
Introduction to Theoretical Computer Science (2023/2024) – tutorial 10 1

Tutorial 10

Exercise 1: Sometimes it is necessary to work in algorithms with arrays where it is not
known in advance, how many elements should be stored to them during a computation. In
this case, it can be reasonable to use a kind of an array whose size can be dynamically changed
during the computation — this datatype is usually called vector.

A typical implementation of this datatype is such that it allocates an array, which is a little
bit bigger than necessary, and keeps information not only about the array and its length but
also about the number of elements of the array, which are currently used. When an additional
element or elements should be added, the cells that were unused so far are used for them, and
only the corresponding index is incremented. Only in the case when the array is completely
filled, a new bigger array is allocated, and the content of the original array is copied to it.

For simplicity, we will consider only operationAppend, which appends one new element to the
end of the array. This operation is described in Algorithm 1. Variable arr is the allocated array,
variable allocated represents the length of this allocated array, and variable len represents the
number of cells, which are actually used. (It is assumed that the invariant allocated ≥ len.)
For simplicity, consider this three variables (arr, allocated, len) to be global variables. All
other variables are local.

Algorithm 1: Adding an element to the end of a vector

Append (x):
if allocated ≤ len then

s := New-Size(allocated)

if s < len + 1 then

s := len+ 1

newarr := Malloc (s)

Copy (newarr, arr, len)

Free (arr)

arr := newarr

allocated := s

arr[len] := x

len := len+ 1

Several subprocedures are used in procedure Append:

• Malloc(size) — it allocates an array of size elements (for simplicity, we do not consider
here the treating of the situation when this allocation fails),

• Free(arr) — it frees the memory used for array arr,

• Copy(dst, src, cnt) — it copies cnt elements from array src to array dst

Fot these three subroutines, you can assume that their time complexity is O(n), where n is
the number of elements of the given array, resp. the number of elements that must be copied
(in subroutine Copy).



2 Introduction to Theoretical Computer Science (2023/2024) – tutorial 10

Function New-Size determines the size of the newly allocated array depending on the size
of the previously allocated array.

Let us consider two possible implemetations of function New-Size:

a) function New-Size(m) returns value m+ 1,

b) function New-Size(m) returns value 2 ∗m.

Consider now an algorithm that starts with an empty array and in a cycle consecutively
adds to the array n elements using the procedure Append. (Let us say for simplicity that at
the beginning, variables allocated and len have value 0, and array arr contains 0 elements.)
What is the complexity of the algorithm for each of the above mentioned variants of function
New-Size?

(You can assume that if we do not count the time spent in procedure Append, the time of
processing each individual added element is O(1).)

Exercise 2: A sequence of elements can be represented in a computer memory by many
different data structures. Examples of such data structures are:

a) an array

b) a singly linked list where we have a pointer to the first element of the list

c) a singly linked list where we have pointers to the first and the last element of the list

d) a doubly linked list where we have pointers to the first and the last element of the list

Recall how these data structures look and how to work with them.

Determine as precisely as possible the time complexity of the following operations on these
data structures (assume that n is the total number of elements stored in a given data
structure).

1. reading the value of an element of position i where i can be an arbitrary number from
0 to n − 1 (assume that elements are numbered from zero),

2. reading the value of the first element (i.e., the element of position 0),

3. reading the value of the last element (i.e., the element of position n− 1),

4. adding one element to the beginning (and shifting all other elements by one position),

5. adding an element to the end,

6. adding an element before a specified element (and shifting all following elements by one
position),

7. adding an element after a specified element (and shifting all following elements by one
position),

8. deleting a specified element from the sequence.

Remark: In points 6, 7, and 8, assume that the position of the element, before or after a new
element is added, or which is removed, is specified by an index in the case of an array, and
by a pointer in the case of a list.

For simplicity, assume that increasing the size of an array by one element can done in
time O(1).



Introduction to Theoretical Computer Science (2023/2024) – tutorial 10 3

Exercise 3: Let us say that we have n elements, which are stored in an array A, and we
would like to perform some operation on all subsets of these n elements.

One possibility, how to generate these subsets, is to use a recursive algorithm. An example of
such algorithm is Algorithm 2.

It is assumed that A and B are global arrays and n is a global variable containing as a value
the size of these arrays. Array A contains the given elements and its content is not changed
during a computation. The algorithm writes the subsets to array B, and the processing of
individual subsets is done by procedure Process. Procedure Process obtains as a parameter
a number ℓ, which specifies the number of elements in the given subset, and the elements of
this subset are stored in the array B as elements B[0], B[1], . . . , B[ℓ − 1]. Variables k and ℓ,
which are parameters of procedure Subsets, are local in this procedure. At the beginning,
the procedure Subsets is called with zero values of both arguments, i.e., Subsets(0, 0).

Algorithm 2: Generating subsets

Subsets (k, ℓ):
if k ≥ n then

Process (ℓ)

return

Subsets (k+ 1, ℓ)

B[ℓ] := A[k]

Subsets (k+ 1, ℓ+ 1)

Determine as precisely as possible the time and space complexity of this algorithm. (Assume
that the time and space complexity of procedure Process is O(n).)

Exercise 4: Consider the following two variants of Euclid’s algorithm for computing the
greatest common divisor, described by Algorithms 3 and 4.

Determine the time complexity of both these algorithms, where take the total number of
bits of numbers a and b as the size of an input. (For simplicity, you can assume that each
arithmetic operation is performed in time O(1).)

Algorithm 3: Euclid’s algorithm — an inefficient version

Euclid (a, b):
if b = 0 then

return a

else if a ≥ b then

return Euclid(b, a− b)

else

return Euclid(b− a, a)



4 Introduction to Theoretical Computer Science (2023/2024) – tutorial 10

Algorithm 4: Euclid’s algorithm — a more efficient variant

Euclid (a, b):
while b 6= 0 do

c := a mod b

a := b

b := c

return a

Exercise 5: Determine the time complexities of the following subroutines as accurately as
possible. Express the time complexities using asymptotic notation Θ.

Remark: Consider n to be the size of an input. You can assume that values of all variables
are already stored in memory.

a) Algorithm 5 — subroutine Proc-A

Algorithm 5:

Proc-A (A,b,n):
for i := 1 to n ∗ n do

for j := 1 to i do

A[i][j] := A[i][j] + b[j]

b) Algorithm 6 — subroutine Proc-B

Algorithm 6:

Proc-B (R, d, n):
x := 0

for i := 1 to n do

j := i ∗ i

while j > 0 do

if d[j] < R[i][j] then

R[i][j] := x− 1

x := d[j]

j := j − 1

c) Algorithm 7 — subroutine Proc-C

d) Algorithm 8 — subroutine Proc-D



Introduction to Theoretical Computer Science (2023/2024) – tutorial 10 5

Algorithm 7:

Proc-C (Q,n):
i := 1

while i < n do

Q[i] := Q[i] + i

i := i+ i

Algorithm 8:

Proc-D (E, S, n):
i := 1; j := 1

while i < n do

E[i][j] := E[i][j] mod S[i]

i := i+ j

j := j+ 1

Algorithm 9:

Proc-E (A,B,n):
s := 1

while s ≤ n do

i := 0

while i < n do

A[i] := A[B[i]] ∗ s

i := i+ s

s := s ∗ 2



6 Introduction to Theoretical Computer Science (2023/2024) – tutorial 10

e) Algorithm 9 — subroutine Proc-E

f) Algorithm 10 — subroutine Proc-F

Algorithm 10:

Proc-F (A,n):
s := 1

while s ≤ n do

i := 0

while i < n do

A[i] := A[i] + s

i := i+ s

s := s+ 1

Exercise 6: Recall for each of the following problems what are their inputs and what are
the questions. For each of these problems propose an algorithm solving the given problem.
Determine the computational complexity of your algorithms.

a) SAT

b) 3-SAT

c) Independent set (IS)

d) Clique (CLIQUE)

e) Vertex cover (VC)

f) Hamiltonian cycle (HC)

g) Hamiltonian circuit (HK)

h) Travelling salesman problem (TSP)

i) Coloring of (nodes of) a graph with k colors

j) SUBSET-SUM


