
Introduction to Theoretical Computer Science (2024/2025) – tutorial 9 1

Tutorial 9

Exercise 1: Prove in detail that f ∈ O(g) and g ∈ Θ(f) holds for the following functions:

f(n) = 5n3 + 2n2 − 9n + 13 g(n) = n3

Deduce from this that also g ∈ O(f), g ∈ Ω(f), f ∈ Θ(g), g ∈ Θ(f), g 6∈ o(f), and g 6∈ ω(f).

Exercise 2: Order the following functions according to their asymptotic growth, i.e., order
them into a sequence g1, g2, . . . , g15, where g1 ∈ O(g2), g2 ∈ O(g3), . . . , g14 ∈ O(g15).
Describe also, for which pairs of functions gi and gi+1 in this sequence gi ∈ Θ(gi+1) a pro
které gi ∈ o(gi+1) holds.

n2 2n n log2 n nn

n! log2(n
2) (log2 n)

2 n3
√
n

22
n

10n n1000 3
√
n n log2 n

Exercise 3: Determine for the following triples of functions f1, f2, f3, which relations of the
form fi ∈ O(fj), fi ∈ Ω(fj), fi ∈ Θ(fj), fi ∈ o(fj), and fi ∈ ω(fj) hold and which do not.

a) f1(n) = 3n2 + 5n − 1, f2(n) = 2n3 − 15n − 183, f3(n) = (n + 1)(n − 1)

b) f1(n) = 4n2 + n2 log2 n, f2(n) = log52 n, f3(n) = 17n + 3

c) f1(n) = n 5
√
n, f2(n) = n, f3(n) =

√
n

d) f1(n) = 2n, f2(n) = n1024, f3(n) = n!

e) f1(n) = 2n, f2(n) = nn, f3(n) = n!

f) f1(n) = 2n, f2(n) = nn, f3(n) = nlog2 n

g) f1(n) = 10n, f2(n) = 2n, f3(n) = 22
n

h) f1(n) = log10(n
2), f2(n) = log2 n, f3(n) = log2(n

2)

i) f1(n) = n +
√
n · log2 n, f2(n) = n · log2 n, f3(n) =

√
n · log22 n

j) f1(n) = 2n, f2(n) = 2
√

n, f3(n) = n!

k) f1(n) = n/2048, f2(n) =
√
n · 3n, f3(n) = n + n · log2 n

l) f1(n) = (log2 n)
n, f2(n) = nn, f3(n) = 10

√

n

Exercise 4: Determine as precisely as possible the time and space complexity of Algorithm 1.

You can assume that value n represents the number of elements in array A, and that this
array is indexed from zero.

Exercise 5: Determine as precisely as possible the time and space complexity of Algorithm 2
(recall this algorithm from the previous tutorial).

(You can assume that value n represents the number of elements in array A, that this array
is indexed from zero, and that x is a value of searched element.)



2 Introduction to Theoretical Computer Science (2024/2025) – tutorial 9

Algorithm 1: Selection sort

Selection-Sort (A,n):
i := n − 1

while i > 0 do

k := 0

for j := 1 to i do

if A[k] < A[j] then

k := j

x := A[k]; A[k] := A[i]; A[i] := x

i := i− 1

Algorithm 2: Binary search

BSearch (x,A,n):
ℓ := 0

r := n

while ℓ < r do

k := ⌊(ℓ + r) / 2⌋
if A[k] < x then

ℓ := k+ 1

else

r := k

if ℓ < n and A[ℓ] = x then

return ℓ

return NotFound



Introduction to Theoretical Computer Science (2024/2025) – tutorial 9 3

Exercise 6: By pseudocode describe an arbitrary algorithm for solving the following pro-
blem, and estimate its time and space complexity as accurately as possible. (What is an
appropriate measure of the size of an input in this problem?)

Input: Matrices A,B with integer elements.

Output: Matrix A · B.

Remark: You don’t have to deal with input and output in your algorithm.

Do not assume that matrices A and B must be square matrices. However, you can assume
that sizes of both matrices are such that it is possible to multiply the matrices, i.e., that
matrix A is of size m × n a matrix B is of size n × p, where m, n, and p are some natural
numbers.

Exercise 7: Design an algorithm solving the following problem:

Input: A number n and a sequence of numbers a1, a2, . . . , an, where for each
i = 1, 2, . . . , n is ai ∈ {1, 2, . . . , n}.

Question: Does the sequence a1, a2, . . . , an contain every x ∈ {1, 2, . . . , n} exactly
once?

Analyze the time complexity of your algorithm. If it is greater than O(n), try to design an
algorithm with the time complexity O(n).


