Tutorial 4

Exercise 1: Consider the following context-free grammar:

$$\begin{array}{cccc} S & \longrightarrow & aBb \mid AB \\ A & \longrightarrow & bAb \mid a \\ B & \longrightarrow & \varepsilon \mid aABb \end{array}$$

- a) Give (some) derivation of word babaab in this grammar.
- b) Draw the corrensponding derivation tree.
- c) Write the left and right derivations corresponding to the derivation tree drawn in the previous point.

Solution:

Left derivation: $S \Rightarrow AB \Rightarrow bAbB \Rightarrow babB \Rightarrow babaABb \Rightarrow babaaBb \Rightarrow babaab$ Right derivation: $S \Rightarrow AB \Rightarrow AaABb \Rightarrow AaAb \Rightarrow Aaab \Rightarrow bAbaab \Rightarrow babaab$

Exercise 2: Construct context-free grammars for all following languages:

• $L_1 = \{w \in \{a, b, c\}^* \mid w \text{ contains subword } babb\}$

Solution:

S	\longrightarrow	AbabbA			
А	\longrightarrow	ε	aA	bA	cA

• $L_2 = \{0^n 1^m \mid 1 \le n < m\}$

Solution:

•
$$L_3 = \{a^n b^m a^{n+2} \mid m, n \in \mathbb{N}\}$$

Solution:

S	\longrightarrow	Aaa
А	\longrightarrow	aAa B
В	\longrightarrow	bB ε

•
$$L_4 = \{w \in \{0, 1\}^* \mid w = w^R\}$$

Solution:

 $S \longrightarrow 0S0 \mid 1S1 \mid 0 \mid 1 \mid \epsilon$

• $L_5 = \{w \in \{0, 1\}^* \mid |w|_0 > 1, |w|_1 \le 2\}$

Solution:

- $\begin{array}{rcl} S & \longrightarrow & 00ABABA \mid 0AB0ABA \mid 0ABAB0A \mid AB00ABA \mid AB0AB0A \mid ABAB00A \\ A & \longrightarrow & \epsilon \mid 0A \\ B & \longrightarrow & \epsilon \mid 1 \end{array}$
- L₆ = {0ⁿww^R1ⁿ | w ∈ {0,1}*, n ∈ ℕ}
 Solution:

$$\begin{array}{rcl} S & \longrightarrow & 0S1 \mid A \\ A & \longrightarrow & 0A0 \mid 1A1 \mid \epsilon \end{array}$$

• $L_7 = \{w \in \{a, b\}^* \mid \text{in } w, \text{ every } a \text{ is directly followed by } b, \text{ or } w = b^n a^m, \text{ where } 0 \le m \le n\}$

Solution:

- $\begin{array}{rcl} S & \longrightarrow & A \mid BC \\ A & \longrightarrow & \varepsilon \mid abA \mid bA \\ B & \longrightarrow & \varepsilon \mid bB \\ C & \longrightarrow & bCa \mid \varepsilon \end{array}$
- $L_8 = \{uv^Rv \mid u, v \in \{0, 1\}^*, |u|_0 \mod 4 = 2, u \text{ ends with suffix 101 and } v \text{ contains subword 10}\}$ Solution:
 - $\begin{array}{rcl} S & \longrightarrow & A101C \\ A & \longrightarrow & B0B0B0B0BA \mid B0B \\ B & \longrightarrow & \epsilon \mid B1 \\ C & \longrightarrow & 0C0 \mid 1C1 \mid 01D10 \\ D & \longrightarrow & 0D0 \mid 1D1 \mid \epsilon \end{array}$
- $L_9 = \{w \in \{a, b\}^* \mid w = w^R, |w| \mod 4 = 0\}$ Solution:

 $S \hspace{0.1in} \longrightarrow \hspace{0.1in} aaSaa \mid abSba \mid baSab \mid bbSbb \mid \epsilon$

- $L_{10} = \{w \in \{a, b\}^* \mid w = w^R, |w| \mod 3 = 0\}$ Solution:
 - $\begin{array}{rcl} S & \longrightarrow & aTa|bTb|\epsilon \\ T & \longrightarrow & aUa|bUb|a|b \\ U & \longrightarrow & aSa|bSb \end{array}$
- $L_{11} = \{w \in \{a, b, c\}^* \mid \text{every sequence of } a$'s is directly followed by a sequence of b's, which is twice as long}

Solution:

 $\begin{array}{rcl} S & \longrightarrow & bS \mid cS \mid AB \mid \varepsilon \\ A & \longrightarrow & aAbb \mid abb \\ B & \longrightarrow & cS \mid AB \mid \varepsilon \end{array}$

• $L_{12} = \{w \in \{0, 1\}^* \mid |w|_0 = |w|_1\}$

Solution:

$$S \longrightarrow \epsilon \mid 0S1 \mid 1S0 \mid SS$$

Exercise 3: Decide for the following pairs of grammars if both grammars generate the same language. Justify your answers.

a) $S \longrightarrow aaSbb \mid ab \mid aabb$ $S \longrightarrow aSb \mid ab$

Solution: Yes

The second grammar obviously generates language $\{a^ib^i : i \ge 1\}$. We must verify that the first grammar generates the same language. This grammar also generates a language constisting of words where a sequence of as is followed with a sequence of bs. The rule $S \longrightarrow aaSbb$ allows to generate all sentential forms of the form a^jSb^j , where $j \ge 0$ is even. So if i in a word generated by the second grammar is odd, we finish the corresponding derivation by using rule $S \longrightarrow ab$. When we want to generate a word a^ib^i for even $i \ge 2$, we apply the rule $S \longrightarrow aabb$ in the end, by which we obtain the word $a^{j+2}b^{j+2}$ with i = j+2. So we have shown that both grammar generate the same set of words over $\{a, b\}$.

b)
$$S \longrightarrow aaSbb \mid ab \mid \epsilon$$
 $S \longrightarrow aSb \mid ab$

Solution: No, since the second one does not generate ε .

c)
$$S \longrightarrow aaSb \mid ab \mid \epsilon$$
 $S \longrightarrow aSb \mid aab \mid \epsilon$

Solution: No, since the first one does not generate aaaabb.

Exercise 4: Construct a context-free grammar for the language L over the alphabet $\Sigma = \{(,), [,]\}$ consisting of all "correctly parenthesized" expressions. As correctly parenthesized expressions we consider those sequences of symbols where each left parenthesis has a corresponding right parenthesis of the same type, and where parenthesis do not "cross" (i.e., coresponding pairs of parenthesis are composed correctly).

Solution:

 $S \longrightarrow \epsilon \mid SS \mid (S) \mid [S]$

Exercise 5: Is the following grammar unambiguous?

$$\begin{array}{rrrr} E & \longrightarrow & E+E \mid F \\ F & \longrightarrow & (E) \mid F \times F \mid a \end{array}$$

Exercise 6: Propose a syntax for writing simple arithmetic expressions as words over the alphabet

$$\Sigma = \{A, B, \dots, Z, a, b, \dots, z, 0, 1, \dots, 9, ., +, -, *, /, (,)\}.$$

and describe the proposed syntax by a context-free grammar.

Exercise 7: Construct a context-free grammar generating the set of all well-formed formulas of the propositional logic. Consider the set $At = \{x_0, x_1, x_2, \ldots\}$ as the set of atomic propositions, where individual variables can be written as x0, x1, x2, ...

- a) Find out if the grammar you have constructed is unambiguous.
- b) If the grammar is ambiguous then modify it to be unambiguous.
- c) Modify your grammar in such a way, which ensures that a structure of a derivation tree for an arbitrary derivation in the grammar reflects the "real" priority of logical connectives, i.e., \neg , \land , \lor , \rightarrow , \leftrightarrow (from the highest to the lowest).

Solution:

$$\begin{array}{rcl} S & \longrightarrow & A \mid A \leftrightarrow S \\ A & \longrightarrow & B \mid B \rightarrow A \\ B & \longrightarrow & C \mid C \lor B \\ C & \longrightarrow & D \mid D \land C \\ D & \longrightarrow & \neg D \mid (S) \mid xE \mid \perp \mid \top \\ E & \longrightarrow & F \mid EF \\ F & \longrightarrow & 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \end{array}$$

0

This grammar in unambiguous and a structure of a derivation tree corresponds to the priority of logical connectives.