministickym, ktery
postupné vyzkousi viechny mozné vypoclty nedeterministického stroje
nad danym vstupem.

@ Nedeterminismus ma vyznam predevs$im p¥i zkoumani vypocetni
sloZitosti problémi.
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Nedeterminismus

o P¥i vySe uvedené p¥imodaré simulaci ¢innosti nedeterministického
algoritmu pomoci deterministického, ktery systematicky zkousi
vdechny mozné vypocty, je ¢asova sloZitost deterministického
algoritmu exponencialné vyssi neZ u nedeterministického.

@ Pro ¥adu problémdi je zjevné, Ze pro n& existuje nedeterministicky
algoritmus s polynomidlni ¢asovou slozitosti, ale neni vilbec jasné,
jestli pro né existuje také deterministicky algoritmus s polynomialni
¢asovou slozitosti.
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Nedeterminismus

Na nedeterminismus miZeme nahlizet nasledujicimi zpiisoby:

@ Ve chvili, kdy ma stroj nedeterministicky zvolit mezi nékolika
moznostmi, tak ,,uhodne”, kterd z t&chto moznosti povede
k odpovédi ANO (pokud takovd moznost existuje).

@ Ve chvili, kdy ma stroj nedeterministicky zvolit mezi nékolika
moZnostmi, rozdéli se do tolika kopif, kolik je téchto moZnosti,
a kazd3 z té&chto kopii pokraduje ve vypocltu odpovidajici jedné
z moZnosti, pfi¢emZ pracuji v8echny paralelng.
Odpovéd je ANO pravé tehdy, kdy? alespofi jedna z kopii stroje
odpovi ANO.

Ani jedno z toho neni néco, co by se dalo efektivné realisticky
implementovat.
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Nedeterminismus

Dal3i mozny pohled na nedeterminismus:

@ Druh algoritmu, ktery sice nefesi dany problém, ale s pouZitim
dodate¢né dal3i informace — svédka (witness) — umi ovéfit, Ze pro
danou instanci je odpovéd ANO.

P¥edpokladejme, Ze v ptvodnim problému je vstupem néjaké x
z mnoziny instanci In a otdzka je, zda ma dané x néjakou
specifikovanou vlastnost P.

Pro dany vstup x je ddna mnoZina potencialnich svédki W(x),
pticemz pravé tehdy, kdyz x ma vlastnost P, tak existuje n&jaky
skuteény svédek y € W(x) toho, Ze x tuto vlastnost P skute&n& m4.

Vezméme si deterministicky algoritmus Alg, ktery jako vstup
dostane dvojici (x,y) (kde y € W(x)) a ov&H, zda y je svédkem
toho, Ze x m4d vlastnost P.
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Nedeterminismus

P¥iklad: Problém ,Barveni grafu k barvami*:

e Vstup: Neorientovany graf G = (V, E) a &islo k.

o Potencialni svédci: Vsechna moZnd obarveni vrcholl grafu G

s pou#im k barev, tj. véechny mozné funkce ¢ : V — {1,..., k}.

e Skuteeni svédci: Takova obarveni c, kde pro kazdou hranu (u,v) € E

plati, Ye c(u) # c(v).

11. dnora 2026
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Nedeterminismus

o Ke kazdému takovému deterministickému algoritmu Alg, ktery pro
danou dvojici (x, y) umfi ov&¥it, zda y je svédkem toho, %e x m3
vlastnost P, je moZné snadno sestrojit odpovidajici
nedeterministicky algoritmus, ktery ¥esi pldvodni problém:

o Pro dané x € In nejprve neterministicky vygeneruje potencidlniho
svédka y € W(x).

o PouZije algoritmus Alg jako podprogram k (deterministickému) ov&¥eni
toho, zda je y skuteénym sv&dkem.
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Nedeterminismus

o Naopak ke kazdému nedeterministickému algoritmu miZeme
snadno vytvofit deterministicky algoritmus ovéfujici svédky:

e Potencidlnim svédkem bude posloupnost udavajici pro jednotlivé kroky
ptvodniho nedeterministického algoritmu, kterd mozZnost se ma
v daném kroku zvolit.

o Deterministicky algoritmus simuluje jeden konkrétni vypocet (jednu
vétev stromu) plvodniho algoritmu, p¥i¢emZ v krocich, kdy ma na
vybér z vice moZnosti, tak nehddd, ale postupuje podle toho, co je
uréeno v zadané posloupnosti.
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Nedeterminismus

Zejména nas budou zajimat ty p¥ipady, kdy Casova sloZitost algoritmu pro
ové&fovani svédka je polynomidlni vzhledem k velikosti vstupu x.

Mimo jiné to znamenad, Ze dany svédek y, dosvédlujici, Ze pro x je

odpové&d ANO, musi byt polynomidln& velky.

Nedeterministickym algoritmem s polynomidlni ¢asovou sloZitosti se tedy
daji Fesit ty rozhodovaci problémy, kde:

@ pro dany vstup x existuje pFisluiny (polynomidln& velky) sv&dek pravé
tehdy, kdyZ pro x je odpovéd ANO,

@ je mozné deterministickym algoritmem v polynomidlnim ase ovéfit,
Ze dany potencidlni svédek je skute¢né svédkem.
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Nedeterminismus

Mnohdy je existence takovych polynomialné velkych svédki

a deterministickych algoritm, které je ovéfuji, ocividnd a je trividlni
ukazat, Ze existuji — nap¥. u probléma jako ,,Barveni grafu k barvami”,
»Isomorfismus grafi" nebo u nasledujiciho problému:

Testovani sloZenosti

Vstup: PFirozené &islo x.

Otazka: Je &islo x sloZzené?

Poznamka: Cislo x je sloZzené, kdyZ existuji p¥irozena &isla a a b takova,
ea>1,b>1lax=a-b.

Napftiklad &islo 15 je slozené, protoze 15 = 3 - 5.
Cislo x € N je tedy slozené, pokud x > 1 a x neni prvo&islo.
Existence takovych polynomidlné velkych sv&dkii ale nutné neznamend, ze

je snadné je najit.
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Nedeterminismus

U nékterych problémi miZe byt ale ukazani existence takovych
polynomidlné velkych svédki, které je mozné deterministiky
v polynomidlnim &ase ovéFovat, zna&né netrividlnim vysledkem.

P¥ikladem je nasledujici problém:

Testovani prvodiselnosti

Vstup: PFirozené &islo x.

Otdzka: Je &islo x prvocislo?

S vyuZitim rdznych netrividlnich poznatk( z teorie &isel se dd ukazat
existence takovych svédkd i pro tento problém — své&dci zde maji podobu
pomérné komplikované rekurzivné definované datové struktury.

Poznamka: Tento vysledek ukdzal V. Pratt v roce 1975.

Mnohem pozdé&ji bylo ukdzano, Ze , Testovani prvodiselnosti* je ve
skuteZnosti v PTIME (Agrawal-Kayal-Saxena, 2002).
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Nedeterministické tfidy slozitosti

Pro funkci f : N — N rozumime t¥idou &asové slozitosti N7 (f)
mnoZinu téch rozhodovacich problémd, které jsou feseny
nedeterministickymi RAMy s &asovou sloZitosti v O(f(n)).

Pro funkci f : N = N rozumime t¥idou prostorové slozitosti N'S(f)
mnozinu téch rozhodovacich problémii, které jsou FeSeny
nedeterminictickymi RAMy s prostorovou sloZitosti v O(f(n)).

Poznamka: Ve vySe uvedenych definicich mohou byt samozfejmé& misto
stroji RAM uvedeny tfeba Turingovy stroje &i néjaky jiny vypoletni model.
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T¥ida NPTIME

NPTIME = [ JAT(n")
k=0

e NPTIME (n&kdy se pi%e jen NP) je t¥ida viech problémi, pro které
existuje nedeterministicky algoritmus s polynomiani ¢asovou sloZitosti.

@ Do NPTIME tedy patfi problémy, u kterych je moZzné pro dany vstup
rychle ové&fit, Ze odpovéd je ANO, pokud ndm ten, kdo nds o tom
chce presvédiit, doda néjakou dodate¢nou informaci.
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Tridy NPSPACE, NEXPTIME, NEXPSPACE, ...

Podobn& miZeme definovat dal¥i tfidy sloZitosti:

NPSPACE — mnoZina v3ech rozhodovacich problémd, pro které existuje
nedeterministicky algoritmus s polynomiani prostorovou
sloZitosti

NEXPTIME — mnoZzina viech rozhodovacich problémii, pro které existuje

k
nedeterministicky algoritmus s &asovou sloZitosti 200 ), kde
k je né&jaka konstanta

NEXPSPACE — mnoZina v&ech rozhodovacich problémi, pro které existuje
k
nedeterministicky algoritmus s prostorovou sloZitosti 200 ),
kde k je n&jakd konstanta

NLOGSPACE - mnoZina vSech rozhodovacich problémdi, pro které existuje
nedeterministicky algoritmus s prostorovou sloZitosti
O(log n)
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Vztahy mezi tfidami sloZitosti

Je zfejmé, Ze na deterministické algoritmy se mizeme divat jako na
specialni pfipad nedeterministickych.

Ocividné tedy plati:

n

LOGSPACE = NLOGSPACE
PTIME € NPTIME
PSPACE < NPSPACE
EXPTIME & NEXPTIME
EXPSPACE < NEXPSPACE

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky 11. dnora 2026 610 /674



Vztahy mezi tfidami sloZitosti

Rovnéz je zfejmé, Ze jak u deterministickych, tak u nedeterministickych
algoritmi, algoritmus béhem vypoltu nemiiZze pouZit ¥adové vice bunék
paméti, nez kolik udé&la krokd.

Prostorova slozitost daného algoritmu je tedy vzdy nejvyse takova, jaka je
jeho asova sloZitost.

Z toho plyne:

PTIME < PSPACE
NPTIME < NPSPACE
EXPTIME c EXPSPACE
NEXPTIME € NEXPSPACE

[a}

N

N
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Vztahy mezi tfidami sloZitosti

Vezméme si né&jaky nedeterministicky algoritmus s €asovou
slozitosti O(f(n)).

Deteriministicky algoritmus, ktery bude simulovat jeho &innost tim
zplsobem, Ze bude systematicky prochazet viechny jeho vypotlty
(prochdzenim stromu té&chto vypocti do hloubky), vysta&i s nasledujici
paméti:

@ pamét, kde je uloZena aktudlni konfigurace simulovaného stroje
— m4 velikost O(f(n)) (protoZe pokud tento simulovany
nedeterministicky stroj ud&ld maximaln& O(f(n)) krok, tak jeho
konfigurace budou pouZivat nanejvy$ O(f(n)) bun&k paméti)

@ pamét pro uloZeni zasobniku, ktery bude pouZivat k tomu, aby se
mohl vracet k pfedchozim konfiguracim
— aby bylo mozné z nésledujici konfigurace o' obnovit predchozi
konfiguraci «, sta&i si ulozit konstatni mnoZstvi informace — jen to,
co se pri prechodu z a do o' zménilo
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Vztahy mezi tfidami sloZitosti

@ Vzhledem k tomu, %e délka v&tvi je O(f(n)), mnoZsti potfebné
paméti pro zasobnik je O(f(n)).

o Celkové tedy deterministicky algoritmus p¥i této simulaci vysta&i
s mnoZstvim paméti, které je nejvyde O(f(n)).

Z vyse uvedeného tedy vyplyva:

n

NPTIME c PSPACE
NEXPTIME € EXPSPACE

N
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Vztahy mezi tfidami sloZitosti

Vezméme si néjaky nedeterministicky algoritmus s prostorovou
slozitosti O(f(n)):

e P¥ipomeiime, Ze konfiguraci velikosti nejvyde O(f(n)) je O(cf(”)),
kde c je néjakd konstanta, coZz miizeme psat jako 20U (),

@ Pocet krokili tohoto nedeterministického algoritmu v rdmci jedné vétve
vypottu tedy miZe byt az 2O (m)
(Pozn.: Z53dn3 konfigurace se b&hem vypottu nemiize zopakovat,
protoZe jinak by mohly byt vypo&ty nekone&né.)

@ Simulace vy3e popsanym zplsobem by tedy méla &asovou sloZitost
O(f(n))
az 2° :
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Vztahy mezi tfidami sloZitosti

P¥i simulaci miZeme postupovat, ale o néco chytfeji — predstavme si
orientovany graf, kde:

@ vrcholy — v8echny konfigurace simulovaného stroje, jejichZ velikost
je nejvye O(f(n))

— t&chto konfiguraci je 0

@ hrany — mezi vrcholy, které reprezentuji konfigurace « a o vede
hrany pravé tehdy, kdyZz simulovany stroj mizZe pfejit jednim krokem
z konfigurace a do konfigurace o'
— z kazdého vrcholu povede polet hran omezeny shora né&jakou

kostantou — hran tedy bude také ¥adove 207"

Stadi umét zjistit, zda ve vySe uvedeném grafu existuje cesta z vrcholu,
ktery odpovidd po&ate¢ni konfiguraci (pro dany vstup x), do né&kterého
vrcholu, ktery odpovida koncové konfiguraci, kdy dany stroj davd
odpovéd ANO.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 615 /674



Vztahy mezi tfidami sloZitosti

Pro zjisténi existence takové cesty je mozné pouZit libovolny algoritmus na
prochdzeni grafu — prochazeni do 3i¥ky, prochazeni do hloubky, ...:

@ Algoritmus si musi ukladat a znadit, které konfigurace jiz navstivil.
Dalsi pamé&t potrebuje pro uloZeni fronty & zasobniku, apod.

o Casova i prostorova slozitost tohoto algoritmu bude linedrné (imérnd

velikosti daného grafu, tj. 2O ()
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Vztahy mezi tfidami sloZitosti

Dostdvame tedy nasledujici:

Cinnost nedeterministického algoritmu, jeho? prostorova sloitost
je O(f(n)), je mozné simulovat deterministickym algoritmem, jeho?

(f(n))

v . y: . (@)
Casova sloZitost je 2 .

Z toho vyplyva:

n

NLOGSPACE < PTIME
NPSPACE ¢ EXPTIME
NEXPSPACE ¢ 2-EXPTIME

N
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Vztahy mezi tfidami sloZitosti

UvaZujeme opét néjaky nedeterministicky algoritmus s prostorovou
sloZitosti O(f(n)). Ted ndm ale pro zm&nu piijde o co nejmensi
prostorovou sloZitost simulujiciho deterministického algoritmu.

Véta (Savitch, 1970)

Cinnost nedeterministického algoritmu s prostorovou slozitosti O(f(n)) je
moZné simulovat deterministickym algoritmem s prostorovou

slozitosti O( f(n)z).
Myslenka dikazu:

o Opét si predstavme vySe popsany graf konfiguraci, ktery ma 20(f("))
vrchold (i hran).

e Algoritmus bude zjistovat, zda existuje cesta z po¢ate¢ni konfigurace
do né&které prijimajici konfigurace.
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Vztahy mezi tfidami sloZitosti

, . , I . , . 7 7
Z3kladem bude rekurzivni funkce F(a, ', i), kterd pro libovolné zadané
. ., . e, o , . .
konfigurace o a o a ¢&islo i € N zjisti, zda ve vySe uvedeném grafu existuje

cesta z o do o' délky nejvyde 2’

@ Pokud je i = 0, zjisti, zda existuje cesta z o« do o délky nejvyse 1:

o bud je to cesta délky 0, tj. a = o,
e nebo je to cesta délky 1, tj. je moZné prejit z a do o jednim krokem

o Pokud je i > 0, bude systematicky probirat viechny mozné
konfigurace o a testovat, jestli:
e existuje cesta délky nejvyse 2i/2 zadoa
— zavola rekurzivng F(a, o i - 1)
o existuje cesta délky nejvyge 2'/2 z " do o'
— zavola rekurzivné F(a" a',i— 1)
Pokud oboji vrati TRUE, vrati TRUE, jinak pokraluje zkousenim

v /1 n
dalsiho o .
619 /674
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Vztahy mezi tfidami sloZitosti

Analyza prostorové slozitosti daného algoritmu:

@ V ramci jednoho rekurzivniho volani funkce F je tfeba mit uloZené:
o ti konfigurace o, o', a" — viechny jsou velikosti O(f(n))

o hodnotu &isla i, které je ¥adov& O(f(n)) — proto na jeho uloZeni sta&i
zhruba O(log F(n)) bitdi

o dalsi pomocné promé&nné, jejichZ hodnoty jsou proti velikosti vyse
uvedenych poloZek zanedbatelné

@ MnoZstvi paméti potfebné v ramci jednoho rekurzivniho volani je tedy

O(f(n)).
@ Hloubka zano¥eni rekurze je také O(f(n)).

@ Celkova prostorova sloZitost daného algoritmu je tedy O(f(n)z).
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Vztahy mezi tfidami sloZitosti

Z vy%e uvedené véty vyplyva:

n

NPSPACE & PSPACE
NEXPSPACE < EXPSPACE

[a}

Spolu s trividlnimi fakty, ze PSPACE € NPSPACE,
EXPSPACE ¢ NEXPSPACE, ...ndm to tedy dava:

PSPACE
EXPSPACE

NPSPACE
NEXPSPACE

Poznamka: VSimnéte si, Ze z vySe uvedeného nevyplyva, Ze by muselo
platit LOGSPACE = NLOGSPACE.
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Vztahy mezi tfidami sloZitosti

Celkové tak dostavame nasledujici hierarchii t¥id sloZitosti:

LOGSPACE < NLOGSPACE ¢
€ PTIME < NPTIME ¢ PSPACE = NPSPACE ¢
c EXPTIME € NEXPTIME ¢ EXPSPACE = NEXPSPACE <

n
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NP-apiné problémy
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Polynomialni prevody mezi problémy

Problém P; je polynomialné preveditelny na problém P,, jestlize existuje
algoritmus Alg s polynomialni ¢asovou sloZitosti, ktery pfevadi problém P;
na problém Ps.
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Polynomialni prevody mezi problémy

vstupy problému P; vstupy problému P,
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Polynomialni prevody mezi problémy

vstupy problému P; vstupy problému P,

Alg
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Polynomialni prevody mezi problémy

Rekn&me, Ze problém P; je polynomialné preveditelny na problém P,,
tj. existuje polynomidlni algoritmus Alg realizujici tento pfevod.

Pokud pro problém P, existuje polynomidlni algoritmus, pak i pro
problém P; existuje polynomidlni algoritmus.

Regeni problému P; pro vstup w:
@ Zavoldme Alg se vstupem w, vrati ndm hodnotu Alg(w).

@ Zavoldme algoritmus ¥eSici problém P, se vstupem Alg(w).
Hodnotu, kterou ndm vrati, vypiseme jako vysledek.

Z toho plyne:

Pokud neexistuje polynomialni algoritmus pro problém Py, tak neexistuje
ani polynomialni algoritmus pro problém P,.
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Polynomialni prevody mezi problémy

Existuje velka skupina algoritmickych problémi oznalovanych jako
NP-uaplné problémy, které:

@ patf#i do tfidy NPTIME, tj. jsou FeSitelné v polynomidlnim &ase
nedeterministickym algoritmem

@ jsou tedy FeSitelné v exponencidlnim &ase
@ neni pro né znam zadny algoritmus s polynomidlni ¢asovou sloZitosti

@ na druhou stranu neni ani dokazano, Ze dany pro dany problém
nemize algoritmus s polynomidlni ¢asovou sloZitosti existovat

@ jsou vdechny navzdjem polynomidlné pteveditelné

Poznamka: Toto neni definice NP-tplnych problém. Ta bude uvedena
pozdéji.
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Problém SAT

Typickym p¥ikladem NP-tGplného problému je problém SAT:

SAT (splnitelnost booleovskych formuli)

Vstup: Booleovska formule ¢.

Otazka: Je ¢ splnitelna?

Priklad:

Formule o1 = x; A (=xo V x3) je splnitelna:

nap¥. p¥i ohodnoceni v, kde v(x;) =1, v(x) =0, v(x3) =1, je
formule 1 pravdiva.

Formule 5 = (x; A =x1) V (=x2 A X3 A x2) neni splnitelna:
je nepravdiva pti kazdém ohodnoceni v.

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 628 /674



Problém 3-SAT

3-SAT je varianta problému SAT, ve které se omezujeme na formule
uréitého specialniho typu:

3-SAT
Vstup: Formule ¢ v konjunktivni normaini formé&, kde kazda klauzule
obsahuje pravé 3 literaly.

Otdzka: Je ¢ splnitelna?
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Problém 3-SAT

P¥ipomenuti nékterych pojmi:

o Literal je formule tvaru x nebo —x, kde x je atomicky vyrok.

o Klauzule je disjunkce literdld.
Priklady: x3 V =x =x5 V Xg V =ixy5 V —1x3 Xg

e Formule je v konjunktivni normalni formé (KNF), jestlize je
konjunkci klauzuli.

Priklad:  (x1 V =x2) A (=x5 V Xg V =xq5 V =x23) A Xg

V p¥ipad& problému 3-SAT tedy vyZadujeme, aby formule ¢ byla v KNF a
navic, aby kazda klauzule obsahovala pravé tfi literdly.

Ptiklad:

(x1 V —axy V x4) A (—|X1 V x3 V X3) A (—|X1 V =x3 V —|x4) A (x2 V ax3 V x4)
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Problém 3-SAT

Nasledujici formule je splnitelna:

(a V= Vxg) A(=x Vg Vi) A(=xq Vs Vioxg) A Do vV i-xa Voxg)

Je pravdiva nap¥. p¥i ohodnoceni v, kde

v(x1) =0
vixo) =1
v(xg) =0
v(xg) =1

Naproti tomu nasledujici formule neni splnitelna:

(Xl VX1V Xl) A (—|X1 V —axy V —|X1)
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Polynomialni prevody mezi problémy

UkaZeme si pfiklad polynomidlniho p¥evodu problému 3-SAT na problém
nezdvislé mnoziny (1S).

Poznamka: Jak 3-SAT, tak IS jsou p¥iklady NP-uplnych problémi.
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Problém nezavislé mnoZiny (IS)

Problém nezévislé mnoZiny (IS)
Vstup: Neorientovany graf G, &islo k.

Otazka: Existuje v grafu G nezavisld mnoZina velikosti k?

Poznamka: Nezavisla mnoZina v grafu je podmnoZzina vrchold grafu
takova, Ze Zadné dva vrcholy z této podmnozZiny nejsou spojeny hranou.
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Problém nezavislé mnoZiny (IS)

Problém nezévislé mnoZiny (IS)
Vstup: Neorientovany graf G, &islo k.

Otazka: Existuje v grafu G nezavisld mnoZina velikosti k?

Poznamka: Nezavisla mnoZina v grafu je podmnoZzina vrchold grafu
takova, Ze Zadné dva vrcholy z této podmnozZiny nejsou spojeny hranou.
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Problém nezavislé mnoZiny (IS)

P¥iklad instance, kde je odpovéd ANO:

P¥iklad instance, kde je odpovéd NE:
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P¥evod 3-SAT na IS

Popiseme (polynomiélni) algoritmus, ktery bude mit nésledujici vlastnosti:

@ Vstup: Libovolna instance problému 3-SAT, tj. formule ¢
v konjunktivni normalni formé, kde kazda klauzule obsahuje pravé tfi
literaly.

@ Vystup: Instance problému IS, tj. neorientovany graf G a &islo k.

e Navic bude pro libovolny vstup (tj. pro libovolnou formuli ¢ ve vyse
uvedeném tvaru) zaruceno nasledujici:

V grafu G bude existovat nezdvisla mnoZina velikosti k pravé tehdy,
kdyz formule ¢ bude splnitelna.
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P¥evod 3-SAT na IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)
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P¥evod 3- na IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

X2 X4
° °
®
—|X3
X3 @ e Xy
e —1Xp X3 @
X1 @ e X1
—|X1
®
° °
X2 X4

Pro kazdy vyskyt literdlu p¥iddme do grafu jeden vrchol.
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P¥evod 3- na IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

X2 X4
—|X3
X3 —Xa
—|X2 —|X3
X1 X1
—|X1
X2 X4

Vrcholy odpovidajici vyskytiim literdld patficim do stejné klauzule spojime
hranami.
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P¥evod 3-SAT na IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

X2 X4

Dvojice vrcholii odpovidajici literalim x; a —x; spojime hranami.
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P¥evod 3-SAT na IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

X2 X4

Cislo k poloZime rovno po&tu klauzuli.
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P¥evod 3-SAT na IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

X2 X4

Vytvoreny graf a &islo k vyda algoritmus jako vystup.
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P¥evod 3-SAT na IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

v(ix) =1
vix) =1
v(x3) =0
v(xg) =1

Jestlize je formule ¢ splnitelnd, existuje ohodnoceni v, p¥i kterém m3
v kazdé klauzuli alespoii jeden literdl hodnotu 1.
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P¥evod 3-SAT na IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

v(ix) =1
v(ix) =1
v(x3) =0
v(xg) =1

Z kaZdé klauzule vybereme jeden literdl, ktery ma p¥i ohodnoceni v
hodnotu 1, a do nezavislé mnoZiny p¥iddme odpovidajici vrchol.
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P¥evod 3-SAT na IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

v(ix) =1
v(ix) =1
v(x3) =0
v(xg) =1

Lehce ovéfime, Ze vybrané vrcholy tvofi nezdvislou mnozinu.
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P¥evod 3- na IS

Vybrané vrcholy tvofi nezdvislou mnoZinu, protoze:

o Z kazdé trojice vrcholl odpovidajici jedné klauzuli byl vybran jen
jeden vrchol.

@ Nemohly byt soucasné vybrany vrcholy oznaéené x; a —x;.
(P¥i daném ohodnoceni v ma hodnotu 1 jen jeden z nich.)
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P¥evod 3-SAT na IS

Na druhou stranu, pokud v grafu G existuje nezavisld mnoZina velikosti k,
musi urcité spliiovat nasledujici vlastnosti:

o Z kazdé trojice vrcholl odpovidajici jedné klauzuli musi byt vybran
nejvyse jeden vrchol.
ProtoZe je ale klauzuli k a je vybrdno k vrchold, musi byt z kazdé
takové trojice vybran pravé jeden.

@ Nemohly byt soucasné vybrany vrcholy oznaéené x; a —x;.

Ohodnoceni tedy zvolime podle vybranych vrcholi, protoze z pfedchoziho
vyplyva, Ze nehrozi, Ze by neexistovalo.
(Zbylym prom&nnym p¥itadime libovolné hodnoty.)

P¥i daném ohodnoceni m3 formule ¢ uréit& hodnotu 1, nebot v kaZdé
klauzuli ma hodnotu 1 alespoii jeden literal.
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P¥evod 3-SAT na IS

Popsany algoritmus je urcité polynomidini:
Graf G a &islo k je mozné zkonstruovat k formuli ¢ v €ase O(nz), kde n je

velikost formule .

Navic jsme vidé&li, Ze ve zkonstruovaném grafu G existuje nezavisld
mnozina velikosti k pravé tehdy, kdyZ formule ¢ je splnitelna.

Popsany algoritmus tedy ukazuje, Ze problém 3-SAT je polynomiding
preveditelny na problém IS.
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NP-uplné problémy

Vezméme si mnozinu v8ech moznych rozhodovacich problémi.
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NP-uplné problémy

Sipkou si zndzornime, Ze problém A je polynomidln& pfeveditelny na
problém B.
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NP-uplné problémy

Napfiklad problém 3-SAT je polynomialné pfeveditelny na problém IS.
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NP-uplné problémy

Vezméme si nyni tfidu NPTIME a né&jaky problém P.
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NP-uplné problémy

Problém P je NP-tézky, jestlize kazdy problém z NPTIME je
polynomidlné preveditelny na P.
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NP-uplné problémy

Problém P je NP-uplny, jestlize je NP-t&Zky a navic sdm patf¥i do
t¥idy NPTIME.
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NP-uplné problémy

Pokud bychom pro n&jaky NP-tézky problém P nalezli polynomialni
algoritmus, ziskali bychom tim polynomidlni algoritmus pro kazdy problém
P'z NPTIME:

@ Na vstup problému P' bychom nejprve aplikovali algoritmus realizujici
polynomidlni pfevod z P' na P.

@ Na vytvorfenou instanci problému P bychom aplikovali polynomiaini
algoritmus YeSici problém P a vysledek bychom vrétili jako odpovéd
pro danou instanci problému P

V takovém p¥ipadé by tedy platilo PTIME = NPTIME, nebot pro kazdy
problém z NPTIME by existoval polynomidlni (deterministicky) algoritmus.
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NP-uplné problémy

Na druhou stranu, pokud existuje alespori jeden problém z NPTIME, pro
ktery neexistuje polynomialni algoritmus, tak z pfedchoziho plyne, Ze pro
zadny NP-tézky problém nemiZe existovat polynomidlni algoritmus.

Zda plati prvni nebo druhda moznost, je otevieny problém.
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NP-uplné problémy

Neni tézké si rozmyslet nasledujici:

Pokud je problém A polynomidlné preveditelny na problém B a problém B
je polynomialn& p¥eveditelny na problém C, pak problém A je
polynomialné preveditelny na problém C.

Pokud tedy o n&jakém problému P vime, Ze je NP-tézky a Ze P je
polynomislné preveditelny na problém P', pak vime, Ze i problém P' je
NP-t&zky.
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NP-uplné problémy

Véta (Cook, 1971)
Problém SAT je NP-uplny.

D3 se ukazat, Ze SAT je polynomidlng p¥eveditelny na 3-SAT a vid&li jsme,
Ze 3-SAT je polynomialn& p¥eveditelny na IS.

Z toho plyne, Ze problémy 3-SAT a IS jsou NP-t&Zké.

Neni také t&7ké ukdazat, Ze 3-SAT i IS pat¥i do tfidy NPTIME.

Problémy 3-SAT i IS jsou NP-tplné.
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NP-uplné problémy

Polynomidlnimi pfevody z jiz znamych NP-lplnych problémi se da ukazat
NP-obtiZnost celé ¥ady riiznych dalSich problémii:

vC

4 CLIQUE

/ IS \
SAT ——=> 3—SAT\ HC

3-CG

HK TSP

SUBSET-SUM

ILP
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Ptiklady nékte NP-uplnych problémii

Ze zatim uvedenych problémi jsou NP-tplIné nasledujici t¥i problémy:
@ SAT (splnitelnost booleovskych formulf)

@ 3-SAT

@ IS — problém nezdvislé mnoZiny (independent set)

Na nasledujicich slidech jsou uvedeny nékteré dalsi NP-lplné problémy:

@ CG — vrcholové barveni grafu (pozn.: je NP-dplny i ve specidlnim p¥ipadg, kdy
mame pravé 3 barvy)

VC — vrcholové pokryti grafu (vertex cover)

CLIQUE — problém kliky

HC — problém Hamiltonovského cyklu

HK — problém Hamiltonovské kruZnice

TSP — problém obchodniho cestujiciho (traveling salesman problem)
SUBSET-SUM

ILP — celotiselné linedrni programovéni (integer linear programming)
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Barveni grafu

Barveni grafu

Vstup: Neorientovany graf G, pfirozené &islo k.
Otazka: Lze vrcholy grafu G obarvit k barvami tak, aby 74dné dva
vrcholy spojené hranou nemély stejnou barvu?

Pt¥iklad: kK = 3
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Barveni grafu

Barveni grafu
Vstup: Neorientovany graf G, pfirozené &islo k.
Otazka: Lze vrcholy grafu G obarvit k barvami tak, aby 74dné dva
vrcholy spojené hranou nemély stejnou barvu?

Pt¥iklad: kK = 3

Odpovéd: NE

11. dnora 2026 647 /674
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VC — Vrcholové pokryti

VC - vrcholové pokryti (vertex cover)

Vstup: Neorientovany graf G a pfirozené &islo k.

Otéazka: Existuje v grafu G mnoZina vrcholl velikosti k takova, Ze
kaZda hrana ma alesponi jeden sviij vrchol v této mnoziné?

Pt¥iklad: kK = 6
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CLIQUE - problém kliky

CLIQUE — problém kliky

Vstup: Neorientovany graf G a pfirozené &islo k.

Otazka: Existuje v grafu G mnoZina vrcholl velikosti k takova, Ze
kazdé dva vrcholy této mnoZiny jsou spojeny hranou?

Ptiklad: k =4
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Hamiltonovsky cyklus

HC — Problém ,,Hamiltonovsky cyklus”

Vstup: Orientovany graf G.

Otazka: Existuje v grafu G Hamiltonovsky cyklus (orientovany cyklus
prochazejici kazdym vrcholem pravé jednou)?

Ptiklad:
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Hamiltonovska kruZnice

HK — Problém ,,Hamiltonovska kruznice“

Vstup: Neorientovany graf G.

Otazka: Existuje v grafu G Hamiltonovskd kruZnice (neorientovany
cyklus prochézejici kazdym vrcholem pravé jednou)?

Ptiklad:

Odpovéd: NE
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Hamiltonovska kruZnice

HK — Problém ,,Hamiltonovska kruznice“
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Problém obchodniho cestujiciho

TSP - Problém ,,obchodniho cestujiciho”
Vstup: Neorientovany graf G s hranami ohodnocenymi pfirozenymi
&isly a Cislo k.
Otazka: Existuje v grafu G uzavfena cesta prochazejici vSemi vrcholy
takovy, Ze soulet délek hran na této cesté& (vietn&
opakovanych) je maximaln& k?

Ptiklad: kK =70
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Problém obchodniho cestujiciho

TSP - Problém ,,obchodniho cestujiciho”
Vstup: Neorientovany graf G s hranami ohodnocenymi pfirozenymi
&isly a Cislo k.
Otazka: Existuje v grafu G uzavfena cesta prochazejici vSemi vrcholy
takovy, Ze soulet délek hran na této cesté& (vietn&
opakovanych) je maximaln& k?

Ptiklad: kK =70

Odpov&d: ANO, protoZe byla nalezena cesta se sou¢tem 69.
652 /674
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SUBSET-SUM

Problém SUBSET-SUM

Vstup: Sekvence p¥irozenych &isel ap, ap, ..., a, a p¥irozené &islo s.

Otazka: Existuje mnoZina / € {1,2,...,n} takovd, 2e ) ;c;a; = s?

Jinak ¥eteno, ptdme se zda z dané (multi)mnoZiny &isel je mozné vybrat
podmnoZzinu, jejiZ soulet je s.

Pr¥iklad: Pro vstup tvoreny &isly 3,5,2,3,7 a &islem s = 15 je odpovéd
ANO, nebot 3+ 5+ 7 = 15.

Pro vstup tvoreny &isly 3,5,2,3,7 a &islem s = 16 je odpovéd NE, nebot
Zadna podmnoZzina téchto &isel neddva soudet 16.
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SUBSET-SUM

Poznamka:
Pofadi &isel a1, as, ..., a, na vstupu neni dileZité.

Vsimnéte si v8ak ur&itého rozdilu oproti tomu, kdybychom problém
formulovali tak, Ze vstupem je mnoZina {a;, a»,...,a,} a &islo s —
v mnoziné se &isla neopakuji, zatimco v sekvenci se miZe totéz &islo

vyskytnout vicekrat.
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SUBSET-SUM

Problém SUBSET-SUM je specidlnim p¥ipadem problému batohu
(knapsack problem):

Knapsack problem

Vstup: Sekvence dvojic pFirozenych &isel

(a1, b1), (a2, by), ..., (a,, b,) a dv& pfirozend &isla s a t.
Otdzka: Existuje mnoZina / € {1,2,...,n} takova, %e ) ;.,a; < s a
Ziel b,' >t7?
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SUBSET-SUM

Neformaln& mizeme problém batohu formulovat takto:

Mdme n pfedmétd, kde /-ty pfedmét vazi a; graml a ma cenu b; K& Do
batohu se vejdou pfedméty o maximalni celkové vaze s gramd.

Otéazka zni, zda miZeme z pfedméti vybrat podmnoZinu, kterd by vaZila
maximalné s gram( a méla celkovou cenu alespoii t K&.

Poznamka:

Zde jsme problém batohu formulovali jako rozhodovaci problém.
B&Znégjsi je formulovat tento problém jako optimalizaéni problém, kde je
cilem najit takovou mnozinu | € {1,2,...,n}, kde hodnota ) ., b; je
maximalni, pfi¢em? oviem musi byt dodrzena podminka ) ;c, a; < s,

tj. vybrat pfedméty s maximalni celkovou cenou tak, aby nebyla
prekrocena kapacita batohu.
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SUBSET-SUM

To, 7e SUBSET-SUM je specidlnim p¥ipadem problému batohu, vidime
z nasledujici jednoduché konstrukce:

Rekn&me, ¥e a;, as, ..., a, s, je instance problému SUBSET-SUM.
Je ocividné, Ze pro instanci problému batohu, kde mame sekvenci
(a1,a1), (a2,a2),..., (an,an), s =51 a t =5, je odpovéd stejna jako pro

ptvodni instanci SUBSET-SUM.
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SUBSET-SUM

Pokud chceme studovat sloZitost problémi jako jsou SUBSET-SUM nebo
problém batohu, je dobré si nejprve ujasnit, co povazujeme za velikost
vstupu.

Asi nejpfirozengjsi je definovat velikost vstupu jako celkovy pocet biti,
ktery pot¥ebujeme k zapisu instance.

Musime v8ak urcit, jakym zpiisobem jsou na vstupu zadadna pfirozend &isla
— zda bindrn& (pfipadn& v jiné &iselné soustavé o zakladu alespofi 2,
nap¥. desitkové nebo Zestnactkové) nebo undrné.

@ Pokud pocitdme velikost vstupu jako celkovy poéet bitl p¥i pouZiti
binarniho zapisu &isel, tak pro problém SUBSET-SUM neni zndm
polynomidlni algoritmus.

@ Pokud pocitdme velikost vstupu jako celkovy pocet bitll p¥i pouZiti
unarniho zdpisu, tak existuje pro problém SUBSET-SUM algoritmus
s polynomidlni ¢asovou sloZitosti.
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ILP — celotiselné linearni programovani

Problém ILP (celotiselné linedrni programovani)
Vstup: Celo&iselna matice A a celo&iselny vektor b.
Otazka: Existuje celociselny vektor x, takovy Ze Ax < b?

P¥iklad instance problému:

3 =25 8
A= 1 0 1 b=| -3
2 1 0 5

Ptame se tedy, zda existuje celodiselné ¥eSeni nasledujici soustavy nerovnic:

3X1 - 2X2 + 5X3 < 8
x1+x3 < =3
2X1 +Xx = 5

11. dnora 2026 659 /674
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ILP — celotiselné linearni programovani

Jednim z FeSeni soustavy

3x = 2x +5x3 =< 8
X1 +x3 = -3
2x1+x, < 5
je naptiklad x; = =4, x, = 1, x3 = 1, tj.
-4
X = 1
1
nebot
3:(-4)-2-145-1 = -9 =< 8
-4+1 = -3 = -3
2-(-4)+1 = -7 = 5

Pro tuto instanci je tedy odpovéd ANO.
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ILP — celotiselné linearni programovani

Poznamka: Analogicky problém, kdy se pro danou soustavu linedlnich
nerovnic ptame, zda existuje jeji YeSeni v oboru redlnych ¢&isel, je mozné
fesit v polynomidlnim &ase.
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PSPACE-uplIné problémy, EXPTIME-uplIné problémy, ...

Problém P je PSPACE-t&2ky, jestlize je kazdy problém P' z PSPACE
polynomidlné preveditelny na problém P.

Problém P je PSPACE-tplny, jestlize je PSPACE-t&Zky a navic sam
patfi do t¥idy PSPACE.

Problém P je EXPTIME-tézky, jestliZe je kazdy problém P'
z EXPTIME polynomialné p¥eveditelny na problém P.

@ Problém P je EXPTIME-uplny, jestlize je EXPTIME-t&Zky a navic
sam patf¥i do t¥idy EXPTIME.
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PSPACE-uplIné problémy, EXPTIME-uplIné problémy, ...

Obecné pro libovolnou tfidu sloZitosti C miZeme zavést tfidy C-tézkych
a C-uplnych problémi:

@ Problém P je C-tézky, jestlize je kaZdy problém P' ze tiidy C
polynomidlné preveditelny na problém P.

@ Problém P je C-uplny, jestlize je C-téZky a navic sdm pat¥i do t¥idy C.

Kromé& NP-Gplnych problémi tak mame PSPACE-tplné problémy,
EXPTIME-iplné problémy, EXPSPACE-UpIné problémy,
2-EXPTIME-tplné problémy, ...

v dané t¥idé C.
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PTIME-tpIné problémy, NL-apIné problémy, ...

Poznamka: Vy3se uvedenym zplisobem zavedené pojmy C-téZkych

a C-uplnych problémii, kdy byl v definici pouZit pojem polynomialni
prevoditelnosti, nedavaji pfili§ smysl pro tfidu PTIME a dalsi tfidy, které
jsou jejimi podmnoZinami (jako tfeba NLOGSPACE).

Pro takové t¥idy se zavadi pojmy C-tézké a C-tplné problémy podobnym
zplisobem jako v p¥edchozich definicich, ale misto polynomidlni redukci se
pouZivaji, tzv. logspace redukce:

@ algoritmus realizuji dany pfevod musi byt deterministicky a mit
logaritmickou prostorovou sloZitost

Timto zplisobem se zavadi nap¥iklad:
o PTIME-upIné a PTIME-t&zké problémy

o NLOGSPACE-tpIné a NLOGSPACE-t&zké problémy (v&tsinou se
oznaluji krat§im ndzvem jako NL-dplné a NL-t&Zké)

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 664 /674



P¥iklad NL-uplného problému

Typicky ptiklad NL-tplného problému:

DosaZitelnost v grafu

Vstup: Orientovany graf G a dva jeho vrcholy s a t.
Otazka: Existuje v grafu G cesta z vrcholu s do vrcholu t7?
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P¥iklad PTIME-iplného problému

Typicky piklad PTIME-tplného problému:

Circuit Value Problem

Vstup: Acyklicky booleovsky obvod C skladajici se z hradel a vodiéi
a booleovské hodnoty xi, Xo, ..., X, na vstupech tohoto
obvodu.

Otazka: Bude na vystupu obvodu C p¥i danych hodnotach vstupli
hodnota 17

Z. Sawa (VSB-TUO) Uvod do teoretické informatiky 11. dnora 2026 666 / 674



P¥iklady PSPACE-tplInych problémi

Typickym p¥ikladem PSPACE-tplného problému je problém

kvantifikovanych booleovskych formuli — QBF (Quantified Boolean
Formulas):

QBF

Vstup: Kvantifikovana booleovska formule tvaru

Axy VxoAx3Vxg - Ax,—1 YV x, ¢ 0,

kde ¢ je (b&Znd) booleovska formule obsahujici
proménné xi, Xo, . . ., Xp.

Otazka: Je dand formule pravdiva?
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P¥iklady PSPACE-tplInych problémi

EqNFA

Vstup: Nedeterministické konetné automaty A; a A,.

Otézka: Je L(A;) = L(Ay)?

Univerzalita NKA

Vstup: Nedeterministicky kone¢ny automat A.
Otézka: Je L(A) =X"7
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P¥iklady PSPACE-tplInych problémi

Vstup: Reguldrni vyrazy a; a as.

Otdzka: Je L(ay) = L(ap)?

Univerzalita RV

Vstup: Regularni vyraz a.
Otézka: Je L(a) =X*7?
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P¥iklady PSPACE-tplInych problémi

UvaZujme nasledujici hru, kterou hraji dva hraci na orientovaném grafu G:

o Hradi stfidavé presunuji po vrcholech grafu G jeden hraci kdmen.

@ P¥i tazich se ozna&uji vrcholy, které jiz byly kamenem navstiveny.

@ Zatina se na specifikovaném vrcholu vg.

o Rekn&me, %e kdmen je momentaln& na vrcholu v. Hrdg, ktery je na
tahu, vybere vrchol v takovy, Ze existuje hrana z v do v' a vrchol V'
nebyl dosud navstiven.

@ Hrég, ktery nemize tdhnout, prohrdl a jeho protivnik vyhrdl.

Generalized Geografy

Vstup: Orientovany graf G s vyznaenym pocateénim vrcholem vg.

Otazka: M3 hrag, ktery tdhne jako prvni, vyhravajici strategii ve hte
hrané na grafu G, kde se za&ind ve vrcholu v ?
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P¥iklady EXPTIME-dplnych problémi

Typicky ptiklad EXPTIME-tplného problému:

Vstup: Turingliv stroj M, slovo w a &islo k zapsané binarné.
Otdzka: Zastavi se vypolet stroje M nad slovem w do k kroki?
(Tj. udél3 stroj M p¥i vypotu nad slovem w

nejvyse k kroki?)
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P¥iklady EXPTIME-dplnych problémi

Dalsi priklady EXPTIME-tplnych problémi jsou napt¥iklad zobecn&né
varianty her jako jsou Sachy, ddma nebo Go, hrané na hraci plose libovolné
velikosti (nap¥. Sachovnice velikosti n X n):

@ vstupem je pozice v dané h¥e (nap¥. v S8achu konkrétni rozestaveni
figurek na %achovnici a informace, ktery hra¢ je na tahu)

@ otdzka je, zda ma hrag, ktery je momentalné na tahu, v dané pozici
vyhravajici strategii
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P¥iklady EXPSPACE-uplnych problémd

Regularni vyrazy s mocnénim jsou definovany podobné jako bézné

b s v s o * ,
reguldrni vyrazy, ale kromé operdtord +, - a = mohou navic obsahovat
unarni operator ~ s nasledujicim vyznamem:

o o’ je zkratkou pro a - a.
Nasledujici dva problémy jsou EXPSPACE-tpliné:

Vstup: Regularni vyrazy s mocnénim oy a as.
Otézka: Je L(oy) = L(ap)?

Vstup: Reguldrni vyraz s mocnénim a.
Otézka: Je L(a) =X*7?

Z. Sawa (VéB—TUO) Uvod do teoretické informatiky
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Presburgerova aritmetika

P¥iklad problému, ktery je sice rozhodnutelny, ale ma velkou vypocetni
sloZitost:

Problém

Vstup: Uzav¥end formule predikatové logiky (prvniho ¥adu), ve které
mohou byt pouzity jako predikatové symboly pouze = a <,
jako funk&ni symbol pouze + a jako kostantni symboly
pouze 0 a 1.

Otazka: Je dand formule pravdivd v oboru pFirozenych &isel (pfi

pFirozené interpretaci viech funkénich a predikatovych
symboli)?

Pro tento problém je zndm deterministicky algoritmus s ¢asovou
2O(n)

“- ;A2 . v , v Y Ce . . .
sloZitosti 2 a je rovneZ zndmo, Ze kazdy nedeterministicky algoritmus
Q(n)
o ovr s . P . C A2
eSici tento problém, musi mit ¢asovou slozitost nejméné 2
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