Tutorial 2

Exercise 1: Write regular expressions for the following languages:

- a) The language {ab, ba, abb, bab, abbb, babb} Solution: $ab + ba + abb + babb + abbb + babb or (ab + ba)(\varepsilon + b + bb)$
- b) The language over alphabet $\{a, b, c\}$ containing exactly those words that contain subword abb. Solution: $(a + b + c)^* abb(a + b + c)^*$
- c) The language over alphabet $\{a, b, c\}$ containing exactly those words that start with prefix bca or end with suffix ccab.

Solution: $bca(a+b+c)^* + (a+b+c)^*ccab$

- d) The language $\{w \in \{0, 1\}^* \mid |w|_0 \mod 2 = 0\}$. Solution: $1^*(01^*01^*)^*$
- e) The language $\{w \in \{0, 1\}^* \mid |w|_0 \mod 3 = 1\}$. Solution: 1*01*(01*01*01*)*
- f) The language { $w \in \{0, 1\}^* | w$ contains subwords 010 and 111} Solution: $(0+1)^*010(0+1)^*111(0+1)^* + (0+1)^*111(0+1)^*010(0+1)^*$
- g) The language $\{w \in \{a, b\}^* \mid w \text{ contains subword bab or } |w|_b \leq 3\}$ Solution: $(a + b)^*bab(a + b)^* + a^*(ba^* + \varepsilon)(ba^* + \varepsilon)(ba^* + \varepsilon)$
- h) The language { $w \in \{a, b\}^* | w \text{ contains subword bab and } |w|_b \leq 3$ } Solution: $a^*ba^*baba^* + a^*baba^*ba^* + a^*baba^*$ or $(\varepsilon + a^*b)a^*baba^* + a^*baba^*ba^*$
- i) The language of all words over $\{a, b, c\}$ that contain no two consecutive a's. Solution: $((b + c + a(b + c))^*(\varepsilon + a)$

Exercise 2: Let us have two languages L_1 and L_2 described by the regular expressions

$$L_1 = \mathcal{L}(0^* 1^* 0^* 1^* 0^*), \qquad L_2 = \mathcal{L}((01 + 10)^*).$$

a) What are the shortest and the longest words in the intersection $L_1 \cap L_2$?

Solution: The shortest words is ε and the longest 01100110, since the language L_2 does not contain any word where the same symbol would be repeated more than twice.

b) Why none of the languages L_1 and L_2 is a subset of the other?

Solution: Because $1 \in L_1 - L_2$ and $010101 \in L_2 - L_1$.

c) What is the shortest word that does not belong to the union $L_1 \cup L_2$? Is it unambiguous? Solution: 10101, it is unambiguous. **Exercise 3:** Let us say that we would like to devise a syntax for representation of simple arithmetic expressions by words over alphabet

$$\Sigma = \{A, B, \dots, Z, a, b, \dots, z, 0, 1, \dots, 9, ., +, -, *, /, (,)\}.$$

- a) Propose how identifiers will look like, and deribe them using a regular expression.
- b) Propose how number constants will look like, and describe them using a regular expression.

Remark: Allow the number constants that would represent integers, e.g., 129 or 0, and also floating-point number constants, e.g., 3.14, -1e10, or 4.2E-23. Consider also the possibility of representing number constants in other number systems except the decimal number system (e.g., hexadecimal, octal, binary).

Exercise 4: For each of the following languages, construct a DFA accepting the given language. Represent the constructed automata by graphs and tables.

a)
$$L_1 = \{w \in \{a, b\}^* \mid w = a\}$$

Solution:

_	a	b
$\rightarrow 1$	2	3
$\leftarrow 2$	3	3
3	3	3

b) $L_2 = \{b, ab\}$

Solution:

c) $L_3 = \{w \in \{a, b\}^* \mid \exists n \in \mathbb{N} : w = a^n\}$

d) $L_4 = \{ w \in \{a, b, c\}^* \mid |w|_a \ge 1 \}$

Solution:

b,c		a, b, c		a	b	c
()	â	()	$\rightarrow 1$	2	1	1
→ (1)—	u	 2	$\leftarrow 2$	2	2	2

e) $L_5 = \{w \in \{0,1\}^* \mid w \text{ contains subword } 011\}$

Solution:

f) $L_6 = \{w \in \{a, b, c\}^* \mid |w| > 0 \land |w|_a = 0\}$

Solution:

g) $L_7 = \{w \in \{a, b\}^* \mid |w| \ge 2 \text{ and the last two symbols of } w \text{ are not the same} \}$

Solution:

Alternative solution:

Exercise 5: Construct DFA accepting words beginning with abaab, ending with abaab, and containing abaab, i.e., construct deterministic finite automata accepting the following three languages:

b

a)
$$L_1 = \{abaabw \mid w \in \{a, b\}^*\}$$

Solution:

b) $L_2 = \{ \texttt{wabaab} \mid \texttt{w} \in \{\texttt{a},\texttt{b}\}^* \}$

c) $L_3 = \{w_1 a b a a b w_2 \mid w_1, w_2 \in \{a, b\}^*\}$

Solution:

- **Exercise 6:** Describe how to find out for a given DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ if:
- a) $\mathcal{L}(\mathcal{A}) = \emptyset$
- b) $\mathcal{L}(\mathcal{A}) = \Sigma^*$

Solution: It is sufficient to compute the set of states that are reachable from q_0 . We can use for example breadth-first search for this.

It holds that $\mathcal{L}(\mathcal{A}) = \emptyset$ iff none of reachable states is accepting, and $\mathcal{L}(\mathcal{A}) = \Sigma^*$ holds iff every reachable state is accepting.

Exercise 7: Construct DFA $\mathcal{A}_1, \mathcal{A}_2$ such that:

 $\begin{aligned} \mathcal{L}(\mathcal{A}_1) &= \{ w \in \{a, b\}^* \mid |w|_a \mod 2 = 0 \} \\ \mathcal{L}(\mathcal{A}_2) &= \{ w \in \{a, b\}^* \mid \text{every occurence of symbol } b \text{ in } w \text{ is followed with symbol } a \} \end{aligned}$

Solution: A_1 : A_2 : A_3 : $A_$

Using automata $\mathcal{A}_1, \mathcal{A}_2$, construct DFA accepting the following languages:

a) $L_1 = \{w \in \{a, b\}^* \mid |w|_a \mod 2 = 0 \text{ and every occurrence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$

b) $L_2 = \{w \in \{a, b\}^* \mid |w|_a \mod 2 = 0 \text{ or every occurrence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$

Solution: The same automaton as in (a) but with the set of accepting states

 $F = \{(1, 1), (1, 2), (1, 3), (2, 1)\}$

c) $L_3 = \{w \in \{a, b\}^* \mid \text{some occurrence of symbol } b \text{ in } w \text{ is not followed with symbol } a\}$ Solution:

d) $L_4 = \{w \in \{a, b\}^* \mid |w|_a \mod 2 = 0 \text{ and some occurrence of symbol } b \text{ in } w \text{ is not followed with symbol } a\}$

Solution: The same automaton as in (a) but with the set of accepting states

$$F = \{(1,2), (1,3)\}$$

e) $L_5 = \{w \in \{a, b\}^* \mid \text{if } |w|_a \mod 2 = 0 \text{ then every occurrence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$

Solution: The same automaton as in (a) but with the set of accepting states

 $F = \{(1, 1), (2, 1), (2, 2), (2, 3)\}$

f) $L_6 = \{w \in \{a, b\}^* \mid |w|_a \mod 2 = 0 \text{ iff every occurrence of symbol } b \text{ in } w \text{ is followed with symbol } a\}$

Solution: The same automaton as in (a) but with the set of accepting states

 $F = \{(1, 1), (2, 2), (2, 3)\}$

Exercise 8: For each of the following languages, construct a DFA accepting the given language. Represent the constructed automata by graphs and tables.

a) $L_1 = \{w \in \{a, b\}^* \mid |w| \ge 4 \text{ and the second, third, and fourth symbol of } w \text{ are the same} \}$

	a	b
$\rightarrow 1$	2	2
2	3	4
3	5	6
4	6	$\overline{7}$
5	8	6
6	6	6
7	6	8
8	8	8

b) $L_2 = \{w \in \{a, b\}^* \mid |w| \ge 4 \text{ and the third symbol and the last symbol of } w \text{ are the same} \}$

Solution:

	a	b
$\rightarrow 1$	2	2
2	3	3
3	4	5
4	6	4
5	5	7
(6)	6	4
$\overline{7}$	5	7

c) $L_3 = \{w \in \{a, b, c, d\}^* \mid w \text{ does not start with } a, \text{ the second symbol is not } b, \text{ the third symbol is not } c, \text{ and the fourth symbol is not } d\}$

Remark: This language includes also those words w where |w| < 4.

Solution:

d) $L_4 = \{ w \in \{a, b, c, d\}^* \mid w \text{ does not start with } a \text{ or the second symbol is not } b \\ \text{ or the third symbol is not } c \text{ or the fourth symbol is not } d \}$

Exercise 9: Desribe how to find out for given DFA $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ if $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$.

Solution: One of the possibilities is to use the fact that for arbitrary languages L_1, L_2 we have $L_1 = L_2$ iff

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset.$$

So it is sufficient to construct a DFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = (L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$, where $L_1 = \mathcal{L}(\mathcal{A}_1)$ and $L_2 = \mathcal{L}(\mathcal{A}_2)$, and then to determine whether $\mathcal{L}(\mathcal{A}) = \emptyset$, for which we can use the approach from Exercise 6.

Another possible approach (which is basically a variant of the previous one) can be based on a construction similar as in the case of constructions for the intersection of the union (i.e., to construct an automaton with set of states $Q_1 \times Q_2$ that simulates computations of automata \mathcal{A}_1 and \mathcal{A}_2 in parallel). For this automaton, it is sufficient to find out wheher there is some reachable state from the set

$$(F_1 \times (Q_2 - F_2)) \cup ((Q_1 - F_1) \times F_2),$$

i.e., a state corresponding to a situation where one of automata $\mathcal{A}_1, \mathcal{A}_2$ accepts the given word, and the other does not. If there is such reachable state, then $\mathcal{L}(\mathcal{A}_1) \neq \mathcal{L}(\mathcal{A}_2)$, otherwise $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$.

Remark: There are other possible approaches how this problem can be solved. The most efficient algorithms are based on a construction of a decomposition of the set of states into classes of equivalent states. We will not discuss these approaches in this introductory course.