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o Credit (30 points):

o Written test (24 points) — it will be written on a tutorial

o The minimal requirement for obtaining the credit is 12 points.
@ A correcting test for 20 points.

o Activity on tutorials (6 points)

@ The minimal requirement for obtaining the credit is 3 points.

e Exam (70 points)

o A written exam consisting of two parts (35 points for each part);
it is necessary to obtain at least 12 points for each part.

o It is necessary to obtain at least 30 points.
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Theoretical Computer Science

Theoretical computer science — a scientific field on the border between
computer science and mathematics

@ investigation of general questions concerning algorithms and
computations

o study of different kinds of formalisms for description of algorithms

o study of different approaches for description of syntax and semantics
of formal languages (mainly programming languages)

@ a mathematical approach to analysis and solution of problems (proofs
of general mathematical propositions concerning algorithms)
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Theoretical Computer Science

Examples of some typical questions studied in theoretical computer science:

Is it possible to solve the given problem using some algorithm?

If the given problem can be solved by an algorithm, what is the
computational complexity of this algorithm?

Is there an efficient algorithm solving the given problem?

How to check that a given algorithm is really a correct solution of the
given problem?

What kinds instructions are sufficient for a given machine to perform
a given algorithm?
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Algorithms and Problems

Algorithm — mechanical procedure that computes something (it can be
executed by a computer)

Algorithms are used for solving problems.

An example of an algorithmic problem:

Input: Natural numbers x and y.

Output: Natural number z such that z = x + y.
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Algorithms and Problems

Algorithm — mechanical procedure that computes something (it can be
executed by a computer)

Algorithms are used for solving problems.

An example of an algorithmic problem:

Input: Natural numbers x and y.

Output: Natural number z such that z = x + y.

A particular input of a problem is called an instance of the problem.

Example: An example of an instance of the problem given above is a pair
of numbers 728 and 34.

The corresponding output for this instance is number 762.
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When specifying a problem we must determine:

@ what is the set of possible inputs
@ what is the set of possible outputs

@ what is the relationship between inputs and outputs

inputs outputs
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Examples of Problems

Problem “Sorting”

Input: A sequence of elements aj, as, ..., a,.

Output: Elements of the sequence ay, as, ..., a, ordered from the
least to the greatest.

Example:
o Input: 8,13,3,10,1,4
o Output: 1,3,4,8,10,13
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An example of an algorithmic problem

Problem “Finding the shortest path in an (undirected) graph”

Input: An undirected graph G = (V, E) with edges labelled with
numbers, and a pair of nodes u,v € V.

Output: The shortest path from node u to node v.
(Or information that there is no such path.)

Example:
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Algorithms and Problems

An algorithm solves a given problem if:

@ For each input, the computation of the algorithm halts after a finite
number of steps.

@ For each input, the algorithm produces a correct output.

Correctness of an algorithm — verifying that the algorithm really solves
the given problem

Computational complexity of an algorithm:

o time complexity — how the running time of the algorithm depends
on the size of input data

@ space complexity — how the amount of memory used by the
algorithm depends on the size of input data

Remark: For one problem there can be many diffent algorithms that
correctly solve the problem.
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Other Examples of Problems

Problem “Primality”
Input: A natural number n.

Output: YES if nis a prime, NO otherwise.

Remark: A natural number n is a prime if it is greater than 1 and is
divisible only by numbers 1 and n.

Few of the first primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 11 /629



Decision Problems

The problems, where the set of outputs is {YES, NO} are called decision
problems.

Decision problems are usually specified in such a way that instead of
describing what the output is, a question is formulated.

Example:

Problem “Primality”

Input: A natural number n.

Question: Is n a prime?
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Optimization Problems

Those problems where for each input instance there is a corresponding set
of feasible solutions and where the aim is to select between these feasible
solutions that is some respect minimal or maximal (or possibly to find out
that there are no feasible solutions), are called optimization problems.

Example:

Problem “Finding the shortest path in an (undirected) graph”

Input: An undirected graph G = (V, E) with edges labelled with
numbers, and a pair of nodes u,v € V.

Output: The shortest path from node v to node v.
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Optimization Problems

Problem “Coloring of a graph”

Input: An undirected graph G.

Output: The minimal number of colors to color the nodes of the
graph G in such a way that no two nodes connected with an
edge are colored with the same color, and a concrete example
of such coloring using this minimal number of colors.
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Optimization Problems

Problem “Coloring of a graph”

Input: An undirected graph G.

Output: The minimal number of colors to color the nodes of the
graph G in such a way that no two nodes connected with an
edge are colored with the same color, and a concrete example
of such coloring using this minimal number of colors.

Colors: 3
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Optimization Problems

Problem “Coloring of a graph with k colors”
Input: An undirected graph G and a natural number k.

Question: Is it possible to color the nodes of the graph G with k colors

in such a way that no two nodes connected with an edge are
colored with the same color?
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Algorithmically Solvable Problems

Let us assume we have a problem P.

If there is an algorithm solving the problem P then we say that the
problem P is algorithmically solvable.

If P is a decision problem and there is an algorithm solving the problem P
then we say that the problem P is decidable (by an algorithm).

If we want to show that a problem P is algorithmically solvable, it is
sufficient to show some algorithm solving it (and possibly show that the
algorithm really solves the problem P).
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Algorithmically Unsolvable Problems

A problem that is not algorithmically solvable is algorithmically
unsolvable.

A decision problem that is not decidable is undecidable.

Surprisingly, there are many (exactly defined) problems, for which it was
proved that they are not algorithmically solvable.

Computability theory — area of theoretical computer science studying,
which problems can be solved algorithmically and which cannot.
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Complexity Theory

Many problems are algorithmically solvable but there do not exist (or are
not known) efficient algorithms solving them:

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers.

Output: A shortest closed path that goes through all vertices of the
graph.
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Theoretical Computer Science

Some other areas of theoretical computer science:

complexity theory

theory of formal languages

°
°

@ models of computation

@ parallel and distributed algorithms
°
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Theory of Formal Languages

An area of theoretical computer science dealing with questions concerning
syntax.

e Language — a set of words

@ Word — a sequences of symbols from some alphabet
o Alphabet — a set of symbols (or letters)

Words and languages appear in computer science on many levels:

Representation of input and output data

Representation of programs

Manipulation with character strings or files
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Theory of Formal Languages — Motivation

Examples of problem types, where theory of formal languages is useful:

@ Construction of compilers:

o Lexical analysis
e Syntactic analysis

@ Searching in text:

e Searching for a given text pattern
e Seaching for a part of text specified by a regular expression
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Alphabet, Word

o Alphabet — a nonempty finite set of symbols
Example: ¥ = {a,b, c,d}

@ Word — a finite sequence of symbols from the given alphabet
Example: cabcbba
The set of all words of alphabet ¥ is denoted with ¥*.

For variables, whose values are words, we will use names such as
W, u, v, X,y,z, etc., possibly with indexes (e.g., wy, w)

So when we write w = cabcbba, it means that the value of
variable w is word cabcbba.

Similarly, the notation w € Y * means that the value of a variable w
is some word consisting of symbols belonging to alphabet ¥.
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Formal Languages

A (formal) language L over an alphabet ¥ is a subset of ¥*, i.e., L € X*.

Example: Let us assume that ¥ = {a,b, c}:
o Language L; = {aab, bcca, aaaaa}

o Language

* . .
Ly ={w € X" | the number of occurrences of b in w is even }
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Formal Languages

Example:

Alphabet ¥ is the set of all ASCII characters.
Example of a word:

#include <stdio.h>
int main()

{

printf ("Hello, world!\n");
return O;

#include <stdio.h> <« int main() « { «  printf ("He---
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Formal Languages

Formalisms used for description of formal languages:
@ automata
@ grammars

@ regular expressions
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Encoding of Input and Output

Inputs and outputs of an algorithm could be encoded as words over some
alphabet .

Example: For example, for problem “Sorting” we can take alphabet
¥ ={0,1,2,3,4,5,6,7,8,9,,}.

An example of input data (as a word over alphabet ¥):
826,13,3901,128,562

and the corresponding output data (as a word over alphabet ¥)
13,128,562,826,3901

Remark: It is often the case that only some words over the given alphabet
represent valid input or output.
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Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

Input

Output
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Encoding of Input and Output

Example: If an input for a given problem is graph, it could be represented
as a pair of two lists — a list of nodes and a list of edges:

For example, the following graph

1 2

could be represented as a word

1,2,3,4,5),0(1,2),(2,4),04,3),(3,1),(1,1),(2,5),(4,5),(4,1))

over alphabet ¥ = {0,1,2,3,4,5,6,7,8,9,,, (,)}.
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Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer YES or NoO.

Problem

Input: A word w over alphabet {a,b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

Input
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Correspondence between Recognizing Formal Languages

and Decision Problems

There is a close correspondence between recognizning words from a given
language and decision problems:

@ For each language L over some alphabet ¥ there is a corresponding
decision problem:

Input: A word w over alphabet ¥..

Question: Does w belong to L?

@ For each decision problem P where inputs are encoded as words over
alphabet X there is a corresponding language:

The language L containing of exactly those words w over alphabet ¥, for
which the answer to the question stated in problem P is “YES".
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Correspondence between Recognizing Formal Languages

and Decision Problems

Example: The following decision problem can be viewed as the
language L given below and vice versa.

Input: A word w over alphabet {a,b}.

Question: Does the word w contain an even number of occurrences of
symbol b?

Language

L={we{a, b}* | w contains an even number of occurrences of symbol b }
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Models of Computation

We can consider different types of machines that are able to perform
an algorithm.

There can be many different kinds of differences between these types of
machines:

@ what types of instructions they can execute

@ what types of dates they can store in their memory and this memory
is organised

Different kinds of such machines are called models of computation.

In the case of very simple kinds of such machines they are usually called
automata in the formal language theory.

In this course we will see several types of such automata.
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Models of Computation

For different types of models of computation analyse for example:

@ what algorithmic problems can be solved by such machines and what
languages they can recognise.

o how efficiently they can execute different algorithms

@ how machines of a certain type can simulate the computations of
some other type of machines

@ how the number of instructions that are executed by the machine in
such simulaton grows compared to the original machine
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Formal Languages
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Alphabet and Word

Definition
Alphabet is a nonempty finite set of symbols.

Remark: An alphabet is often denoted by the symbol ¥ (upper case
sigma) of the Greek alphabet.

Definition
A word over a given alphabet is a finite sequence of symbols from this
alphabet.

Example 1:
Y = {A,B,C,D,E, F,G,H,I,J KL, MNO,PQ,R,ST,UV,W, X,Y,Z}

Words over alphabet X: HELLO XYzzy COMPUTER
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Alphabet and Word

Example 2:
Y, = {A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,Z,}
A word over alphabet ¥,: HELLO_WORLD

Example 3:
¥3=1{0,1,2,3,4,5,6,7,8,9}
Words over alphabet ¥3: 0, 31415926536, 65536

Example 4:
Words over alphabet ¥, = {0,1}: 011010001, 111, 1010101010101010

Example 5:
Words over alphabet Y5 = {a,b}: aababb, abbabbba, aaab
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Language

The set of all words over alphabet ¥ is denoted ¥*.

Definition

A (formal) language L over an alphabet ¥ is a subset of ¥*, ie., LS X"

Example 1: The set {00,01001,1101} is a language over alphabet {0, 1}.

Example 2: The set of all syntactically correct programs in the C
programming language is a language over the alphabet consisting of all
ASCII characters.

Example 3: The set of all texts containing the sequence hello is a
language over alphabet consisting of all ASCII characters.
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Some Basic Concepts

The length of a word is the number of symbols of the word.

For example, the length of word abaab is 5.

The length of a word w is denoted |w]|.

For example, if w = abaab then |w| = 5.

We denote the number of occurrences of a symbol a in a word w by |w|,.

Example: If w = cabcbba then |w| =7, |w|, =2, |w|, =3, |w|. =2,
lwlq = 0.

An empty word is a word of length 0, i.e., the word containing no
symbols.

The empty word is denoted by the letter € (epsilon) of the Greek alphabet.
lel =0
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Concatenation of Words

One of operations we can do on words is the operation of concatenation:

For example, the concatenation of words cabc and bba is the word
cabcbba.

The operation of concatenation is denoted by symbol - (it is similar to
multiplication). This symbol can be omitted.

So, for u,v € Y " the concatenation of words v and v is written as u - v or
just uv.

Example: If u = cabc and v = bba, then

u - v = cabcbba

Remark: Formally, the concatenation of words over alphabet ¥ is

a fuction of type
TIxY oyt
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Concatenation of Words

Concatenation is associative, i.e., for every three words u, v, and w we
have

(u-v)-w=u-(v-w)
which means that we can omit parenthesis when we write multiple
concatenations. For example, we can write wy * ws * w3 - wy + ws instead of
(wy - (- w3)) - (wy - ws).

Word ¢ is a neutral element for the operation of concatenation, so for
every word w we also have:

Remark: It is obvious that if the given alphabet contains at least two
different symbols, the operation of concatenation is not commutative, e.g.,

a*b#b-a
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Power of a Word

For arbitrary word w € £ and arbitrary k € N we can define word w® as
the word obtained by concatenating k copies of the word w.

Example: For w = abb it is w" = abbabbabbabb.

Example: Notation a’b°a’ denotes word aaaaabbbaaaa.

A little bit more formal definition looks as follows:

0 k+1 k
wo =g, w =w -w forkeN
This means 0
wo = ¢
1
woo= w
2
wo o= w-ew
3
wwo= wew-ew
4
W= wWewewew
5
W= WewWewewew
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Reverse of a Word

The reverse of a word w is the word w written from backwards (in the
opposite order).

The reverse of a word w is denoted w'.
Example: w = abbab w’ = babba
So if w = ajay-+a, (where a; € ¥) then wh = apap_1*:+ai.

We can define w" using the following inductively defined function
rev: ¥ — ¥ as the value rev(w).
The function rev is defined as follows:

o rev(e) =¢

o fora€ ¥ and w € X" it holds that rev(a- w) = rev(w) - a
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Prefix of a Word

A word x is a prefix of a word y if there exists a word v such that y = xv.

y

o

X v

Example: Prefixes of the word abaab are ¢, a, ab, aba, abaa, abaab.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 43 /629



Suffix of a Word

A word x is a suffix of a word y if there exists a word v such that y = ux.

T2

u X

Example: Suffixes of the word abaab are ¢, b, ab, aab, baab, abaab.
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Subword

A word x is a subword of a word y if there exist words u and v such that
y = uxv.

y

O

u X "4

Example: Subwords of the word abaab are ¢, a, b, ab, ba, aa, aba, baa,
aab, abaa, baab, abaab.
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Subsequence

Definition
A word x is a subsequence of a word y if there is a number n and
words uq, Uy, ..., U, and vy, vy, ..., Vv, such that x = uyuy++-u, and

Y = Vourviup Vo - -UupVvpy.

Example: Word cbab is a subsequence of word acabccabbaa.

February 11, 2026
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Let us assume some (linear) order < on the symbols of alphabet ¥, i.e., if
2 = {31,32, .. .,a,,} then

ap<a<...<a,.
Example: ¥ = {a,b,c} with a <b < c.

The following (linear) order <; can be defined on ¥*:

x < y iff:
o |x| <yl or
e |x| = |y| there exist words u,v,w € ¥* and symbols a, b € ¥ such
that
X = uav y = ubw a<b

Informally, we can say that in order <; we order words according to their
length, and in case of the same length we order them lexicographically.
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All words over alphabet ¥ can be ordered by <; into a sequence
Wo, Wi, Wo, ...

where every word w € ¥ occurs exactly once, and where for each i,j € N
it holds that w; <, w; iff i < j.

Example: For alphabet ¥ = {a,b,c} (where a < b < c), the initial part
of the sequence looks as follows:

€,a,b,c,aa, ab,ac,ba,bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, abc, ...
For example, when we talk about the first ten words of a language L € £*,

we mean ten words that belong to language L and that are smallest of all
words of L according to order <.
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Order on Words

Example:

Language
L={we{abc} | |wl|ymod2=0}

(0:0:0:0:00-600

o)
ol
plo)o

)
oo
(e}
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Order on Words

N o=

(0:0:0:0:00-600

Bk
o)o

10

)
o
)

11

)
oo
(e}

Example:
Language

L={we{abc} | |wl|ymod2=0}
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Operations on Languages

Let us say we have already described some languages. We can create new
languages from these languages using different operations on languages.

So a description of a complicated language can be decomposed in such
a way that it is described a result of an application of some operations on
some simpler languages.

Examples of important operations on languages:

union
intersection
complement
concatenation
iteration

Remark: It is assumed the languages involved in these operations use the
same alphabet Y.
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Set Operations on Languages

Since languages are sets, we can apply any set operations to them:

Union — L; U L, is the language consisting of the words belonging to
language L; or to language L, (or to both of them).

Intersection — Ly N L, is the language consisting of the words belonging
to language L; and also to language L,.

Complement — L; is the language containing those words from £* that
do not belong to L.

Difference — L; — L, is the language containing those words of L; that do
not belong to L,.

Remark: We assume that L1, L, € " for some given alphabet ¥.
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Set Operations on Languages

Formally:

Union: LLUlLy={weX"|wel,Vvwel}
Intersection: L1 Nl ={weX  |wel Awe L}
Complement: [; ={weX*|wé¢lL}

Difference: Ly —L,={we X" |wel, Aw¢Ll,}
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Set Operations on Languages

Example:
Consider languages over alphabet {a,b}.

@ L; — the set of all words containing subword baa

@ [, — the set of all words with an even number of occurrences of
symbol b

Then

@ L; UL, — the set of all words containing subword baa or an even
number of occurrences of b

@ [ N L, — the set of all words containing subword baa and an even
number of occurrences of b

e L; — the set of all words that do not contain subword baa

@ [ — L, — the set of all words that contain subword baa but do not
contain an even number of occurrences of b
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Concatenation of Languages

Definition

Concatenation of languages L; and L,, where L, L, € ¥, is the
language L € ¥ such that for each w € £" it holds that

weLlL < (Juel)(Fvel)(w=u-v)

The concatenation of languages Ly and L, is denoted L; * L,.
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Concatenation of Languages

Example:

Ly
Ly

{abb, ba}
{a, ab, bbb}

The language Lq - L, contains the following words:

abba abbab abbbbb baa baab babbb

Remark: Note that the concatenation of languages is associative, i.e., for
arbitrary languages Ly, Ly, L3 it holds that:

Ly-(Ly-L3) =(Ly-Ly)- L
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Power of a Language

Notation Lk, where L € ¥ and k € N, denotes the concatenation of the
form

Lol « L

where the language L occurs k times, i.e.,

L° = {e}

r= 1L

> = L-L

2 = L-L-L

[* = L-L-L-L
> = L-L-L-L-L

Example: For L = {aa,b}, the language L* contains the following words:

aaaaaa aaaab aabaa aabb baaaa baab bbaa bbb
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Power of a Language

Example: A word in language L° is created by concatenating five words
from language L:

w
wm | ow [ ws | wy | ws |
/H/_/
eL eL eL eL eL

Formally, the k-th power of a language L, denoted L¥ can be defined using
the following inductive definition:

L°={c}, 1"'=1".L forkeN

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 57 /629



Iteration of a Language

The iteration of a language L, denoted L™, is the language consisting of
words created by concatenation of some arbitrary number of words from
language L.

l.e., a word w belongs to L™ iff there exists a sequence wy, wa, ..., w, of
words from language L such that

W = WiWo**W,.
Example: L = {aa, b}
L* = {5, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaab, aabaa, aabb, .. }

Remark: The number of concatenated words can be 0, which means that
e € L™ always holds (it does not matter if € € L or not).
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Iteration of a Language

Formally, the language L* can be defined as the union of all powers of
language L. l.e., a word w belongs to the language L™ iff if there exists
k € N such that w € L*:

Definition
The iteration of a language L is the language

L*=ULk

k=0

Remark:
Jrf=rutuPulu-
k=0
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Iteration of a Language

Notation L* denotes the language consinsting of those words that can be
created as a concatenation of a non-zero number of words from
language L.

So it holds that
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Reverse

The reverse of a language L is the language consisting of reverses of all
words of L.

Reverse of a language L is denoted LR

LF={wf|wel}

Example: L = {ab, baaba, aaab}
LR = {ba, abaab, baaa}
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Z. Sawa (TU Ostrava)

LU (LU L3)
L1UL2
LU L,
LU

Lin (LN L3)
L10L2
LinL
LN

Ly (Lo L3)
Ly - {e}
{5}'L1

L@
21

(Liu L) ULz
L2 U Ll

Ly

Ly
(LinLy))N L3
L2 N Ll

Ly
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Li-(Lauls) = (Ly-L)u(Ly-Ls)

Z. Sawa (TU Ostrava)

)Ly = (Li-L3)U(Ly- L)

(L) = L3

o' = {}
Ly = {e} v (L L)
Ly = {e}u (L L)

(LLuly)" = Ly -(Ly- L))"

R R R
‘L2) = Ly L
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Regular Expressions
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Regular Expressions

Regular expressions describing languages over an alphabet X:
e T, ¢, a (where a € ¥) are regular expressions:

@ ... denotes the empty language
e ... denotes the language {¢}
a ... denotes the language {a}

e If a, 3 are regular expressions then also (o + ), (a - ), (™) are
regular expressions:

(a+ B) ... denotes the union of languages denoted « and 3
(- B) ... denotes the concatenation of languages denoted o
and 3
(a™) ... denotes the iteration of a language denoted o

@ There are no other regular expressions except those defined in the two
points mentioned above.
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Regular Expressions

Example: alphabet ¥ = {0, 1}
@ According to the definition, 0 and 1 are regular expressions.
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Regular Expressions

Example: alphabet ¥ = {0, 1}
@ According to the definition, 0 and 1 are regular expressions.

@ Since 0 and 1 are regular expression, (0 + 1) is also a regular
expression.
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Regular Expressions

Example: alphabet ¥ = {0, 1}
@ According to the definition, 0 and 1 are regular expressions.

@ Since 0 and 1 are regular expression, (0 + 1) is also a regular
expression.

. . . * . .
@ Since 0 is a regular expression, (0") is also a regular expression.
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Regular Expressions

Example: alphabet ¥ = {0, 1}
@ According to the definition, 0 and 1 are regular expressions.

@ Since 0 and 1 are regular expression, (0 + 1) is also a regular
expression.

. . . * . .
@ Since 0 is a regular expression, (0") is also a regular expression.

e Since (0+ 1) and (0") are regular expressions, ((0+1)-(0")) is also
a regular expression.
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Regular Expressions

Example: alphabet ¥ = {0, 1}
@ According to the definition, 0 and 1 are regular expressions.

@ Since 0 and 1 are regular expression, (0 + 1) is also a regular
expression.

. . . * . .
@ Since 0 is a regular expression, (0") is also a regular expression.

e Since (0+ 1) and (0") are regular expressions, ((0+1)-(0")) is also
a regular expression.

Remark: If o is a regular expression, by £(«) we denote the language
defined by the regular expression «.

L£(((0+1)-(0"))) = {o, 1, 00, 10, 000, 100, 0000, 1000, 00000, ...}
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Regular Expressions

The structure of a regular expression can be represented by an abstract
syntax tree:

(((((0-1)") - 1)+ (1 1))+ (((0-0) +1)"))
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Regular Expressions

The formal definition of semantics of regular expressions:
L(?) =02
L(e) = {e}
L(a) = {a}
L(a®) = £(a)*
La-p)= C(a) - L(B)
L(
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Regular Expressions

To make regular expressions more lucid and succinct, we use the following
conventions:

@ The outward pair of parentheses can be omitted.

@ We can omit parentheses that are superflous due to associativity of
operations of union (+) and concatenation (+).

@ We can omit parentheses that are superflous due to the defined
priority of operators (iteration (*) has the highest priority,
concatenation (+) has lower priority, and union (+) has the lowest
priority).

@ A dot denoting concatenation can be omitted.

Example: Instead of
(((((0-12)*) 1)~ (1-1)) +(((0-0) +1)7))
we usually write

(01)*111 + (00 + 1)*
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Regular Expressions

Examples: In all examples ¥ = {a, b}.

a ... the language containing the only word a
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Examples: In all examples ¥ = {a, b}.
a ... the language containing the only word a

ab ... the language containing the only word ab
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Regular Expressions

Examples: In all examples ¥ = {a, b}.

a ... the language containing the only word a
ab ... the language containing the only word ab
a+b ... the language containing two words a and b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 70/ 629



Regular Expressions

Examples: In all examples ¥ = {a, b}.

a ... the language containing the only word a
ab ... the language containing the only word ab
a+b ... the language containing two words a and b
a® ... the language containing words ¢, a, aa, aaa, ...
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Regular Expressions

Examples: In all examples ¥ = {a, b}.

a ... the language containing the only word a
ab ... the language containing the only word ab
a+b ... the language containing two words a and b
a® ... the language containing words ¢, a, aa, aaa, ...

. the language containing words ¢, ab, abab, ababab, ...
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Regular Expressions

Examples: In all examples ¥ = {a, b}.

a ... the language containing the only word a
ab ... the language containing the only word ab
a+b ... the language containing two words a and b
a® ... the language containing words ¢, a, aa, aaa, ...
(ab)® ... the language containing words ¢, ab, abab, ababab, ...
(a+ b)’k the language containing all words over the alphabet

{a,b}
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Regular Expressions

Examples: In all examples ¥ = {a, b}.

a ... the language containing the only word a
ab ... the language containing the only word ab
a+b ... the language containing two words a and b
a® ... the language containing words ¢, a, aa, aaa, ...
(ab)® ... the language containing words ¢, ab, abab, ababab, ...
(a+ b)’k the language containing all words over the alphabet

{a,b}

(a+ b)*aa ... the language containing all words ending with aa
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Regular Expressions

Examples: In all examples ¥ = {a, b}.

a ... the language containing the only word a
ab ... the language containing the only word ab
a+b ... the language containing two words a and b
a® ... the language containing words ¢, a, aa, aaa, ...
(ab)® ... the language containing words ¢, ab, abab, ababab, ...
(a+ b)’k ... the language containing all words over the alphabet
{a,b}
(a+ b)*aa ... the language containing all words ending with aa
(ab)*bbb(ab)* ... the language containing all words that contain a

subword bbb preceded and followed by an arbitrary number
of copies of the word ab
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Regular Expressions

(a+b)*aa+ (ab)*bbb(ab)® ... the language containing all words that
either end with aa or contain a subwords bbb preceded and
followed with some arbitrary number of words ab
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Regular Expressions

(a+b)*aa+ (ab)*bbb(ab)® ... the language containing all words that
either end with aa or contain a subwords bbb preceded and
followed with some arbitrary number of words ab

(a+b)*b(a+1b)* ... the language of all words that contain at least one
occurrence of symbol b
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Regular Expressions

(a+b)*aa+ (ab)*bbb(ab)® ... the language containing all words that
either end with aa or contain a subwords bbb preceded and
followed with some arbitrary number of words ab

(a+b)*b(a+1b)* ... the language of all words that contain at least one
occurrence of symbol b

zaL*(ba*ba*)’k ... the language containg all words with an even number
of occurrences of symbol b
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Finite Automata
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Recognition of a Language

Example: Consider words over alphabet {a, b}.

We would like to recognize a language L consisting of words with even
number of symbols b.

We want to design a device that reads a word and then tells us if the word
belongs to the language L or not.
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Recognition of a Language

The second idea: In fact, we just need to remember if the number of

symbols b read so far is even or odd (i.e., it is sufficient to remember only
the last bit of the number).
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Recognition of a Language

The second idea: In fact, we just need to remember if the number of

symbols b read so far is even or odd (i.e., it is sufficient to remember only
the last bit of the number).
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Recognition of a Language

The behaviour of the device can be described by the following graph:
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The behaviour of the device can be described by the following graph:
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Deterministic Finite Automaton

A deterministic finite automaton consists of states and transitions.
One of the states is denoted as an initial state and some of states are
denoted as accepting.
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Deterministic Finite Automaton

Formally, a deterministic finite automaton (DFA) is defined as a tuple

where:

(072757 q07F)

Q is a nonempty finite set of states

Y is an alphabet (a nonempty finite set of symbols)

0: QXX — Q@ is a transition function

go € Q is an initial state

F ¢ Q is a set of accepting states

Z. Sawa (TU Ostrava)
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February 11, 2026
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Deterministic Finite Automaton

e Q=1{1,2,3,4,5} 5(1,a) =2  6(1,b) =1
o ¥ ={ab} 5(2,a)=4  §(2,p)=5
o1 5(3,a) =1  4(3,b) = 4

7 5(4,2)=1  6(4,p)=3
o F={145} 5(5,a)=4  §(5,b) =5
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Deterministic Finite Automaton

Instead of
5(1,a)=2  6(1,b) =1
5(2,a)=4  §(2,b) =5
5(3,a)=1  6(3,b) =4
5(4,a) =1 5(4,b) =3
5(5,a)=4  6(5,b)=5

we rather use a more succinct representation as a table or a depicted
graph:

(=%

Gl W N =
AR R, DS DN

T

g w s~ OO
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Deterministic Finite Automaton
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Deterministic Finite Automaton
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Deterministic Finite Automaton
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Deterministic Finite Automaton
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Deterministic Finite Automaton

Definition
Let us have a DFA A = (Q, %, 6, qo, F).

By g N q', where q, q' € Q and w € £*, we denote the fact that the
automaton, starting in state g goes to state q by reading word w.

Remark: —<c QX X" x Q isa ternary relation.

Instead of (g, w, q') €— we write g AN q'.

It holds for a DFA that for each state g and each word w there is exactly
one state q' such that g AN q'.
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Deterministic Finite Automaton

Relation — can be formally defined by the following inductive definition:
° quforeachqu
o Forwex andaex:

q = q' iff there is q" € @ such that
g— q"and §(¢",a) = ¢
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Deterministic Finite Automaton

151 6(1,a) =2
129 5(2,0) =5
125 )=4
a b \ /
=1 2 1 lﬂ)4 (47b)=3
214 5 \ /
311 4
—~411 3 1%3 )=4
«5|4 5 \ /
ababb
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Deterministic Finite Automaton

A word w € ¥ is accepted by a deterministic finite automaton
A =(Q,%,5,qo, F) iff there exists a state g € F such that gy — gq.

Definition

A language accepted by a given deterministic finite automaton
A=(Q,%,6,qo, F), denoted L(.A), is the set of all words accepted by the
automaton, i.e.,

L(A)={wex"|3qeF:q — q}
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Regular languages

A language L is regular iff there exists some deterministic finite
automaton accepting L, i.e., DFA A such that £(A) = L.
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Examples of Deterministic Finite Automata

Example: An automaton recognizing the language L over alphabet {a, b}

consisting of those words that contain at least one occurrence of symbol b,
ie.,

L={we{ab}" ||w], =1}

)
o
o
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Examples of Deterministic Finite Automata

Example: An automaton recognizing the language L over alphabet {a, b}

consisting of those words that contain exactly three occurrences of
symbol b, i.e.,

L={we{ab}" ||w], =3}
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Examples of Deterministic Finite Automata

Example: An automaton recognizing the language over alphabet {0, 1}
consisting of those words where every occurrence of symbol 0 is
immediately followed with symbol 1.
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Examples of Deterministic Finite Automata

Example: An automaton recognizing the language over alphabet {0, 1}
consisting of those words where every occurrence of symbol 0 is
immediately followed with symbol 1.
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Examples of Deterministic Finite Automata

Example: An automaton recognizing the language over alphabet {0, 1}
consisting of those words where every pair of consecutive symbols 0 is
immediately followed with symbol 1.
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Examples of Deterministic Finite Automata

Example: An automaton recognizing the language
L={w e {ab}" | (lw], mod 5) € {0,1,3}}
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Examples of Deterministic Finite Automata

Example: An automaton recognizing the language over alphabet {a, b}
consisting of those words that start with the prefix ababb.
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Examples of Deterministic Finite Automata

Example: An automaton recognizing the language over alphabet {a,b} of
those words that end with suffix ababb.
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Examples of Deterministic Finite Automata

The construction of this automaton is based on the following idea:

@ Let us assume that we want to search for a word u of length n
(ie., |u| = n).
The states of the automaton are denoted with numbers 0,1,..., n.
@ A state with number / corresponds to the situation when / is the
length of the longest word that is at the same time:

e a prefix of the pattern u we are searching for

e a suffix of the part of the input word that the automaton has read so far

For example, for the searched pattern ababb the states of the automaton
correspond to the following words:

@ State0 ... ¢ @ State3 ... aba
@ Statel ... a @ State4 ... abab
@ State2 ... ab @ State5 ... ababb
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Examples of Deterministic Finite Automata

Example: An automaton recognizing the language over alphabet {a, b}
consisting of those words that contain subword ababb.
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Equivalence of Automata

D=6

o

?

o

b
—&—
a

All three automata accept the language of all words with an even number
of a's.
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Equivalence of Automata

We say automata Aj, A, are equivalent if £(A;) = L(A).
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Unreachable States of an Automaton

@ The automaton accepts the language
L={w € {a,b}" | w contains subword ab}

@ There is no input sequence such that after reading it, the automaton
gets to states 3, 4, or 5.
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Unreachable States of an Automaton

@ The automaton accepts the language
L={w € {a,b}" | w contains subword ab}

@ There is no input sequence such that after reading it, the automaton
gets to states 3, 4, or 5.

@ If we remove these states, the automaton still accepts the same
language L.
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Unreachable States of an Automaton

Definition

A state g of a finite automaton A = (Q, X, d, qo, F) is reacheable if there
exists a word w such that gq - qg.

Otherwise the state is unreachable.

@ There is no path in a graph of an automaton going from the initial
state to some unreachable state.

e Unreachable states can be removed from an automaton (together
with all transitions going to them and from them). The language
accepted by the automaton is not affected.
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Automata and Operations on Languages

When we construct automata, it can be difficult to construct an
automaton for a given language L directly.

If it is possible to describe the language L as a result of some language
operations (intersection, union, concatenation, iteration, ...) applied to

some simpler languages L and L,, then it can be easier to proceed in
a modular manner:

@ To construct automata for languages Ly and L,.

@ Then to use some of general constructions that allow to
algorithmically construct an automaton for language L, which is

a result of applying a given language operation on languages L
and L,, from automata for languages L; and L.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 100 /629



An Automaton for Intersection of Languages

Let us have the following two automata:

Do both of them accept the word abbaaba?
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An Automaton for Intersection of Languages
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An Automaton for Intersection of Languages
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An Automaton for Intersection of Languages
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An Automaton for Intersection of Languages
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An Automaton for Intersection of Languages
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An Automaton for Intersection of Languages

b
0@9 a \3 @B
O _ DI
b

b a a,b b

Z. Sawa (TU Ostrava Introd. to Theoretical Computer Science February 11, 2026 102 /629



An Automaton for Intersection of Languages

b
0@9 a \3 @B
O _ DI
b

b a a,b b

Z. Sawa (TU Ostrava Introd. to Theoretical Computer Science February 11, 2026 102 /629



An Automaton for Intersection of Languages
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An Automaton for Intersection of Languages

Formally, the construction can be described as follows:

We assume we have two deterministic finite automata
Ay = (Q1,%,01, o1, F1) and Az = (@2, %, 02, qo2, F2).
We construct DFA A = (Q, X, d, qo, F) where:

0o Q=X

0 6((q1,92),a) = (01(q1,a),02(q2,a) ) for each g1 € @1, g2 € Qo
aEy

@ go = (%17%2)
o F=F Xk

It is not difficult to check that for each word w € £* we have w € £(A)
iff we L(A;) and w € L(Ay), ie.,

L(A) = L(A1) N L(A2)
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Intersection of Regular Languages

Theorem

If languages L1, L, € ¥ are regular then also the language L; N Ly is
regular.

Proof: Let us assume that A; and A, are deterministic finite automata
such that
Ly = L(A;1) Ly = L(A)

Using the described construction, we can construct a deterministic finite
automaton A such that

L(A) = L(A1) N L(A2) = L1 n L,
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An Automaton for the Union of Languages
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Union of Regular Languages

The construction of an automaton A that accepts the union of languages
accepted by automata A; and Ay, i.e., the language

L(A1) U L(AL)

is almost identical as in the case of the automaton accepting

ﬁ(Al) N £(A2)

The only difference is the set of accepting states:
o F=(FXxQ)uU(QxF)
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L(A1) U L(AL)

is almost identical as in the case of the automaton accepting

L(A1) N L{A).
The only difference is the set of accepting states:
o F=(FXxQ)uU(QxF)

Theorem

If languages L1, Ly S " are regular then also the language L; U Ly is
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An Automaton for the Complement of a Language
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Complement of a Regular Language

Given a DFA A = (Q, %, 6, qo, F) we construct DFA
A' = (Q,Z,(S,qO,Q_ F)

It is obvious that for each word w € ¥ we have w € E(A’) iff wé L(A),
i.e.,

Z. Sawa (TU Ostrava)
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Complement of a Regular Language

Given a DFA A = (Q, %, 6, qo, F) we construct DFA
A' = (Qaza5aq07Q_ F)

It is obvious that for each word w € ¥ we have w € E(A’) iff wé L(A),
i.e.,

If a language L is regular then also its complement Lis regular.
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Nondeterministic Finite Automaton

@ The number of transitions going from one state and labelled with the
same symbol can be arbitrary (including zero).

@ There can be more than one initial state in the automaton.
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Nondeterministic Finite Automaton
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Nondeterministic Finite Automaton

1—>3—4
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Nondeterministic Finite Automaton
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Nondeterministic Finite Automaton
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Nondeterministic Finite Automaton
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Nondeterministic Finite Automaton

142
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Nondeterministic Finite Automaton

A nondeterministic finite automaton accepts a given word if there exists
at least one computation of the automaton that accepts the word.

Ll

YES NO NO NO YES NO NO YES NO
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Nondeterministic Finite Automaton

A nondeterministic finite automaton accepts a given word if there exists
at least one computation of the automaton that accepts the word.

YES NO NO NO YES NO NO YES NO
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Nondeterministic Finite Automaton

Example: A forest representing all possible computations over the
word bba.
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Nondeterministic Finite Automaton

Formally, a nondeterministic finite automaton (NFA) is defined as
a tuple
(Q,%,0,1,F)
where:
e Q is a finite set of states
Y is a finite alphabet
§: QXX - P(Q) is a transition fuction

| € Q is a set of initial states

F < Q is a set of accepting states
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Examples of Nondeterministic Finite Automata

Example: An automaton recognizing the language over alphabet {a, b}
consisting of those words where every occurrence of symbol b is
immediately preceded with two symbols a.

Z. Sawa (TU Ostrava)
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Examples of Nondeterministic Finite Automata

Example: An automaton recognizing the language over alphabet {a, b}:

@ words starting with prefix ababb: a,b

()
O—0O0—0O0—=—0——0—0

@ words ending with suffix ababb:
a,b

()
Oo——0O0—0—=—0——0—0

@ words containing subword ababb:
a, b a, b

() ()
Oo——0O0—0—=—0——0—0
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Examples of Nondeterministic Finite Automata

Example: An automaton recognizing the language over alphabet {a, b}
consisting of those words where the fifth symbol from the end is a.
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Transformation of NFA to DFA
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Transformation of NFA to DFA

‘ a b
1| - 23
—-2123 3

3 1 -
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Transformation of NFA to DFA

‘ a b
—1 - 2,3
-202,3 3
3 1 -
a b

< {1,2}
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Transformation of NFA to DFA

‘ a b
—1 - 2,3
—-2123 3

3 1 -
b

< {1,2} {2?3}

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 119 /629
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Transformation of NFA to DFA

‘ a b
1| - 23
—-2123 3

3 1 -

a b
—{1,2} {2,3} {2,3}

{2,3} | {1,2,3} {3}
—{1,2,3} | {1,2,3} {2,3}

{3} {1} @
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Transformation of NFA to DFA

‘ a b
-1 - 23

-2123 3

3] 1 -
a b a b
-{1,2} | {2,3} {2,3} —1[2 2
{2,3} | {1,2,3} {3} 3 4
—{1,2,3} | {1,2,3} {2,3} <33 2
{3} {1} % 415 6
{1} @ {2,3} 5|6 2
@ @ % 6|6 6
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Transformation of NFA to DFA

Remark: When a nondeterministic automaton with n states is transformed
into a deterministic one, the resulting automaton can have 2" states.

For example when we transform an automaton with 20 states, the
resulting automaton can have 2% = 1048576 states.

It is often the case that the resulting automaton has far less than 2"
states. However, the worst cases are possible.
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Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Generalized Nondeterministic Finite Automaton

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Generalized Nondeterministic Finite Automaton
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Generalized Nondeterministic Finite Automaton
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Generalized Nondeterministic Finite Automaton
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Generalized Nondeterministic Finite Automaton
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Generalized Nondeterministic Finite Automaton

Compared to a nondeterministic finite automaton, a generalized
nondeterministic finite automaton has the so called e-transitions, i.e.,
transitions labelled with symbol ¢.

When e-transition is performed, only the state of the control unit is
changed but the head on the tape is not moved.

Remark: The computations of a generalized nondeterministic automaton
can be of an arbitrary length, even infinite (if the graph of the automaton
contains a cycle consisting only of e-transitions) regardless of the length of
the word on the tape.
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Generalized Nondeterministic Finite Automaton

Formally, a generalized nondeterministic finite automaton (GNFA) is
defined as a tuple

(Q,X,0,1,F)
where:
@ @ is a finite set of states
> is a finite alphabet
§:Qx%x(Xu{e}) » P(Q) is a transition function
I € Q is a set of initial states

F < Q is a set of accepting states

Remark: NFA can be viewed as a special case of GNFA, where
5(qg,e) = @ for all g € Q.
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Transformation to a Deterministic Finite Automaton

A generalized nondeterministic finite automaton can be transformed into
a deterministic one using a similar construction as a nondeterministic finite
automaton with the difference that we add to sets of states also all states

that are reachable from already added states by some sequence of
e-transitions.
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Transformation of GNFA to DFA

Before formally describing the transition of GNFA to DFA, let us introduce
some auxiliary definitions.

Let us assume some given GNFA A = (Q,X,4,/,F).

Let us define the function § : P(Q) X (X U {e}) = P(Q) so that for
K< Qand a€ X U{c} thereis

§(K,a) =[] d(q,a)

qgeK
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Transformation of GNFA to DFA

For K € Q, let C/E(K) be all the states reachable from the states from the
set K by some arbitrary sequence of e-transitions.

This means that the function Cl. : P(Q) — P(Q) is defined so that for
K ¢ Qis Cl.(K) the smallest (with respect to inclusion) set satisfying the
following two conditions:

e K< ClI.(K)
@ For each g € CI.(K) it holds that 6(q,¢) € CI.(K).

Remark: Let us note that C/.(Cl.(K)) = CI.(K) for arbitrary K.

Let us also note that in the case of NFA (where 6(q,e) = @ for each
ge Q)is CI.(K) = K.
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Transformation of GNFA to DFA

For a given GNFA A = (Q,%,4,/, F) we can now construct DFA
A'=(Q',%,4' g0, F'), where:

0 Q' = P(Q) (so K € Q' means that K < Q)
04 Q' XY — Q' is defined so that for K € Q' and a € X:

§'(K,a) = CI.(6(Cl.(K),a))

® qo = Cl(I)
o FF={KeQ|C.(K)NF + o}

It is not difficult to verify that £(A) = £(A").
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Concatenation of Languages

Z = {a7b7 C7d}

Ay Ap:
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Concatenation of Languages

Y ={a,b,c,d}
A Ap:

An incorrect construction:
A:
~O—0——0
a C

acdbac € L(A) but acdbac ¢ L(A;) - L(As)
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Concatenation of Languages
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Iteration of a Language
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Iteration of a Language
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Union of Languages

An alternative construction for the union of languages:
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Union of Languages

An alternative construction for the union of languages:
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Closure Properties of the Class of Regular Languages

The

set of (all) regular languages is closed with respect to:

union
intersection
complement
concatenation

iteration
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Transformation of a Regular Expression to a Finite
Automaton

Every language that can be represented by a regular expression is regular
(i.e., it is accepted by some finite automaton).

Proof: It is sufficient to show how to construct for a given regular
expression « a finite automaton accepting the language £(«).

The construction is recursive and proceeds by the structure of the
expression q:
o If v is a elementary expression (i.e., @, ¢ or a):
o We construct the corresponding automaton directly.
o If ais of the form (3 +~), (8-~) or (8%):
o We construct automata accepting languages £(3) and £(7v)
recursively.
o Using these two automata, we construct the automaton accepting the
language £(«).
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Transformation of a Regular Expression to a Finite

Automaton

The automata for the elementary expressions:

-0 0O —-0—0 —0——0

%] 5 a
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Transformation of a Regular Expression to a Finite

Automaton

The automata for the elementary expressions:

-0 0O —0—0 —0——0

The construction for the union:
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Transformation of a Regular Expression to a Finite

Automaton

If an expression « consists of n symbols (not counting parenthesis) then
the resulting automaton has:

@ at most 2n states,
@ at most 4n transitions.
Remark: By transforming the generalized nondeterministic automaton

into a deterministic one, the number of states can grow exponentially,
) . 2
i.e., the resulting automaton can have up to 2" = 4" states.
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Transformation of an Automaton to a Regular Expression

Proposition

Every regular language can be represented by some regular expression.

Proof: It is sufficient to show how to construct for a given finite
automaton A a regular expression « such that L(a) = L(A).

o We modify A in such a way that ensures it has exactly one initial and
exactly one accepting state.

@ |ts states will be removed one by one.
@ lIts transitions will be labelled with regular expressions.

@ The resulting automaton will have only two states — the initial and
the accepting, and only one transition labelled with the resulting
regular expression.
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Transformation of an Automaton to a Regular Expression

The main idea: If a state g is removed, for every pair of remaining states
q;j, qx we extend the label on a transition from g; to g by a regular
expression representing paths from g; to g, going through q.

After removing of the state g:
@@
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Transformation of an Automaton to a Regular Expression

Example:
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Transformation of an Automaton to a Regular Expression

Example:

a(b+ aa)>k

b+ a(b + aa)*ab e+ (a+ba)(b+aa)

bb + (a + ba)(b + aa)*ab
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Transformation of an Automaton to a Regular Expression

Example:
a(b + aa)*+
(b + a(b + aa)*ab)
(bb + (a+ba)(b+ aa)*ab)*

(5 + (a+ ba)(b + aa)*)
—©® ©®
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Equivalence of Finite Automata and Regular Expressions

A language is regular iff it can be represented by a regular expression.
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Nonregular Languages

Not all languages are regular.
There are languages for which there exist no finite automata accepting
them.

Examples of nonregular languages:
o L, ={a"b" | n=0}
o L, ={ww|we{ab}"}

o I3= {WWR | we{ab}"}

Remark: The existence of nonregular languages is already apparent from
the fact that there are only countably many (nonisomorphic) automata
working over some alphabet ¥ but there are uncountably many languages
over the alphabet .
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Nonregular Languages

How to prove that some language L is not regular?

A language is not regular if there is no automaton (i.e., it is not possible
to construct an automaton) accepting the language.

But how to prove that something does not exist?

February 11, 2026 144 / 629
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Nonregular Languages

How to prove that some language L is not regular?

A language is not regular if there is no automaton (i.e., it is not possible
to construct an automaton) accepting the language.

But how to prove that something does not exist?

The answer: By contradiction.

E.g., we can assume there is some automaton A accepting the language L,
and show that this assumption leads to a contradiction.
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Nonregular Languages

We show that language L = {a"b" | n = 0} is not regular.

The proof by contradiction.
Let us assume there exists a DFA A = (Q, X, 4, qo, F) such that £(A) = L.
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Let |Q] = n.

- n,n
Consider word z=a b .
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Nonregular Languages

We show that language L = {a"b" | n = 0} is not regular.

The proof by contradiction.

Let us assume there exists a DFA A = (Q, X, 4, qo, F) such that £(A) = L.
Let |Q] = n.

Consider word z = a"b".

Since z € L, there must be an accepting computation of the automaton A

a a a a a b b b b
Qo —q1 — Q" —qp-1 — > qp = qp+1 — " T > Qop-1 T Q2p

where qg is an initial state, and g,, € F.
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Nonregular Languages

Consider now the first n + 1 states of the computation

a a a a a b b b b
Qo ——q1 — Q" —qn-1 — > qp — > qp+1 — " T > Qop-1 — > Q2p

i.e., the sequence of states qg, q1, .-, qn-
It is obvious that all states in this sequence can not be pairwise different,
since |@| = n and the sequence has n + 1 elements.

This means that there exists a state g € Q which occurs (at least) twice in
the sequence.
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Qo ——q1 — Q" —qn-1 — > qp — > qp+1 — " T > Qop-1 — > Q2p

i.e., the sequence of states qg, q1, .-, qn-

It is obvious that all states in this sequence can not be pairwise different,
since |@| = n and the sequence has n + 1 elements.

This means that there exists a state g € Q which occurs (at least) twice in

the sequence.

It is an application of so called pigeonhole principle.

Pigeonhole principle
If we have n + 1 pigeons in n holes then there is at least one hole
containing at least two pigeons.
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Nonregular Languages

Consider now the first n + 1 states of the computation

a a a a a b b b b
Qo ——q1 — Q" —qn-1 — > qp — > qp+1 — " T > Qop-1 — > Q2p

i.e., the sequence of states qg, q1, .-, qn-

It is obvious that all states in this sequence can not be pairwise different,
since |@| = n and the sequence has n + 1 elements.

This means that there exists a state g € Q which occurs (at least) twice in
the sequence.

l.e., there are indexes i, j such that 0 </ < j < n and

qi = gj

which means that the automaton A must go through a cycle when reading
the symbols a in the word z = a"b".
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Nonregular Languages

q0 q1 q2 qi-1 Gi = 4j_ 9j+1  dj+2 2 9n-1 , Gn | Gn+l | Gn+2 pd2n-1 92n

gi+1
I\
Ji+2

a

0qi+3

The word z = a"b" can be divided into three parts u, v, w such that
z = uww: _ o _
u=a v=2a"' w=a" b
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Nonregular Languages

For the words u=a', v=2"",and w = 2" /b" we have

u % w
do — qi qi — qj gj — Q2n

Let r be the length of the word v, i.e., r = j — i (obviously r > 0, due to
i <j).

Since g; = gj, the automaton accepts word uw = a" "b" that does not
belong to L:
u w
do — qi = Q2n

n+r,;n
b

The word uvww = a , that also does not belong to L, is accepted too:

u v v w
Go —q;i —>q; —>q; — Q2
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Nonregular Languages

Similarly we can show that every word of the form uvvvv---vvw, i.e., of the
form uv w for some k = 0, is accepted by the automaton A:

u v v v v v w
qo —qi——qi——4qi " —qi 4 =/ Q2

K —rtrk
A word of the form uv" w looks as follows: a" " ™p".

Since r > 0, the following equivalence holds only for k = 1:

n—r+rk=n

This means that if k # 1 then uv*w does not belong to the language L.

However, the automaton A accepts each such word, which is a
contradiction with the assumption that £(A) = {a"b" | n = 0}.
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Context-Free Grammars
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Context-Free Grammars

Example: We would like to describe a language of arithmetic expressions,
containing expressions such as:

175 (9+15) (((10-4)*((1+34)+2))/(3+(-37)))

For simplicity we assume that:

@ Expressions are fully parenthesized.

@ The only arithmetic operations are “+", “=" “x" “/"and unary "-".
@ Values of operands are natural numbers written in decimal —

a number is represented as a non-empty sequence of digits.

Alphabet: ¥ ={0,1,2,3,4,5,6,7,8,9,+,-,%,/,(,)}

Z. Sawa (TU Ostrava)
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Context-Free Grammars

Example (cont.): A description by an inductive definition:

o Digit is any of characters 0, 1, 2, 3,4, 5,6, 7, 8, 9.

o Number is a non-empty sequence of digits, i.e.:
e If v is a digit then « is a number.

o If o is a digit and (3 is a number then also a3 is a number.

o Expression is a sequence of symbols constructed according to the
following rules:
o If @ is a number then « is an expression.

If v is an expression then also (-a) is an expression.

If a and (3 are expressions then also (a+/3) is an expression.

If « and ( are expressions then also (a-/f3) is an expression.

If « and ( are expressions then also (ax/3) is an expression.

If v and 3 are expressions then also (a/f3) is an expression.
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Context-Free Grammars

Example (cont.): The same information that was described by the
previous inductive definition can be represented by a context-free
grammar:

New auxiliary symbols, called nonterminals, are introduced:

@ D — stands for an arbitrary digit
@ C — stands for an arbitrary number
@ E — stands for an arbitrary expression

D -0 D—5 E-C
D—1 D—6 £E= 0B
D — 2 D—7 ¢=D £ - (E+E)
C - DC E - (E-E)
D -3 D -8
D -4 D -9 £ - (ExE)
E —- (E/E)
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Context-Free Grammars

Example (cont.): Written in a more succinct way:

D—o|1]2]|3|4|5|6]|7]|8]9
C-D|DC
E—- C| GE)|(E+E) | (E-E) | (E*E) | (E/ED
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Context-Free Grammars

Example: A language where words are (possibly empty) sequences of
expressions described in the previous example, where individual expressions
are separated by commas (the alphabet must be extended with

symbol “,"):

S—>T|e

T—>E|E,T
D—o|1]|2]|3|4|5|6|7]|8]9
C—->D|DC

E— C| (-E) | (E+E) | (E-E) | (ExE) | (E/E)
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Context-Free Grammars

Example: Statements of some programming language (a fragment of
a grammar):

S—E; | T|if (E) S|if (E) S else S
|While (BE) 5|do S while (E); |for (F;F; F) S

| return F;

T-{U}
U-e|SU
F—-c|E
E —
Remark:

S — statement

T — block of statements

U — sequence of statements
E — expression

F — optional expression that can be omitted
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Context-Free Grammars

Formally, a context-free grammar is a tuple
Gg=(Nx%S,P)
where:

e [1is a finite set of nonterminal symbols (nonterminals)

@ ¥ is a finite set of terminal symbols (terminals),
where NNYX =g

@ S €11 is an initial nonterminal

e PcNx(MuUX)*is a finite set of rewrite rules
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Context-Free Grammars

Remarks:
@ We will use uppercase letters A, B, C, ...to denote nonterminal
symbols.
o We will use lowercase letters a, b, ¢, ... ordigits 0, 1, 2, ...to

denote terminal symbols.

@ We will use lowercase Greek letters «, 3, 7, ...do denote strings
from (Mu ).

@ We will use the following notation for rules instead of (A, a)
A-«

A — left-hand side of the rule
a — right-hand side of the rule
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Context-Free Grammars

Example: Grammar G = (I1,%, S, P) where

e N={AB,C}

° Z={a,b}

e S=A

@ P contains rules
A — aBBb
A — AaA
B - ¢
B — bCA
C - AB
C - a
C-b
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Context-Free Grammars

Remark: If we have more rules with the same left-hand side, as for
example

A-’Oél A—’OQ A—’Oé3

we can write them in a more succinct way as

A-ar|al|as

For example, the rules of the grammar from the previous slide can be

written as
A — aBBb | AaA

B — ¢ | bCA
C—>AB|al|b
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Context-Free Grammars

Grammars are used for generating words.

Example: G = (IN,X, A, P) where N = {A, B, C}, ¥ = {a, b}, and P
contains rules

A — aBBb | AaA

B — ¢ | bCA

C—-AB|a|b

For example, the word abbabb can be in grammar G generated as follows:

Z. Sawa (TU Ostrava)
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Context-Free Grammars

On strings from (MU X)* we define relation =< (MU X)* x (MU X)*
such that

I
a =«

iff v = B1ABo and o = 8173, for some Sy, B2,y € (MU )" and A€ T
where (A — v) € P.

Example: If (B — bCA) € P then

aCBbA = aCbCAbA

Remark: Informally, a = o' means that it is possible to derive o' from «
by one step where an occurrence of some nonterminal A in « is replaced
with the right-hand side of some rule A — ~ with A on the left-hand side.
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Context-Free Grammars

A derivation of length n is a sequence gy, 51, B2, ***, Bn, Where
B € (MUX)*, and where 3;_; = S; for all 1 </ < n, which can be
written more succinctly as

Bo=pr=Pr=...= Bh1= 5

The fact that for given o, ' € (MU X)* and n € N there exists some
derivation fg = 1 = [ = ... = [,-1 = [3,, where a = 5y and
o = Bn, is denoted

a="a

The fact that @ =" o' for some n = 0, is denoted
a= «

. * . . s .
Remark: Relation =" is the reflexive and transitive closure of relation =
(i.e., the smallest reflexive and transitive relation containing relation =).
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Context-Free Grammars

Sentential forms are those o € (MU X)*, for which
s="a

where S is the initial nonterminal.
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Context-Free Grammars

A language L£(G) generated by a grammar G = (I, %, S, P) is the set of
all words over alphabet ¥ that can be derived by some derivation from the
initial nonterminal S using rules from P, i.e.,

L£G)={wexr"|s="w}

Definition

A language L is context-free if there exists some context-free grammar G
such that L = £(G).
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Derivation Tree

A — aBBb | AaA
B — = | bCA
C—AB|alb
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Derivation Tree

A

A — aBBb | AaA
B — = | bCA
C—AB|alb

>
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A
é/é/ \E\lz

A — aBBb | AaA
B — ¢ | bCA
C—AB|lalb

A= aBBb
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AN
a B B b

A — aBBb | AaA
B — = | bCA
C—AB|alb

A = aBBb
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A
/Q/\B\b

A — aBBb | AaA
B — ¢ | bCA
C—AB|alb
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Derivation Tree

A — aBBb | AaA b// A\

B — ¢ | bCA
C—AB|alb

A = aBBb = abCABb
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Derivation Tree

A — aBBb | AaA b/C/ \

B — ¢ | bCA
C—AB|al|b

A

A = aBBb = abCABb
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Derivation Tree

A = aBBb | AaA b/C/ \A

B — ¢ | bCA -
C—AB|al|b

A = aBBb = abCABb
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Derivation Tree

A
A - aBBb | AaA b/c/ \A
ALY N

A = aBBb = abCABb = abCaBBbBb
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Derivation Tree

A
A — aBBb | AaA b/C/ \A
SRS VAN

a B B b

A = aBBb = abCABb = abCaBBbBb
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Derivation Tree

a B
A > aBBb | AaA b/C/ \
B — ¢ | bCA
CoAB|a|b VZANN

A = aBBb = abCABb = abCaBBbBb
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Derivation Tree

a B
A — aBBb | AaA //7\

b'C A
B —c | bCA

C—AB|alb AN

A = aBBb = abCABb = abCaBBbBb = abCaBbBb

Z. Sawa (TU Ostrava)
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Derivation Tree

A
N
a B B b
A — aBBb | AaA b/C/ \A
B — ¢ | bCA
C—>EAB|a|b 3/19/\>b

\

3
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Derivation Tree

A
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Derivation Tree

For each derivation there is some derivation tree:

@ Nodes of the tree are labelled with terminals and nonterminals.

@ The root of the tree is labelled with the initial nonterminal.

@ The leafs of the tree are labelled with terminals or with symbols ¢.
@ The remaining nodes of the tree are labelled with nonterminals.

@ If a node is labelled with some nonterminal A then its children are
labelled with the symbols from the right-hand side of some rewriting
rule A — a.
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Context-Free Grammars

Example: A grammar generating the language

L={a"p"| n=0}
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Context-Free Grammars

Example: A grammar generating the language
L={a"p"| n=0}
Grammar G = (IN,X, S, P) where I = {S}, © = {a, b}, and P contains

S —ce|aSh
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Context-Free Grammars

Example: A grammar generating the language
L={a"p"| n=0}
Grammar G = (IN,X, S, P) where I = {S}, © = {a, b}, and P contains

S —ce|aSh

S=¢

S=aSb= ab

S = aSb = aaSbb = aabb

S = aSb = 3aSbb = aaaSbbb = aaabbb

S = aSb = aaSbb = aaaSbbb = aaaaSbbbb = aaaabbbb
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Context-Free Grammars

Example: A grammar generating the language L consisting of all
palindroms over the alphabet {a, b}, i.e.,

L={we{ab} |w=w"}

Remark: WR denotes the reverse of a word w, i.e., the word w written
backwards.
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Context-Free Grammars
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L={we{ab} |w=w"}

Remark: WR denotes the reverse of a word w, i.e., the word w written
backwards.

Solution:
S—c|al|b]|aSal bSh

S = aSa = abSbha = abaSaba = abaaaba
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Context-Free Grammars

Example: A grammar generating the language L consisting of all correctly
parenthesised sequences of symbols ‘(" and *)'.

For example () () (O) € Lbut ))) ¢ L.
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Context-Free Grammars

Example: A grammar generating the language L consisting of all correctly
parenthesised sequences of symbols ‘(" and *)'.

For example () () (O) € Lbut ))) ¢ L.

Solution:
A—c| (A | AA

A= AA= (AA= (A (A = (AA) (A) = ((AA A =
(OA)(A) = (O A A = (O0O)A) = (OO)(A) =
OO)O)
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Context-Free Grammars

Example: A grammar generating the language L consisting of all correctly
constructed arithmetic experessions where operands are always of the
form ‘a’ and where symbols + and * can be used as operators.

For example (a+a) *a+ (a*a) € L.
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Context-Free Grammars

Example: A grammar generating the language L consisting of all correctly
constructed arithmetic experessions where operands are always of the
form ‘a’ and where symbols + and * can be used as operators.

For example (a+a) *a+ (a*a) € L.

Solution:
E—-a|E+E|ExE|(E)

EFmE+E=FE+E+E= (E)*E+E= (E+E)*E+E=
(a+E)*E+E = (a+a)*xE+E = (a+a)*a+E = (a+a)*a+(E)=
(a+a)*a+(ExE)= (a+a)*xa+(a*xE)=(a+a)*a+(a*a)
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Left and Right Derivation

E—alE+E|ExE|(E)

A left derivation is a derivation where in every step we always replace the
leftmost nonterminal.

E=E+E=ExE+E=a*E+E=>axa+E=a%xa+a

A right derivation is a derivation where in every step we always replace
the rightmost nonterminal.

E=E+E=E+a=E*E+a=E*xat+a=axa+a

A derivation need not be left or right:

E=E+E=ExE+E=Exa+E=>E*ata=a%*xa+a
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Left and Right Derivation

@ There can be several different derivations corresponding to one
derivation tree.

o For every derivation tree, there is exactly one left and exactly one
right derivation corresponding to the tree.
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Equvalence of Grammars

Grammars G; and G, are equivalent if they generate the same language,

i.e., if ﬁ(gl) = [:(92)

Remark: The problem of equivalence of context-free grammars is
algorithmically undecidable. It can be shown that it is not possible to
construct an algorithm that would decide for any pair of context-free
grammars if they are equivalent or not.

Even the problem to decide if a grammar generates the language ¥ is
algorithmically undecidable.
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Ambiguous Grammars

A grammar G is ambiguous if there is a word w € E(g) that has two
different derivation trees, resp. two different left or two different right
derivations.

Example:

E=E+E=>ExE+E=a%xE+E=a%a+E=ax%xa+a
E=ExE=E*E+E=axE+E=axa+E=a%xa+a

/\\ /\\
N PN

E x E a a E + E
| | | |
a a a a

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 175 /629



Ambiguous Grammars

Sometimes it is possible to replace an ambiguous grammar with a
grammar generating the same language but which is not ambiguous.

Example: A grammar
E—-a|E+E|ExE]|(E)

can be replaced with the equivalent grammar

E-T|T+E
F—al(E)

Remark: If there is no unambiguous grammar equivalent to a given
ambiguous grammar, we say it is inherently ambiguous.
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Context-Free Languages

The class of context-free languages is closed with respect to:
@ concatenation
@ union

@ iteration

The class of context-free languages is not closed with respect to:
@ complement

@ intersection
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Context-Free Languages

We have two grammars G; = (M1, %, S, P;) and G, = (M5, %, S,, P>), and
can assume that M; N Ty = @ and S ¢ My U M,.

e Grammar G such that £(G) = £(G1) - £(G»):

G=(MNuMUu{S}, X, S, PLUPU{S = 55})

e Grammar G such that £(G) = £(G1) U L(G»):

G=(MuMyu{S}H ¥, S, PLUP,U{S = 5,5 = S,})

e Grammar G such that £(G) = £(G;)™:

G=(Mu{S}L ¥, S PU{S—c¢eS— 55}
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A Context-Free Grammar for a Regular Expression

Example: The construction of a context-free grammar for regular
expression ((a+ b) - b)™:
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A Context-Free Grammar for a Regular Expression

Example: The construction of a context-free grammar for regular
expression ((a+ b) - b)™:

52—’b
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A Context-Free Grammar for a Regular Expression

Example: The construction of a context-free grammar for regular
expression ((a+ b) - b)™:
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A Context-Free Grammar for a Regular Expression

Example: The construction of a context-free grammar for regular
expression ((a+ b) - b)™:

54—’5352
S$3-5 15
52—’b
51-’8
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A Context-Free Grammar for a Regular Expression

Example: The construction of a context-free grammar for regular
expression ((a+ b) - b)™:

55—’€|5455
54—’5352
S$3-5 15
52—’b
51-’8
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A Context-Free Grammar for a Finite Automaton

Example:
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Example:
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A Context-Free Grammar for a Finite Automaton

Example:

S—-A|C

A— aB | aC | bA
B — aD | bE

C - bD

D — bC | bE | A
E — bE
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A Context-Free Grammar for a Finite Automaton

Example:

S—-A|C

A— aB | aC | bA
B — aD | bE

C - bD

D—>bC|bE|A
E — bE
A—- ¢
E—¢
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A Context-Free Grammar for a Finite Automaton

Example:

Alternative construction:
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A Context-Free Grammar for a Finite Automaton

Example:

Alternative construction:

S—>A|E

A— Ab| D
B — Aa

C — Aa| Db
D — Ba| Cb

E — Bb| Db | Eb

February 11, 2026 180 /629
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A Context-Free Grammar for a Finite Automaton

Example:

Alternative construction:

S—A|E
A— Ab| D

B — Aa

C — Aa| Db

D — Ba| Cb

E - Bb|Db| Eb
A—- ¢

C—e
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Regular grammars

A grammar G = (M, X, S, P) is right regular if all rules in P are of the
following forms (where A,B €11, a € ¥):

e A— B
e A— aB

e A—o ¢

A grammar G = (N,%, S, P) is left regular if all rules in P are of the
following forms (kde A, B €1, a € X):

e A— B
e A— Ba

e A—¢
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Regular grammars

Definition

A grammar G is regular if it right regular or left regular.

Remark: Sometimes a slightly more general definition of right (resp. left)
regular grammars is given, allowing all rules of the following forms:

e A— wB (resp. A— Bw)

e A—-w

where A, BeMN, weX"
Such rules can be easily “decomposed” into rules of the form in the
previous definition.
Example: Rule A — abbB can be replaced with rules
A—- aX1 Xl - bX2 X2 — bB

where Xi, X5 are new nonterminals, not used anywhere else in the
grammar.
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Regular grammars

For every regular language L there is a left regular grammar G such that
L£(G) = L and a right regular grammar G' such that L(g') =L

Proposition

For every regular grammar G there is a finite automaton A such that

L(A) = £(9).
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Pushdown automata
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Pushdown automaton

Example: Consider the language over the alphabet ¥ = {(,), [,1,<,>}
consisting of “correctly parenthesised”, i.e., the sequences where every left
parenthesis has a corresponding right parenthesis, and where paretheses do
not “cross” (as for example in the word <[>]).

This language is generated by a context-free grammar

A—c| (A | [A] | <A> | AA

A typical example of a word that belongs to this language:
<O x>1)>[]

It is not hard to show that this language is not regular.
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Pushdown automaton

We would like to construct a device, similar to a finite automaton, that
would be able to recognize words from this language.

An approppriate possibility seems to be to use a stack (of unbounded
size) for this recognition.
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Pushdown automaton

@ Word <[] (() [<>])>[] belongs to the language.
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Pushdown automaton

@ Word <[] (() [<>])>[] belongs to the language.
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Pushdown automaton
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Pushdown automaton

@ Word <[] (() [<>])>[] belongs to the language.

@ The automaton has read the whole word and ends with an empty
stack, and so the word is accepted by the automaton.

YES
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Pushdown automaton

@ Word <[] () [<>))>[] does not belong to the language.
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Pushdown automaton

@ Word <[] () [<>))>[] does not belong to the language.

@ The automaton has found a parenthesis that does not match, so the
word is not accepted.

NO

[Fl<l ]
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Pushdown automaton

Example:

e We would like to recognize language L = {a"b" | n = 1}

Again, it is a typical example of a non-regular language.
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Pushdown automaton

Example:

e We would like to recognize language L = {a"b" | n = 1}

Again, it is a typical example of a non-regular language.

A stack can be used as a counter:
@ Symbols of one kind (called for example /) will be pushed to it.

@ A number of occurrences of these symbols / on the stack repsents
a value of the counter.
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Pushdown automaton

o Word aaaabbbb belongs to the language L = {a"b" | n = 1}

d1
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Pushdown automaton

o Word aaaabbbb belongs to the language L = {a"b" | n = 1}

@ The automaton has read the whole word and ends with an empty
stack, and so the word is accepted by the automaton.

YES
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Pushdown automaton

o Word aaaabbb does not belong to language L = {a"b" | n = 1}

d1
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Pushdown automaton

o Word aaaabbb does not belong to language L = {a"b" | n = 1}

@ The automaton has read all word but the stack is not empty and so
the word is not accepted by the automaton.
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Pushdown automaton

o Word aaaabbbbb does not belong to language L = {a"b" | n = 1}

d1
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Pushdown automaton

o Word aaaabbbbb does not belong to language L = {a"b" | n = 1}

@ The automaton reads b, it should remove a symbol from the stack
but there is no symbol there. So the word is not accepted.

NO
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Pushdown automaton

e Word aababbab does not belong to language L = {a"b" | n = 1}

d1
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Pushdown automaton

e Word aababbab does not belong to language L = {a"b" | n = 1}

@ The automaton has read a but it is already in the state where it
removes symbols from the stack, and so the word is not accepted.

NO [ep;
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Pushdown automaton

@ A pushdown automaton can be nondeterministic and it can have
e-transitions.
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Pushdown automaton

@ A pushdown automaton can be nondeterministic and it can have
e-transitions.

Example:
o Let us consider the language L = {w € {a,b}* | w = w"}.

@ The first half of a word can be stored on the stack.

@ When reading the second part, the automaton removes the symbols
from the stack if they are same as symbols in the input.

o If the stack is empty after reading all word, the second is the same
(the reverse of) the first.

@ The automaton can nondeterministically guess the position of the
“boundery” between the first and the second half of the word. Those
computations where the automaton guesses wrong are nonaccepting.
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Pushdown automaton

o Word abbabababba belongs to the language
L={wEe {a,b}* | w= WR}

d1
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Pushdown automaton

o Word abbabababba belongs to the language
L={wEe {a,b}* | w= WR}

YES
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Pushdown automaton

A pushdown automaton (PDA) is a tuple M = (Q, X, T, 4, qo, Xo)
where

@ @ is a finite non-empty set of states

> is a finite non-empty set called an input alphabet

[" is a finite non-empty set called a stack alphabet
§:Qx(Xu{e})xI = P(QxT")is a (nondeterministic) transition
function

@ go € Q is the initial state
@ Xy €I is the initial stack symbol
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Pushdown automaton

Example: L = {a"b" | n=1}

M=(Q,%,T,d,q1,0) where

° Q={q,q}

o ¥ ={a, b}

o ={0,1}

o 4(q1,a,0)={(q1,1)}
5(q1,a,1) = {(q1, 11}
5(gp,a,1) =@
5(gs,a,0) = @

5(q17 b7 O) =0
(g1, b, 1) = {(q2,2)}
(g2, b, 1) = {(q2,€)}
5(CIQ, b, O) =g

Remark: We often omit those values of transition function ¢ that are @.

Z. Sawa (TU Ostrava)
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Pushdown automaton

To represent transition functions, we will use a notation where a transition
function is viewed as a set of rules:

@ For every g, q' EQR,aEXU {5} X €Tl,and o € r*, where

there is a corresponding rule

gX SN q'oz.
Example: If

6(gs, b, C) = {(qg3,ACC), (g5, BB), (q13,¢)}

it can be represented as three rules:

b b b
g5 C — g3 ACC gsC — gsBB g5C — qi3
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Pushdown automaton

Example: The automaton, recognizing the language L = {a"b" | n>1},
that was described before:

M=(Q,%,T,d, qg1,0) where

o Q=1{q1, 0}
o ¥ ={a, b}
o I={0,1}
o q10 > gl
a
gl — aq1ll
b
gl — @2
b
Q! — q2
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Pushdown automaton

Example: L = {w € {a,b}* | w=w"}

=(Q,%,T,d,q1,X) where

° Q={q, 0}

e ¥ ={a b}

o ={X,A B}

° 5(qlva X) = {(qlvAX) (q27X)}
(q1,a,A) = {(a1,AA), (a2, A)}
5(67173 B) = {(Cll,AB) (CI275)}
6(qr,e,X) = {(CI27 )}
5(q17€ A) = {(q2a )}

(q1,¢,B) = {(q2, B)}
(g2, a,A) = {(% )}
(g2, a,B) =
6(‘7273 X) =

Z. Sawa (TU Ostrava)

Introd. to Theoretical Computer Science

(a1, b, X) = {(aq1, BX), (g2, X)}
(g1, b, A) = {(q1, BA), (g2, A)}
5(q17b B) = {(qlaBB) (q27 )}
6(q2,6,X) = {(q2,¢)}
3(qo,e,A) = @

(q,e,B) = @

5(q2,b A) =0

(a2, b, B) = {(g2,¢)}

5(Q2, b X) =0
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Pushdown automaton

Example: L = {w € {a,b}* | w=w"}
M=(Q,%,T,d, qg1,X) where

Q= {q1,Q2}
Y ={a, b}
r={X,A B}

@X —> g AX
@A —> g AA
@B —> q1AB
HX —— X
G A - A
»B — gB

nX — g BX
G A — q1BA
0B —> ¢,BB
a1 X = X
q1A = QA
a1 B =, ¢ B

X — 92
g2A — q2
B = 92
@X — X
q1A — g2A
@B — @B

Z. Sawa (TU Ostrava)
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Computation of a Pushdown Automaton

Let M =(Q,X%,T,6,qg, Xo) be a pushdown automaton.

Configurations of M:
@ A configuration of a PDA is a triple
(g, w, )
where g € Q, w € Z*, and o € T*,

@ An initial configuration is a configuration (qg, w, Xp), where
wexr
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Computation of a Pushdown Automaton

Steps performed by M:

@ Binary relation — on configurations of M represents the possible
steps of computation performed by PDA M.
That M can go from configuration (g, w, a) to configuration
(g',w', ') is written as

(q7 W,Oé) - (q’7 W’,Oé,).

@ The relation — is defined as follows:

(qaaW’X/B) I (ql> Waaﬁ) iff (q',oe) € (S(Q,B,X)
where g,d € Q, ae (R u{e}), wexL* Xel anda,ferl™.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 202 /629



Computation of a Pushdown Automaton

Computations of M:

o We define binary relation —™ on configurations of M as the
reflexive and transitive closure of —, i.e.,

W. o _)* 'W,O['
(q,w,a) (q,w,

if there is a sequence of configurations

(qO’ Wo,Oéo), (q17W17a1)a tee (qun?an)
such that
(q, w, ) = (qo, wo, o),
o) = (G, Wy, ), and
(qH W,,O[,) (ql+17 l+17al+1) for each i = Oa 1) RN 1 ie,
(qu WO>a0) - (qla leal) - . T (qm Wman)
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Computation of a Pushdown omaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

a
@ X — qAX
@A -5 g1 AA
@B — q1AB
a
X — X
a
QA — qA
@B —— ¢B
&

X — g X
qlA - q2A
ChB - a2 p
le 6 Zz

X — q
a

QA — g2
b

@B — g

X — g BX
QA ¢ BA
7B — ¢ BB
aX = @X
a1A = @A
@B = @B

February 11, 2026 204 / 629
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Computation of a Pushdown omaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

(g1, abbabababba, X)

a
@ X — qAX
@A > g1 AA
@B — q1AB
a
X — X
a
QA — qA
@B —— ¢B
&

X — g X
qlA - q2A
ChB - q2 p
le 6 Zz

X — q
a

QA — G2
b

@B — q

X — g BX
QA g BA
0B — q1BB
aX = @X
q1A = @A
@B = @B
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Computation of a Pushdown maton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

(g1, abbabababba, X)
— (g1, bbabababba, AX)

Z. Sawa (TU Ostrava)

a
@ X — qAX
@A > q1AA
@B — qAB
a
X — X
a
QA — qA
@B —— ¢B
&

X — g X
qlA - qZA
ChB - q2 p
le 6 Zz

X — q
BA—> @

b
@B — q

Introd. to Theoretical Computer Science

X — g BX
QA g BA
0B — q1BB
aX = @X
q1A = @A
@B = @B

February 11, 2026



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

(g1, abbabababba, X)
— (g1, bbabababba, AX)
— (qy, babababba, BAX)

Z. Sawa (TU Ostrava)

a
@ X — qAX
@A -5 g1 AA
@B — q1AB
a
X — X
a
QA — qA
@B —— ¢B
&

X — g X
qlA - q2A
ChB - q2 p
le 6 Zz

X — q
a

QA — g2
b

@B — q

Introd. to Theoretical Computer Science

QX — g BX
QA ¢ BA
7B — ¢ BB
aX = @X
a1A = @A
@B = @B

February 11, 2026



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v
r={X,A B}

(g1, abbabababba, X) @X = @ AX aX f’ q1BX
— (qu, bbabababba, AX) @A -5 qiAA @A — q1BA
— (qy, babababba, BAX) @B - qAB @B - q,BB
—> (qy, abababba, BBAX) G X = X aX -2 goX

@A > @A 1A 2, g A
@B > g;B ChBi’CIzB
nX — X

@A~ A

@B — ¢B

@X — g

BA - g

@B = G2

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v
r={X,A B}

(g1, abbabababba, X) @X = @ AX aX f’ q1BX
— (qu, bbabababba, AX) @A -5 qiAA @A — q1BA
— (qy, babababba, BAX) @B - qAB q.B b, q1BB
—> (qy, abababba, BBAX) G X~ X @ X -2 goX
— (g, bababba, ABBAX) A = gA GA - A

@B > g;B ChBi’CIzB
nX — X

@A~ A

@B — ¢:B

BX — g

BA - g

BB —> o

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}1 Y = {3, b}v
r={X,A B}

(g1, abbabababba, X) @ X = @ AX qX Tb' q1BX
— (qu, bbabababba, AX) @A -5 qiAA @A — q1BA
— (qy, babababba, BAX) @B - g, AB @B - ¢,BB
—> (qy, abababba, BBAX) G X~ X @ X b, @ X
— (g, bababba, ABBAX) a b
— (a1, ababba, BABBAX) A @24 A" @A

B — q.B qB — q.B
aX — X

@A~ A

@B — ¢:B

BX — g

BA - g

q:B i’ qz

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 204 /629



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}1 Y = {3, b}v
r={X,A B}

(g1, abbabababba, X) aX —’ qAX qX Tb' q1BX
— (g1, bbabababba, AX) G1A — q1AA @A — q1BA
— (qy, babababba, BAX) @B - g, AB @B - ¢.BB
— , abababba, BBAX 2, b,

_ Ei,’i, bababba, ABBAX)) nx X nx X
— (a1, ababba, BABBAX) A @24 A" @A
— (g, babba, BABBAX) @B —aB nB— g8

X — X

@A~ A

@B — ¢:B

BX — g

BA - g

q@:B i’ qz

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 204 /629



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}1 Y = {3, b}v
r={X,A B}

(g1, abbabababba, X) @X — @ AX qX Tb' q1BX
— (qu, bbabababba, AX) @A -5 qiAA @A — q1BA
— (qy, babababba, BAX) @B - g, AB @B - ¢.BB
— , abababba, BBAX 2, b,

_ Ei,’i, bababba, ABBAX)) nx X nx X
— (a1, ababba, BABBAX) A @24 A" @A
— (g, babba, BABBAX) @B — a8 nB — g8
— (q,, abba, ABBAX) aX - 92X

G1A — A

@B — ¢B

BX — g

BA - g

q:B i’ q2

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 204 /629



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}1 Y = {3, b}v
r={X,A B}

(g1, abbabababba, X) @X = @ AX qX Tb' q1BX
— (qu, bbabababba, AX) @A -5 qiAA @A — q1BA
— qu, babababba, BAX)) 1B - q1AB @B - ¢.BB
— (q,, abababba, BBAX 2, b,

— (g, bababba, ABBAX) BX X nX = @X
— (a1, ababba, BABBAX) A @24 A= @A
— (g, babba, BABBAX) @B —aB nB — g8
— (q,, abba, ABBAX) aX - 92X
— (qg,, bba, BBAX) @A — A

@B — ¢B

@X — g

BA - g

q@:B i’ qz

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 204 /629



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}1 Y = {3, b}v
r={X,A B}

(g1, abbabababba, X) @X = @ AX aX Tb' q1BX
— (qu, bbabababba, AX) @A -5 qiAA @A — q1BA
— qu, babababba, BAX)) 1B —= q1AB @B - ¢.BB
— (q,, abababba, BBAX 2, b,

— (g, bababba, ABBAX) nX X nX 7 @X
— (a1, ababba, BABBAX) A @24 A" @A
— (g, babba, BABBAX) @B —aB nB — g8
— (q,, abba, ABBAX) aX - 92X
— (qg,, bba, BBAX) @A — A
— (o, ba, BAX) @B — ¢:B

BX — g

BA - g

@B i’ qz

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 204 /629



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}1 Y = {3, b}v
r={X,A B}

(g1, abbabababba, X) @X = @ AX qX Tb' q1BX
— (qu, bbabababba, AX) @A -5 qiAA @A — q1BA
— (qy, babababba, BAX) @B - g, AB @B - ¢.BB
— , abababba, BBAX 2, b,

_ Ei,’i, bababba, ABBAX)) nx T @X nx 7 @X
— (a1, ababba, BABBAX) A @24 A" @A
— (g, babba, BABBAX) @B —aB nB— g8
— (q,, abba, ABBAX) aX - 92X
— (qg,, bba, BBAX) @A — A
— (o, ba, BAX) @B — ¢B
- (q2a a, AX) @X = q92

BA - g

@B i’ qz

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 204 /629



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}1 Y = {3, b}v
r={X,A B}

(g1, abbabababba, X) @X = @ AX aX Tb' q1BX
— (qu, bbabababba, AX) @A -5 qiAA @A — q1BA
— qu, babababba, BAX)) 1B - q1AB @B - ¢.BB
— (q,, abababba, BBAX 2, b,

— (g, bababba, ABBAX) nX X BX = @X
— (a1, ababba, BABBAX) A @24 A" @A
— (g, babba, BABBAX) @B —aB B — g8
— (q,, abba, ABBAX) aX - 92X
— (qg,, bba, BBAX) @A — A
— (o, ba, BAX) @B — ¢:B
- (q2a a, AX) @X = 92
— (g2, &, X) @A —> g
b
@B — q

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 204 /629



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}1 Y = {3, b}v
r={X,A B}

(g1, abbabababba, X) @X = @ AX qX Tb' q1BX
— (qu, bbabababba, AX) @A -5 qiAA @A — q1BA
— qu, babababba, BAX)) 1B - q1AB @B - ¢.BB
— (q,, abababba, BBAX 2, b,

— (g, bababba, ABBAX) nX X BX 7 @X
— (a1, ababba, BABBAX) A @24 A" @A
— (g, babba, BABBAX) @B —aB nB — g8
— (q,, abba, ABBAX) aX - 92X

— (qg,, bba, BBAX) @A — A

— (o, ba, BAX) @B — ¢:B

- (q2a a, AX) @X = 92

— (g2, &, X) @A —> g

- (q2a€a 5) qQBi>q2

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 204 /629



Computation of a Pushdown Automaton

In the previous definition, the set of configurations was defined as
Conf = Qx¥*xr*

and relation — was a subset of the set Conf X Conf.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Computation of a Pushdown Automaton

Alternatively, we could define configurations in such a way that they do

not contain an input word: .
Conf = QXT

The relation — is then defined as a subset of the set
Conf x (X U {e}) x Conf, where the notation

a I 1
go — qa

that after reading symbol a (or reading nothing when a = ¢), the given
pushdown automaton can go from configuration (g, a) to
configuration (q',a'), i.e.,

aXp —— qvB it (d,7) €d(q,a,X)

where g,¢' € Q, ae T U {e}, X €T, and B,y T

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 206 / 629



Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

@ X = qAX
@A > g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — gq»B
qlx - q2X
ChA =~ Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

X — qBX

QA —> g BA

@B q,BB
b

@ X — X
b

@A — qA
b

@B — q:B

February 11, 2026 207 / 629
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

B X @X > g AX
@A > q1AA
@B > q1AB
BX —> X
BA > A
@B — B
BX — @X
BA— A
@B — B
BX — @
BA > g
@B = G2

@ X — qBX

qA — g BA

@B qBB
b

@ X — @X
b

@A — qA
b

@B — q:B

February 11, 2026 207 / 629
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

a
@aX — qAX @ X 2, G AX

@A > g AA
@B > q1AB
a
G X — X
a
G1A — @A
@B — B
X 5 g X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q

b
@B — q

X — qBX

QA —> g BA

@B — qBB
b

@ X — @X
b

@A — gA
b

@B — q:B

February 11, 2026 207 / 629
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BX — qAX

2, gBAX

Z. Sawa (TU Ostrava)

@ X = qAX
@A > g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — ¢q»B
qlx - q2X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

Introd. to Theoretical Computer Science

X — qBX

qA — g BA

@B qBB
b

@ X — @X
b

@A — qA
b

@B — q:B

February 11, 2026

Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v
r={X,A B}

207 / 629




Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

aX — qAX
2, gBAX
2, ¢,BBAX

@ X - qAX
@A > g AA
@B —> q1AB
a
G X — X
a
@A — @A
a
B — ¢q»B
qlx - q2X
ChA =~ Q‘2A
QIB - QZB
qlx - a2
q2 . 92
@A — q
b
@B — q

X — qBX

QA — g BA

@B q,BB
b

@ X — @X
b

@A — qA
b

@B — q:B

February 11, 2026
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v
r={X,A B}

@ X

a

— qAX
— q;BAX
— q;BBAX

5 G ABBAX

@ X = qAX
@A - g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — gq»B
qlx - q2X
ChA =~ Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

@ X = qBX

QA — g BA

@B qBB
b

@ X — X
b

@A — qA
b

@B — q:B

February 11, 2026
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

@ X — qAX
— q;BAX
— q;BBAX
— q;ABBAX
— qBABBAX

@ X = qAX
@A > g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — gq»B
qlx - q2X
ChA =~ Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

@X — qBX

qA—> g BA

@B — qBB
b

@ X — @X
b

@A — qA
b

@B — q:B

February 11, 2026
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

@ X

G AX
g1 BAX

q.BBAX
q.ABBAX

q.BABBAX
g, BABBAX

@ X = qAX
@A - g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — ¢q»B
qlx - q2X
ChA =~ Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

@ X — qBX

QA — g BA

@B — qBB
b

@ X — @X
b

@A — gA
b

@B — qB

February 11, 2026
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

aX — qAX
— q;BAX
— q;BBAX

— q;ABBAX

— g BABBAX
-~ g,BABBAX

— g, ABBAX

@ X = qAX
@A > g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — ¢q»B
qlx - q2X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

@X — qBX

QA — g BA

@B — qBB
b

@ X — @X
b

@A — qA
b

@B — q:B

February 11, 2026
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

BX — @GAX
— q,BAX
— ¢,BBAX
— ¢ ABBAX
— ¢,BABBAX
— ¢,BABBAX
— g, ABBAX
s ¢,BBAX

@ X = qAX
@A > g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — ¢q»B
qlx - q2X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

X = qBX

QA — g BA

@B qBB
b

@ X — X
b

@A — qA
b

@B — q:B

Z. Sawa (TU Ostrava)

Introd. to Theoretical Computer Science
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

BX — qAX
— q,BAX

— ¢, BBAX
5 G ABBAX

— g BABBAX
-~ g,BABBAX

— g, ABBAX
-, ¢,BBAX

— g, BAX

@ X = qAX
@A - g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — ¢q»B
qlx - q2X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B —

@ X — qBX

QA — g BA

@B — q,BB
b

@ X — @X
b

@A — qA
b

@B — q:B

Z. Sawa (TU Ostrava)

Introd. to Theoretical Computer Science
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

BX — qAX
— q,BAX

— ¢, BBAX
5 G ABBAX

— g BABBAX
-~ g,BABBAX

— g, ABBAX
-, ¢,BBAX

— q,BAX
— @AX

@ X = qAX
@A > g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — ¢q»B
qlx - q2X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B —

@X — qBX

QA —- g BA

@B qBB
b

@ X — X
b

@A — qA
b

@B — q:B

Z. Sawa (TU Ostrava)

Introd. to Theoretical Computer Science
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

BX — @GAX
— q,BAX
— ¢,BBAX
— ¢ ABBAX

— g BABBAX
-~ g,BABBAX

— g, ABBAX
-, ¢,BBAX

-5 ¢,BAX
i— qQAX
— X

@ X > qAX
@A - g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — gq»B
qlx - q2X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

@X — qBX

QA —> g BA

@B q,BB
b

@ X — @X
b

@A — qA
b

@B — q:B

Z. Sawa (TU Ostrava)

Introd. to Theoretical Computer Science
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Computation of a Pushdown Automaton

Example: M = (Qazar757 q17X) where Q = {q17q2}v Y = {a7 b}v

r={X, A B}

BX — @GAX
— q,BAX
— ¢,BBAX
— ¢ ABBAX

— g BABBAX
-~ g,BABBAX

— ¢, ABBAX
— ¢, BBAX
— @,BAX
— @AX
— @X

— Q2

@ X - qAX
@A > g AA
@B > q1AB
a
G X — X
a
@A — @A
a
B — gq»B
qlx - q2X
ChA - Q‘2A
QIB - QZB
qlx - a2
q2 . q2
@A — q
b
@B — q

X — qBX

QA —> g BA

@B > q,BB
b

@ X — @X
b

@A — qA
b

@B — q:B

Z. Sawa (TU Ostrava)

Introd. to Theoretical Computer Science

February 11, 2026
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Pushdown automaton

Two different definitions acceptace of words are used:

@ A pushdown automaton M accepting by an empty stack accepts
a word w iff there is some computation of M on w such that M
reads all symbols of w and after reading them, the stack is empty.

@ A pushdown automaton M accepting by an accepting state accepts
a word w iff there is some computation of M on w such that M
reads all symbols of w and after reading them, the control unit of M
is in some state from a given set of accepting states F.
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Pushdown automaton

o A word w € X" is accepted by PDA M by empty stack iff

(q07 W7X0) _)* (q7€7€)

for some g € Q.

Definition
The langugage £(M) accepted by PDA M by empty stack is defined
as

LM) ={weX|(3qge Q)((g,w,X) —" (g.6,¢))}.
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Pushdown automaton

Let us extend the definition of PDA M with a set of accepting states F
(where F < Q).

o Aword w € ¥* is accepted by PDA M by accepting state iff
(q07 w, XO) _)* (q7 &, Oé)
for some g € F and o € T,

The langugage £(M) accepted by PDA M by accepting state is
defined as

L(M) ={wex"|(3geF)(3aecl)((qg,w.X) — (q.¢a))}.
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Pushdown automata

In the case of nondeterministic pushdown automata, there is no
difference in the class of accepted languages between recognizing by empty
stack and recognizing by accepting state.

We can easily perform the following constructions:

e To construct for a given (nondeterministic) pushdown automaton,
that recognizes a language L by empty stack, an equivalent
(nondeterministic) pushdown automaton recognizing this language L
by accepting states.

e To construct for a given (nondeterministic) pushdown automaton,
that recognizes a language L by accepting states, an equivalent
(nondeterministic) pushdown automaton recognizing the language L
by empty stack.
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Deterministic Pushdown Automata

A pushdown automaton M = (Q, X, T, 6, go, Xo) is deterministic when:

@ Foreach g € Q, a€ (X U{e}) and X €T it holds that:
16(q,a,X)| =1
@ For each g € Q and X €T holds at most one of the following
possibilities:
o There exists a rule gX - q'o< for some q' €eQand aerl”.

o There exists a rule gX = q'a for some a € &, q' €eQandaerl”.
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Deterministic Pushdown Automata

Note that deterministic pushdown automata accepting by empty stack
are able to recognize only prefix-free languages, i.e., languages L where:

e if w € L, then there is no word w' € L such that w is a proper prefix
!
of w.

Remark: Instead of language L € ¥*, that possibly is or is not prefix-free,
we can take the prefix-free language

L'=L-{-}

over the alphabet ¥ U {-}, where 4¢ ¥ is a special “marker”
representing the end of a word.

l.e., instead of testing whether w € L, where w € £, we can test whether
(w)el
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Deterministic Pushdown Automata

@ For each deterministic pushdown automaton recognizing by empty
stack we can easily construct an equivalent deterministic pushdown
automaton recognizing by accepting states.

@ For each deterministic pushdown automaton recognizing language L
(where L € ™) by accepting states we can easily construct
a deterministic pushdown automaton recognizing by empty stack the
language L - {1}, where —¢ Y.
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Equivalence of CFG and PDA

Theorem

For every context-free grammar G we can construct a pushdown
automaton M (with one control state) such that £L(M) = L(G).

Proof: For CFG G = (M, %, S, P) we construct PDA
M = ({go},%,T,6,q0,S), where
e =NTUX

@ For each rule (X — «) € P from the context-free grammar G (where
XeMaae(Nu Z)*) we add a corresponing rule

€
qoX — qoc
to the trasition function ¢ of the pushdown automaton M.

@ For each symbol a € ¥, we add a rule

a
doa@ — Qo

to the trasition function ¢ of the pushdown automaton M.
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Equivalence of CFG and PDA

Example: Consider a context-free grammar G = (1, %, S, P), where

e N={S,E, T, F}
° Z = {a7+7*7 (7)7_|}
@ The set P contains the following rules:

S—E-
E—T|E+T
T — F| TxF
Foal (E)
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Equivalence of CFG and PDA

For the given grammar G = (1, X, S, P) with rules

S — E
E—T|E+T
T — F| T*F
F—al(E)

we construct a pushdown automaton M = ({qo},Z,T, 4, g9, S), where
°z={a’+7*7(’)’_|}
°r:{S7E?T7F7a7+7*7(7)7_|}

@ The trasition function ¢ contains the following rules:

e e a (

GoS — qoE - GF — qoa Ga—q G(— q
5 e + )

GE — qoT GoF — qo(E) dot — G0  Go) — do
c * =

QE — qoE+T Go* —do G0 1— Qo
€

QT — qF

aT — qT+F
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Equivalence of CFG and PDA

19)
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Equivalence of CFG and PDA

EE]
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Equivalence of CFG and PDA
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Equivalence of CFG and PDA

EEITAE]

S =Ed =T+ = T*FH
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Equivalence of CFG and PDA

EEEE]

S=EHd=TH = TxF4 = FxFH
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Equivalence of CFG and PDA

KNENEEE

S=E4d=TH = TxF-4 = FxFH4 = (E)*F-
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Equivalence of CFG and PDA

[ED [« ]FH]

S=E4d=TH = TxF-4 = FxFH4 = (E)*F-
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Equivalence of CFG and PDA

el [T [« ]FH]

= T = T+F-H = FxFH = (E)*F- = (E+T)*F-
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Equivalence of CFG and PDA

EESEAPEESTAE]

= FxF- = (E)*F— = (E+T)*F— = (T+T)*F
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Equivalence of CFG and PDA

LT« ]FlH]

= (E)¥F- = (E+T)*F— = (T+T)*F- = (F+T)xF -
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Equivalence of CFG and PDA

ol [T [« ]F]H]

= (E+T)*FH = (T+T)*FH = (F+T)*F-H = (a+T)*F-
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Equivalence of CFG and PDA

EERIEITEE]

= (E+T)*FH = (T+T)*FH = (F+T)*F-H = (a+T)*F-
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Equivalence of CFG and PDA

EdREEIVAE]

= (E+T)*FH = (T+T)*FH = (F+T)*F-H = (a+T)*F-
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Equivalence of CFG and PDA

LFD ]

= (T+T)*FH = (F+T)*FH = (a+D)*F- = (a+F)*xF
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Equivalence of CFG and PDA

2D [« ]FH]

= (F+T)*F- = (a+T)*F- = (a+F)*F- = (at+a)*F -
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Equivalence of CFG and PDA

BIEIIEE]

= (F+T)*F- = (a+T)*F- = (a+F)*F- = (at+a)*F -
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Equivalence of CFG and PDA

EEE]

= (F+T)*F- = (a+T)*F- = (a+F)*F- = (at+a)*F -
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Equivalence of CFG and PDA

EE]

= (F+T)*F- = (a+T)*F- = (a+F)*F- = (at+a)*F -
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Equivalence of CFG and PDA

KENE]

= (a+T)*F- = (a+F)*F = (a+a)*F - = (a+a)*(E) -
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Equivalence of CFG and PDA

EHRIE]

= (a+T)*F- = (a+F)*F = (a+a)*F - = (a+a)*(E) -
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Equivalence of CFG and PDA

EHEIEARIE]

= (ata)xF— = (ata)*(E) - = (a+a)*(E+T) -
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Equivalence of CFG and PDA

EEIEAPIE]

= (a+a)*(§)—| = (a+a)*(£+T)—| = (a+a)*(I+T)—|
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Equivalence of CFG and PDA

EAEIAEIEAPIE]

= (ata)*(E+T) - = (a+a)*(T+T) - = (at+a)*x(T*F+T)
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Equivalence of CFG and PDA

EEEEERIE]

= (ata)*(T*F+T)- = (a+a)*(FxF+T) -
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Equivalence of CFG and PDA

ol «[Fl+]T]> 4]

= (ata)*(FxF+T) - = (ata)*(axF+T) -
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Equivalence of CFG and PDA

B EARIE]

= (ata)*(FxF+T) - = (ata)*(axF+T) -
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Equivalence of CFG and PDA

IEAEIEARIE]

= (ata)*(FxF+T) - = (ata)*(axF+T) -
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Equivalence of CFG and PDA

B EIEAPIE]

= (ata)*(axF+T) - = (a+ta)*(axa+T)
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Equivalence of CFG and PDA

EIEARIE]

= (ata)*(axF+T) - = (a+ta)*(axa+T)
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Equivalence of CFG and PDA

EdRIE]

= (ata)*(axF+T) - = (a+ta)*(axa+T)
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Equivalence of CFG and PDA

IERIE]

= (ata)*(axa+T) - = (ata)*(axa+F) -
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Equivalence of CFG and PDA

ERIE]

= (ata)*(axa+F) - = (a+a)*(axa+a) -
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Equivalence of CFG and PDA

BIE]

= (ata)*(axa+F) - = (a+a)*(axa+a) -
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Equivalence of CFG and PDA

El

= (ata)*(axa+F) - = (a+a)*(axa+a) -
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Equivalence of CFG and PDA

= (ata)*(axa+F) - = (a+a)*(axa+a) -
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Equivalence of CFG and PDA

We can see from the previous example that the pushdown automaton M
basically performs a left derivation in grammar G.
It can be easily shown that:

o For every left derivation in grammar G there is some corresponding
computation of automaton M.

o For every computation of automaton M there is some corresponding
left derivation in grammar G.

Remark: The described approach corresponds to the syntactic analysis
that proceeds top down.
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Equivalence of CFG and PDA

Alternatively, it is also possible to proceed from bottom up.

This could be implemented by a nondeterministic pushdown
automaton M = (Q, X, T, 4, gy, Xp) constructed for a given grammar
G=(N,%,S,P) as follows:

e M=NuUXu{} where ¢ (MNuUX)
(] Xo =+
@ @ contains states corresponding to all suffixes of right-hand sides

from P a also a special state (S) (where S € I is the initial
nonterminal of grammar G) and a special state g,cc.

A state corresponding to suffix o (where o € (MU X)*) will be
denoted (a).

A special case is a state corresponding to suffix €. This state will be
denoted ().

°CI0=<)
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Equivalence of CFG and PDA

@ For every input symbol a € ¥ and every stack symbol W €T the
following rule is added to §:

(Hw = ()aw

o For every rule X = Y;Ys:++Y, from grammar G (where X €1,

n=0,and Y; € (MUX) for 1 =i < n) the following set of rules is

added to 9:
()Yn f» (Yy)
(Yn>yn—1 B <Yn—1Yn>

( Yn—l Yn> Yn—2 L’ < Yn—2 Yn—l Yn)

(YaYs5... Vo)V — (Y1 Y2 Y5 Y,)
and for every W € I" we add the rules
(Y1 Yor Yo) W — ()XW
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Equivalence of CFG and PDA

o For example if grammar G contains rule
B — CaADb
the transition function § of automaton M will contain rules
()b — (b)
(b)D — (Db)
(Db)A — (ADDb)
(ADb)a — (aADb)
(aADb)C —— (CaADDb)
and also for every W € I the will be a rule

(CaADBYW — ()BW
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Equivalence of CFG and PDA

@ In particular, for e-rules of grammar G, the corresponding rules will be
as follows: for e-rule

X — ¢
of grammar G, where X € I1, there will be corresponding rules
Ow — ()xw
where W €T.
@ We finish the construction by adding the following two special rules
to 0 (where S € 1 is the initial nonterminal of grammar G):

()s —(S) (S)F = Gace
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Equivalence of CFG and PDA

Example: Consider the same grammar G as in the previous example:

S — E-

E—T|E+T
T — F| T*F
F—al (E)

For this grammar we construct a corresponding pushdown
automaton M = (Q, %, T, 4, gy, Xp), where

o Y ={a,+x*(),—}

o M={S E, T,F,a,+x* (), -}

o Q={(), (), (EA), (T), (+T), (E+T), (F), (xF), (TxF),
(a), 0), (ED), ((ED), (S), acc }

L qo=<)

o Xp =+
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Equivalence of CFG and PDA

For each X €T the following rules are added to d:

0~+— ()
(X =5 (Yax (4)E— (EH) (EA4)X = ()SX
()X — ()+x OT —(T) (T)X = ()EX
(OX =5 ()X (T)+ — (+7) 5
(X = ()X (+T)E > (E+T)  (E+T)X — ()EX
(X = (HX ()F — (F) (F)X - ()TX
(X = ()4x (F)x — (xF)
(+F)T == (TxF)  (TxF)X — ()TX
—
—
—
— (
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Equivalence of CFG and PDA

=

(a+a)*(axa+a) -
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Equivalence of CFG and PDA

=

(a+a)*(axa+a) -
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Equivalence of CFG and PDA

Fla]

(a+a)*(axa+a) -
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Equivalence of CFG and PDA

=

(a+a)*(axa+a) -
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Equivalence of CFG and PDA

HeE

(F+a)*(axa+a) 4 = (a+a)*(a*xat+a) -
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Equivalence of CFG and PDA

=

(F+a)*(axa+a) 4 = (a+a)*(a*xat+a) -
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Equivalence of CFG and PDA

HLdT]

(T+a)*(axat+a) 1 = (F+a)*(axa+ta) 1 = (at+a)*(axata) -
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Equivalence of CFG and PDA

=

(T+a)*(axat+a) 1 = (F+a)*(axa+ta) 1 = (at+a)*(axata) -
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Equivalence of CFG and PDA

lFlE]

(E+a)*(axa+a) 1 = (T+a)*(a*a+a) 1 = (F+a)*(axata) 4 =
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Equivalence of CFG and PDA

HeEE

(E+a)*(axa+a) 1 = (T+a)*(a*a+a) 1 = (F+a)*(axata) 4 =
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Equivalence of CFG and PDA

[HISEEN

(E+a)*(axa+a) 1 = (T+a)*(a*a+a) 1 = (F+a)*(axata) 4 =
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Equivalence of CFG and PDA

HeEE

(E+a)*(axa+a) 1 = (T+a)*(a*a+a) 1 = (F+a)*(axata) 4 =
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Equivalence of CFG and PDA

HNEEE

(E+F)*(axat+a) 1 = (E+a)*(a*xa+a) 1 = (T+a)*(axata) - =
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Equivalence of CFG and PDA

HeEE

(E+F)*(axat+a) 1 = (E+a)*(a*xa+a) 1 = (T+a)*(axata) - =
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Equivalence of CFG and PDA

[HISEEE

(E+T)*(axa+a) | = (E+F)*(a*a+a) 41 = (E+a)*(a*a+a) 1 =
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Equivalence of CFG and PDA

HeEE

(E+T)*(axa+a) | = (E+F)*(a*a+a) 41 = (E+a)*(a*a+a) 1 =
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Equivalence of CFG and PDA

lFlE]

(E+T)*(axa+a) | = (E+F)*(a*a+a) 41 = (E+a)*(a*a+a) 1 =
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Equivalence of CFG and PDA

=

(E+T)*(axa+a) | = (E+F)*(a*a+a) 41 = (E+a)*(a*a+a) 1 =
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Equivalence of CFG and PDA

lFlE]

(E)*(a*xat+a) 1 = (E+T)*(axata) 1 = (E+F)*(axata) 1 = ---
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Equivalence of CFG and PDA

HEEN

(E)*(a*xat+a) 1 = (E+T)*(axata) 1 = (E+F)*(axata) 1 = ---
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Equivalence of CFG and PDA

lFlE]

(E)*(a*xat+a) 1 = (E+T)*(axata) 1 = (E+F)*(axata) 1 = ---
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Equivalence of CFG and PDA

=

(E)*(a*xat+a) 1 = (E+T)*(axata) 1 = (E+F)*(axata) 1 = ---
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Equivalence of CFG and PDA

=

(E)*(a*xat+a) 1 = (E+T)*(axata) 1 = (E+F)*(axata) 1 = ---
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Equivalence of CFG and PDA

[FLF]

Fx(axata) 4 = (E)*(a*xat+a) 4 = (E+T)*(axata) 1 = -
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Equivalence of CFG and PDA

=

Fx(axata) 4 = (E)*(a*xat+a) 4 = (E+T)*(axata) 1 = -
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Equivalence of CFG and PDA

lFI7]

T*x(axata) 1 = Fx*x(axa+ta) 4 = (E)*(axa+ta) 1 = ---
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Equivalence of CFG and PDA

[EL7] ]

T*x(axata) 1 = Fx*x(axa+ta) 4 = (E)*(axa+ta) 1 = ---
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Equivalence of CFG and PDA

[HEdEIN

T*x(axata) 1 = Fx*x(axa+ta) 4 = (E)*(axa+ta) 1 = ---
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Equivalence of CFG and PDA

[HEEINEY

T*x(axata) 1 = Fx*x(axa+ta) 4 = (E)*(axa+ta) 1 = ---
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Equivalence of CFG and PDA

[HEdEIN

T*x(axata) 1 = Fx*x(axa+ta) 4 = (E)*(axa+ta) 1 = ---

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Equivalence of CFG and PDA

HEENE

Tx(F*ata) 1 = Tx*(a*ata) 1 = Fx(a*ata) 4 = -
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Equivalence of CFG and PDA

[HEdEIN

Tx(F*ata) 1 = Tx*(a*ata) 1 = Fx(a*ata) 4 = -
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Equivalence of CFG and PDA

[HEAEINSE

Tx(T*a+a) 1 = Tx(Fxa+a) 1 = Tx(axa+a)d = ---
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Equivalence of CFG and PDA

[HEAEIRS kIR

Tx(T*a+a) 1 = Tx(Fxa+a) 1 = Tx(axa+a)d = ---
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Equivalence of CFG and PDA

Elrf«ldT]+]a]

Tx(T*a+a) 1 = Tx(Fxa+a) 1 = Tx(axa+a)d = ---
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Equivalence of CFG and PDA

[HEAEIRS kIR

Tx(T*a+a) 1 = Tx(Fxa+a) 1 = Tx(axa+a)d = ---
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Equivalence of CFG and PDA

L=l T]«]F]

Tx(T*F+a) 4 = Tx(T*a+ta) 1 = Tx(Fxa+ta)d = ---
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Equivalence of CFG and PDA

[HEAEIRS kIR

Tx(T*F+a) 4 = Tx(T*a+ta) 1 = Tx(Fxa+ta)d = ---
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Equivalence of CFG and PDA

[HEAEINSE

Tx(T*F+a) 4 = Tx(T*a+ta) 1 = Tx(Fxa+ta)d = ---
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Equivalence of CFG and PDA

[HEdEIN

Tx(T*F+a) 4 = Tx(T*a+ta) 1 = Tx(Fxa+ta)d = ---
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Equivalence of CFG and PDA

[HEAEINSE

T*(T+a) 4 = T*(T*F+a) 4 = Tx(T*a+ta) 1 = -
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Equivalence of CFG and PDA

[HEdEIN

T*(T+a) 4 = T*(T*F+a) 4 = Tx(T*a+ta) 1 = -
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Equivalence of CFG and PDA

[Elr]« ] ]E]

T*(E+a) 4 = T*(T+a) 4 = Tx(TxF+a) < = --
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Equivalence of CFG and PDA

[HEAEIKEE

T*(E+a) 4 = T*(T+a) 4 = Tx(TxF+a) < = --
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Equivalence of CFG and PDA

Flrf«lJel+]a]

T*(E+a) 4 = T*(T+a) 4 = Tx(TxF+a) < = --
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Equivalence of CFG and PDA

[HEAEIKEE

T*(E+a) 4 = T*(T+a) 4 = Tx(TxF+a) < = --
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Equivalence of CFG and PDA

ElTf«lJel+]F]

Tx(E+F)— = Tx(E+a)-d = T*(T+a) - = T*(TxF+a) - =
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Equivalence of CFG and PDA

[HEAEIKEE

Tx(E+F)— = Tx(E+a)-d = T*(T+a) - = T*(TxF+a) - =
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Equivalence of CFG and PDA

Elrf«lJel+]T]

T*(E+I)—| = T*(E+£)—| = T*(§+a)—| = T*(I+a)_| — ...
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Equivalence of CFG and PDA

[HEdEIN

T*(E+I)—| = T*(E+£)—| = T*(§+a)—| = T*(I+a)_| — ...

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Equivalence of CFG and PDA

[Elr]« ] ]E]

Tx(E) - = T*(E+T)— = T*(E+F)- = Tx(E+a)— = -
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Equivalence of CFG and PDA

HEEINEN

Tx(E) - = T*(E+T)— = T*(E+F)- = Tx(E+a)— = -
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Equivalence of CFG and PDA

[Elr]« ] ]E]

Tx(E) - = T*(E+T)— = T*(E+F)- = Tx(E+a)— = -
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Equivalence of CFG and PDA

[HEdEIN

Tx(E) - = T*(E+T)— = T*(E+F)- = Tx(E+a)— = -
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Equivalence of CFG and PDA

[EL7] ]

Tx(E) - = T*(E+T)— = T*(E+F)- = Tx(E+a)— = -
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Equivalence of CFG and PDA

[HEdEIE

T+F— = T+(E)- = T*(E+T)— = T*(E+F)— = -
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Equivalence of CFG and PDA

[EL7] ]
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Equivalence of CFG and PDA

lFI7]

T+F— = T+(E)- = T*(E+T)— = T*(E+F)— = -
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Equivalence of CFG and PDA

=

T+F— = T+(E)- = T*(E+T)— = T*(E+F)— = -
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Equivalence of CFG and PDA

lFI7]

TH = TxFH4 = Tx(E)d = T*x(E+T) = T*x(E+F)d =
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Equivalence of CFG and PDA

=

TH = TxFH4 = Tx(E)d = T*x(E+T) = T*x(E+F)d =
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Equivalence of CFG and PDA

=E

E- = TH = T+F-d = T*(E)d = T+(E+T) - = -
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Equivalence of CFG and PDA

EEE]

E- = TH = T+F-d = T*(E)d = T+(E+T) - = -
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Equivalence of CFG and PDA

=E

E- = TH = T+F-d = T*(E)d = T+(E+T) - = -
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Equivalence of CFG and PDA

=

E- = TH = T+F-d = T*(E)d = T+(E+T) - = -
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Equivalence of CFG and PDA

[Fls]

S = E-d = TH = T+Fd = Tx(E)- = T*(E+T) - = -
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Equivalence of CFG and PDA

=

S = E-d = TH = T+Fd = Tx(E)- = T*(E+T) - = -
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Equivalence of CFG and PDA

S = E-d = TH = T+Fd = Tx(E)- = T*(E+T) - = -
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Equivalence of CFG and PDA

As we can see from the previous example, the pushdown automaton M
basically performs a right derivation in grammar G in reverse order.
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Other Classes of Context-Free Grammars

There exist a lot of different classes of context-free grammars, for which it

is possible to construct a corresponding pushdown automaton in such
a way that this automaton is deterministic:

@ Top-down approach — constructs a left derivation:

o LL(0), LL(1), LL(2), ...

o Bottom-up approach — constructs a right derivation in a reverse
order:

e LR(0), LR(1), LR(2), ...
o LALR (resp. LALR(1), ...)
o SLR (resp. SLR(1), ...)

Z. Sawa (TU Ostrava)
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Parser Generators

Parser generators — tools that allow for a description of a context-free
grammar to automatically generate a code in some programming language
basically implementing behaviour of a corresponding pushdown automaton.

Examples of parser generators:

Yacc
Bison
ANTLR
JavaCC
Menhir
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Equivalence of CFG and PDA

Theorem

For every pushdown automaton M with one control state, there is
a corresponding CFG G such £(G) = L(M).

Proof: For PDA M = ({qo}, %, T, 6, qo, Xo), where SN T = @, we
construct CFG G = (I', ¥, Xy, P), where

(A—aa)eP iff (qo, ) € 6(qo, a, A)
forall AeT,aeXu{e} anda el
It can be proved by induction that
Xo =" ua (in G) iff goXo — qoor (in M)

where u € ¥* and a € T (in G, we consider only left derivations).
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Equivalence of CFG and PDA

M: g:

QA — goBC A — aBC
b
doB — qo B—b

‘A|C|B|A|C| abaACBAC
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Equivalence of CFG and PDA

M: g:

QA — goBC A — aBC
b
doB — qo B—b

ba ACBAC
BlclclBlA|c] =:Zb2;§CCBAC

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Equivalence of CFG and PDA

M: g:

QA — goBC A — aBC
b
doB — qo B—b

baACBAC
clclBla[c] :szEQCCBAC
= abaabCCBAC
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Equivalence of CFG and PDA

Theorem

For every pushdown automaton M there exists a pushdown automaton
M with one control state such that £(M') = £(M).

Proof idea:

@ The control state of M is stored on the top of the stack of M.

e For 6(q,a,X) ={(qg',€)} we must ensure that the new control state
on the stack of M'is g'. (Other cases are straightforward.)

o Stack symbols of M’ are triples of the form (g, A, g') where
g represents the control state of M when that symbol is on the top,

A is the stack symbol of M, and q' is the first control state in the
triple below it.

o PDA M' nondeterministically “guesses” the control states to which
M goes when the given stack symbols becomes the top of the stack.
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Equivalence of CFG and PDA

Incorrect idea:

Z gsA
B B
c| C
A A
A A
B| B
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Equivalence of CFG and PDA

Incorrect idea:

E q13B
| c
B B
c| C
A A
A A
B| B
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Equivalence of CFG and PDA

Incorrect idea:

(@[> [>[o]w]n]
(> |>|n|w|n
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Equivalence of CFG and PDA

Other incorrect idea:

gsA
QB
qsC
qi5A
qsA
qu1B

(=[>[>[o]=[>]
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Equivalence of CFG and PDA

Other incorrect idea:

q13B
q:C
QB
qsC
qi5A
qsA
qu1B

[=]>[>[n]=][o]=]
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Equivalence of CFG and PDA

Other incorrect idea:

q:C
QB
qsC
qi5A
qsA
qu1B

[=[>[>[o]=[n]

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Equivalence of CFG and PDA

The correct construction:

qsA qa
q4B g
qsC q15
q15A g4
q4A q11
q11B qo

(=[>[>[o]=[>]
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Equivalence of CFG and PDA

The correct construction:

q13B g7
q7:C a4
94B qg
qsC q15
q15A g4
q4A q11
q11B qo

[=]>[>[n]=][o]=]
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Equivalence of CFG and PDA

The correct construction:

q7:C a4
q4B g
qsC q15
q15A g4
q4A q11
q11B qo

[=[>[>[o]=[n]
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Equivalence of CFG and PDA

For every context-free grammar G there is some (nondeterministic)
pushdown automaton M such that £(G) = L(M).

Proposition

For every pushdown automaton M there is some context-free grammar G

such that £(M) = L(G).
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Turing Machines
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Turing Machine

Turing machine — a device similar to a finite automaton with the
following differences:

@ the head can move in both directions
@ it is possible to write on a current position of the head

o the tape is infinite
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Turing Machine

Turing machine — a device similar to a finite automaton with the
following differences:

@ the head can move in both directions
@ it is possible to write on a current position of the head

o the tape is infinite
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Turing Machine

Alan M. Turing, “On Computable Numbers, with an application to the
Entscheidungsproblem”, Proceedings of the London Mathematical Society,
42 (1936), pp. 230-265, Erratum: Ibid., 43 (1937), pp. 544-546.
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Turing Machine

Formally, Turing machine is defined as a tuple M = (Q,%,T,4, qo, F)
where:

@ @ is a finite non-empty set of states

e [ is a finite (non-empty) set of tape symbols (tape alphabet)

Y c T is a finite non-empty set of input symbols (input alphabet)
§:(Q@—-F)XTI - QXTI x{-1,0,+1} is a transition function

go € Q is an initial state

F € Q is a set of final states

We assume that [ — ¥ always contains a special element O denoting
a blank symbol.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 240 /629



Configurations of a Turing Machine

A configuration of a Turing machine is given by:

@ a state of its control unit
@ a content of the tape

@ a position of the head
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Configurations of a Turing Machine

A computation of a Turing machine M = (Q, %, T, 4, gy, F) over
aword w e ¥¥,

where w = aja,-+-a,, starts in an initial configuration:

@ the state of the control unit is gq

e word w is written on the tape, remaining cells of the tape are filled
with the blank symbols (O)

@ the head is on the first symbol of the word w (or on symbol O when
w=¢)

Z. Sawa (TU Ostrava)

Introd. to Theoretical Computer Science
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Turing Machine

One step of a Turing machine:

Let us assume that:
@ the state of the control unit is g
@ the cell of the tape on the position of the head contains symbol b

Let us say that §(g, b) = (q',b',d) where d € {-1,0, +1}.

One step of the Turing machine is performed as follows:
@ the state of the control unit is changed to q'
@ symbol b’ is written on the tape cell on the position of the head
instead of b
@ The head is moved depending on d:
o for d = —1 the head is moved one cell left

o for d = +1 the head is moved one cell right
o for d = 0 the position of the head is not changed
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Turing Machine

@ A Turing machine performs these steps until a state of its control unit
is a state from the set F.

@ Those configurations where a state of the control unit belongs to
set F are final configurations.

@ A computation ends in a final configuration.

@ A computation of a machine M over a word w can be infinite.
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Turing Machine

We often choose the set of final states F = {qacc, Grej}-
Then we can define for a word w € £* if a given Turing machine accepts
it:

o If the state of the control unit after the computation over the word w

iS @acc, the machine accepts the word w.

o If the state of the control unit after the computation over the word w
iS grej, the machine does not accept the word w.

@ The computation of the machine over the word w can be infinite. In
this case the machine does not accept the word w.

The language £(M) of a Turing machine M is the set of all words
accepted by M.
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Turing Machine

A language L € ¥* is accepted by a Turing machine M if:

o for each word w € £* it holds that w € L iff the computation of M
over w ends in final state q,cc.

(So computations over words that do not belong to L can end in state qye;
or be infinite.)

Language L € " is recognized by a Turing machine M if:

o for each word w € L the computation of machine M over w ends in
final state g cc.

o for every word w € (X* — L) the computation of machine M over w
ends in final state q;.
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Turing Machine

Language L = {a"b"c" | n = 0}
Q = {90, 91. 92+ 3, G4, Gace, Grej } F = {Gace, Grej}

T = {a,b,c} r={o.ab.cx}
0 u] a b c x
qo0 (qaccaD 0) (qlzx7+1) (qrejab 0) (qrejvcyo) (quXy+1)
qa (qrep‘:‘ 0) (Q]_,a,+1) (q27x +1) (qrej7C70) (q1,X,+1)
a2 (qreJaD 0) (qrejva7 0) (q27b +1) (q3,x,+1) (qz,X,+1)
a3 (q47 (qrejva 0) (qrejvb 0) (q3,C,+1) (q3axa+1)
qs (q09D +1) (q47a7_1) (q47 ) ) (q4»c»_1) (q4,X,—1)
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Turing Machine
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Turing Machine

@ A Turing machine can give not only answers YES or NO but it can
also compute a function that assigns to each word from £* some
other word (from ™).

@ A word assigned to a word w is the word that remains on the tape
after the computation over the word w when we remove all
symbols O.
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Turing Machine — Multiplication by Three
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Nondeterministic Turing Machines

We can also consider nondeterministic Turing machines where for every
state g and symbol b the transition function 5(q, b) specifies several
different triples (q', b, d).

The machine can choose any of them.

The machine accepts a word w iff it has at least one computation where
w is accepted.

Remark: For every nondeterministic Turing machine, there can be
constructed an equivalent deterministic Turing machine.
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Nondeterministic Turing Machines

Formally, the only difference in the definition of a deterministic and

a nondeterministic Turing machine M = (Q, X, T, 4, qq, F) is the definition
of the transition function §:

o Deterministic Turing machine:

§: (Q-F)xTI - QxTIx{-1,0,+1}

@ Nondeterministic Turing machine:

§: (Q-F)xT - P(QxTx{-1,0,+1})

Remark: For nondeterministic Turing machines, it makes a little sense to
consider other set of final state than F = {Gacc, Grej}-
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Variants of Turing Machines

@ The definition of Turing machine given before is just one of many
variants.

@ Here we give several examples of differences between different
variants of Turing machines.

@ Almost all these variants of Turing machines are able to accept or
recognize the same languages and to compute the same functions.

@ There can be (but need not be) big differences between variants with
respect to their running time and an amount of used memory.

@ All these variants can be considered in a deterministic and
a nondeterministic version.
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Variants of Turing Machines

One-sided or two-sided infinite tape:

@ In the previous definition, we have considered a tape that is infinite in
both directions — to the left and to the right.

@ Instead, it is sometimes considered a tape that is infinite only to the
right.
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Variants of Turing Machines

It is necessary to define what should happen when the head is on the
leftmost cell of the tape and, according to the transition function, it
should move to the left.

Two most common possibilities:

@ An “error” occurs and the computation is (unsuccesfully) ended:

5(q5’ a) = (q13aba _1)
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Variants of Turing Machines

@ The left end of the tape contains a “marker” represented by a special
symbol € (I = X).

This marker can not be overwritten and a move to the left is
forbidden on this symbol, i.e., for each g € Q it holds that if
§(q,F) =(q',b,d) then b=F a d € {0, +1}.

5(q5a |_) = (q177 |_7 +1)
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Variants of Turing Machines

Remark: The possibility that a computation can end unsuccessfully
because of an error where it is no possible to continue from the given
configuration is quite common also for other types of machines we will
consider.

Generally, the following possibilities can happen in a computation:

@ The computation ends successfully in a final configuration that
corresponds to a correct halting.

@ The computation is stuck in a configuration that is not final but it is
not possible to continue there — this is considered as a computation
ending with an error.

@ The computation never halts.
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Variants of Turing Machines

Multitape Turing machines are often considered.

EERODBR0DE
D 4
herifol [z o]o]1]
Y
P ARNROEEE
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Variants of Turing Machines

In the case of a multitape machines:

@ Each of k tapes has its own alphabet, i.e., we have tape alphabets ['1,
Mo, ..., Ty

@ The transition function § is of the type

(Q-F)XTyxxXT, » QxTyx{=1,0,+1} X -+ x [, x {~1,0, +1}

Example:
5(q57 a, 17 D) = (q12a a, _17X7 Oa 17 +1)
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Variants of Turing Machines

Example:

EERODBR00E
D4
sherifol [z o]o]1]
Y
[sP+[o]i[o[#[a]]s]

5(q57 a7 17 D) = (q127 a7 _17X7 07 17 +1)
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Variants of Turing Machines

Example:

[o]a]a]a]p]a]b]e]a]

tfoft]s]o]of1]

[ot#[oft]o]#]|1]a]a]

5(q57 a7 17 D) = (q127 a7 _17X7 07 17 +1)
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Variants of Turing Machines

Example: A machine that gets as an input two natural numbers written in
binary and separated by symbols # (e.g., number 6 and 11 will be written
as “#110#" a “#1011#”).

| L[ [ [#[g]afo]e]

4
RS
Y

| | | T _lof]e]

[1]2]]
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Variants of Turing Machines

Multitape machines often use one of its tapes as an input tape and one of
its tapes as an output tape. Other tapes are used as working tapes:

@ Input tape — it contains an input word, the machine can not write
on it (it is read-only), it is not infinite

@ Working tapes — the machine can read from them and write on
them (they are read/write), at the beginning of a computation they
are empty (they contain only symbols O)

e Output tape — the machine can only write on it (it is write-only), it
can not read from it, it is empty at the beginning of a computation,
the head can move only from the left to the right
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Variants of Turing Machines

[o]a]alalp]#]o]o]]

[o}p]#[o]t]1]#[a]a]

hd
oJt]1jbfof1]o]o]1]
7
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Variants of Turing Machines

If a machine has a special separate input tape (which is read-only), the
following two variants are typically used:

@ The head on this tape can move to the left and to the right.

In this case, an input word w € ¥ * is bounded from the left and from
the right using “endmarkers”, i.e., special symbols =, € (I - X).

@ The head can move only from left to right.

Remark: The variant with possible movement in both directions and
endmarkers is more common.

If it is not specified otherwise, we will consider this variant.
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Variants of Turing Machines

Instead of several tapes, we can consider several heads on one tape:
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Variants of Turing Machines

In the variant with several heads on one tape, it is necessary to specify:

@ If there can be more than one head in the same time on one tape cell.

o If this is the case, what is the behaviour of the machine if several
heads occurring on the same cell want to write different symbols on
this cell.

@ Whether the given machine can detect the situation when several
head are on the same cell.

Remark: Of course, in general we can consider machines with several
tapes where each of these tapes is equipped with several heads.
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Variants of Turing Machines

Consider a machine with several tapes and with arbitrary number of heads
on each tape.

Instead of describing a transition function that works with all heads in
each step, we can alternatively describe the behaviour of the machine by
a program consisting of simpler instructions of the following types:

@ to move a given head by one cell to the left
@ to move a given head by one cell to the right

@ to write a specified symbol on the given position of a specified head
on a tape

@ to read one symbol from a position of a given head and to branch the
program according this symbol (i.e., to go to different states of the
control unit)
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Variants of Turing Machines

So far we considered only linear (one-dimensitional) tapes.

Instead, the memory with cells (where every cell contains one symbol from
some alphabet) can have some other structure.

For example:

@ two-dimensional square grid
— a movement of a head into four directions: left, right, up, down

@ d-dimensional memory for some d = 3,4, ...
(three-dimensional, four-dimensional, etc.)

@ a memory organized in a form of an (infinite) tree
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Linear Bounded Automaton

Linear bounded automaton (LBA):
@ A nondeterministic Turing machine that can use only the part of the
tape where its input word is written.

@ Cells of the tape, which at the beginning contain symbols of an input
word, can be arbitrarily overwritten during a computation.

o Left and right endmarkers around the word. These endmarkers can
not be overwritten.

@ It is not possible to move the head to the left of the left endmarker
and to the right of the right endmarker.
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Linear Bounded Automaton

@ Linear bounded automata can be considered in both deterministic
and nondeterministic version.

@ The nondeterministic version is considered as the default (i.e., if it is
not specified otherwise).

@ The question whether every language that can be recognized by
a nondeterministic LBA can be also also recognized by a deterministic

LBA is an open problem.

Remark: From the point of view of languages that they are able to accept
or recognize and from the point view of functions that they can compute,
linear bounded automata are considerably weaker than Turing machines
that can use memory of unbounded size (in the form of an infinite tape).
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Chomsky Hierarchy
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Generative Grammars

A generative grammar is a tuple G = (M,X, S, P), where

@ [1is a finite set of nonterminals

@ Y is a finite set of terminals, MTNY = @
@ S €11 is the initial nonterminal
°

P is a finite set of rules of the form o« — [, where
ae(Mu) N(Nux)*and e (MUX)”

Example of a rule:

CaECb — bDFbBDaC

Remark: This type of grammar is also called type-0 grammars,
unrestricted grammars, or phrase structure grammars.
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Generative Grammars

Let us assume that we have a generative grammar G = (1, %, S, P).

Relation = ¢ (MU X)* x (MuxX)*:
@ iy = p1Puy if @« = Bis a rule from P
Example: If (BcE — DDaBb) € P then

CaBCBcEAccABb = CaBCDDaBbAccABb

A language L£(G) generated by a grammar G = (I, %, S, P) is the set of
all words over alphabet ¥ that can be derived by some derivation from the
initial nonterminal S using rules from P, i.e.,

L£G)={weX"|s="w}
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Generative Grammars

Example: A grammar generating language L = {a"b"c" | n = 1}

S — aSsQ

S — abc
c@Q — Qc

bQc — bbcc

A derivation of word aaaaabbbbbccccc:

)
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Context-sensitive Grammars

Context-sensitive grammars, also called type-1 grammars, are a special
case of generative grammars.

A grammar G = (M, X, S, P) is called context-sensitive if all its rules
(with one exception given below) are of the form

aXp = ayp
where X €1, o, 8,7 € (MU )", with |y] = 1.

The only exception is that the grammar can contain the rule S — ¢.

If G contains this rule then the initial nonterminal S can not occur on the
right-hand side of any rule.

An example of a rule:

BaEC — BaDAcBC
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Context-free Grammars

Another special type of generative grammars are context-free grammars.
Context-free grammars are also called type-2 grammars.

A grammar G = (1, X, S, P) is context-free if all its rules are of the form
X =

where X €, v € (Mu ).

A example of a rule:

C — DaBBc

Z. Sawa (TU Ostrava)
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Context-free Grammars

Remark: Not every context-free grammar is context-sensitive since
a context-free grammar can contain also some other ¢-rules (i.e., rules of
the form X — ¢) in addition to S — «.

Arbitrary context-free grammar without e-rules (resp. with at most one
g-rule S — & where nonterminal S does not occur on the right-hand side
of any rule) is a special case of a context-sensitive grammar.

For every context-free grammar G, it is possible an equivalent context-free
grammar without e-rules.

So for every context-free grammar, there is an equivalent context-sensitive
grammar.
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Regular Grammars

Let us recall that a grammar is a right (resp. left) regular grammar if all
its rules are of the following forms:

e A— wB (resp. A— Bw)
o A—-w

where A,BET, wexX"

A grammar is regular if it is a right or left regular grammar.
Regular grammar are denoted as type 3 grammars.

It is obvious that regular grammars are a special case of context-free
grammars.
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Chomsky Hierarchy

So according to the types of rules that can be used in a grammar, the
grammars can be divided into these four types:

o Type-0 — General generative grammars

no restrictions on the rules

o Type-1 — Context-sensitive grammars

rules of the form aXj3 — avf3, where |y| = 1
(An exception is possible rule S — ¢, but then S does not occur on
the right-hand side of any rule.)

o Type-2 — context-free grammars
rules of the form X — ~

o Type-3 — regular grammars
rules of the form X — wY (resp. X = Yw) or X — w

where a, 8,7y € (MUX)*, X €M, andwe "
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Chomsky Hierarchy

For all these types of grammars, there are corresponding classes of
languages:

e Type-0: Language L is recursively enumerable (or of type-0)
if there exists a generative grammar generating this language.

e Type-1: Language L is context-sensitive (or of type-1)
if there exists a context-sensitive grammar generating this language.

e Type-2: Language L is context-free (or of type-2)
if there exists a context-free grammar generating this language.

o Type-3: Language L is regular (or of type-3)
if there exists a regular grammar generating this language.
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Chomsky Hierarchy

Classes of languages:
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Chomsky Hierarchy

@ An example of a language that is context-free but is not regular:
{a"b" | n =z 1}

@ An example of a language that is context-sensitive but is not
context-free:

{a"b"c" | n =1}
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Chomsky Hierarchy

@ Examples of languages that are type-0 but are not context-sensitive:

o A language consisting of words that represent logically valid formulas of
predicate logic.
e Language consisting of words that represent codes of those Turing

machines that will halt in a computation over an empty word after
a finite number of steps.

@ Examples of languages that are not of type-0:

o A language consisting of those words that represent exactly those
formulas of predicate logic, which are not logically valid.

o A language constisting of words that represent codes of those Turing
machines that never halt in a computation over an empty word.

e A language consisting of words that represent codes of those Turing
machines that will always halt after some finite number of steps in
a computation over an arbitrary word.
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Chomsky Hierarchy

@ Other possible characterizations of regular languages:

o languages accepted by finite automata (deterministic, nondeterministic,
generalized nondeterministic)

o languages that can be described by regular expressions

@ Other possible characterization of context-free languages:

e languages accepted by nondeterministic pushdown automata

@ Other possible characterization of context-sensitive languages:

o languages accepted by nondeterministic linear bounded automata

@ Other possible characterization of type-0 languages:

o languages accepted by (deterministic or nondeterministic) Turing
machines
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Chomsky Hierarchy

Chomsky hierarchy — summary:

o Type-0 — recursively enumerable languages:
e unrestricted generative grammars
o Turing machines (deterministic, nondeterministic)
e Type-1 — context-sensitive languages:
e context-sensitive grammars
e nondeterministic linear bounded automata
o Type-2 — context-free languages:
o context-free grammars
e nondeterministic pushdown automata
o Type-3 — regular languages:

e regular grammars
o finite automata (deterministic, nondeterministic)
e regular expressions
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Models of Computation
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Computation of an Algorithm

Algorithms are execuded on machines — it can be for example:

@ real computer — executes instructions of a machine code
@ virtual machine — executes instructions of a bytecode
@ some idealized mathematical model of a computer

The machine can be:
@ specialized — executes only one algorithm

@ universal — can execute arbitrary algorithm, given in a form of
program
The machine performs steps.

The algorithm processes a particular input and produces the corresponding
output during its computation.
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Models of Computation

Model of Computation — an idealized mathematical model of
a computer

@ abstracts from some unimportant implementation details

@ we want to analyze those propeties of algorithms that are as much as
possible independent of details of a machine that will execute the
given algorithm

Examples of some models of computation:

finite automata

pushdown automata

o

o

@ Turing machines

@ random-access machines
o
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Models of Computation

During a computation, the machine must remember:
@ the current instruction

@ the content of its working memory

It depends on the type of the machine:
@ what is the type of data, with which the machine works
@ how this data are organized in its memory

@ what kind of operations the machine can do with this data

Depending on the type of the algorithm and the type of analysis, which we
want to do, we can decide if it makes sense to include in memory also the
places

o from which the input data are read

@ where the output data are written
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Models of Computation

One role, for which models of computations are used for, is to define

precisely some notions that are important for specifying computational
complexity of a given algorithm:

@ running time of a given algorithm A for a given input w

(remark: typically, it is a number of steps performed during the
computation by the machine)

e amount of memory used by the machine during this computation

In general, it is also important for different models of computation

@ whether a given type of machine is able to simulate computations of
some other type of machine

@ how the running time or the amount of used memory differs compared
to the original machine
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Simulation of a Computation

Explanation what it means that a machine M is simulated by
a machine M":

@ A computation of machine M for input w is a (finite or infinite)
sequence of configurations of machine M
Qg —> (xp —> Qip —
o For this computation, there is a corresponding computation of
machine M’ consisting of configurations
fo— 51— 05—
where for every configuration «; there is some corresponding
configuration S¢(;) where f : N — N is a function, for which
f(i) < f(j) for every i and j where i < j.
@ There is a relation between configurations of machine M to
configurations of machine M' that correspond to them.
@ There are functions mapping an input w to corresponding initial
configurations ag and By and analogously functions mapping final
configurations to a result of computation.
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Simulation of a Computation

M M
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Models of Computation

Some models of computation are weaker (finite automata, pushdown
automata, ...) and they can not be used to implement an arbitrary
algorithm.

We will concentrate now on models of computation that are powerful
enough to be able to execute arbitrary algorithm (for example such that
can be represented as a program in some programming language).

Such models of computation are called Turing-complete:

@ they are able to simulate a behaviour of arbitrary Turing machine

@ their bahaviour can be simulated by a Turing machine
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Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:
6 -5 -4 3 2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:
6 -5 -4 3 2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:
6 -5 -4 3 2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:
6 -5 -4 3 2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:
6 -5 -4 3 2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:
6 -5 -4 3 2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:
6 -5 -4 3 2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:
6 -5 -4 3 2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:
6 -5 -4 3 2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:
6 -5 -4 3 2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026



Alphabet {0, 1}

A Turing machine with an arbitrary tape alphabet ' can be simulated by
a Turing machine with tape alphabet {0, 1}.

We can choose some appropriate encoding of symbols of alphabet I' by
k-bit sequences.

Example: Tape alphabet [ = {0,a,b,c,d, e, f, g}

O « 000
a < 001
b « 010
c o 011
d < 100
e o 101
f o 110
g o« 111
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Alphabet {0, 1}

A machine with tape alphabet I:

3 4 5 6 7 8 9 10 11 12 13 14 15

6(qg7,c) = (gi2,a, +1)
6(q127f) = (q57b7 _1)

The corresponding machine with alphabet {0, 1}:
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Alphabet {0, 1}

A machine with tape alphabet I:
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Alphabet {0, 1}

A machine with tape alphabet I:

3 4 5 6 7 8 9 10 11 12 13 14 15

(g7, ¢) = (qu2,2, +1)
6(q127f) = (q57b7 _1)
The corresponding machine with alphabet {0, 1}:

7 8 9-10 11 12
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A machine with tape alphabet I:
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Alphabet {0, 1}

A machine with tape alphabet I:

3 4 5 6 7 8 9 10 11 12 13 14 15

(g7, ¢) = (qu2,2, +1)
6(q127f) = (q57b7 _1)
The corresponding machine with alphabet {0, 1}:

7 8 9-10 11 12
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Alphabet {0, 1}

A machine with tape alphabet I:

3 4 5 6 7 8 9 10 11 12 13 14 15

6(qg7,c) = (gi2,a, +1)
6(q127f) = (q57b7 _1)

The corresponding machine with alphabet {0, 1}:
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Alphabet {0, 1}

In this simulation, each step of the original machine is simulated by
k + 1 steps where k is the number of bits used for encoding of one symbol

of alphabet I'.

So if the original machine performs t steps in a computation,
the simulating machine performs O(t) steps.
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Decreasing the number of states of the control unit

Remark: Similarly, as is possible to decrease the tape alphabet to only
two symbols by increasing the number of states of the control unit, it is
also possible to decrease the number of states of the control unit:

@ An arbitrary Turing machine can be simulated by a Turing machine
with only two non-final states of its control unit (and possibly with
some final states). However, this simulation requires increase in the
size of the tape alphabet.

Similarly as in the previous case, one step of the original machine is
simulated by s steps where s is a constant depending only on the number
of the states of the control unit of the original machines (i.e., the size of

set Q).

So as before, if the original machine performs t steps, the simulating
machine performs O(t) steps.
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Simulation of several heads on a tape with one head

Several heads on a tape:

- [|ofalala]ela]e]e]a]=]r a]a]afa] -

1234

A tape with one head:

p 4w
o4
O«4~
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Simulation of several tapes with one tape

Several tapes:

EEBBEEEEE

[i[d]dfeli]djofo]d]

[of=]oli o] s [E]m]a]

One tape with several heads:

OjO|la|la|b|la|b|b|O
1({1(1(0|1|1(0]|0]|1
O|# |0 (1|0 |#|O|O|0O
A 4 v A 4
2 1 3

February 11, 2026
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Simulation of several tapes with one tape

Several tapes:

EEBBEEEEE

[i[d]dfeli]djofo]d]

[of=]oli o] s [E]m]a]

One tape with one head: the variant where where marks on the tape are
moved

v
O|O|ala|blalb O
v
1111110 1|0 1
v
O|#|0 (1|0 |#|O(O|0O
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Simulation of several tapes with one tape

Several tapes:

EEBBEEEEE

[i[d]dfeli]djofo]d]

[of=]oli o] s [E]m]a]

One tape with one head: the variant where the content of tapes is moved

v
o|o|lo|%|alalblalb|b]|$
o|$|/ojof|1|1f1]0|1]|1]O
#/0|1|o|#|O0|%|o|jOo|O|O

v

February 11, 2026 301 /629
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Tapes, stacks, and counters

We consider different types of machines that have a finite control unit
equipped with some sort of memory of unbounded size.
Such memory can constist of one of more structures such as:

o Tape — reading and writing a symbol on a current position,
movement of the head to the left and to the right

Remark: The tape can be infinite of one side or on both sides.
e Stack — push, pop, a test of emptiness of the stack

o Counter — a value is a natural number, operations of incrementing
and decrementing by one, a test whether the value is equal to zero
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Stack

A stack can be viewed as a special case of a tape, which is infinite on one
side.

Stack:

[Flefela]cla]ale]

Tape:

Z. Sawa (TU Ostrava)
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Stack

A stack can be viewed as a special case of a tape, which is infinite on one
side.

Stack:

[Flcfela]cfalale]e]

Tape:

Z. Sawa (TU Ostrava)

Introd. to Theoretical Computer Science

February 11, 2026 303 /629



Stack

A stack can be viewed as a special case of a tape, which is infinite on one
side.

Stack:

[Flefela]cla]ale]

Tape:
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Stack

A stack can be viewed as a special case of a tape, which is infinite on one
side.

Stack:

[Flefela]c]a]a]

Tape:
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Stack

A stack can be viewed as a special case of a tape, which is infinite on one
side.

Stack:

[Flefela]c]z]

Tape:

Z. Sawa (TU Ostrava)
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A tape, infinite on both sides, can be simulated by two stacks:

A machine with two stacks:

[Fle]®e]e] 2[e]a]v]c]a]]
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A tape, infinite on both sides, can be simulated by two stacks:

A machine with two stacks:

[Fle]ele]e] 2la]p]c]a]H]
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Counter — a value of a counter can be an arbitrarily big natural number,
i.e., an element of the set N = {0,1,2,3,...}.

Basic operations:

@ incrementing the value by one:
x =x+1
o decrementing the value by one:
x =x-1
@ test whether the value of the counter is zero:

if (x = 0) goto ¢

Z. Sawa (TU Ostrava)
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Coun

A counter can be viewed as a special case of a stack or of a tape.

Stack:

EEHEHHEH

Counter:

7

Tape:
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Coun

A counter can be viewed as a special case of a stack or of a tape.

Stack:

EEHHEEBHBHE

Counter:

8

Tape:
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Coun

A counter can be viewed as a special case of a stack or of a tape.

Stack:

EEHEHHEH

Counter:

7

Tape:
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Coun

A counter can be viewed as a special case of a stack or of a tape.

Stack:

EEHEEHE

Counter:

6

Tape:
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Coun

A counter can be viewed as a special case of a stack or of a tape.

Stack:

[Flzfrfz]z]z]

Counter:

5

Tape:
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Minsky machine

Minsky machine — a machine with a finite control unit and a finite set
of counters xi, Xp, ..., Xk:

70 928 14 0 1024 0
X1 Xo X3 Xy X X6
Remark: In addition to symbols xq, x>, ..., we can also use symbols such

as x,y,z,... to denote counters.
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Minsky machine

A Minsky machine can be viewed as a program consisting of a sequence of
instructions, with the following five types of instructions:

@ incrementing the value of a given counter by one:

X; = x;+1
@ decrementing the value of a given counter by one:
xj = x;—1
@ test whether the value of a given counter is zero:
if (x; =0) goto ¢
@ unconditional jump:

goto /

@ halting of the computation of the program:
halt
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Minsky machine

Setting the counter x to zero:

=> [, :if (x=0) goto L,
xi=x-1

gOtO Ll 3 14 2
L2 -, X y z
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Minsky machine

Setting the counter x to zero:

Ly :if (x =0) goto L,
- xi=x-1

gOtO Ll 3 14 2
L2 -, X y z

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 309 /629



Minsky machine

Setting the counter x to zero:

Ly :if (x =0) goto L,
xi=x-1

—_ goto L4 2 14 2

L2: X y z
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Minsky machine

Setting the counter x to zero:

=> [, :if (x=0) goto L,
xi=x-1

goto L4

L2: X y z
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Minsky machine

Setting the counter x to zero:

Ly :if (x =0) goto L,
- xi=x-1

goto L4

L2: X y z

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 309 /629



Minsky machine

Setting the counter x to zero:

Ly :if (x =0) goto L,
xi=x-1

—_ goto L4 1 14 2

L2: X y z
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Minsky machine

Setting the counter x to zero:

=> [, :if (x=0) goto L,
xi=x-1

goto L4

L2: X y z
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Minsky machine

Setting the counter x to zero:

Ly :if (x =0) goto L,
- xi=x-1

goto L4

L2: X y z
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Minsky machine

Setting the counter x to zero:

Ly :if (x =0) goto L,
xi=x-1

— gOtO Ll 0 14 2

L2: X y z
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Minsky machine

Setting the counter x to zero:

=> [, :if (x=0) goto L,
xi=x-1

gOtO Ll 0 14 2
L2 -, X y z
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Minsky machine

Setting the counter x to zero:

Ly :if (x =0) goto L,

x = x—1

gOtO Ll 0 14 2

— L2: X y z
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

> [,:if (z=0) goto L3
Z:=Z—1 0 14 2
y=y+l1 X y z
goto [,

L3:
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

L, : if (z =0) goto L3
—p z = Z—]. 0 14 2
y=y+l1 X y z
goto [,
L3:
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

L, : if (z =0) goto L3
z = Z—]. 0 14 1
- y=y+l1 X y z
goto [,

L3:
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

L, : if (z =0) goto L3
z:=z-1 0 15 1
y=y+l1 X y z
—> goto [,

L3:
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

> [,:if (z=0) goto L3
z:=z-1 0 15 1
y=y+l1 X y z
goto [,

L3:
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

L, : if (z =0) goto L3
- z:=2z-1 0 15 1
y=y+l1 X y z
goto [,
L3:
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

L, : if (z =0) goto L3
z:=z-1 0 15 0
- y=y+l1 X y z
goto [,

L3:
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

L, : if (z =0) goto L3
z:=z-1 0 16 0
y=y+l1 X y z
—> goto [,

L3:
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

> [,:if (z=0) goto L3
z:=z-1 0 16 0
y=y+l1 X y z
goto [,

L3:
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

L, : if (z =0) goto L3
z:=z-1 0 16 0
y=y+l1 X y z
goto [,

—
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Minsky machine

Multiplying the value of counter x with constant 5:

x =x-1
yi=y+1
yi=y+1
yi=y+1
yi=y+1
yi=y+1
goto L,
Ly :if (y = 0) goto L3

yi=y-1
X =x+1
goto L,

Z. Sawa (TU Ostrava)
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Minsky machine

Division of the value of the counter x with constant 5 and finding out the
remainder after this division:

Ly ¢ if (x = 0) goto M
x =x-1
if (x =0) goto M,
x =x-1
if (x =0) goto M,
x =x-1
if (x =0) goto M3
x=x-1
if (x =0) goto M,
xi=x-1
yi=y+1
goto [,

Z. Sawa (TU Ostrava)
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Minsky machine

A stack can be simulated using a pair of counters — a value of the first
counter represents the content of the stack as a number of
base k = || + 1 (where I is a stack alphabet).

@ A stack on the top of the stack — the remainder of division by k
@ Pop — to divide by k

@ Push — to multiply by k and to add the code of the given symbol

The second counter is used as an auxiliary counter for performing the
above given operations.

Z. Sawa (TU Ostrava)

Introd. to Theoretical Computer Science

February 11, 2026 311 /629



Minsky machine

Example:

ae—1
b« 2
ce—3
d—14
e b
f—6
g
h < 8
ie—9

[tle]ee]c]]n]b]

63513182
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Minsky machine

Example:

ae—1
b« 2
ce—3
d—14
e b
f—6
g
h < 8
ie—9

HEOOBEREEN

635131821
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Minsky machine

Example:

ae—1
b« 2
ce—3
d—14
e b
f—6
g
h < 8
ie—9

[tle]ee]c]]n]b]

63513182

Z. Sawa (TU Ostrava)
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Minsky machine

Example:

ae—1
b« 2
ce—3
d—14
e b
f—6
g
h < 8
ie—9

[tle]ela]c]=]5]

6351318
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Minsky machine

Example:

ae—1
b« 2
ce—3
d—14
e b
f—6
g
h < 8
ie—9

[tle]el=]=]2]

635131

Z. Sawa (TU Ostrava)
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Minsky machine

Recall that a tape infinite of both sides can be simulated by a pair of
stacks.

In a Minsky machine, the content of each of these stacks can be
represented by a corresponding counter.

We also need one additional counter for the implementation of
multiplication and division by a constant on these counters representing
contents of the stacks.

We can see that a Turing machine with k tapes can be simulated by
a Minsky machine with 2k + 1 counters.
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Minsky machine

Any finite number of counters can be simulated by two counters.

One counter (let it be denoted as C) represents values of all counters
— e.g., values of three counters x, y, z can be represented in the
counter C by the number 23”57

The second counter is used as an auxiliary counter to perform
operations of multiplication and division on counter C.

Incrementing counter x by one is simulated as multiplying by 2,
incrementing counter y by one is simulated as multiplying by 3, etc.

In a similar way, decrementing counter x by one is simulated by
division of counter C by number 2, decrementing counter y by one by
division by number 3, etc.

The test if x = 0 corrensponds to test if the value of counter C is
divisible by 2, etc.
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Minsky machine

We can see that computation of an arbitrary Turing machine can be
simulated by a Minsky machine with two counters.

This simulation is extremely inefficient:

@ Already simulation of a tape of a Turing machine by three counters
requires number of steps that is exponentially bigger than the number
of steps performed by this Turing machine.

@ Simulation of these three counters using only two counters farther
exponentially increases the performed number of steps.
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Random Access Machines
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Random Access Machine

A Random Access Machine (RAM) is an idealized model of a computer.

It consists of the following parts:

@ Program unit — contains a program for the RAM and a pointer to
the currently executed instruction

@ Working memory consists of cells numbered 0,1,2,...
These cells will be denoted Ry, Ry, R», - - -
The content of the cells can be read and written to.

o Input tape — read-only
@ QOutput tape — write-only

The cells of memory, as well as the cells of input and output tapes contain
integers (i.e., elements of set Z) as their values.
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Random Access

input :
program P working
i 7|s2fo] [ | memer
0|Ro:=3 0 0
1| R :=Ro
2 | Ry :=RrEAD () 0 1
3 | if (R2 = 0) goto 10 0 2
4| [R] =R
5| Ry =R +1 0 |3
6 | goto 2 P 0 4
7| Ry =R -1
8| Ro = [Ri] : 0 |s
9 | wriTE (Rp) 0 6
10| if (R1 > Rp) goto 7
11| halt 0 7
0 |s
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Random Access Machine

Overview of instructions:

R = ¢ — assignment of a constant

Ri = R; — assignment

R = [R;] — load (reading from memory)

[R] := R — store (writing to memory)

Ri = R; op Ry — arithmetic instructions, op € {+, —, *, [}

or Ri := Rjopc
if (R; rel R;) goto ¢
or if (R; rel ¢) goto ¢

conditional jump, rel € {=, #, =, 2, <,>}

goto / — unconditional jump
R; := READ () — reading from input
WRITE (R;) — writing to output
halt — program termination
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Z. Sawa (TU Ostrava)

Rs := 42

Ry = R;

Rg := [R:]
[Ris] := Ry
R; := R3 + Rg
Rig := Rig—1

if (R, = Ry) goto 2801
if (R, # 0) goto 3581
goto 537

Ry3 := READ ()

WRITE (Ry7)

halt

assignment of a constant
assignment

load (reading from memory)
store (writing to memory)
arithmetic instruction
arithmetic instruction
conditional jump
conditional jump
unconditional jump
reading from input
writing to output

program termination

Introd. to Theoretical Computer Science February 11, 2026

Random Access Machine

Examples of instructions:
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Input
Ry := 3

: Ry := READ ()

if (R, =0) goto L3
[Ri] == Ry
Rl = Rl +1

Ry := [Ri]
WRITE (R,)

cif (Rl > RO goto L,

Rl = RO

Random Access Machine

© o N o a0 A w N = O

halt r‘w

[T T 7

()utput

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science
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Random Access Machine

Input .
— Ri = Ry

Ly : R, :=READ () 2
if (R, = 0) goto L3 3
[Ri] := R, 4
Ry := R +1 5
goto [, 6
lry: R == Ry —1 7
Ry := [Ri] 8

WRITE (R,)
Lyt if (R > Ry) goto Ly ’
TTITIIT1™
Output 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science
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Random Access Machine

Input
Ry := 3

: Ry := READ ()

if (R, =0) goto L3
[Ri] == Ry
Rl = Rl +1

Ry := [Ri]
WRITE (R,)

cif (Rl > RO goto L,

Rl = RO

© o N o a0 A w N = O

halt r‘w

[T T 7

()utput
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Input
Ry := 3

L1 : R, :=READ ()
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Random Access Machine

Main differences with respect to real computers:
@ The size of memory is not limited (an address can be an arbitrary
natural number).

@ The size of a content of individual memory cells is not limited (a cell
can contain an arbitrary integer).

@ It reads data sequantially from an input that consists of a sequence of
integers. The input is read-only.

o It writes data sequantially on the output that consists of a sequence
of integers. The output is write-only.
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Random Access Machine

@ Operations like an access to a memory cell with an address less than
zero or division by zero result in an error — the computation is stuck.

@ For an initial content of memory there are basically two possibilities
how to define it:
o All cells are initialized with value 0.
e Reading a cell, to which nothing has been written, results in an error.

Cells at the beginning contain a special value (denoted here by
symbol ‘?") that represents that the given cell has not been initialized
yet.

e We could consider also variants of RAMs where memory cells (and
cells of input and output) do not contain integers (i.e., the elements
of set Z) but they can contain only natural numbers (i.e., elements of
set N).

For example, operation of subtraction (R; := R; — Ry) then behaves
in such a way that whenever the result should be a negative number,
then value 0 is assigned as the result.
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Random Access Machine

o Different variants of RAMs can differ in what particular operations
can be used in arithmetic instructions.

For example:

e a support of bitwise operations (and, or, not, xor, ...), bit shifts, ...

e a variant of RAM that does not have operations for multiplication and
division

@ We could also consider a variant of RAM where instead of
instructions of the form

if (R; rel R;) goto ¢ nebo if (R; rel ¢) goto ¢

all conditional jumps are of the form
if (R; rel 0) goto /¢

Instead of all relations {=, #, <, =, <, >}, only a subset of them can
be supported, e.g., {=,>}.
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Random Access Machine

@ In some variants of RAM, the input and output are not in a form of
sequence of numbers.

Instead, such machine could work with input and output tapes
containg sequences of symbols from some alphabet, e.g., {0,1}.
This machine then could have for example some instructions that
allow the branch the computation according to a symbol read from
the input.

However, the internal memory even in this variant works with
numbers.

When a machine should produce an answer of the form Yes/No
(i.e., to accept or reject the given input), it does not need to have an
output tape.

Instruction halt is then replaced with instructions accept and reject.
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Random Access Machine

@ In the standard definition of RAM, jump instructions jumping to an
adress stored in some memory cell are usualy not considered:

goto R;

RAM could be extended with these instructions.

@ For RAMs, a code of a program is usually stored in a separate
read-only memory, not in a working memory.

So the code can not be modified during a computation.
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Random Access Machine

@ A type of a machine, similar to RAM, but where its program is stored
in its working memory (instructions are encoded by numbers) and so
it can be modified during a computations, is called RASP
(random-access stored program).

RASP can simulate behaviour of self-modifying programs.
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Turing Machine Simulating RAM

It is not difficult to come with a general way how a computation of an
arbitrary Turing machine can be simulated by RAM.

To simulate behaviour of an arbitrary RAM by a Turing machine is more
complicated.

In the description of how a Turing machine can simulate a RAM, it is
simpler to proceed by smaller steps:

@ We will show how to simulate a varint of RAM described before by
a variant of RAM with somewhat simpler instructions.

@ We will show how to simulate the behaviour of this simpler variant of
RAM by a multitape Turing machine.

@ We have already seen before how a multitape Turing machine can be
simulated by one-tape Turing machine.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 328 /629



A simpler variant of RAM

This simpler variant of RAM has, in addition to its working memory, also
three registers:

o register A — almost all instructions work with this register, results of
all operations are stored into this register

Remark: This kind of register is often called an accumulator.

o register B — this register is used to store the second operand of
arithmetic instructions (the first operand is always in the accumulator)

o register C — this register is used to store an address of a memory
cell, to which a value is written by a store operation

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 329 /629



A simpler variant of RAM

Overview of instructions:

c — assinment of a constant
= A — assinment to register B
A — assinment to register C

— load (reading from memory)

J>QJ>GUUJ>
'_'u
>

= A — store (writing to memory)
=AopB — arithmetic instructions, op € {+, —, *, [}
if (A rel 0) goto ¢ — conditional jump, rel € {=,#,=,2,<,>}
goto / — unconditional jump
A := READ () - reading from input
WRITE (A) — writing to output
halt — program termination
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A simpler variant of RAM

For example, instruction

R7 = R3+R6

can be replaced with a sequence of instructions:

A:=7
C:=A
A:=6
A := [A]
B:=A
A:=3
A := [A]
A:=A+B
[C]:=A
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A simpler variant of RAM

For example, instruction

[Ris] := Ry

can be replaced with a sequence of instructions:

Il
—_
(6;]

(D
I
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A simpler variant of RAM

For example, instruction
if (R4 = Ry1) goto /¢

can be replaced with a sequence of instructions:

A =11
A = [A]
B :=

A= 4
A= [A]
A:=A-B

=

(A=0) goto ¢
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Turing Machine Simulating RAM

A Turing machine works with words over some alphabet, while a RAM
works with numbers. But numbers can be written as sequences of symbols
and conversely symbols of an alphabet can be written as numbers.

For example the following input of a RAM

can be represented for a Turing machine as

[#[e]o]s]e[e]s]ofs]e]-[a]s][#]o]#]1]1]o]#]
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Turing Machine Simulating RAM

A Turing machine simulating a computation of a RAM has several tapes:
@ A tape containing a content of the working memory of the RAM.

@ Three tapes containing values of registers A, B, and C.

(Values of registers A, B, and C will be written on these tapes in
binary and delimited from the left and from the right by symbols #.)

@ A tape representing the input tape of the RAM.
@ A tape representing the output tape of the RAM.

@ One auxiliary tape used for an implementation of the simulation of
some instructions.
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Turing Machine Simulating RAM

The Turing machine stores the information about the instruction of the
RAM that is currently executed in its control unit.
Execution of most of instructions is not difficult:

e A:=c

it writes bits of the constant ¢ to the tape of register A

@ B:=AorC:=A
it will copy a content of the tape of register A to the tape of
register B or C

e goto /

just changes the state of the control unit of the Turing machine

o if (A rel 0) goto /, kde rel € {=,#,<,=,<,>}

the content of the working register is tested and the state of the
control unit is changed accordingly
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Turing Machine Simulating RAM

e A:=READ ()

copy the value (marked at the ends by symbols “#") from the input
tape to the tape of register A

@ WRITE (A)
copy the value of register A to the output tape.

o halt

the computation halts
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Turing Machine Simulating RAM

Also arithmetic instructions are rather easy to implement, although the
a little bit more complicated than the previous instructions:

o A := AopB, where op € {+,—, *, [}

The Turing machine performs the given operation (such as addition
or subtraction) bit by bit, the result is stored to register A.

Remark: Multiplication and division can be done as a sequence of
additions and bit shifts.

In the implementation of addition and division, it may be necessary to use
an auxiliary tape to store intermediate results.
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Turing Machine Simulating RAM

Probably the most complex is the implementation of the RAM memory.

One possibility is to store only values of those cells that were actually used
so far in the computation of the RAM (we know that all other cells
contain value 0).

Example: The RAM worked so far only with cells 2, 3 and 6:
@ Cell 2 contains value 11.
@ Cell 3 contains value —1.

@ Cell 6 contains value 2.

The content of the tape of the Turing machine representing the content of
the memory of the RAM will be as follows:

[$#]z]o]:[efofsfe]e[s]a]:[-[e]e]s]a]o[:[s]o]#]$]
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Turing Machine Simulating RAM

Load instruction, i.e., A := [A]:

@ The Turing machine will search the given address, stored in register A,
on the tape containg the content of the memory of the RAM.
(If it does not find it, it will appened it at the end with value 0.)

@ The given value in the cell is copied to the tape of register A.
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Turing Machine Simulating RAM

Store instruction, i.e., [C] := A:

@ Similarly as before, the Turing machine will find the position of the
tape representing a content of the memory, where the value in the
given address, stored in register C, occurs.

@ The rest of the memory tape is copied to an auxiliary tape.

@ The content of the tape of register A is copied to the corresponding
place.

@ The rest of the tape, copied on the auxiliary tape, is copied back to
the memory tape (after the newly written value).
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Algorithms

Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 20



Usually, we will not represent algorithms as programs for a RAM but
rather as programs in some high-level programming language.

We will not use any particular programming language.

Rather, we will write programs in a form of pseudocode whose syntax
could be adjusted in arbitrary ways according to our needs (e.g., we will
use things like arbitrary mathematical notation, descriptions in a natural
language, and so on, freely).

Example:

Algorithm: An algorithm for finding the maximal element in an array

FIND-MAX (A, n):
k:=0
fori:=1ton—-1do
L if A[i]> A[k] then
| k=i

return Al k]
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Algorithms

Remark:

From the point of view of an analysis how a given algorithm works, it
usually makes only a little difference if the algorithm:

@ reads input data from some input device (e.g., from a file, from
a keyboard, etc.)

@ writes data to some output device (e.g., to a file, on a screen, etc.)

or

@ reads input data from a memory (e.g., they are given to it as
parameters)

e writes data somewhere to memory (e.g., it returns them as a return
value)

So in a pseudocode, input data will be often given as arguments of
a function and an output will be represented as a return value of this
function.
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Control Flow

Instructions can be roughly devided into two groups:

@ instructions working directly with data:
e assignment
e evaluation of values of expressions in conditions
e reading input, writing output
o ...

@ instructions affecting the control flow — they determine, which
instructions will be executed, in what order, etc.:

branching (if, switch, ...)

cycles (while, do .. while, for, ...)

organisation of instructions into blocks

returns from subprograms (return, ...)
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Control Flow Graph

i=i+1
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Some Basic Constructions of Structured Programming

5,5 if B then S5; else S, if B then S
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Some Basic Constructions of Structured Programming

Q
[-B
@)
[B]
[-B]
©
while B do S do S while B
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Some Basic Constructions of Structured Programming

i:=a
while / <= b do
S
=il it=i+l

fori:=atobdo S
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Some Basic Constructions of Structured Programming

Short-circuit evaluation of compound conditions, e.g.:

while i < nand A[i]> x do ...

if B; and B, then S; else 5, if B; or B, then S; else 5,
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Control-flow Realized by GOTO

@ goto ¢ — unconditional jump

o if B then goto / — conditional jump

Example:

if A[i] < A[k] then goto 5

i=i+1
if i < n then goto 3
return A[ k]

NOOR NS
-
|

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science

February 11, 2026

349 / 629



Control-flow Realized by GOTO

@ goto ¢ — unconditional jump

o if B then goto / — conditional jump

Example:

start:

L1:

L2:
L3:

k:=0

=1

goto L3

if A[i] < Alk] then goto L2
k=i

i=i+1

if i < n then goto L1

return A[ k]

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science
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Evaluation of Complicated Expressions

Evaluation of a complicated expression such as
Ali+s]:=(B[3%j+1]+x)*y+8

can be replaced by a sequence of simpler instructions on the lower level,
such as

ti1i=i+s

ty:=3%]

th :=tr + 1
t3 := B[t>]
t3 :=t3+Xx
t3:=t3%y
t3 :=t3 + 8
Alti]:=t3

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 350 /629



Computation of an Algorithm

Configuration — the description of the global state of the machine in
some particular step during a computation

Example: A configuration of the form

(g, mem)

where

@ g — the current control state

@ mem — the current content of memory of the machine — the values
assigned currently to variables.

An example of a content of memory mem:

(A: [3,8,1,3,6], n:5 i1, k:0, result: ?)
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Computation of an Algorithm

An example of a configuration:

(2, (A:[3,8,1,3,6], n: 5, it 1, k:0, result: 7))

A computation of a machine M executing an algorithm Alg, where it
processes an input w, in a sequence of configurations.

@ It starts in an initial configuration.

@ In every step, the machine goes from one configuration to another.
@ The computation ends in a final configuration.

Z. Sawa (TU Ostrava)
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Computation of an Algorithm

i=i+1

February 11, 2026 353 /629
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Computation of an Algorithm

Example: A computation, where algorithm FIND-MAX processes an input
where A =[3,8,1,3,6] and n = 5.
ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
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Computation of an Algorithm

Example: A computation, where algorithm FIND-MAX processes an input
where A =[3,8,1,3,6] and n = 5.

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A: [3,8,1,3,6], n: 5, i:?, k:0, result: 7))
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Computation of an Algorithm

Example: A computation, where algorithm FIND-MAX processes an input
where A =[3,8,1,3,6] and n = 5.

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k:O0, result: 7))
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Computation of an Algorithm

Example: A computation, where algorithm FIND-MAX processes an input
where A =[3,8,1,3,6] and n = 5.

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
az: (3, (A:[3,8,1,3,6], n: 5, i: 1, k: 0, result: 7))
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Computation of an Algorithm

Example: A computation, where algorithm FIND-MAX processes an input
where A=[3,8,1,3,6] and n=5

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
az: (3, (A:[3,8,1,3,6], n: 5, i: 1, k: 0, result: 7))
ay: (4, (A:[3,8,1,3,6], n: 5, i1, k: 0, result: 7))
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Computation of an Algorithm

Example: A computation, where algorithm FIND-MAX processes an input
where A =[3,8,1,3,6] and n = 5.

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
az: (3, (A:[3,8,1,3,6], n: 5, i: 1, k: 0, result: 7))
ag: (4, (A:[3,8,1,3,6], m:'5, it 1, k:0, result: 7))
as: (5, (A:[3,8,1,3,6], n: 5, i:1, ki1, result: 7))
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Computation of an Algorithm

Example: A computation, where algorithm FIND-MAX processes an input
where A =[3,8,1,3,6] and n = 5.

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
az: (3, (A:[3,8,1,3,6], n: 5, i: 1, k: 0, result: 7))
ag: (4, (A:[3,8,1,3,6], m:'5, it 1, k:0, result: 7))
as: (5, (A:[3,8,1,3,6], n: 5, i:1, ki1, result: 7))
ag: (2, (A:[3,8,1,3,6], n: 5, i:2, k:1, result: 7))
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Computation of an Algorithm

Example: A computation, where algorithm FIND-MAX processes an input
where A =[3,8,1,3,6] and n = 5.

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
az: (3, (A:[3,8,1,3,6], n: 5, i: 1, k: 0, result: 7))
ay: (4, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
as: (5, (A:[3,8,1,3,6], n: 5, i:1, ki1, result: 7))
ag: (2, (A:[3,8,1,3,6], n: 5, i:2, k:1, result: 7))
a7 (3, (A:[3,8,1,3,6], n: 5, i:2, k:1, result: ?))
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Computation of an Algorithm

Example: A computation, where algorithm FIND-MAX processes an input
where A =[3,8,1,3,6] and n = 5.

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
az: (3, (A:[3,8,1,3,6], n: 5, i: 1, k: 0, result: 7))
ay: (4, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
as: (5, (A:[3,8,1,3,6], n: 5, i:1, ki1, result: 7))
ag: (2, (A:[3,8,1,3,6], n: 5, i:2, k:1, result: 7))
a7 (3, (A:[3,8,1,3,6], n: 5, i:2, k:1, result: ?))
ag: (5, (A: [3,8,1,3,6], n: 5, i:2, k:1, result: 7))
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Example: A computation, where algorithm FIND-MAX processes an input

=5.

[3,8,1,3,6] and n
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Example: A computation, where algorithm FIND-MAX processes an input
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[3,8,1,3,6] and n
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Example: A computation, where algorithm FIND-MAX processes an input
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[3,8,1,3,6] and n
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Example: A computation, where algorithm FIND-MAX processes an input
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[3,8,1,3, 6] and n
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Example: A computation, where algorithm FIND-MAX processes an input
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[3,8,1,3, 6] and n

where A
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Computation of an Algorithm

By executing an instruction /, the machine goes from configuration « to
configuration o

A computation can be:
o Finite:
Iy L b [} Iy le—2 le-1
Qp = Q1 Ty T Q3 T 0y Tt T O] T O
where «; is either a final configuration or a configuration where an
error occurred and it is not possible to continue in the computation
o Infinite:

lo I ) [} Iy
g —> ] —> Q) —> Q3 —> (g —
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Computation of an Algorithm

A computation can be described in two different ways:

@ as a sequence of configurations ag, a, s, . ..

@ as a sequence of executed instructions Iy, 1, b, . ..
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Church-Turing Thesis

It should be clear from the previous discussion that:

@ A program written in an arbitrary programming language could be
translated to a program for a RAM.

@ Behaviour of a RAM could be simulated by a Turing machine.

So the behaviour of a program written in an arbitrary programming
language could be simulated by a Turing machine.

Church-Turing thesis
Every algorithm can be implemented as a Turing machine.

It is not a theorem that can be proved in a mathematical sense — it is not
formally defined what an algorithm is.

The thesis was formulated in 1930s independently by Alan Turing and
Alonzo Church.
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Church-Turing Thesis

Examples of mathematical formalisms modelling the notion of an
algorithm:

@ Turing machines
Random Access Machines
Lambda calculus

Recursive functions

We can also mention:

@ An arbitrary (general purpose) programming language (for example C,
Java, Python, Lisp, Haskell, Prolog, etc.).

All these models are equivalent with respect to algorithms that can be
implemented by them.
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Proving Correctness of Algorithms
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Correctness of Algorithms

Algorithms are used for solving problems.

@ Problem — a specification what should be computed by
an algorithm:
o Description of inputs
e Description of outputs
e How outputs are related to inputs

@ Algorithm — a particular procedure that describes how to compute
an output for each possible input

Algorithm is a correct solution of a given problem if it halts for all inputs
and for all inputs it produces a correct output.

Example:

Problem: The problem of sorting
Algorithm: Quicksort
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Correctness of Algorithms

Example:

The problem of finding a maximal element in an array:

Input: An array A indexed from zero and a number n representing
the number of elements in array A. It is assumed that n = 1.

Output: A value result of a maximal element in the array A, i.e., the
value result such that:

o A[j] = result for all j € N, where 0 < j < n, and
@ there exists j € N such that 0 < j < n and A[j] = result.

An instance of a problem — concreate input data, e.g.,
A=[3,8,1,5,8,6,11,4,10,5], n = 10.

The output for this instance is value 11.
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Correctness of Algorithms

Algorithm: An algorithm for finding the maximal element in an array

FIND-MAX (A, n):
k:=0
fori:=1ton—-1do
L if A[i]> A[k] then

Lk:=i

return Al k]
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Correctness of Algorithms

An algorithm Alg solves a given problem P, if for each instance w of
problem P, the following conditions are satisfied:

@ The computation of algorithm Alg on input w halts after finite
number of steps.

@ Algorithm Alg generates a correct output for input w according to
conditions in problem P.

An algorithm that solves problem P is a correct solution of this problem.
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Correctness of Algorithms

Algorithm Alg is not a correct solution of problem P if there exists an
input w such that in the computation on this input, one of the following
incorrect behaviours occurs:

@ some incorrect illegal operation is performed (an access to an element
of an array with index out of bounds, division by zero, ...),

@ the generated output does not satisfy the conditions specified in
problem P,

@ the computation never halts.

Testing — running the algorithm with different inputs and checking
whether the algorithm behaves correctly on these inputs.

Testing can be used to show the presence of bugs but not to show that
algorithm behaves correctly for all inputs.
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Correctness of Algorithms

Typically, the set of possible instances of a given problem is infinite (or at
least very big), so it is not possible to test the behaviour of the algorithm
for all instances.

As a justification and a verificatoin of the fact that an algorithm is
a correct solution of a given problem, we need to have a proof that takes
into account all possible computations on all possible inputs.

Generally, it is reasonable to divide a proof of correctness of an algorithm
into two parts:

@ Showing that the algorithm never does anything “wrong” for any
input:
e no illegal operation is performed during a computation
o if the program halts, the generated output will be “correct”

@ Showing that for every input the algorithm halts after a finite number
of steps.
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Invariants

Consider an arbitrary system consisting of:

@ a set of states (or configurations) — it can be infinite
@ transitions between these states

@ some states are specified as initial

A state is reachable if it is possible to reach it from some initial state
using a sequence of transitions.

An invariant is a condition determining a subset of states such that all
reachable states satisfy these condition:

@ it is satisfied in all initial states

o if it is satisfied in a state and there is a transition from this state, by
which the system goes to another state in one step, then this
condition will be satisfied also in this other state
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Invariants

reachable states

all states

states where
the invariant holds
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Invariants

Example: We will move with a knight (a chess piece) on a chessboard
and at the same time we will count the number of the moves performed,;
the knight starts on some white square in the leftmost column:

Z. Sawa (TU Ostrava)
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Invariants

@ States — pairs consisting of a current position of the knight on the
chessboard and a value of the counter giving the number of moves
performed so far

e Transitions — making one move with the knight (according to the
rules of chess) and incrementing the counter by one

o Initial states — the knight is on a white square in the leftmost
column and the value of the counter is 0
For example, the following invarint holds:

o if the value of the counter is even, the knight is on a white square

o if the value of the counter is odd, the knight is on a black square
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Invariants

Example: Algorithm FIND-MAX represented as a control-flow graph

it=i+1
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Introd. to Theoretical Computer Science

Z. Sawa (TU Ostrava)



Invariants

A computation for input A =3,8,1,3,6] and n =5 as a sequence of
configurations:

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
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Invariants

A computation for input A =3,8,1,3,6] and n =5 as a sequence of
configurations:

ap: (0, (A: [3,8,1
1

3,8 , it 7, ki 7, result: 7))
ag: (1, (A: [3,8, )

5
5, i:?, k0, result: ?)
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Invariants

A computation for input A =3,8,1,3,6] and n =5 as a sequence of
configurations:

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
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Invariants

A computation for input A =3,8,1,3,6] and n =5 as a sequence of
configurations:

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
az: (3, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
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Invariants

A computation for input A =3,8,1,3,6] and n =5 as a sequence of
configurations:

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
az: (3, (A:[3,8,1,3,6], n: 5, i: 1, k: 0, result: 7))
ag: (4, (A:[3,8,1,3,6], n: 5, i: 1, k: 0, result: 7))
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Invariants

A computation for input A =3,8,1,3,6] and n =5 as a sequence of
configurations:

ap: (0, (A:[3,8,1,3,6], n: 5, i:?, k:?, -result:?))
ag: (1, (A:[3,8,1,3,6], n: 5, i:?, k:0, result: 7))
ar: (2, (A:[3,8,1,3,6], n: 5, i:1, k: 0, result: 7))
az: (3, (A:[3,8,1,3,6], n: 5, i: 1, k: 0, result: 7))
ag: (4, (A:[3,8,1,3,6], nm:'5, it 1, k:0, result: 7))
as: (5, (A:[3,8,1,3,6], n: 5, i:1, ki1, result: 7))
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Invariants

@ States — configurations consisting of a state of the control unit and
a content of the memory represented by values of all variables.

o Transitions — they are determined by instructions on the edges of
the control-flow graph, they change both the control state and the
content of the memory by assigning values to variables

o Initial states — all possible initial configurations for all possible input
instances that are allowed according to a specification of the problem

Invariants will be propositions referring to configurations, i.e., they talk
about states of the control unit and values of the variables

o If the control state is 2, then, in the given configuration, it holds that
1<i=<n 0<k<i and Al k] is the greatest of the elements

Alo], A[1],..., Ali - 1]
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Invariants

For those systems, where configurations contain a control state, it can be
convenient to state invariants in the form:

@ if the control state is 0, then g holds
o if the control state is 1, then 1 holds
o if the control state is r, then ¢, holds

where the propositions ¢g, ¢1, .. ., @, refer only to the content of the
memory, not to the control state.

Configurations can divided into (finitely many) groups according to the
states of the control unit.
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Invariants

invariant ¢,

invariant g
invariant 3

control state 6
control state 3
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Invariants

Invariant — a condition that must be always satisfied in a given position
in a code of the algorithm (i.e., in all possible computations for all allowed
inputs) whenever the algorithm goes through this position.

Invariants can be written as formulas of predicate logic:

o free variables correspond to variables of the program

@ a valuation is determined by values of program variables in a given
configuration

Example: Formula

holds for example in a configuration where variable i has value 5 and
variable n has value 14.
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Invariants

Established invariants can be useful for many different purposes:

@ They can help in better understanding the behaviour of the algorithm.

@ They can be used to verify that ceirtain types of errors do not occur
— e.g., an out of bounds array access, division by zero, ...

We can verify that in those places in the code where such errors could
potentially occur the invariants hold that ensure that the variables will
always have values, for which the given error can not occur.

Example: When element A[i] will be accessed, it will always hold
that 0 </ < n, where n is the length of the array.

An invariant that will hold in the final configurations will ensure that
the output of the algorithm is correct with respect to the specification
of the problem.

In an analysis of the computational complexity, they could be useful
in the examination how many times some instructions will be
performed or how much memory is needed during the computation.
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Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm FIND-MAX for input

A=[3,8,1,5,8,6,11,4,10,5], n = 10.

k n
! !
o 1 2 3 4 5 6 7 8 9
Al8]s|1|s5]8]6]11]4]10]5]
1

i
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Invariants

Examples of invariants:

@ an invariant in a control state g is represented by a formula ¢4

Invariants for individual control states (so far only hypotheses):

° po: (n=1)

e p1: (n=21)A(k=0)

o wo: (nz21)A(1=i<=nA(0=k<i)
o3 (nz21)A(l=i<n)A(0=k<i)
e i (nz1)A(1=si<n)A(0sk<i)
o ps: (nz21)A(1=i<n)A(0=k=<i)
@ wo: (n=21)A(i=n)A (0= k<n)

e v: (n=1)A(i=n)A(0<k<n)
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Invariants

Checking that the given invariants really hold:

@ We must check that the given invariants hold in the initial
configurations — this is usually simple.

@ |t is necessary to check for each instruction of the algorithm that
under the assumption that a specified invariant holds before an
execution of the instruction, the other specified invariant holds after
the execution of the instruction.

Let us assume the algorithm is represented as a control-flow graph:
@ edges correspond to instructions
@ consider an edge from state g to state q' labelled with instruction /

@ let us say that (so far non-verified) invariants for states g and q are
expressed by formulas ¢ and

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 379 /629



Invariants

@

-~

OK.

o for this edge we must check that for every configurations

!
o = (g, mem) and o = (¢', mem') such that &« — ¢/, it holds that if

e ¢ holds is configuration «,
then
e 7 holds in configuration o
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Invariants

Checking instructions, which are conditional tests:

@ an edge labelled with a conditional test [ B]
OM
[B]

OK.

A content of memory is not modified, so it is sufficient to check that the
following implication holds

(¢ AB) =1
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Invariants

Example:

(nz1)A(l=i=n)A(0=<k<i)
[i < n]
(n=21)A(l<i<n)A(0=k<i)

It is sufficient to check that the followng implication holds:

olf(n=1)A(1=i=n)A(0=sk<i)Aa(i<n),
then (n=21)A(1<i<n)A(0=k<i).
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Example:

It is sufficient to check that the followng implication holds:

elf(nz1)A(1l=i=n)A(0=<k<i)Aa(izn),
then (n=1) A (i=n)A(0=<k<n).

Invariants
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Invariants

Checking those instructions that assign values to variables (they modify
a content of memory):

@ an edge labelled with assignment x := E

<P

(@) ¢

We must distinguish between the values of variable x before this
assignment and after this assignment.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 383 /629



Invariants

We will need the following operation of substitution on formulas:

elE/x]
denotes a formula obtained from variable ¢ when we substitute an

expressiion E for all free occurrences of variable x in formula ¢.

Example: Let us say that ¢ is formula (1 < i) A (i < n).

Notation ¢[i'/i] then denotes formula
(1<iYAa(i'<n)
and notation o[ (i + 1)/i] denotes formula

(1=i+1)A(i+1=n)
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Invariants

<P

We will introduce a new variable x' representing the value of variable x
after executing this assignment.

We need to check that the following implication holds:

(o n(x'=E)) = o[x/x]
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Invariants

Example:

e (nz1)A(1<i<n)A(0=<k<i)

e (n=1)A(l<i<n)A(0=k=i)

It is sufficient to check that the following implication holds:

olf(n=1)A(1<i<n)A(0<k<i)Aa(k=1i),
then (n=1)A(1<i<n)A(0=<k <i).
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Invariants

Example:

(nz1)A(l<i<n)A(0=<k=i)
ii=i+1
(nz1)A(l=izsn)A(0<k<i)

It is sufficient to check that the following implication holds:

olf(nz1)A(l<i<nmA(0<k<i)A(i'=i+1),
then (n=1)A(1<i'<n)A(0<k<i).
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Invariants

Finishing the checking that the algorithm FIND-MAX returns a correct
result (under assumption that it halts):

@ Yy:
° YPq:
° 5!
° 3!
@ Yy
@ s5:
° g:
° Y7

Z. Sawa (TU Ostrava)

(VjeN)(0=sj<n— A[j]=

n A A[j] = result)
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Invariants

Usually it is not necessary to specify invariants in all control states but
only in some “important” states — in particular, in states where the
algorithm enters or leaves loops:

It is necessary to verify:
@ That the invariant holds before entering the loop.

@ That if the invariant holds before an iteration of the loop then it
holds also after the iteration.

@ That the invariant holds when the loop is left.
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Invariants

Example: In algorithm FIND-MAX, state 2 is such “important” state.

In state 2, the following holds:

For each j such that 0 < j < i it holds that A[j] = A[k].

February 11, 2026

389 /629
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Invariants

Examples that show how invariants for some other states could be
determined, if we already have determinants for some states:

80
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Invariants

Examples that show how invariants for some other states could be
determined, if we already have determinants for some states:

o (B= 1) A (=B = 1)
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Invariants

Example:

Algorithm: Insertion sort

INSERTION-SORT (A, n):
for j:=1ton-1do
x = A[J]
i=j—1
while i = 0 and A[i] > x do
Ali+1]:= Ali]
L ji=i-1

Ali+1]:=x
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Invariants

Example: A computation of algorithm INSERTION-SORT for input

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

0 1 2 3 4 5 6 7 8 9
13]8|1|5]8]6[11]4]10]5]

x =7
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Invariants

Example: A computation of algorithm INSERTION-SORT for input
A=1[3,8,1,5,8,6,11,4,10,5], n = 10.
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Invariants

Example: A computation of algorithm INSERTION-SORT for input
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Invariants

Example: A computation of algorithm INSERTION-SORT for input
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Invariants

Let us assume that the input is an array A = [ag, a,...,a,—1] and
number n (where n = 1) specifying the length of this array, i.e., at the
beginning, it holds for each i, where 0 < i < n, that A[i] = a;.

@ At the beginning of the for cykle (i.e., always before executing test
J < n, resp. j = n—1), the following invariants hold:
e l=<j=<n
o Elements of the array A[0], A[1],..., A[j — 1] contain values
agp, ai, ..., aj—1 sorted from the smallest to the biggest, i.e.,
Al0] = A[1] = - = A[j - 1]
o Elements of the array A[j], A[j + 1],..., A[n — 1] contain values
aj,dj+15 -+, dn-1, i.e.,
Alj] = aj, Alj+1]= Aj41s s Aln—1]=a,1
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Invariants

@ At the beginning while cycle (i.e., always before executing test i = 0),
the following invariants hold:

1<j<n
-1=<i<j
Variable x contains value a;, i.e., x = a;.

Elements of the array A[0], A[1],..., A[/]
and A[i + 2], A[i +3],..., A[j] contain values ag, ay, . . ., aj—; ordered
from the smallest to the biggest, i.e.,

A0l = All] == A[i]=Ali+2] < A[i+3] = - < A[j]
All elements A[i + 2], A[i +3],...,A[j] are strictly greater than x.

Elements of the array A[j + 1], A[j +2],..., A[n — 1] contain values
3j+1, 342, - - -, An-1, 1€,
AU+ 1] = 3j41, AL/+ 2] = 3j42, .- -, A[n— 1] = ap-1
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Finiteness of a Computation

Two possibilities how an infinite computation can look:

@ some configuration is repeated — then all following configurations are
also repeated

@ all configurations in a computation are different but a final
configuration is never reached
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Finiteness of a Computation

One of standard ways of proving that an algorithm halts for every input
after a finite number of steps:

@ to assign a value from a set W to every (reachable) configuration

@ to define an order < on set W such that there are no infinite (strictly)
decreasing sequences of elements of W
@ to show that the values assigned to configuration decrease with every
. . . . . /
execution of each instruction, i.e., if « — o' then
f(a) > f(a')
(f(a), f(a’) are values from set W assigned to configurations «
and o)
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Finiteness of a Computation

As a set W, we can use for example:

@ The set of natural numbers N = {0,1,2,3,...} with ordering <.

@ The set of vectors of natural numbers with lexicographic ordering,
i.e., the ordering where vector (ay, as, ..., an,) is smaller than
(by, by, ..., b,), if
o there exists i such that 1 </ < m and i < n, where a; < b; and for all j
such that 1 < j </ it holds that a; = b;, or

e m < nand for all j such that 1 = j < mis a; = b;.
For example, (5,1,3,6,4) < (5,1,4,1) and (4,1,1) < (4,1,1,3).

Remark: The number of elemets in vectors must be bounded by
some constant.
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Finiteness of a Computation

i=i+1

February 11, 2026 398 /629
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Finiteness of a Computation

Example: Vectors assigned to individual configurations:

e State 0: f(a) = (4)
e State 1: f(a) = (3)
e State 2: f(a) =(2,n—1,3)
e State 3: f(a) =(2,n—1,2)
e State 4: f(a) =(2,n—i,1)
e State 5: f(a) =(2,n—1i,0)
e State 6: f(a) = (1)
e State 7: f(a) = (0)
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Finiteness of a Computation

(2,n—1i,0)
it=i+1
(27,7_/’3)

We must take into account that the value of variable i is modified by this
instruction.

A transition from a configuration with assigned vector (2, n—i,0) to
a configuration with assigned vector (2, n — i 3), where i=i+1.

It is obvious that n—i' < n—1i,sincen— (i +1) < n—i.
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Computational Complexity of Algorithms
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Complexity of an Algorithm

Computers work fast but not infinitely fast. Execution of each
instruction takes some (very short) time.

The same problem can be solved by several different algorithms. The
time of a computation (determined mostly by the number of executed
instructions) can be different for different algorithms.

We would like to compare different algorithms and choose a better
one.

We can implement the algorithms and then measure the time of their
computation. By this we find out how long the computation takes on
particular data on which we test the algorithm.

We would like to have a more precise idea how long the computation
takes on all possible input data.
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Complexity of an Algorithm

@ A running time is affected by many factors, e.g.:

the algorithm that is used

the amount of input data

used hardware (e.g., the frequency at which a CPU is running can be
important)

the used programming language — its implementation
(compiler/interpreter)

@ If we need to solve problem for “small” input data, the running time
is usually negligible.

e With increasing amount of input data (the size of input), the running
time can grow, sometimes significantly.
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Complexity of an Algorithm

e Time complexity of an algorithm — how the running time of the
algorithm depends on the amount of input data

@ Space complexity of an algorithm — how the amount of a memory
used during a computation grows with respect to the size of input

Remark: The precise definitions of these notion will be given in a moment.

Remark:

@ There are also other types of computational complexity, which we will
not discuss here (e.g., communication complexity).
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Complexity of an Algorithm

Consider some particular machine executing some algorithm —
e.g., a random-access machine, a Turing machine, ...

We will assume that for the given machine M we have somehow defined
for every input w from the set of all possible inputs /n the following two
functions:

o timepq : In = N — it expresses the running time of machine M on
input w

@ space,, : In » N — it expresses the amount of memory used by
machine M in a computation on input w

Remark: We assume that a computation on an arbitraty input w will halt
after some finite number of steps.
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Complexity of an Algorithm

Example:

@ One-tape Turing machine M:

o time(w) — the number of steps performed by during
a computation on word w

o space p(w) — the number of cells on the tape visited during
a computation on input w

@ Random-access machine:

o timep(w) — the number of steps performed by the given RAM
in a computation on input w

o space (w) — the number of memory cells that were used
during a computation on input w (in they were written to or if
a value was read from them)
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Size of Input

For different input data the program performs a different number of
instructions.

If we want to analyze somehow the number of performed instructions, it is
useful to introduce the notion of the size of an input.

Typically, the size of an input is a number specifying how “big” is the
given instance (a bigger number means a bigger instance).

Remark: We can define the size of an input as we like depending on what
is useful for our analysis.

The size of an input is not strictly determinable but there are usually some
natural choices based on the nature of the problem.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 407 /629



Size of Input

Examples:
@ For the problem “Sorting”, where the input is a sequence of numbers
ai, as,...,a, and the output the same sequence sorted, we can take
n as the size of the input.

@ For the problem “Primality” where the input is a natural number x
and where the question is whether x is a prime, we can take the
number of bits of the number x as the size of the input.

(The other possibility is to take directly the value x as the size of the
input.)
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Size of Input

Sometimes it is useful to describe the size of an input with several
numbers.

For example for problems where the input is a graph, we can define the
size of the input as a pair of numbers n, m where:

@ n — the number of nodes of the graph

@ m — the number of edges of the graph

Remark: The other possibility is to define the size of the input as one
number n + m.

Z. Sawa (TU Ostrava)
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Size of Input

In general, we can define the size of an input for an arbitrary problem as
follows:

@ When the input is a word over some alphabet ¥:
the length of word w

@ When the input as a sequence of bits (i.e., a word over {0, 1}):
the number of bits in this sequence

@ When the input is a natural number x:
the number of bits in the binary representation of x
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Time Complexity

We want to analyze a particular algorithm (its particular implementation).

We want to know how many steps the algorithm performs when it gets an
input of size 0,1,2,3,4,....

It is obvious that even for inputs of the same size the number of performed

steps can be different.

Let us denote the size of input w € In as size(w).

Now we define a function T : N — N such that for n € N is

T(n) = max{ timey(w) | w € In, size(w) =n}
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Time Complexity in the Worst Case
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Time Complexity in the Worst Case

Such function T(n) (i.e., a function that for the given algorithm and the
given definition of the size of an input assignes to every natural number n
the maximal number of instructions performed by the algorithm if it
obtains an input of size n) is called the time complexity of the
algorithm in the worst case.

T(n) = max{ timey(w) | w € In, size(w) =n}

Analogously, we can define space complexity of the algorithm in the
worst case as a function S(n) where:

S(n) = max { space((w) | w € In, size(w) =n}
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Time Complexity in an Average Case

Sometimes it make sense to analyze the time complexity in an average
case.

In this case, we do not define T(n) as the maximum but as the arithmetic
mean of the set

{ timey(w) | w € In, size(w) =n}

@ It is usually more difficult to determine the time complexity in an
average case than to determine the time complexity in the worst case.

e Often, these two function are not very different but sometimes the
difference is significant.

Remark: It usually makes no sense to analyze the time complexity in the
best case.
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Time Complexity in an Average Case
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Computational Complexity of an Algorithm

It is obvious from this definition that the time complexity of an algorithm
is a function whose precise values depend not only on the given
algorithm Alg but also on the following things:

@ on a machine M, on which the algorithm Alg runs,

@ on the precise definition of the running time t(w) of algorithm Alg
on machine M with input w € In,

@ on the precise definition of the size of an input (i.e., on the definition
of function size).
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Computational Complexity of an Algorithm

To determine the precise running time or the precise amount of used
memory just by an analysis of an algorithm can be extremely difficult.

Usually the analysis of complexity of an algorithm involves many
simplifications:

@ It is usually not analysed how the running time or the amount of used
memory depends precisely on particular input data but how they
depend on the size of the input.

@ Functions expressing how the running time or the amount of used
memory grows depending on the size of the input are not computed
precisely — instead estimations of these functions are computed.

o Estimations of these functions are usually expressed using asymptotic
notation — e.g., it can be said that the running time of MergeSort is
O(nlog n), and that the running time of BubbleSort is O(n?).
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Time Complexity of an Algorithm

An example of an analysis of the time complexity of algorithm without
the use of asymptotic notation:

@ Such precise analysis is almost never done in practice — it is too
tedious and complicated.

@ This illustrates what things are ignored in an analysis where
asymptotic notation is used and how much the analysis is simplified
by this.

o We will compute with constants ¢y, ¢, . . ., ¢k, which specify the
execution time of individual instructions — we won't compute with
concrete numbers.
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Let us say that an algorithm is represented by a control-flow graph:

e To every instruction (i.e., to every edge) we assign a value specifying
how long it takes to perform this instruction once.

@ The execution time of different instructions can be different.

@ For simplicity we assume that an execution of the same instruction
takes always the same time — the value assigned to an instruction is
a number from the set R, (the set of nonnegative real numbers).
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Example:

Algorithm: Finding the maximal element in an array

FIND-MAX (A, n):
k:=0
fori:=1ton-1do
L if A[i]> A[k] then
| k=i

return Al k]
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result := Al k]

it=i+1

Instr time
k= Co
i:= a

[i <n] )

|:I = n] C3
[Ali]= A[K]] | «
[ALi] > ALK]] | s
k= Co
i=i+1 c7
result := A[k] | ¢

February 11, 2026
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Instr. symbol | time
k:=0 Co 4
i:=1 a 4

[I < n] Co 10

[i = n] C3 12
[A[i1< AlK]] | o | 14
[A[i] > A[k]] Cs 12
k=i Co 5
ii=i+1 C7 6
result 1= Al k] cs 5

Introd. to Theoretical Computer Science

February 11, 2026

Example: The execution times of individual instructions could be for
example:

For a particular input w, e.g., for w = ([3,8,4,5,2],5), we could simulate
the computation and determine the precise running time t(w).

422 /629



Time Complexity of an Algorithm

The inputs are of the form (A, n), where A is an array and n is the number
of elements in this array (where n > 1).

We take n as the size of input (A, n).

Consider now some particular input w = (A, n) of size n:
@ The running time t(w) on input w can be expressed as
t(w) = co- mo(w) + ci - m(w) + -+ +cg - mg(w),

where mg, mq, ..., mg are functions specifying how many times is
each instruction performed in the computation on input w.
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Time Complexity of an Algorithm

Instr. time | occurences | value of m;(w)
k:=0 Co mo(W) 1
i:=1 c my(w) 1
[i<n] I my(w) n—1
[i = n] C3 m3(w) 1
(AL < ATKT] | | ma(w) n—1-¢
[Ali]> A[K]] | o | ms(w) ¢
k=i Ce m6(w) y4
i=i+1 cy mz(w) n—1
result := A[k] | cg mg(w) 1

¢ — the number of iterations of the cycle where A[i] > A[ k]

(obviously 0 < ¢ < n)
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Time Complexity of an Algorithm

By assigning values to

t(w) = co-mo(w) +cy - my(w)+ - +cg- mg(w),
we obtain

t(w) = dy + do-(n—1) + ds-(n=1—-10) + dy- ¥,
where

di=c+tc+ca+c d3 =¢y
dr =0+ ¢ dy = c5 + ¢

After simplification we have
t(w) = (da+d3)-n+ (da—d3)- € + (d—do— )

Remark: t(w) is not the time complexity but the running time for
a particular input w
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Time Complexity of an Algorithm

For example, if the execution times of instructions will be:

Instr. symb. | time
k:=0 Co 4
=1 c 4
[i <n] 1 10
[i = n] C 12

A< AK]] | o | 14
[A[]> ALKl | & | 12

k=i G 5
i=i+1 c; 6
result := Al k] Cs 5

then d; = 25, d» = 16, d3 = 14, and d, = 17.
In this case is t(w) = 30n + 3¢ — 5.

For the input w = ([3,8,4,5,2],5) is n =5 and £ = 1, therefore
t(w)=30-5+3-1-5=148.
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Time Complexity of an Algorithm

It can depend on details of implementation and on the precise values of
constants, for which inputs of size n the compution takes the longest time
(i.e., which are the worst cases):

The running time of algorithm FIND-MAX for an input w = (A, n) of
size n:

t(w) = (do+d3)-n+ (dy—ds3)- € + (dp —dp — ds)

o If d3 = dy — the worst cases are those where £ has the smallest value
¢ =0 — for example inputs of the form [0,0,...,0] or of the form
[n,n=1,n=-2,...,2, 1]

o If d3 < dy — the worst are those cases where £ has the greatest value
¢=n-1 — for example inputs of the form [0,1,...,n—1]
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Time Complexity of an Algorithm

The time complexity T(n) of algorithm FIND-MAX in the worst case is
given as follows:

o If d3 = dy:
T(n) = (dp+d3)-n+(dy —dr—ds)
) |fd3Sd4Z
T(n) = (da+d3)-n+ (dy—d3)-(n=1) + (dr — do = d3)

(d2+d4)'n + (dl—dg—d4)

Example: For di =25, d> =16, d3 =14, dy =17 is

T(n) = (16+17)-n + (25-16—17)

33n-8
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Time Complexity of an Algorithm

In both cases (when d3 = dj, or when d; < d,), the time complexity of the
algorithm FIND-MAX is a function

T(n)=an+b

where a and b are some constants whose precise values depend on the
execution time of individual instructions.

Remark: These constants could be expressed as

a = d, + max{ds, ds} b = d; — d» — max{ds, ds}

For example

T(n)=33n-8
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Time Complexity of an Algorithm

If it would be sufficient to find out that the time complexity of the
algorithm FIND-MAX is some function of the form

T(n)=an+b,

where the precise values of constants a and b would not be important for
us, the whole analysis could be considerably simpler.

@ In fact, we usually do not want to know precisely how function T(n)
look (in general, it can be a very complicated function), and it would
be sufficient to know that values of the function T(n)
“approximately” correspond to values of a function S(n) = an + b,
where a and b are some constants.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 430 /629



Time Complexity of an Algorithm

For a given function T(n) expressing the time or space complexity, it is
usually sufficient to express it approximately — to have an estimation
where

@ we ignore the less important parts
(e.g., in function T(n) = 15n2 + 40n — 5 we can ignore 40n and =5,
and to consider function T(n) = 15n” instead of the original
function),

@ we ignore multiplication constants

(e.g., instead of function T(n) = 15n° we will consider
function T(n) = n°)

@ we won't ignore constants in exponents — for example there is a big
difference between functions T;(n) = n? and To(n) = n.

@ we will be interested how function T(n) behaves for “big” values
of n, we can ignore its behaviour on small values
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Growth of Functions

A program works on an input of size n.
Let us assume that for an input of size n, the program performs T(n)
operations and that an execution of one operation takes 1 s (10™°s).

n
T(n) 20 40 60 80 100 200 500 1000
n 20 40ps 60 s 80 s 0.1ms 0.2ms 0.5ms Lms
nlogn|  86us 0.213ms 0.354ms 0.506 ms 0.664ms 1.528 ms 4.48ms 9.96ms
i 0.4ms 1.6ms 3.6ms 6.4ms 10ms 40ms 0.25s 1s
" 8ms 64ms 0.216s 05125 1s 8s 1255 16.7min.
P 0.16s 2565 12.96s 825 100s 26.6 min. 17.36hours 1157 days
| 1s  175days 36560yeas  38310°yems  40110°yeas 50-10%yeas 104-10%yems -
nl | 77147 years 2.59- 10% years  2.64- 10%® years  2.27+ 101 years  2.96- 10 years - - -
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Growth of Functions

Let us consider 3 algorithms with complexities

T1(n) = n, To(n) = n*, T3(n) = 2". Our computer can do in a reasonable
. . -~ . 12

time (the time we are willing to wait) 10™° steps.

Complexity Input size
Ta(n) =n 10"
To(n) = n’® 10"
T3(n) =2" 40
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Growth of Functions

Let us consider 3 algorithms with complexities

T1(n) = n, To(n) = n*, T3(n) = 2". Our computer can do in a reasonable
. . -~ . 12

time (the time we are willing to wait) 10™° steps.

Complexity Input size
Ta(n) =n 10"
To(n) = n’® 10"
T3(n) =2" 40

Now we speed up our computer 1000 times, meaning it can do 10" steps.

Complexity Input size Growth
Ti(n) =n 107 1000x
To(n) = n’ 10° 10x
T3(n) = 2" 50 +10
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Asymptotic Notation

In the following, we will consider functions of the form f : N — R, where:

@ The values of f(n) need not to be defined for all values of n € N but
there must exist some constant ngy such that the value of f(n) is
defined for all n € N such that n = ng.

Example: Function f(n) = log,(n) is not defined for n = 0 but it is
defined for all n = 1.

@ There must exist a constant ng such that for all n € N, where n = ng,
is f(n) = 0.

Example: It holds for function f(n) = n® — 25 that f(n) = 0 for all
nz=bh.
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Asymptotic Notation

Let us take an arbitrary function g : N — R. Expressions O(g), Q(g),
©(g), o(g), and w(g) denote sets of functions of the type N — R,
where:

O(g) — the set of all functions that grow at most as fast as g

Q(g) - the set of all functions that grow at least as fast as g
©(g) - the set of all functions that grow as fast as g
o(g) - the set of all fuctions that grow slower than function g

w(g) — the set of all functions that grow faster than function g

Remark: These are not definitions! The definitions will follow on the next
slides.

O - big “O”

Q — uppercase Greek letter “omega”

© — uppercase Greek letter “theta”

o —small “o"

w — small “omega”
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Asymptotic Notation — Symbol O

Informally:

O(g) - the set of all functions that grow at most as fast as g

How to define formally when f € O(g) holds?

The first try:

@ to compare the values of the functions

(VneN)(f(n) = g(n))

A problem: This does not allow to ignore the values of constants,
e.g., it is not true that (Vn € N)(3n° < 2n°).
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Asymptotic Notation — Symbol O

Informally:

O(g) - the set of all functions that grow at most as fast as g

How to define formally when f € O(g) holds?

The second try:

@ to multiply function g with some big enough constant ¢

(Ic>0)(VneN)(f(n) = c-g(n))
A problem: The inequality need not hold for some small values of n
even after multiplying g by some arbitralily big value.

For example, function g(n) = n” grows faster than function
f(n) = n+ 5. However, not matter how big constant c is chosen, it
will never be true that n+5 =< c¢- n’ for n = 0.
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Asymptotic Notation — Symbol O

Informally:

O(g) - the set of all functions that grow at most as fast as g

How to define formally when f € O(g) holds?

The third try:

@ it is not required that the inequality holds for each n, it is sufficient
when it holds for all values that are “big enough”

(3c>0)(Ang =2 0)(Yn = ng)(f(n) = c-g(n))
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Asymptotic Notation — Symbol O

c-g(n)

no

Let us consider an arbitrary function g : N — R. For a function f : N = R
we have f € O(g) iff

(3c>0)(Fng 2 0)(Vn = ng)(f(n) = c-g(n)).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 437 /629



Asymptotic Notation — Symbol O

Remarks:
@ cis a posive real number (i.e., c € R and ¢ > 0)

@ ng and n are natural numbers (i.e., ng € N and n € N)
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Asymptotic Notation — Symbol O

Example: Let us consider functions f(n) = 2n> +3n+ 7 and g(n) = n°.

We want to show that f € O(g), i.e., f € O(n2):
e Approach 1:

Let us take for example ¢ = 3.
c-g(n)=3n"=2n"+ %nz + %nz

We need to find some ng such that for all n = ng it holds that

2 2 2 2
2n° = 2n %n = 3n %n >7

We can easily check that for example ny = 6 satisfies this.

For each n = 6 we have c - g(n) = f(n):

cg(n) = 3n° = 2n° + %nz + %nz =21 +3n+7= f(n)
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Asymptotic Notation — Symbol O

The example where f(n) = 2n° +3n+7 and g(n) = n*:

e Approach 2:
Let us take ¢ = 12.

c-g(n)= 12n% = 2n° + 3n° + 7n°

We need to find some ng such that for all n = ng we have
2n° = 2n° 3n° = 3n n~ =7

These inequalities obviously hold for ng = 1, and so for each n = 1 we

have f(n) < c- g(n):

c-gn)=12n" =20 +3n° + 70> = 2n° +3n+7 = f(n)
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Asymptotic Notation — Symbol 2

No

Let us consider an arbitrary function g : N — R. For a function f : N = R
we have f € Q(g) iff

(3c>0)(Fng 2 0)(Vn = ng)(c- g(n) = f(n)).
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Asymptotic Notation — Symbol 2

It is not difficult to prove the following proposition:

For arbitrary functions f and g we have:

feo(g) iff g € Q(f)
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Asymptotic Notation — Symbol ©

no

Let us consider an arbitrary function g : N — R. For a function f : N - R
we have f € O(g) iff

(Jc; > 0)(Fc, > 0)(Ing 2 0)(Vn=ng)(cy - g(n) = f(n) < - g(n)).
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Asymptotic Notation — Symbol ©

The following easily follows from the definition of ©:

For arbitrary functions f and g we have:

feo(g) iff feO(g)and f € Qg)
feo(g) iff feO(g) and g € O(f)
feo(g) iff g € O(f)
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Asymptotic Notation — Symbols o0 and w

Let us consider an arbitrary function g : N — R. For a function f : N - R
we have f € o(g) iff . f(n)

n='veo g(n)

Definition

Let us consider an arbitrary function g : N = R. For a function f : N - R
we have f € w(g) iff . f(n)

= +00

noto g(n)
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Asymptotic Notation

For arbitrary functions f and g we have the following propositions:

If there exists a constant ¢ = 0 such that

lim i) =
n=+oo g(n)

then f € O(g).

If there exists a constant ¢ = 0 such that

lim g(n) =
n2eo ()

then f € Q(g).
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Asymptotic Notation

It is obvious that:

o If f € o(g) then f € O(g).
o If f € w(g) then f € Q(g).
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Asymptotic Notation

The asymptotic notation can be viewed as a certain kind of comparison of
a rate of growth functions:

feO(g) — rate of growth of f “<" rate of growth of g

feQ(g) —  rateof growth of f “=" rate of growth of g

fe®(g) —  rate of growth of f “=" rate of growth of g

feolg) — rate of growth of f “<" rate of growth of g

few(g) —  rate of growth of f “>" rate of growth of g
Remark:

@ There are pairs of functions f and g such that

f ¢ 0(g) and g ¢ O(f),

for example

n ifn mod2=1
f(n) = n® gh)={3 .
n~  otherwise
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Asymptotic Notation

@ A function f is called:
linear, if f(n) € ©(n)
quadratic, if f(n) € ©(n%)
cubic, if £(n) € ©(n*)
polynomial, if f(n) € O(n*) for some k > 0
exponential, if f(n) € O(c"k) for some ¢ > 1 and k>0
logarithmic, if f(n) € ©(log n)
polylogarithmic, if £(n) € ©(log" n) for some k > 0

@ O(1) is the set of all bounded functions, i.e., functions whose
function values can be bounded from above by a constant.

k
@ Exponential functions are often written in the form 2°(") when the
asymptotic notation is used, since then we do not need to consider
different bases.
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Asymptotic Notation

In general, it holds that:

every polylogarithmic function grows slower than any polynomial
function

every polynomial function grows slower than any exponential function

to compare polynomial functions n* and n® it is sufficient to compare
values k and ¢

to compare polylogarithmic functions Iogk n and Ioge n it is sufficient
to compare values k and /¢

("’) and 2CI(’7)

to compare exponential functions 2° it is sufficient to

compare polynomials p(n) and g(n).
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Asymptotic Notation

Proposition

Let us assume that a and b are constants such that a > 0 and b > 0,
and k and ¢ are some arbitrary constants where k 20, £ =2 0 and k < /.

Let us consider functions
f(n)=a'nk g(n)=b'n£

For each such functions f and g it holds that f € O(g):

Proof: Let us take ¢ = 2

o |

Because for n = 1 we obviously have n* < n (since k = (), for n = 1 we
have
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Asymptotic Notation

Proposition

For any a,b > 1 and any n > 0 we have

logy, n
log, a

log, n =

Proof: From n = 2°%" it follows that log, n = Iogb(aloga")_

Since log,(a'°%") = log, n - log, a, we obtain log, n = log, n - log, a, from
which the above mentioned conclusion follows directly. [

Due to this observation, the base of a logarithm is often omited in the
asymptotic notation: for example, instead of ©(nlog, n) we can write
©(nlogn).
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Asymptotic Notation

Examples:
ne O(n2) n® e O(n )
1000n € O(n) 0.00001n° - 10'°n € ©(10"°1?)
2°82" € ©(n) n® = n” logs n + 1000n — 10'% € ©(n?)
n® ¢ O(n2) n® +1000n — 10'% € O(n )
n® ¢ 0(n) n® +n° ¢ (n’
n® 42" ¢ O(n2) nl ¢ 0(2")
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Asymptotic Notation

For arbitrary functions f, g, and h we have:
o if f € O(g) and g € O(h) then f € O(h)

o if f € Q(g) and g € Q(h) then f € Q(h)
o if f € O(g) and g € O(h) then f € O(h)
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Asymptotic Notation

@ For any function f a libovolnou konstantu ¢ > 0 we have:
ec-fe e(f)

@ For any pair of functions f, g we have:
o max(f,g) € O(f + g)
o if f € O(g) then f + g € O(g)

e For any functions f, >, g1, & we have:
o if f € O(f,) and g1 € O(g) then f; + g1 € O(f, + g») and
fi g € O(f- &)
o if L €O(f) and g1 € O(gy) then f; + g € O(f + g») and
fi-g1 €O(h &)
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Asymptotic Notation

As mentioned before, expressions O(g), Q(g), ©(g), o(g), and w(g)
denote certain sets of functions.

In some texts, these expressions are sometimes used with a slightly
different meaning:

@ an expression O(g), Q(g), ©(g), o(g) or w(g) does not represent
the corresponding set of functions but some function from this set.

This convention is often used in equations and inequations.
Example:  3n° +5n° —11n+2 = 3n° + O(n°)

When using this convention, we can for example write f = O(g) instead of
feOo(g).
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Complexity of Algorithms

Let us say we would like to analyze the time complexity T(n) of some
algorithm consisting of instructions I1, b, ..., Ix:

@ Let us assume that how long it takes to execute each instruction is
given by constants ¢, ¢, . .., Ck, i.€., the time it takes to execute
instruction /; once is specified by a constant ;.

@ Let us assume that /n is the set of all possible inputes for the given
algorithm.
Let us define for each instruction /; a corresponding function

m;:In— N

specifying how many times instruction /; will be executed during
a computation over a given input, i.e., the value m;(w) specifies how
many times instruction /; will be executed during a computation over
an input w.
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Complexity of Algorithms

@ Total running time of a computation over an input w:
t(w) =cy-m(w) +co ma(w) + - + ¢ - me(w).
@ Let us racall that T(n) = max{t(w) | size(w) =n}.

@ For each of the functions my, mo, ..., m, we can define
a corresponding function f; : N — R, where
fi(n) = max{m;(w) | size(w) =n}

is the maximum of numbers of executions of instruction /; for all
inputs of size n.

@ It is obvious that T € O(f; + fo + -+ + f;).
o Let us recall that if f; € O(f;) then ¢; - f; + ¢; - f; € O(f;).

@ If there is a function f; such that for all f;

it where j # i, we have
f; € O(f;), then

T € O(f;).
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Complexity of Algorithms

e Obviously, T € Q(f;) for any function f;.

@ So in an analysis of a total running time T(n), we can typically
restrict our attention only to an analysis of how many times the most
often executed instruction /; is executed, i.e., on examination of a rate
of groth of function f;(n) because

T € ().

@ For other instructions /; we just need to verify that
fi € O(f),

i.e., it is not necessary to determine precisely for them how fast they
grow but rather it is sufficcient to determine for them that their rate
of growth is not bigger than the rate of groth of f;.
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Complexity of Algorithms

Example:

Algorithm: Finding the maximal element in an array

FIND-MAX (A, n):
k:=0
fori:=1ton-1do
L if A[i]> A[k] then
| k=i

return Al k]
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Complexity of Algorithms

In the analysis of the complexity of the searching of a number in a
sequence we obtained
f(n)=an+b.

If we would not like to do such a detailed analysis, we could deduce that
the time complexity of the algorithm is ©(n), because:

@ The algorithm contains only one cycle, which is performed
(n—1) times for an input of size n, the number of iterations of the
cycle is in ©(n).

@ Several instructions are performed in one iteration of the cycle. The
number of these instructions is bounded from both above and below
by some constant independent on the size of the input. So the time
of execution of one iteration of the cycle is in ©(1).

@ Other instructions are executed just once. The time spent by their
execution is in ©(1).
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Complexity of Algorithms

Let us try to analyze the time complexity of the following algorithm:

Algorithm: Insertion sort

INSERTION-SORT (A, n):

for j:=1ton-1do
x = A[/]
it=j-1
while i = 0 and A[i] > x do
Ali +1] := A[i]
L it=i—-1
Ali +1] := x

l.e., we want to find a function T(n) such that the time complexity of the
algorithm INSERTION-SORT in the worst case is in ©(T(n)).
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Complexity of Algorithms

Example: A computation of INSERTION-SORT on input

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

0 1 2 3 4 5 6 7 8 9
13]8|1|5]8]6[11]4]10]5]

x =7
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Complexity of Algorithms

Example: A computation of INSERTION-SORT on input

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[3]8|1]s]8[6]11]4]10]5] . =7
T
J
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Complexity of Algorithms

Example: A computation of INSERTION-SORT on input

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

] n
l l
0 1 2 3 4 5 6 7 8 9
Sl :[5]8]6[11][4]0]5] <=8
1
J

February 11, 2026 463 / 629

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science



Complexity of Algorithms

Example: A computation of INSERTION-SORT on input

A=1[3,8,1,5,8,6,11,4,10,5], n = 10.

n
1
0 1 2 3 4 5 6 7 8 9
[3[8l1]s]8[6]11]4]10]5] =8
,
J

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 463 /629



Complexity of Algorithms

Example: A computation of INSERTION-SORT on input
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Complexity of Algorithms

Algorithm: Insertion sort

INSERTION-SORT (A, n):
for j:=1ton-1do
x = A[j]
i=j-1
while i = 0 and A[/] > x do
Ali +1]:= A[i]
L ji=i-1

Ali+1]:=x
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Complexity of Algorithms

Let us consider inputs of size n:

@ The outer cycle for is performed at most n — 1 times.
(Variable j takes values 1,2, ..., n—1.)

@ The inner cycle while is performed at most j times for a given value j.
(Variable i takes values j—1,j-2,...,1,0.)

@ There are inputs such that the cycle while is performed exactly
J times for each value j from 1 to n — 1.

@ So in the worst case, the cycle while is performed exactly m times,
where

m=1+2+---+(n—1)=(1+(n—1))-%1=ln -1n

@ This means that the total running time of the algorithm
INSERTION-SORT in the worst case is ©(n?).
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Complexity of Algorithms

In the previous case, we have computed the total number of executions of
the cycle while accurately.

This is not always possible in general, or it can be quite complicated. It is
also not necessary, if we only want an asymptotic estimation.

466 / 629
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Complexity of Algorithms

For example, if we were not able to compute the sum of the arithmetic
progression, we could proceed as follows:

@ The outer cycle for is not performed more than n times and the inner
cycle while is performed at most n times in each iteration of the
outer cycle.

So we have T € O(n?).
e For some inputs, the cycle while is performed at least [n/2] times in
the last | n/2] iterations of the cycle for.

So the cycle while is performed at least [ n/2] - [n/2] times for some
inputs.

[n/2|-Tn/2] = (n/2=1)-(n[2) = 2—ln

This implies T € Q(nz).
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Complexity of Algorithms

@ So far we considered that execution of a given instruction always
takes the same time without regard the values, with which it works.

So when asymptotic notation was used, the time how long it takes to
execute an individual instruction played no role and it was only
important how many times the given instruction is executed.

For example, when RAMs are used as a model of computation, this
corresponds to counting of instructions executed, i.e., an execution of
one instruction takes 1 time unit.

This is known as using the so called uniform-cost measurement.

Estimations of the time complexity using the uniform-cost
measurement correnspond to the running time on real computers
under the assumption that operations, performed by the RAM, can be
performed by a real computer in a constant time.

This assumption holds, if numbers, the algorithm works with, are
small (they can be stored, say, to 32 or 64 bits).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 468 / 629



Complexity of Algorithms

If the RAM works with “big” numbers (e.g., 1000 bit), the estimation
using the uniform-cost measurement will be unrealistic in the sense
that a computation on a real computer will take much more time.

To analyse the time complexity of algorithms working with big
numbers, we usually use so called logarithmic-cost measurement,
where a duration of one instruction is not 1 but is proportional to the
number of bit operations, which are necessary for an execution of
this instruction.

The duration of an exection of an instruction depends on the actual
values of its operands.

For example, a duration of an execution of instructions for addition
and subtraction is equal to the sum of the numbers of bits of their
operands.

The duration of an execution of instructions multiplication and
division is equal to the product of the numbers of bits of their
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Complexity of Algorithms

Remark: The notation blen(x) denotes the number of bits in a binary
representation of a natural number x.
It holds that

blen(x) = max (1, [log,(x + 1)])
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Space Complexity of Algorithms

@ So far we have considered only the time necessary for a computation

@ Sometimes the size of the memory necessary for the computation is
more critical.

For RAMs and their use of memory, we can again distinguish between the
use of uniform-cost and logarithmic-cost measurement:

Amount of memory of a RAM M used for an input w is the number of
memory cells that are used by M during its computation on w.

Definition

A space complexity of a RAM M (in the worst case) is the function
S : N — N, where S(n) is the maximal amount of memory used by M for
inputs of size n.
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Space Complexity of Algorithms

@ There can be two algorithms for a particular problem such that one of
them has a smaller time complexity and the other a smaller space
complexity.

o If the time-complexity of an algorithm is in O(f(n)) then also the
space complexity is in O(f(n)) (note that a RAM uses at most three
cells in each step — at most two for reading and at most one for
writing).
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Examples of an Analysis of Complexity of
Algorithms
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Complexity of Algorithms

Some typical values of the size of an input n, for which an algorithm with
the given time complexity usually computes the output on
a “common PC" within a fraction of a second or at most in seconds.

(Of course, this depends on particular details. Moreover, it is assumed
here that no big constants are hidden in the asymptotic notation)

O(n) O(nlogn) O(nz) O(n3)
1000000-100000000 100000-1000000 1000-10000 100-1000

20(n) o(n!)
20-30 10-15
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Complexity of Algorithms

When we use asymptotic estimations of the complexity of algorithms, we
should be aware of some issues:

@ Asymptotic estimations describe only how the running time grows
with the growing size of input instance.

@ They do not say anything about exact running time. Some big
constants can be hidden in the asymptotic notation.

@ An algorithm with better asymptotic complexity than some other
algorithm can be in reality faster only for very big inputs.

@ We usually analyze the time complexity in the worst case. For some
algorithms, the running time in the worst case can be much higher
than the running time on “typical” instances.
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Complexity of Algorithms

@ This can be illustrated on algorithms for sorting.
Algorithm ‘ Worst-case ‘ Average-case
Bubblesort @(n2) @(nz)
Heapsort | ©(nlogn) | ©(nlogn)
Quicksort o(n?) ©(nlogn)

@ Quicksort has a worse asymptotic complexity in the worst case than
Heapsort and the same asymptotic complexity in an average case but
it is usually faster in practice.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 476 / 629



Complexity of Algorithms

Polynomial — an expression of the form
k k-1 2
agn + ag_1n + - +an +ain+

where ag, aj, . . ., a5 are constants.

Examples of polynomials:

4n® = 2n° + 8n + 13 2n+1 n*00
Function f is called polynomial if it is bounded from above by some

polynomial, i.e., if there exists a constant k such that f € O(n").

For example, the functions belonging to the following classes are
polynomial:

O(n)  O(nlogn)  0O(n®)  0(n°)  O(Vn)  O(n'®)
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Complexity of Algorithms

Function such as 2" or n! are not polynomial — for arbitrarily big
constant k we have

2" e Q(nk) nl € Q(nk)

Polynomial algorithm — an algorithm whose time complexity is
polynomial (i.e., bounded from above by some polynomial)

Roughly we can say that:

@ polynomial algorithms are effiecient algorithms that can be used in
practice for inputs of considerable size

@ algorithms, which are not polynomial, can be used in practice only for
rather small inputs
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Complexity of Algorithms

The division of algorithms on polynomial and non-polynomial is very rough
— we cannot claim that polynomial algorithms are always efficient and
non-polynomial algorithms are not:

@ an algorithm with the time complexity @(nloo) is probably not very
useful in practice,

@ some algorithms, which are non-polynomial, can still work very
efficiently for majority of inputs, and can have a time complexity
bigger than polynomial only due to some problematic inputs, on
which the computation takes long time.

Remark: Polynomial algorithms where the constant in the exponent is
some big number (e.g., algorithms with complexity @(nloo)) almost never
occur in practice as solutions of usual algorithmic problems.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026

479 / 629



Complexity of Algorithms

For most of common algorithmic problems, one of the following three
possibilities happens:

o A polynomial algorithm with time complexity O(n*) is known, where
k is some very small number (e.g., 5 or more often 3 or less).

@ No polynomial algorithm is known and the best known algorithms
have complexities such as 29("), ©(n!), or some even bigger.

In some cases, a proof is known that there does not exist a polynomial
algorithm for the given problem (it cannot be constructed).

@ No algorithm solving the given problem is known (and it is possibly
proved that there does not exist such algorithm)
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Complexity of Algorithms

A typical example of polynomial algorithm — matrix multiplication with
time complexity ©(n>) and space complexity ©(n°):

Algorithm: Matrix multiplication

MATRIX-MuULT (A, B, C, n):
for i :=1to ndo
for j:=1to ndo
x:=0
for k:=1 to ndo
| x = x+ ALi][k] * B[K][/]
Clillj]:=x
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Complexity of Algorithms

@ For a rough estimation of complexity, it is often sufficient to count
the number of nested loops — this number then gives the degree of
the polynomial

Example: Three nested loops in the matrix multiplication — the
time complexity of the algorithm is O(n3).

If it is not the case that all the loops go from 0 to n but the number
of iterations of inner loops are different for different iterations of an
outer loops, a more precise analysis can be more complicated.

It is often the case, that the sum of some sequence (e.g., the sum of
arithmetic or geometric progression) is then computed in the analysis.

The results of such more detailed analysis often does not differ from
the results of a rough analysis but in many cases the time complexity
resulting from a more detailed analysis can be considerably smaller
than the time complexity following from the rough analysis.
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Arithmetic Progression

Arithmetic progression — a sequence of numbers ag, a1, ..., a,-1, Where
aj=ag+i-d,

where d is some constant independent on .

So in an arithmetic progression, we have a;.1 = a; + d for each i.

Example: The arithmetic progression where ag = 1, d = 1, and n = 100:

1,2,3,4,5 6, ...,96, 97, 98, 99, 100

The sum of an arithmetic progression:
n—1

1
ZQ,’ = gygtayt+--+tap-1 = in(a0+a,,_1)
i=0
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Arithmetic Progression

Example:

1 1, 1 2
1+2+--4+n = in(n+1) = 30 +§n = @(”)

For example, for n = 100 we have

1+2+--+100 = 50-101 = 5050.
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Arithmetic Progression

Proof: Let us denote

2s s+s

(ag+ap+--+apq)+ (ag+ar+-+ap1)

(a0 +ay+ - +ap1) + (ap-1 + ap-2 + -+ + ao)

(ag + ap-1) + (a1 + an—2) + ++* + (ap-1 + ao)

((ag +0-d) + (ag + (n—1)-d)) + ((ap + 1:d) + (ag + (n—2)-d)) +
-+ ((ag+ (n—=1)-d) + (ag + 0:d))

n-(ag+ag+(n—1)d)

n-(ag+am-1)
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Aritmetickd posloupnost

Example: s = 1+2+3+:--+99+ 100

2s = s+s
= (1+2+--4100) + (1 +2+ -+ +100)
= (14+2+--4100) + (100 + 99 + --- + 1)
= (14+100)+ (2+99) + (3+98) + -+ (99 +2) + (100 + 1)
= 100 - (1 + 100) = 10100
So

1
s =3 - 10100 = 5050

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 486 / 629



Geometric Progression

Geometric progression — a sequence of numbers ag, a1, .. ., a,, where
_ i
ai=a-q,
where g is some constant independent on J.
So in a geometric progression we have a;;1 = a; - q for each .

Example: The geometric progression where ag = 1, ¢ = 2, and n = 14:

1,2, 4,8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384
The sum of a geometic progression (where g # 1):

aj=aytat+--+a, = aoﬁ

i
Q0
|
—
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Geometric Progression

Example:
) qn+1_1
n —
l1+g+q +--+gq _—q—l

In particular, for g = 2:

2n+1 -1

1,42, 43 no_
142/ 427+ 2% 4 42" = 5™

=2.2"-1 = 0(2")
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Geometric Progression

Proof: Let us denote

n

s = ZB,‘ = gygta+--+a,
i=0

0 1
S =a-q tay-q +~~~+ao-q"

0 1
s+q=(a-qg+a-q+-+a-q)q
=ao.q1+ao.q2+...+ao.qn+l
n+1 0
s'q—s =a-q —a-q
+1
s-(g=1) = ag- (¢ -1)
B qn+1_1
S = 4o q—].
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Complexity of Algorithms

An exponential function: a function of the form c”, where c is a constant
— e.g., function 2"

Logarithm — the inverse function to an exponential function: for
a given n,

log. n

is the value x such that ¢* = n.
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Complexity of Algorithms

S

N
El

S

[log, n] n log, n
0 1 0 — 1 0
1 2 1 0 2 1
2 4 2 1 4 2
3 8 3 2 8 3
4 16 4 2 16 4
5 32 5 3 32 5
6 64 6 3 64 6
7 128 7 3 128 7
8 256 8 3 256 8
9 512 9 4 512 9
10 1024 10 4 1024 10
11 2048 11 4 2048 11
12 4096 12 4 4096 12
13 8192 13 4 8192 13
14 16384 14 4 16384 14
15 32768 15 4 32768 15
16 65536 16 4 65536 16
17 | 131072 17 5 131072 17
18 | 262144 18 5 262144 18
19 | 524288 19 5 524288 19
20 | 1048576 20 5 1048576 20
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Complexity of Algorithms

Examples where exponential functions and logarithms can appear in an
analysis of algorithms:

@ Some value is repeatedly decreased to one half or is repeatedly
doubled.

For example, in the binary search, the size of an interval halves in
every iteration of the loop.
Let us assume that an array has size n.

What is the minimal size of an array n, for which the algorithm
performs at least k iterations?

The answer: 2k

So we have k = log,(n). The time complexity of the algorithm is
then ©(log n).
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Complexity of Algorithms

@ Using n bits we can represent numbers from 0 to 2" — 1.

@ The minimal numbers of bits, which are sufficient for representing
a natural number x in binary is

[logs(x + 1)].

o A perfectly balanced tree of height h has oMt g nodes, and oM of
these nodes are leaves.

@ The height of a perfectly balanced binary tree with n nodes is log, n.

An illustrating example: If we would draw a balanced tree

with n = 1000000 nodes in such a way that the distance between
neighbouring nodes would be 1 cm and the height of each layer of
nodes would be also 1cm, the width of the tree would be 10 km and
its height would be approximately 20 cm.
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Complexity of Algorithms

A perfectly balanced binary tree of height h:
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Complexity of Algorithms

A perfectly balanced binary tree of height h:
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Complexity of Algorithms

An efficient way to store a complete binary tree in an array:

’1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘
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Complexity of Algorithms

An efficient way to store a complete binary tree in an array:

’1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘

Children of a node with index i have indexes 2/ and 2/ + 1.
The parent of a node with index i has index | i/2].
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Complexity of Algorithms

Heap — a complete binary tree stored in an array A in way described on

the previous slide, where moreover the following invariant holds for each
i=1,2,...,n

e if 2/ < n then A[i] = A[2i]
o if 2/ +1 < nthen A[i] < A[2i + 1]

Examples of a usage of a heap:
@ sorting algorithm HeapSort

@ an efficient implementation of a priority queue — this allows to
perform most operations on this queue with time complexity
in O(log n) where n is the number of elements currently in the queue
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Complexity of Algorithms

Algorithm: Construction of a heap from an unsorted array

CREATE-HEAP (A, n):

i:=|n/2]

while / =2 1 do

ji=i

x = A[J]

while 2 ¥ j < n do

k:i=2%j

if k+1<nand Ak + 1] < A[k] then
| ki=k+1

if x < A[k] then break

A[j] = A[K]

| Ji=k
Al = x
i=i-1
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Complexity of Algorithms

Time complexity of CREATE-HEAP:

@ By a quick and rough analysis, we can easily determine that this
complexity is in O(nlogn) and in Q(n):
o The outer cycle is executed always | n/2] times — so the number of its
iterations is in ©(n).
o The number of iterations of the inner cycle (in one iteration of the
outer cycle) is obviously in O(log n).

@ It is much less obvious that the total number of iterations of the inner
cycle (i.e., over all iterations of the outer cycle) is in fact in O(n).

So together we obtain:

The time complexity of CREATE-HEAP is in ©(n).
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Complexity of Algorithms

Justification that the total number of iterations of the inner cycle is
in O(n):
Let us assume for simplicity that all branches of the tree are of the same

length and that their length is h — so we have n = ot 1.

Let C;, where 0 </ < h, be the total number of iterations of the inner
cycle where at the beginning of the cycle the node with index j is in i-th
layer of the tree (the layers are numbered top to bottom as 0,1,2,...).

It is obvious that the total number of iterations s is

-1
s = Cpo1+ G+ -+ G = ZC,
i=0

The value of C; can be computed as the total number of nodes in the
layers 0,1,...,i:
i 2i+1 -1
2—-1
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Complexity of Algorithms

The total sum then can be computed as follows:

h-1 h-1 h-1 h-1
s=y G=y@™M-1)=2:()2)-()1)
i=0 i=0 i=0 i=0
oh 1

Z. Sawa (TU Ostrava)
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Undecidable Problems
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Algorithmically Solvable Problems

Let us assume we have a problem P.

If there is an algorithm solving the problem P then we say that the
problem P is algorithmically solvable.

If P is a decision problem and there is an algorithm solving the problem P
then we say that the problem P is decidable (by an algorithm).

If we want to show that a problem P is algorithmically solvable, it is
sufficient to show some algorithm solving it (and possibly show that the
algorithm really solves the problem P).
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Algorithmically Unsolvable Problems

A problem that is not algorithmically solvable is algorithmically
unsolvable.

A decision problem that is not decidable is undecidable.

Surprisingly, there are many (exactly defined) problems, for which it was
proved that they are not algorithmically solvable.
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Halting Problem

Let us consider some general programming language L.

Futhermore, let us assume that programs in language £ run on some
idealized machine where a (potentially) unbounded amount of memory is
available — i.e., the allocation of memory never fails.

Example: The following problem called the Halting problem is
undecidable:

Halting problem

Input: A source code of a £ program P, input data x.

Question: Does the computation of P on the input x halt after some
finite number of steps?
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Halting Problem

Let us assume that there is a program that can decide the Halting problem.
So we could construct a subroutine H, declared as
Bool H(String code, String input)

where H(P, x) returns:
@ true if the program P halts on the input x,

o false if the program P does not halt on the input x.

Remark: Let us say that subroutine H(P, x) returns false if P is not
a syntactically correct program.
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Halting Problem

Using the subroutine H we can construct a program D that performs the
following steps:

@ It reads its input into a variable x of type String.
e It calls the subroutine H(x, x).

o If subroutine H returns true, program D jumps into an infinite loop
loop: goto loop

In case that H returns false, program D halts.

What does the program D do if it gets its own code as an input?
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Halting Problem

If D gets its own code as an input, it either halts or not.

e If D halts then H(D, D) returns true and D jumps into the infinite
loop. A contradiction!

e If D does not halt then H(D, D) returns false and D halts.
A contradiction!

In both case we obtain a contradiction and there is no other possibility. So
the assumption that H solves the Halting problem must be wrong.
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Semidecidable Problems

A problem is semidecidable if there is an algorithm such that:

o If it gets as an input an instance for which the answer is YES, then it
halts after some finite number of steps and writes "YES" on the
output.

@ If it gets as an input an instance for which the answer is NO, then it
either halts and writes "NO" on the input, or does not halt and runs

forever.
It is obvious that for example HP (Halting Problem) is semidecidable.

Some problems are not even semidecidable.
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Post’'s Theorem

The complement problem for a given decision problem P is a problem
where inputs are the same as for the problem P and the question is
negation of the question from the problem P.

Post’s Theorem

If a problem P and its complement problem are semidecidable then the
problem P is decidable.
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Reduction between Problems

If we have already proved a (decision) problem to be undecidable, we can
prove undecidability of other problems by reductions.

Problem P; can be reduced to problem P if there is an algorithm Alg
such that:
@ It can get an arbitrary instance of problem P; as an input.
e For an instance of a problem P; obtained as an input (let us denote it
as w) it produces an instance of a problem P, as an output.
o It holds i.e., the answer for the input w of problem P; is YEs iff the
answer for the input Alg(w) of problem P, is YES.
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Reductions between Problems

Inputs of problem P; Inputs of problem P,
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Reductions between Problems

Inputs of problem P; Inputs of problem P,

Alg
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Reductions between Problems

Let us say there is some reduction Alg from problem P; to problem Ps.

If problem P is decidable then problem Py is also decidable.
Solution of problem P; for an input x:

e Call Alg with x as an input, it returns a value Alg(x).

e Call the algorithm solving problem P, with input Alg(x).

@ Write the returned value to the output as the result.

It is obvious that if P; is undecidable then P, cannot be decidable.
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Other Undecidable Problems

By reductions from the Halting problem we can show undecidability of
many other problems dealing with a behaviour of programs:

Is for some input the output of a given program YES?

Does a given program halt for an arbitrary input?

Do two given programs produce the same outputs for the same
inputs?
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Halting Problem

For purposes of proofs, the following version of Halting problem is often
used:

Halting problem
Input: A description of a Turing machine M and a word w.

Question: Does the computation of the machine M on the word w
halt after some finite number of steps?
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Other Undecidable Problems

We have already seen the following example of an undecidable problem:

Problem

Input: Context-free grammars G; and G,.
Question: Is £(G;) = £(G,)?

respectively

Problem

Input: A context-free grammar generating a language over an
alphabet .

Question: Is £(G) = £*7?
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Other Undecidable Problems

An input is a set of types of cards, such as:

abb a bab baba aba

bbab aa ab aa a

The question is whether it is possible to construct from the given types of
cards a non-empty finite sequence such that the concatenations of the
words in the upper row and in the lower row are the same. Every type of a
card can be used repeatedly.

a abb abb baba abb aba

aa bbab bbab aa bbab a

In the upper and in the lower row we obtained the word
aabbabbbabaabbaba.
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Other Undecidable Problems

Undecidability of several other problems dealing with context-free
grammars can be proved by reductions from the previous problem:

Problem
Input: Context-free grammars G; and G,.
Question: Is £(G1) N L(G,) = @7?

Problem

Input: A context-free grammar G.

Question: Is G ambiguous?
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Other Undecidable Problems

An input is a set of types of tiles, such as:

L X

The question is whether it is possible to cover every finite area of an
arbitrary size using the given types of tiles in such a way that the colors of
neighboring tiles agree.

Remark: We can assume that we have an infinite number of tiles of all
types.

The tiles cannot be rotated.
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Other Undecidable Problems
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Other Undecidable Problems

Input: A closed formula of the first order predicate logic where the
only predicate symbols are = and <, the only function

symbols are + and *, and the only constant symbols are 0
and 1.

Question: Is the given formula true in the domain of natural numbers

(using the natural interpretation of all function and predicate
symbols)?

An example of an input:

VxAyVz((x*xy = z) A(y +1=x))

Remark: There is a close connection with Godel's incompleteness
theorem.
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Other Undecidable Problems

It is interesting that an analogous problem, where real numbers are
considered instead of natural numbers, is decidable (but the algorithm for
it and the proof of its correctness are quite nontrivial).

Also when we consider natural numbers or integers and the same formulas
as in the previous case but with the restriction that it is not allowed to use
the multiplication function symbol *, the problem is algorithmically
decidable.
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Other Undecidable Problems

If the function symbol * can be used then even the very restricted case is
undecidable:

Hilbert's tenth problem

Input: A polynomial f(xq, %y, ...,X,) constructed from variables
X1, X2, ..., X, and integer constants.
Question: Are there some natural numbers x1, x5, . .., x, such that
f(xi,X2,...,%,) =07

An example of an input: 5x2y —8yz + 322 - 15

l.e., the question is whether
AxTyAz(5xxkx*ky+(—8)ky*z+3* z* z+ (—15) = 0)

holds in the domain of natural numbers.
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Other Undecidable Problems

Also the following problem is algorithmically undecidable:

Problem

Input: A closed formula ¢ of the first-order predicate logic.

Question: Is E 7

Remark: Notation F ¢ denotes that formula ¢ is logically valid, i.e., it is
true in all interpretations.
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Complexity Classes

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 524 /629



Complexity of Problems

@ It seems that different (algorithmic) problems are of different
difficulty.

@ More difficult are those problems that require more time and space to
be solved.

o We would like to analyze somehow the difficultness of problems
e absolutely — how much time and space do we need for their solution,
o relatively — by how much is their solution harder or simpler with respect

to other problems.

@ Why do we not succeed in finding efficient algorithms for some
problems?
Can there exist an efficient algorithm for a given problem?

@ What are practical boundaries of what can be achieved?
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Complexity of Problems

It is necessary to distinguish between a complexity of an algorithm and
a complexity of a problem.

If we for exaple study the time complexity in the worst case, informally we
could say:

o complexity of an algorithm — a function expressing maximal
running time of the given algorithm on inputs of size n

o complexity of a problem — what is the time complexity of the
“most efficient” algorithm for the given problem

A formal definition of a notion “complexity of a problem” in the above
sense leads to some technical difficulties. So the notion “complexity of a
problem” is not defined as such but it is bypassed by a definition of
complexity classes.
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Complexity Classes

Complexity classes are subsets of the set of all (algorithmic) problems.

A certain particular complexity class is always characterized by a property
that is shared by all the problems belonging to the class.

A typical example of such a property is a property that for the given
problem there exists some algorithm with some restrictions (e.g., on its
time or space complexity):

@ Only a problem for which such algorithm exists belongs to the given
class.

@ A problem for which such algorithm does not exist does not belong to
the class.

Remark: In the following discussion, we will concentrate almost
exclusively on classes of decision problems.
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Complexity Classes

Definition
For every function f : N — N we define 7(f(n)) as the class containing
exactly those decision problems for which there exists an algorithm with

time complexity O(f(n)).

Example:
e 7 (n) - the class of all decision problems for which there exists an
algorithm with time complexity O(n)
o T(n”) — the class of all decision problems for which there exists an
algorithm with time complexity O(n2)
e T (nlogn) — the class of all decision problems for which there exists
an algorithm with time complexity O(nlog n)
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Complexity Classes

Definition

For every function f : N — N we define S(f(n)) as the class containing
exactly those decision problems for which there exists an algorithm with
space complexity O(f(n)).

Example:
@ S(n) — the class of all decision problems for which there exists an
algorithm with space complexity O(n)
o S(n?) — the class of all decision problems for which there exists an
. . . 2
algorithm with space complexity O(n®)
@ S(nlogn) — the class of all decision problems for which there exists
an algorithm with space complexity O(nlog n)
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Complexity Classes

Remark:

Note that for classed 7(f) and S(f) it depends which problems belong to
the class on the used computational model (if it is a RAM, a one-tape
Turing machine, a multitape Turing machine, ...).
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Complexity Classes

Using classes 7(f(n)) and S(f(n)) we can define classes PTIME and
PSPACE as

PTIME = | ] 7(n") PSPACE = | ] 8(n")
k=0 k=0

@ PTIME is the class of all decision problems for which there exists an
algorithm with polynomial time complexity, i.e., with time complexity
k .
O(n") where k is a constant.

@ PSPACE is the class of all decision problems for which there exists an
algorithm with polynomial space complexity, i.e., with space
complexity O(nk) where k is a constant.
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Complexity Classes

Remark: Since all (reasonable) computational models are able to simulate
each other in such a way that in this simulation the number of steps does
not increase more than polynomially, the definitions of classes PTIME and
PSPACE are not dependent on the used computational model.

For their definition we can use any computational model.

We say that these classes are robust — their definitions do not depend on
the used computational model.
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Complexity Classes

Other classes are introduced analogously:

EXPTIME — the set of all decision problems for which there exists an

k
algorithm with time complexity 2°(") Wwhere k is a constant

EXPSPACE — the set of all decision problems for which there exists an
k
algorithm with space complexity p0(m) where k is a constant

LOGSPACE - the set of all decision problems for which there exists an
algorithm with space complexity O(log n)

k k
Remark: Instead of 2°" ) we can also write O(c" ) where c and k are

constants.
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Complexity Classes

For definition of LOGSPACE class we specify more exacly what we
consider as a space complexity of an algorithm.

For example, let us consider a Turing machine with three tapes:

@ An input tape on which the input is written at the beginning.

@ A working tape which is empty at the start of the computation. It is
possible to read from this tape and to write on it.

@ An output tape which is also empty at the start of the computation.
It is only possible to write on it.

The amount of used space is then defined as the number of cells used on
the working tape.
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Complexity Classes

Other examples of complexity classes:
2-EXPTIME - the set of all problems for which there exists an algorithm
o nk
with time complexity 2? where k is a constant

2-EXPSPACE - the set of all problems for which there exists an algorithm
o(n¥)
with space complexity 2? where k is a constant
ELEMENTARY - the set of all problems for which there exists an
algorithm with time (or space) complexity

where k is a constant and the number of exponents is
bounded by a constant.
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Relationships between Complexity Classes

If a Turing machine performs m steps then it visits at most m cells on the
tape.

This means that if there exists an algorithm for some problem with time
complexity O(f(n)), the space complexity of this algorithm is (at
most) O(f(n)).

So it is obvious that the following relationship holds.

Observation
For every function f : N — N is 7(f(n)) € S(f(n)).

Remark: We can analogously reason in the case of a RAM.
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Relationships between Complexity Classes

Based on the previous, we see that:

n

PTIME < PSPACE
EXPTIME ¢ EXPSPACE
2-EXPTIME < 2-EXPSPACE

N

N

Since polynomial functions grow more slowly than exponential and
logarithmic more slowly than polynomial, we obviously have:

PTIME € EXPTIME ¢ 2-EXPTIME ¢ ---

LOGSPACE ¢ PSPACE < EXPSPACE < 2-EXPSPACE ¢ ---
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Relationships between Complexity Classes

@ For every pair of real numbers €; a €5 takova, Ze 0 < €1 < €, is

S(n") & 8(n")

LOGSPACE & PSPACE
PSPACE ¢ EXPSPACE

For every pair of real numbers €1 a €, takova, ze 0 < €1 < €5, is

T(n") € T(n?)

PTIME ¢ EXPTIME
EXPTIME ¢ 2-EXPTIME
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Relationships between Complexity Classes

For analyzing relationships between complexity classes it is useful to
consider configurations.

A configuration is a global state of a machine during one step of a
computation.

@ For a Turing machine, a configuration is given by the state of its
control unit, the content of the tape (resp. tapes), and the position of
the head (resp. heads).

o For a RAM, a configuration is given by the content of the memory, by
the content of all registers (including IP), by the content of the input
and output tapes, and by positions of their heads.
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Relationships between Complexity Classes

It should be clear that configurations (or rather their descriptions) can be
written as words over some alphabet.

Moreover, we can write configurations in such a way that the length of the
corresponding words will be approximately the same as the amount of
memory used by the algorithm (i.e., the number of cells on the tape used
by a Turing machine, the number of number of bits of memory used by

a RAM, etc.).

Remark: If we have an alphabet ¥ where |Z| = ¢ then:

@ The number of words of length nis c”, i.e., 20
@ The number of words of length at most n is

n+1 -1

n
ZC -1

i=0

@(n).

i.e., also 2
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Relationships between Complexity Classes

It is clear that during a computation of an algorithm there is no
configuration repeated, since otherwise the computation would loop.

Therefore, if we know that the space complexity of an algorithm is
O(f(n)), it means that the number of different configurations that are
(f(n))

reachable during a computation is 20

Since configurations do not repeat during a computation, also the time
(f(n))

complexity of the algorithm is at most 20

For every function f : N — N it holds that pokud je néjaky problém P
Yegeny algoritmem s prostorovou sloZitosti O(f(n)), pak €asova sloZitost

tohoto algoritmu je v 20 (m),

Pokud je tedy problém P ve t¥idé S(f(n)), pak je i ve t¥idé T(2C'f(")) pro
n&jaké ¢ > 0.
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Relationships between Complexity Classes

The following results can be drawn from the previous discussion:

n

LOGSPACE < PTIME
PSPACE ¢ EXPTIME
EXPSPACE ¢ 2-EXPTIME

[a}
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Relationships between Complexity Classes

Summary:

n

LOGSPACE < PTIME € PSPACE < EXPTIME € EXPSPACE ¢
2-EXPTIME < 2-EXPSPACE ¢ --- € ELEMENTARY

[a}

e PTIME ¢ EXPTIME & 2-EXPTIME & ---
o LOGSPACE & PSPACE ¢ EXPSPACE & 2-EXPSPACE, & ---
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Upper and Lower Bounds on Complexity of Problems

An upper bound on a complexity of a problem means that the complexity
of the problem is not greater than some specified complexity.

Usually it is formulated so that the problem belongs to a particular
complexity class.

Examples of propositions dealing with upper bounds on the complexity:
@ The problem of reachability in a graph is in PTIME.

@ The problem of equivalence of two regular expressions is
in EXPSPACE.

If we want to find some upper bound on the complexity of a problem it is
sufficient to show that there is an algorithm with a given complexity.
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Upper and Lower Bounds on Complexity of Problems

A lower bound on a complexity of a problem means that the complexity
of the problem is at least as big as some specified complexity.

In general, proving of (nontrivial) lower bounds is more difficult than
proving of upper bounds.

To derive a lower bound we must prove that every algorithm solving the
given problem has the given complexity.
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Upper and Lower Bounds on Complexity of Problems

Problem “Sorting”

Input: Sequence of elements a;, as, ..., a,.
Output: Elements ay, a, ..., a, sorted from the smallest to the
greatest.

It can be proven that every algorithm, that solves the problem “Sorting”
and that has the property that the only operation applied on elements of a
sorted sequence is a comparison (i.e., it does not examine the content of
these elements), has the time complexity in the worst case Q(nlog n)

(i.e., for every such algorithm there exist constants ¢ > 0 and n = ng such
that for every n = ng there is an input of size n, for which the algorithm
performs at least cnlog n operations.)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 546 /629



Nodeterministic Algorithms and
Complexity Classes
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Nondeterminism

Nondeterministic RAM:
@ lts definition is very similar to that of a deterministic RAM.

@ Moreover, it has an instruction
nd_goto {1, />
that allows it to choose the next instruction from two possibilities.

o If at least one of computations of such a machine on a given input
ends with the answer YES, then the answer is YES.

o If all computations end with the answer NO then the answer is NoO.

Nondeterministic versions of other computational models (such as
nondeterministic Turing machines) are defined similarly.
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NO
NO NO
YES NO NO NO YES NO NO YES NO

@ The time required for a computation of a nondeterministic RAM (or
other nondeterministic machine) on a given input is defined as the
length of the longest computation on the input.
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Nondeterminism

/h%

YES NO NO NO YES NO NO YES NO

@ The time required for a computation of a nondeterministic RAM (or
other nondeterministic machine) on a given input is defined as the
length of the longest computation on the input.
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Nondeterminism

Problem “Coloring of a graph with k colors”
Input: An undirected graph G and a natural number k.

Question: Is it possible to color the nodes of the graph G with k colors

in such a way that no two nodes connected with an edge are
colored with the same color?
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Nondeterminism

Problem “Coloring of a graph with k colors”
Input: An undirected graph G and a natural number k.

Question: Is it possible to color the nodes of the graph G with k colors

in such a way that no two nodes connected with an edge are
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Nondeterminism

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k.

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

A nondeterministic algorithm works as follows:
@ It assignes nondeterministically to every node of G one of k colors.
@ It goes through all edges of G and for each of them verifies that its

endpoints are colored with different colors. If this is not the case, it
halts with the answer No.

© If it has verified for all edges that their endpoints are colored with
different colors, it halts with the answer YES.
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Nondeterminism

Problem “Graph isomorphism”
Input: Undirected graphs G; = (V4, E;) and G, = (s, E).
Question: Are graphs Gy and G, isomorphic?

Remark: Graphs G; and G, are isomorphic if there exists some bijection
f 1 V4, = V, such that for every pair of nodes u,v € V; is (u,v) € E; iff
(f(u), f(v)) € E.

A nondeterministic algorithm works as follows:

@ It nondeterministically chooses values of the function f for every
v € V.

@ It (deterministically) verifies that f is a bijection and that the above
mentioned condition is satisfied for all pairs of nodes.

© If some of the conditions is violated, it halts with the answer NoO.
Otherwise it halts with the answer YES.
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Nondeterminism

@ For decidability of problems, the nondeterministic algorithms are not
more powerful than deterministic ones:
If a problem can be solved by a nondeterministic RAM or TM, it can
be also solved by a deterministic RAM or TM that successively tries
all possible computations of the nondeterministic machine on a given
input.

@ Nondeterminism is useful primarily in the study of a complexity of
problems.
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Nondeterminism

@ In the straightforward simulation of a nondeterministic algorithm by
a deterministic, described above, where the deterministic algorithm
systematically tries all possible computations, the time complexity of
the deterministic algorithm is exponentially bigger than in the
nondeterministic algorithm.

@ For many problems, it is clear that there exists a nondeterministic
algorithm with a polynomial time complexity solving the given
problem but it is not clear at all whether there also exists
a deterministic algorithm solving the same problem with a polynomial
time complexity.
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Nondeterminism

Nondeterminism can be viewed in two different ways:

©@ When a machine should nondeterministically choose between several
possibilities, it “guesses’ which of these possibilities will lead to the
answer YES (if there is such a possibility).

@ When a machine should choose between several possibilities, it splits
itself into several copies, each corresponding to one of the
possibilities. These copies continue in the computation in parallel.
The answer is YES iff at least one of these copies halts with the
answer YES.

None of these possibilities is something that could be efficiently
realistically implemented.
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Nondeterminism

Other possible view of the nondeterminism:

@ A kind of an algorithm that does not solve the given problem but
using an additional information — called witness — can verify that
the answer for the given instance is YES.

Let us assume that in the original problem the input is some x from
the set of instances /n and the question is whether this x has some
specified property P.

For the given input x, there is a corresponding set W(x) of potential
witnesses with the property that x has the property P iff there exists
an actual witness y € W/(w) of the fact that x really has property P.

There is a deterministic algorithm Alg that expects as input
a pair (x,y) (where y € W(x)) and that checks that y is a witness
of the fact that x has property P.
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Nondeterminism

Example: The problem “Graph Colouring with k colours”:

@ Input: An undirected graph G = (V, E) and number k.

@ Potential witnesses: All possible colourings of nodes of graph G with
k colours, i.e., all functions c of the form c: V — {1,..., k}.

@ Actual witnesses: Those colourings ¢ where for each edge (u,v) € E
holds that c(u) # c(v).
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Nondeterminism

@ For each deterministic algorithm Alg that can verify for a given pair
(x,y) that y is a witness of the fact that x has property P, we can
easily construct a corresponding nondeterministic algorithm that
solves the original problem:

e For a given x € In it generates nondeterministically a potential
witness y € W(x).

o Then it uses the (deterministic) algorithm Alg as a subroutine to check
that y is an actual witness.

557 /629
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@ On the contrary, for every nondeterministic algorithm, we can also
easily construct a deterministic algorithm for checking witnesses:

e A potential witness will be a sequence specifying for each
nondeterministic step of the original algorithm, which possibility should
be chosen in the given step.

o The deterministic algorithm then simulates one particular computation
(one branch of the tree) of the original algorithm where in those steps
where several choices are possible, it does not guess but continues
according to the sequence given as a witness.
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Nondeterminism

We will concentrate particularly to those cases where the time complexity

of the algorithm for checking a witness is polynomial with respect to the
size of input x.

This also means that a given witness y, witnessing that the answer for x
is YES, must be of a polynomial size.

So by a nondeterministic algorithm with a polynomial time complexity we
can solve those decision problems where:

e for a given input x there exists a corresponding (polynomially big)
witness iff the answer for x is YES,

@ it is possible to check using a deterministic algorithm in polynomial
time that a given potential witness is really a witness.
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Nondeterminism

In many cases, the existence of such polynomially big witnesses and
deterministic algorithms checking them is obvious and it is trivial to show
that they exist — e.g., for problems like “Graph Colouring

with k Colours”, "“Graph Isomorphism”, or the following problem:

Testing that a number is composite

Input: A natural number x.

Question: Is the number x composite?

Remark: Number x is composite if there exist natural numbers a and b
suchthata>1, b>1,and x=a-b.

For example, number 15 is composite because 15 = 3 - 5.

So the number x € N is composite iff x > 1 and x is not a prime.

Existence of such polynomially big witnesses of course does not
automatically mean that it is easy to find them.
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Nondeterminism

For some problems, a proof of existence of such polynomially bounded
witnesses, which can be checked deterministically in a polynomial time,
rather nontrivial result.

An example can be the following problem:

Primality Testing

Input: A natural number x.

Question: Is number x a prime?

Using some nontrivial results from number theory, there can be shown
existence of such witnesses even for this problem — those witnesses here
are rather complicated recursively defined data structures.

Remark: This result was shown by V. Pratt in 1975.

Much later it was shown that “Primality Testing” is in PTIME
(Agrawal-Kayal-Saxena, 2002).
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Nondeterministic Complexity Classes

Definition

For a function f : N — N we define the time complexity class N7 (f) as
the set of all problems that are solved by nondeterministic RAMs with
a time complexity in O(f(n)).

Definition
For a function f : N —» N we define the space complexity class N'S(f)
as the set of all problems that are solved by nondeterministic RAMs with
a space complexity in O(f(n)).

Remark: Of course, the definitions given above can also use Turing
machines or some other model of computation instead of RAMs.
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Class NPTIME

NPTIME = | J AT (n")
k=0

o NPTIME (sometimes we write just NP) is the class of all problems,
for which there exists a nondeterministic algorithm with polynomial
time complexity.

@ The class NPTIME contains those problems for which it is possible to
verify in polynomial time that the answer is YES if somebody, who
wants to convince us that this is really the case, provides additional
information.
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Classes NPSPACE, NEXPTIME, NEXPSPACE, ...

Other classes can be defined similarly:

NPSPACE — mnozZina v8ech rozhodovacich problémd, pro které existuje

nedeterministicky algoritmus s polynomiani prostorovou
sloZitosti

NEXPTIME — the set of all decision problems for which there exists an

k
algorithm with time complexity 2°(") Wwhere k is a constant

NEXPSPACE - the set of all decision problems for which there exists an

k
algorithm with space complexity 290" \where k is a constant

NLOGSPACE — the set of all decision problems for which there exists an
algorithm with space complexity O(log n)
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Relationships between Complexity Classes

It is clear that deterministic algorithms can be viewed as a special case of
nondeterministic algorithms.

Therefore it obviously holds that:

LOGSPACE = NLOGSPACE
PTIME € NPTIME
PSPACE < NPSPACE
EXPTIME & NEXPTIME
EXPSPACE < NEXPSPACE
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Relationships between Complexity Classes

It is also obvious that for both deterministic and nondeterministic
algorithms, an algorithm can not use considerably bigger number of
memory cells than what is the number of steps executed by the algorithm.

A space complexity of an algorithm is therefore always at most as big as
its time complexity.

From this follows that:

PTIME

N

PSPACE
NPTIME € NPSPACE
EXPTIME & EXPSPACE
NEXPTIME € NEXPSPACE

N

N
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Relationships between Complexity Classes

Consider a nondeterministic algorithm with time complexity O(f(n)).

A deterministic algorithm that will simulate its behaviour by
systematically trying all its possible computations (by going through the
tree of these computations in a depth-first manner) will need only the
following memory:

@ a memory to store a current configuration of the simulated machine
— its size is O(f(n)) (since if this simulated machine performs at
most O(f(n)) steps then its configurations will use at most O(f(n))
memory cells)

@ a memory to store a stack that will be used to allow returning to
previous configurations
— to allow to go back to a previous configuration o from a following
configuration o', it is sufficient to store a constant amount of
information — only those things that were changed in the transition
from o to o'
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Relationships between Complexity Classes

@ Since the length of branches is O(f(n)), the amount of memory
needed for the stack is O(f(n)).

@ So in total, the deterministic algorithm uses in this simulation an
amount of memory, which is at most O(f(n)).
It follows from this that:

NPTIME & PSPACE
NEXPTIME € EXPSPACE
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Relationships between Complexity Classes

Consider a nondeterministic algorithm with a space complexity O(f(n)):

@ Let us recall that the total number of configurations of size at
most O(f(n)) is O(cf(n)), where ¢ is a constant, so this can be

written as 2°(/(")

@ So the number of steps of the nondeterministic algorithm in one
branch of computation could be at most 2O(f(")).

(Remark: No configuration can be repeated during a computation

since otherwise computations could be infinite.)

O(f(n))
@ So the simulation done this way would have time complexity 2?
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Relationships between Complexity Classes

In a simulation we can proceed in a more clever way — consider a directed
graph where:

@ nodes — all configurations of the simulated machine whose size is at
most O(f(n))

— the number of such configurations is 20

(£(n))

o edges — there is an edge between nodes representing configurations
o and o' iff the simulated machine can go in one step from
configuration « to configuration o
— the number of edges going out from each node is bounded from

(£(n)

above by some constant — so the number of edges is also 29

It is sufficient to be able to find out whether there is a path in this graph
from the node corresponding to the initial configuration (for the given
input x) to some node corresponding to a final configuration where the
machine gives answer YES.
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Relationships between Complexity Classes

Existence of such a path can be tested using an arbitrary algorithm for
searching a graph — breadth-first search, depth-first search, ...:

@ This algorithm needs to store and mark, which configurations have
been already visited.
It also needs a memory to store a queue or a stack, etc.

@ The time and space complexity of such algorithm is linear with
respect to the size of the graph, i.e., 20(")

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 571 /629



Relationships between Complexity Classes

So we obtain the following:

The behaviour of a nondeterministic algorithm whose space complexity
is O(f(n))can be simulated by a deterministic algorithm with time

O(f(n))

complexity 2 .

It follows from this that:

n

NLOGSPACE < PTIME
NPSPACE ¢ EXPTIME
NEXPSPACE < 2-EXPTIME

[a}
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Relationships between Complexity Classes

Consider once again a nondeterministic algorithm with space
complexity O(f(n)). Now we would like to have the space complexity of
the simulating deterministic algorithm as small as possible.

Theorem (Savitch, 1970)

The behaviour of a nondeterministic algorithm with space complexity
O(f(n)) can be simulated by a deterministic algorithm with space

. 2
complexity O(f(n)?).

Proof idea:
o Consider once again the graph of configurations with 20U hodes
(and edges).

@ The algorithm will try to find out whether there exists a path from
the initial configuration to some accepting configuration.
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Relationships between Complexity Classes

The most important part is a recursive function F(a,o/, i) that for
arbitrary configurations « and o' and number i € N finds out whether the
given graph contains a path from «a to o of length at most 2":
o For i = 0 it finds out whether there is a path from a to o of length
at most 1:
e it is either a path of length 0, i.e., @ = oz',
e or it is a path of length 1, i.e., it is possible to go from « to a'in one
step
@ For i > 0, it will systematically try all configurations o and check
whether:

e there is a path of length at most 2i/2 from a to o
— it calls F(a, ", i — 1) recursively

o there is a path of length at most 2i/2 from o to o'
— it calls F(a", o', i — 1) recursively

If both returns TRUE, it returns TRUE, otherwise it continues with
trying the next o
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Relationships between Complexity Classes

The analysis of the space complexity of the algorithm:

@ in one recursive call of the function F, the algorithm needs to store:

o three configurations a, o', o' — all of them of size O(f(n))

o the value of the number i, which is approximately O(f(n)) — so to
store this number, O(log F(n)) bits are sufficient

o other auxiliary variables whose sizes are negligible compared to the
sizes of the values described above

@ So the amount of memory needed for one recursive call is O(f(n)).
@ The depth of the recursion is also O(f(n)).

o So the total space complexity of the algorithm is O(f(n)?).
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Relationships between Complexity Classes

It follows from this theorem that:

n

NPSPACE < PSPACE
NEXPSPACE < EXPSPACE

[a}

Together with the trivial facts that PSPACE ¢ NPSPACE,
EXPSPACE < NEXPSPACE, ... this implies:

PSPACE
EXPSPACE

NPSPACE
NEXPSPACE

Remark: Note that it does not follow from this that
LOGSPACE = NLOGSPACE.
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Relationships between Complexity Classes

Putting all this together, we obtain the following hierarchy of complexity
classes:

LOGSPACE = NLOGSPACE <
€ PTIME € NPTIME ¢ PSPACE = NPSPACE ¢
c EXPTIME € NEXPTIME < EXPSPACE = NEXPSPACE <

n
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NP-Complete Problems
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Polynomial Reductions between Problems

There is a polynomial reduction of problem P; to problem P, if there

exists an algorithm Alg with a polynomial time complexity that reduces
problem P; to problem P.
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Polynomial Reductions between Problems

Inputs of problem P; Inputs of problem P,
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Polynomial Reductions between Problems

Inputs of problem P; Inputs of problem P,

Alg
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Polynomial Reductions between Problems

Let us say that problem A can be reduced in polynomial time to
problem B, i.e., there is a polynomial algorithm P realizing this reduction.

If problem B is in the class PTIME then problem A is also in the class
PTIME.

A solution of problem A for an input x:
e Call P with input x and obtain a returned value P(x).
e Call a polynomial time algorithm solving problem B with the
input P(x).
Write the returned value as the answer for A.

That means:

If Ais not in PTIME then also B can not be in PTIME.
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Polynomial Reductions between Problems

There is a big class of algorithmic problems called NP-complete problems
such that:

@ patfi do tfidy NPTIME, tj. jsou FeSitelné v polynomidlnim &ase
nedeterministickym algoritmem

@ these problems can be solved by exponential time algorithms
@ no polynomial time algorithm is known for any of these problems

@ on the other hand, for any of these problems it is not proved that
there cannot exist a polynomial time algorithm for the given problem

@ every NP-complete problem can be polynomially reduced to any other
NP-complete problem

Remark: This is not a definition of NP-complete problems. The precise
definition will be described later.
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Problem SAT

A typical example of an NP-complete problem is the SAT problem:

SAT (boolean satisfiability problem)

Input: Boolean formula ¢.
Question: Is ¢ satisfiable?

Example:

Formula @1 = x; A (=xp V x3) is satisfiable:

e.g., for valuation v where v(x;) =1, v(x) =0, v(x3) = 1, the
formula 1 is true.

Formula @5 = (x3 A =x1) V (=x2 A X3 A xp) is not satisfiable:
it is false for every valuation v.
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Problem 3-SAT

3-SAT is a variant of the SAT problem where the possible inputs are
restricted to formulas of a certain special form:

3-SAT

Input: Formula ¢ is a conjunctive normal form where every clause
contains exactly 3 literals.

Question: Is ¢ satisfiable?
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Problem 3-SAT

Recalling some notions:
@ A literal is a formula of the form x or —=x where x is an atomic
proposition.
@ A clause is a disjuction of literals.

Examples: X1 V —Xp X5 V Xg V X35 V —1Xo3 X6

e A formula is in a conjuctive normal form (CNF) if it is a conjuction
of clauses.

Example:  (x1 V =x2) A (=x5 V xg V =x5 V =x3) A Xp

So in the 3-SAT problem we require that a formula ¢ is in a CNF and
moreover that every clause of ¢ contains exactly three literals.

Example:

(x1V=xVx) A(=x1 VX3 Vxg)A(=xg VaxsV—xg) A (X Vaxs Vixg)
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Problem 3-SAT

The following formula is satisfiable:

(a V= Vxg) A(=x Vg Vi) A(=xq Vs Vioxg) A Do vV i-xa Voxg)

It is true for example for valuation v where

v(x) =0
vixo) =1
v(xg) =0
v(xg) =1

On the other hand, the following formula is not satisfiable:

(Xl VX1V Xl) A (—|X1 V —axy V —|X1)
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Polynomial Reductions between Problems

As an example, a polynomial time reduction from the 3-SAT problem to
the independent set problem (IS) will be described.

Remark: Both 3-SAT and IS are examples of NP-complete problems.
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Independent Set (IS) Problem

Independent set (IS) problem
Input: An undirected graph G, a number k.
Question: Is there an independent set of size k in the graph G?

Remark: An independent set in a graph is a subset of nodes of the
graph such that no pair of nodes from this set is connected by an edge.
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Independent Set (IS) Problem

Independent set (IS) problem
Input: An undirected graph G, a number k.
Question: Is there an independent set of size k in the graph G?

@)

Remark: An independent set in a graph is a subset of nodes of the
graph such that no pair of nodes from this set is connected by an edge.
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Independent Set (IS) Problem

An example of an instance where the answer is YES:

An example of an instance where the answer is NO:
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A Reduction from 3

We describe a (polynomial-time) algorithm with the following properties:

o Input: An arbitrary instance of 3-SAT, i.e., a formula ¢ in a
conjunctive normal form where every clause contains exactly three
literals.

@ Output: An instance of IS, i.e., an undirected graph G and a number
k.

@ Moreover, the following will be ensured for an arbitrary input (i.e., for
an arbitrary formula ¢ in the above mentioned form):

There will be an independent set of size k in graph G iff formula ¢
will be satisfiable.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 590 /629



A Reduction from 3-SAT to IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)
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A Redu

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

X3 e
e 1X>

X1 @

X2 X4
° °
®
—|X3
® Xy
X3 @
e X1
—|X1
®
° ]
X2 X4

For each occurrence of a literal we add a node to the graph.
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A Redu

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

X2 X4
—|X3
X3 —Xa
—|X2 —|X3
X1 X1
—|X1
X2 X4

We connect with edges the nodes corresponding to occurrences of literals
belonging to the same clause.
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A Reduction from 3-SAT to IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

For each pair of nodes corresponding to literals x; and —x; we add an edge
between them.
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A Reduction from 3-SAT to IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

X2 X4

We put k to be equal to the number of clauses.
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A Reduction from 3-SAT to IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

X2 X4

The constructed graph and number k are the output of the algorithm.
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A Reduction from 3-SAT to IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

v(ix) =1
vix) =1
v(x3) =0
v(xg) =1

If the formula ¢ is satisfiable then there is a valuation v where every
clause contains at least one literal with value 1.
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A Reduction from 3-SAT to IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

v(ix) =1
v(ix) =1
v(x3) =0
v(xg) =1

We select one literal that has a value 1 in the valuation v, and we put the
corresponding node into the independent set.
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A Reduction from 3-SAT to IS

(V= Vxs) A eV=x3Vx) A (xpV=axsVioxg) A (=xVxg Vixg)

v(ix) =1
v(ix) =1
v(x3) =0
v(xg) =1

We can easily verify that the selected nodes form an independent set.
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A Reduction from

The selected nodes form an independent set because:

@ One node has been selected from each triple of nodes corresponding
to one clause.

@ Nodes denoted x; and —x; could not be selected together.
(Exactly of them has the value 1 in the given valuation v.)
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A Reduction from

On the other hand, if there is an independent set of size k in graph G,
then it surely has the following properties:

@ At most one node is selected from each triple of nodes corresponding
to one clause.
But because there are k clauses and k nodes are selected, exactly one
node must be selected from each triple.

@ Nodes denoted x; and —x; cannot be selected together.

We can choose a valuation according to the selected nodes, since it follows
from the previous discussion that it must exist.
(Arbitrary values can be assigned to the remaining variables.)

For the given valuation, the formula ¢ has surely the value 1, since in each
clause there is at least one literal with value 1.
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A Reduction from 3-SAT to IS

It is obvious that the running time of the described algorithm polynomial:
Graph G and number k can be constructed for a formula ¢ in time O(n?),

where n is the size of formula .

We have also seen that there is an independent set of size k in the
constructed graph G iff the formula ¢ is satisfiable.

The described algorithm shows that 3-SAT can be reduced in polynomial
time to IS.
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NP-Complete Problems

Let us consider a set of all decision problems.
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NP-Complete Problems

By an arrow we denote that a problem A can be reduced in polynomial
time to a problem B.
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NP-Complete Problems

For example 3-SAT can be reduced in polynomial time to IS.
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NP-Complete Problems

Let us consider now the class NPTIME and a problem P.
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NP-Complete Problems

A problem P is NP-hard if every problem from NPTIME can be reduced
in polynomial time to P.
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NP-Complete Problems

A problem P is NP-complete if it is NP-hard and it belongs to the class
NPTIME.
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NP-Complete Problems

If we have found a polynomial time algorithm for some NP-hard
problem P, then we would have polynomial time algorithms for all
problems P' from NPTIME:

o At first we would apply an algorithm for the reduction from P'to P
on an input of a problem P

@ Then we would use a polynomial algorithm for P on the constructed
instance of P and returned its result as the answer for the original
instance of P'.

Is such case, PTIME = NPTIME would hold, since for every problem from
NPTIME there would be a polynomial-time (deterministic) algorithm.
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NP-Complete Problems

On the other hand, if there is at least one problem from NPTIME for
which a polynomial-time algorithm does not exist, then it means that for
none of NP-hard problems there is a polynomial-time algorithm.

It is an open question whether the first or the second possibility holds.
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NP-Complete Problems

It is not difficult to see that:

If a problem A can be reduced in a polynomial time to a problem B and
problem B can be reduced in a polynomial time to a problem C, then
problem A can be reduced in a polynomial time to problem C.

So if we know about some problem P that it is NP-hard and that P can
be reduced in a polynomial time to a problem P' then we know that the
problem P' is also NP-hard.
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NP-Complete Problems

Véta (Cook, 1971)
Problem SAT is NP-complete.

It can be shown that SAT can be reduced in a polynomial time to 3-SAT
and we have seen that 3-SAT can be reduced in a polynomial time to IS.

This means that problems 3-SAT and IS are NP-hard.

It is not difficult to show that 3-SAT and IS belong to the class NPTIME.

Problems 3-SAT and IS are NP-complete.
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NP-Complete Problems

By a polynomial reductions from problems that are already known to be
NP-complete, NP-completeness of many other problems can be shown:

vC

4 CLIQUE

/ IS \
SAT ——=> 3—SAT\ HC

3-CG

HK TSP

SUBSET-SUM

ILP
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Examples of Some NP-Complete Problems

The following previously mentioned problems are NP-complete:

SAT (boolean satisfiability problem)
3-SAT
IS — independent set problem

On the following slides, examples of some other NP-complete problems are described:

CG — graph coloring (remark: it is NP-complete even in the special case where we
have 3 colors)

VC — vertex cover

CLIQUE — clique problem

HC — Hamiltonian cycle

HK — Hamiltonian circuit

TSP — traveling salesman problem
SUBSET-SUM

ILP — integer linear programming
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Graph Coloring

Graph coloring

Input: An undirected graph G, a natural number k.

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: kK =3
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Graph Coloring

Graph coloring

Input: An undirected graph G, a natural number k.

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: kK =3

ver:
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Graph Coloring

Graph coloring

Input: An undirected graph G, a natural number k.

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: kK =3
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Graph Coloring

Graph coloring

Input: An undirected graph G, a natural number k.

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: kK =3

Answer: NO
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VC — Vertex Cover

VC - vertex cover

Input: An undirected graph G and a natural number k.

Question: Is there some subset of nodes of G of size k such that every
edge has at least one of its nodes in this subset?

Example: kK =6
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VC — Vertex Cover

VC - vertex cover

Input: An undirected graph G and a natural number k.

Question: Is there some subset of nodes of G of size k such that every
edge has at least one of its nodes in this subset?

Example: kK =6

Answer: YES
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CLIQUE

CLIQUE

Input: An undirected graph G and a natural number k.

Question: Is there some subset of nodes of G of size k such that every
two nodes from this subset are connected by an edge?

Example: k =4
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CLIQUE

CLIQUE

Input: An undirected graph G and a natural number k.

Question: Is there some subset of nodes of G of size k such that every
two nodes from this subset are connected by an edge?

Example: k =4

Answer: YES
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Hamiltonian Cycle

HC — Hamiltonian cycle

Input: A directed graph G.

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:
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Hamiltonian Cycle

HC — Hamiltonian cycle

Input: A directed graph G.

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:

Answer: NO
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Hamiltonian Cycle

HC — Hamiltonian cycle

Input: A directed graph G.

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:
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Hamiltonian Cycle

HC — Hamiltonian cycle

Input: A directed graph G.

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:

Answer: YES
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Hamiltonian Circuit

HK — Hamiltonian circuit

Input: An undirected graph G.

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:

Answer: NO
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Hamiltonian Circuit

HK — Hamiltonian circuit

Input: An undirected graph G.

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:
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Hamiltonian Circuit

HK — Hamiltonian circuit

Input: An undirected graph G.

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:

Answer: YES
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Traveling Salesman Problem

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers and a number k.

Question: Is there a closed tour going through all nodes of the graph G
such that the sum of labels of edges on this tour is at
most k7

Example: kK =70
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Traveling Salesman Problem

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers and a number k.

Question: Is there a closed tour going through all nodes of the graph G
such that the sum of labels of edges on this tour is at
most k7

Example: kK =70

Answer: YES, since there is a tour with the sum 69.
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SUBSET-SUM

Problem SUBSET-SUM
Input: A sequence ay, as, ..., a, of natural numbers and a natural

number s.
Question: Is there a set / € {1,2,...,n} such that ) ;.,a; =57

In other words, the question is whether it is possible to select a subset
with sum s of a given (multi)set of numbers.

Example: For the input consisting of numbers 3,5,2,3,7 and number
s = 15 the answer is YES, since 3+ 5+ 7 = 15.

For the input consisting of numbers 3,5,2,3,7 and number s = 16 the
answer is NO, since no subset of these numbers has sum 16.
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SUBSET-SUM

Remark:
The order of numbers aj, as,...,a, in an input is not important.

Note that this is not exactly the same as if we have formulated the
problem so that the input is a set {a, a,...,a,} and a number s —
numbers cannot occur multiple times in a set but they can in a sequence.
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SUBSET-SUM

Problem SUBSET-SUM is a special case of a knapsack problem:

Knapsack problem

Input: Sequence of pairs of natural numbers

(a1, b1), (a2, by), ..., (a,, b,) and two natural numbers s
and t.
Question: Is there a set / € {1,2,...,n} such that ) ;., a; < s and
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SUBSET-SUM

Informally, the knapsack problem can be formulated as follows:

We have n objects, where the i-th object weights a; grams and its price
is b; dollars.

The question is whether there is a subset of these objects with total
weight at most s grams (s is the capacity of the knapsack) and with total
price at least t dollars.

Remark:
Here we have formulated this problem as a decision problem.

This problem is usually formulated as an optimization problem where the
aim is to find such a set / € {1,2,...,n}, where the value ) ., b; is
maximal and where the condition ) ;¢ a; < s is satisfied, i.e., where the
capacity of the knapsack is not exceeded.
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SUBSET-SUM

That SUBSET-SUM is a special case of the Knapsack problem can be
seen from the following simple construction:

Let us say that a1, a»,...,a,, s1 is an instance of SUBSET-SUM.

It is obvious that for the instance of the knapsack problem where we have
the sequence (a1, a1), (a2,a2),..., (ap, an), s = 51 and t = s1, the answer
is the same as for the original instance of SUBSET-SUM.
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SUBSET-SUM

If we want to study the complexity of problems such as SUBSET-SUM or
the knapsack problem, we must clarify what we consider as the size of an
instance.

Probably the most natural it is to define the size of an instance as the
total number of bits needed for its representation.

We must specify how natural numbers in the input are represented — if in
binary (resp. in some other numeral system with a base at least 2 (e.g.,
decimal or hexadecimal) or in unary.

o If we consider the total number of bits when numbers are written in
binary as the size of an input, no polynomial time algorithm is known
for SUBSET-SUM.

o If we consider the total number of bits when numbers are written in
unary as the size of an input, SUBSET-SUM can be solved by an
algorithm whose time complexity is polynomial.
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ILP — Integer Linear Programming

Problem ILP (integer linear programming)
Input: An integer matrix A and an integer vector b.

Question: Is there an integer vector x such that Ax < b?

An example of an instance of the problem:

3 =25 8
A= 1 0 1 b=| -3
2 1 0 5

So the question is if the following system of inequations has some integer
solution:

3x =2x0 +5x3 < 8
x1+x3 < =3
2x1+x, < 5
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ILP — Integer Linear Programming

One of solutions of the system

3x1 —2xo+5x3 = 8
x1+x3 < =3
2X1+X2 < 5
is for example x; = =4, x, =1, x3 =1, i.e,,
-4
X = 1
1
because
3-(-4)-2-1+5-1 = -9 =< 8
-4+1 = -3 < -3
2-(-4)+1 = -7 = 5

So the answer for this instance is YES.
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ILP — Integer Linear Programming

Remark: A similar problem where the question for a given system of linear
inequations is whether it has a solution in the set of real numbers, can be
solved in a polynomial time.
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PSPACE-Complete and EXPTIME-Complete Problems

@ A problem P is PSPACE-hard if for every problem P' from PSPACE
there is a polynomial time reduction of P to P.

@ A problem P is PSPACE-complete if it is PSPACE-hard
and belongs to PSPACE.

@ A problem P is EXPTIME-hard if for every problem P'
from EXPTIME there is a polynomial time reduction of P'to P.

@ A problem P is EXPTIME-complete if it is EXPTIME-hard
and belongs to EXPTIME.
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PSPACE-Complete and EXPTIME-Complete Problems

Generally, for arbitrary complexity class C we can introduce classes of
C-hard and C-complete problems:

Definition

@ A problem P is C-hard if for every problem P' from the class C there
is a polynomial time reduction of P to P.

@ A problem P is C-complete if it is C-hard and belongs to the class C.

So in addition to NP-complete problems, we have PSPACE-complete
problems, EXPTIME-complete problems, EXPSPACE-complete problems,
2-EXPTIME-complete problems, ...

Generally speaking, C-complete problems are always the hardest problems
in the given class C.
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PTIME-Complete Problems, NL-Complete Problems, ...

Remark: The notions of C-hard and C-complete problems defined as
above, where a polynomial time reductions are used, do not make much
sense for the class PTIME and other classes, which are subsets of this
class (such as NLOGSPACE).

For such classes, the notions of C-hard and C-complete problems are
defined in a similar way as before but instead of polynomial time
reductions they use so called logspace reductions:

@ an algorithm performing the given reduction must be deterministic
and to have a logarithmic space complexity

For example, the following classes are defined this way:

o PTIME-complete and PTIME-hard problems

o NLOGSPACE-complete and NLOGSPACE-hard problems (they are
usually denoted with a shorter name as NL-complete and NL-hard)
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An Example of NL-Complete Problem

A typical example of NL-complete problem:

Reachability in a Graph
Input: A directed graph G and two of its nodes s and t.

Question: Is there a path from the node s to the node t in the
graph G?
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An Example of a PTIME-Complete Problem

A typical example of PTIME-complete problem:

Circuit Value Problem

Input: An acyclic boolean circuit C consisting of gates and wires,
and boolean values x7, x>, ..., x, on inputs of this circuit.

Question: Is the value on the output of the circuit C equal to 1 for the
given values of inputs?
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Examples of PSPACE-Complete Problems

A typical example of a PSPACE-complete problem is the problem of
quantified boolean formulas (QBF):

QBF

Input: A quantified boolean formula of the form

Axy VxoAx3Vxge - Ax,—1 YV x, ¢ 0,

where ¢ is a (standard) boolean formula containing
variables xq, x5, ..., X,.

Question: Is the given formula true?
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Examples of PSPACE-Complete Problems

EqNFA

Input: Nondeterministic finite automata A; and A,.
Question: Is £( A1) = L(Ap)?

Universality of NFA

Input: A nondeterministic finite automaton A.
Question: Is £(A) =X*7?
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Examples of PSPACE-Complete Problems

Input: Regular expressions a; and «p.
Question: Is L£(ay) = L(an)?

Universality of RE

Input: A regular expression a.
Question: Is £(a) = X*?
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Examples of PSPACE-Complete Problems

Consider the following game played by two players on a directed graph G:

Players alternately move a pebble on the nodes of graph G.
In moves they mark those nodes that have been already visited.
A play starts on the specified node v.

Let us say that the pebble is currently on a node v. The player who is
on turn choses a node v' such that there is an edge from v to v' and
v' has not been visited yet.

@ A player that does not have any possible move, loses, and his/her
opponent wins.

Generalized Geografy
Input: A directed graph G with a denoted initial node vg.

Question: Does the player that plays first have a winning strategy in
the game played on the graph G with the initial node v ?
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Examples of EXPTIME-Complete Problems

A typical example of EXPTIME-complete problem:

Input: A Turing machine M, a word w, and number k written in
binary.
Question: Does the computation of the machine M on the word w
halt in k steps?

(l.e., does the machine M perform at most k steps in the
computation on the word w?)
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Examples of EXPTIME-Complete Problems

Other examples of EXPTIME-complete problems are for example
generalized variants of games such chess, checkers, or Go, played on
a board of an arbitrary size (e.g., on a chessboard of size n X n):

@ the input is a position in the given game (e.g., in chess, a particular
placement of pieces on a chessboard and information whose player is
on turn)

@ the question is if the player who is currently on turn, has a winning
strategy in the given position

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 11, 2026 627 /629



Examples of EXPSPACE-Complete Problems

Regular expressions with squaring are defined similarly as standard regular
expressions but in addition to the standard operators +, -, and ¥, they can
contain unary operator 2 with the following meaning:

e o is a shorthand for a - a.

The following two problems are EXPSPACE-complete:

Input: Regular expressions with squaring oy and as.
Question: Is £(ay) = L(ap)?

Input: A regular expression with squaring a.
Question: Is £(a) = X*?
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Presburger Arithmetic

An example of a problem that is decidable but its computational
complexity is very high:

Input: A closed formula of the first order predicate logic where the
only predicate symbols are = and <, the only function
symbol is +, and the only constant symbols are 0 and 1.

Question: Is the given formula true in the domain of natural numbers

(using the natural interpretation of all function and predicate
symbols)?

20(">
A deterministic algorithm with time complexity 2? is known for this
problem, and it is also known that every nondeterministic algorithm

Q(n)
solving this problem must have a time complexity at least 2?
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