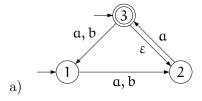
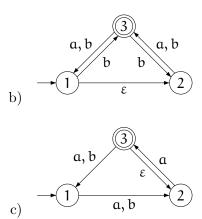

Tutorial 3

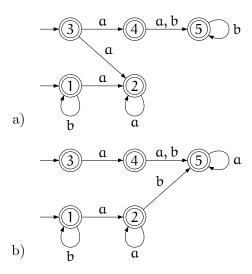
Exercise 1: Construct NFA accepting the following languages:

- a) $L_1 = \{ w \in \{a, b, c\}^* \mid |w|_a = 0 \lor |w|_b \mod 2 = 0 \lor |w|_c \mod 3 = 2 \}$
- b) $L_2 = \{w \in \{a, b, c\}^* \mid |w| \ge 8 \text{ and the eighth symbol from the end of word } w \text{ is } a\}$
- c) $L_3 = \{abaabw \mid w \in \{a, b\}^*\}$
- d) $L_4 = \{ wabaab \mid w \in \{a, b\}^* \}$
- e) $L_5 = \{w_1 abaabw_2 \mid w_1, w_2 \in \{a, b\}^*\}$


Exercise 2: Construct a DFA equivalent to the given NFA:



Exercise 3: Construct GNFA accepting languages L₁, L₄ and L₅:


- a) $L_1 = L_2 \cdot L_3$, where $L_2 = \{w \in \{0, 1\}^* \mid \text{every occurrence of 00 in } w \text{ is immediately followed by 1}\}$ $L_3 = \{w \in \{0, 1\}^* \mid |w|_1 \mod 3 = 2\}$
- b) $L_4 = \{ w \in \{0, 1\}^* \mid w \text{ contains at least three times subword 000} \}$ Remark: The occurrences of the subword can overlap, so the language L contains for example word 00000.
- c) $L_5 = \{w \in \{a,b\}^* \mid w \text{ is obtained from some word } w' \in L_6 \text{ by ommiting of one symbol}\}$, where L_6 is the language consisting of those words over alphabet $\{a,b\}$ that contain subword abba and end with suffix abb.

Exercise 4: Construct equivalent DFA for the given GNFA:

Exercise 5: For each of the following automata find at least one word over alphabet $\{a, b\}$, which is not accepted by the given automaton.

Exercise 6: For each of the following regular expressions, construct an equivalent finite automaton (it can be a GNFA):

- a) (0+11)*01
- b) (0+11)*00*1
- $\mathrm{c})\ (\alpha + b\alpha b)^* + \alpha^*(b\alpha + \epsilon)$

Exercise 7: Describe an algorithm that for a given NFA $\mathcal{A}=(Q,\Sigma,\delta,I,F)$ decides if:

- a) $\mathcal{L}(\mathcal{A}) = \emptyset$
- b) $\mathcal{L}(\mathcal{A}) = \Sigma^*$

Exercise 8: Describe an algorithm that for given NFA $\mathcal{A}_1=(Q_1,\Sigma,\delta_1,I_1,F_1)$ and $\mathcal{A}_2=(Q_2,\Sigma,\delta_2,I_2,F_2)$ decides if $\mathcal{L}(\mathcal{A}_1)=\mathcal{L}(\mathcal{A}_2)$.

Exercise 9: Describe an algorithm that for given GNFA \mathcal{A} constructs an equivalent NFA \mathcal{A}' such that the sets of states of automata \mathcal{A} and \mathcal{A}' are the same.