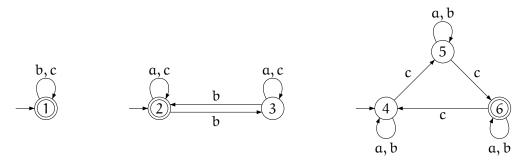
Tutorial 3

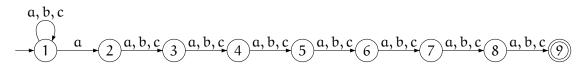
Exercise 1: Construct NFA accepting the following languages:

a) $L_1 = \{ w \in \{a, b, c\}^* \mid |w|_a = 0 \lor |w|_b \mod 2 = 0 \lor |w|_c \mod 3 = 2 \}$

Solution: The automaton could be easily constructed by combining three separate automata. Alternatively, we could add one new initial state with ε -transitions to the original three initial states (that need not be initial now).

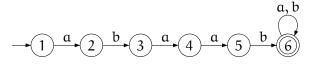


b) $L_2 = \{w \in \{a, b, c\}^* \mid |w| \ge 8$ and the eighth symbol from the end of word w is a} Solution:



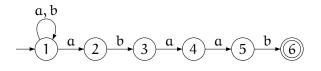
c) $L_3 = \{abaabw \mid w \in \{a, b\}^*\}$

Solution:



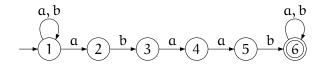
d) L₄ = {wabaab | $w \in \{a, b\}^*$ }

Solution:

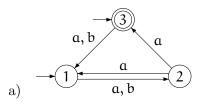


e) $L_5 = \{w_1 a b a a b w_2 \mid w_1, w_2 \in \{a, b\}^*\}$

Solution:



Exercise 2: Construct a DFA equivalent to the given NFA:



Resulting automaton:

Solution:

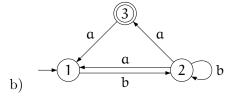
Original automaton:

	a	b
$\rightarrow 1$	2	2
2	$1,\!3$	_
$\leftrightarrow 3$	1	1

	a	b
\leftrightarrow {1,3}	{1,2}	{1,2}
$\{1, 2\}$	$\{1, 2, 3\}$	{2}
$\leftarrow \{1,2,3\}$	$\{1, 2, 3\}$	{1,2}
{2}	{1,3}	Ø
Ø	Ø	Ø

After	renaming
states	:

	a	b
$\leftrightarrow 1$	2	2
2	3	4
$\leftarrow 3$	3	2
4	1	5
5	5	5



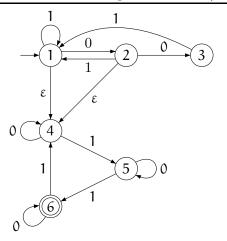
Solution:

Original automaton:	Resulting automaton:	After renaming states:
$\begin{array}{c ccc} & a & b \\ \hline \rightarrow 1 & - & 2 \\ 2 & 1,3 & 2 \\ \leftrightarrow 3 & 1 & - \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cccc} & a & b \\ \hline \rightarrow 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 4 & 3 \\ \leftarrow 4 & 1 & 3 \end{array}$

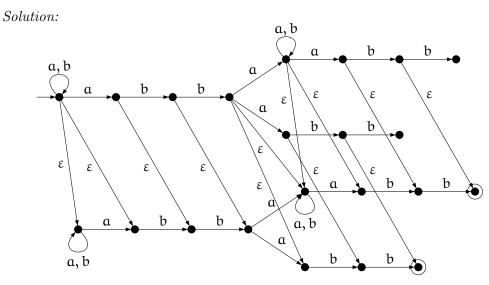
Exercise 3: Construct GNFA accepting languages L_1 , L_4 and L_5 :

a) $L_1 = L_2 \cdot L_3$, where $L_2 = \{w \in \{0,1\}^* \mid \text{every occurrence of } 00 \text{ in } w \text{ is immediately followed by } 1\}$ $L_3 = \{w \in \{0,1\}^* \mid |w|_1 \mod 3 = 2\}$

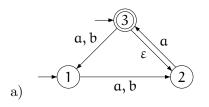
Solution:



- b) $L_4 = \{w \in \{0, 1\}^* \mid w \text{ contains at least three times subword 000}\}$ Remark: The occurrences of the subword can overlap, so the language L contains for example word 00000.
- c) $L_5 = \{w \in \{a, b\}^* \mid w \text{ is obtained from some word } w' \in L_6 \text{ by ommiting of one symbol}\},$ where L_6 is the language consisting of those words over alphabet $\{a, b\}$ that contain subword abba and end with suffix abb.



Exercise 4: Construct equivalent DFA for the given GNFA:



Solution:

a

 $\{1, 2, 3\}$

 $\{2, 3\}$

 $\{1, 2, 3\}$

 $\{2, 3\}$

{2}

Ø

b

 $\{1, 2\}$

{2}

{1}

Ø

{2}

Ø

Resulting automaton:

 $\{1, 2, 3\}$

 $\leftarrow \{2,3\}$

{1,2}

{2}

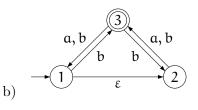
{1}

Ø

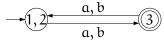
 \leftrightarrow

After renaming

	a	b
$\leftrightarrow 1$	1	2
2	3	4
$\leftarrow 3$	1	5
4	3	6
5	4	4
6	6	6



Solution:



Original automaton:

Original automaton:

2 2

2 3

1 1

 $\rightarrow 1$

 $\leftrightarrow 3$

a b

ε

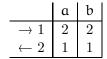
2

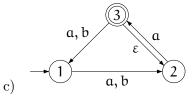
	a	b	ε
$\rightarrow 1$	_	3	2
2	3	3	_
$\leftarrow 3$	1	$1,\!2$	_

Resulting automaton:

	a	b
\rightarrow {1,2}	{3}	{3}
$\leftarrow \{3\}$	{1,2}	{1,2}

After renaming states:





Resulting automaton:

Solution:

Original automaton:

	a	b	ε
$\rightarrow 1$	2	2	_
2	3	-	-
$\leftarrow 3$	1	1	2

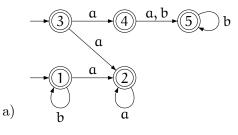
	a	b
\rightarrow {1}	{2}	{2}
{2}	$\{2, 3\}$	Ø
$\leftarrow \{2,3\}$	$\{1, 2, 3\}$	{1 }
Ø	Ø	Ø
$\leftarrow \{1,2,3\}$	$\{1, 2, 3\}$	{1,2}
{1,2}	{2,3}	{2}

After renaming states:

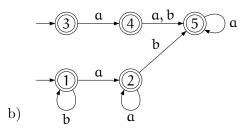
	a	b
$\rightarrow 1$	2	2
2	3	4
$\leftarrow 3$	5	1
4	4	4
$\leftarrow 5$	5	6
6	3	2

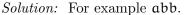
states:

Exercise 5: For each of the following automata find at least one word over alphabet $\{a, b\}$, which is not accepted by the given automaton.



Solution: For example bab.

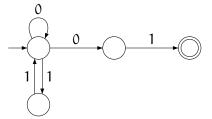




Exercise 6: For each of the following regular expressions, construct an equivalent finite automaton (it can be a GNFA):

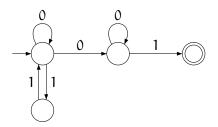
a) $(0 + 11)^* 01$

Solution:

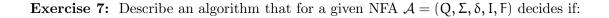


b) $(0+11)^*00^*1$

Solution:



c) $(a + bab)^* + a^*(ba + \varepsilon)$



a) $\mathcal{L}(\mathcal{A}) = \emptyset$

Solution: $\mathcal{L}(\mathcal{A}) \neq \emptyset$ iff an accepting state can be reached from some initial state. (Reachable states can be easily computed, for example by breadth-first search.)

b) $\mathcal{L}(\mathcal{A}) = \Sigma^*$

Solution: To transform \mathcal{A} to an equivalent DFA \mathcal{A}' , and to find out whether $\mathcal{L}(\mathcal{A}') = \Sigma^*$ (as discussed in the previous tutorial).

Exercise 8: Describe an algorithm that for given NFA $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$ decides if $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$.

Solution: To transform \mathcal{A}_1 and \mathcal{A}_2 to an equivalent DFAs \mathcal{A}'_1 and \mathcal{A}'_2 , and to find out whether $\mathcal{L}(\mathcal{A}'_1) = \mathcal{L}(\mathcal{A}'_2)$ (as described in the previous tutorial).

Exercise 9: Describe an algorithm that for given GNFA \mathcal{A} constructs an equivalent NFA \mathcal{A}' such that the sets of states of automata \mathcal{A} and \mathcal{A}' are the same.