Example: We would like to describe a language of arithmetic expressions, containing expressions such as:

175
$$(9+15)$$
 $(((10-4)*((1+34)+2))/(3+(-37)))$

For simplicity we assume that:

- Expressions are fully parenthesized.
- The only arithmetic operations are "+", "-", "*", "/" and unary "-".
- Values of operands are natural numbers written in decimal —
 a number is represented as a non-empty sequence of digits.

Alphabet: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)\}$

Example (cont.): A description by an inductive definition:

- **Digit** is any of characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Number is a non-empty sequence of digits, i.e.:
 - If α is a digit then α is a number.
 - If α is a digit and β is a number then also $\alpha\beta$ is a number.
- **Expression** is a sequence of symbols constructed according to the following rules:
 - If α is a number then α is an expression.
 - If α is an expression then also $(-\alpha)$ is an expression.
 - If α and β are expressions then also $(\alpha+\beta)$ is an expression.
 - If α and β are expressions then also $(\alpha \beta)$ is an expression.
 - If α and β are expressions then also $(\alpha * \beta)$ is an expression.
 - If α and β are expressions then also (α/β) is an expression.

Example (cont.): The same information that was described by the previous inductive definition can be represented by a **context-free grammar**:

New auxiliary symbols, called **nonterminals**, are introduced:

- D stands for an arbitrary digit
- C stands for an arbitrary number
- *E* stands for an arbitrary expression

Example (cont.): Written in a more succinct way:

$$\begin{array}{l} D \to 0 \ | \ 1 \ | \ 2 \ | \ 3 \ | \ 4 \ | \ 5 \ | \ 6 \ | \ 7 \ | \ 8 \ | \ 9 \\ C \to D \ | \ DC \\ E \to C \ | \ (-E) \ | \ (E+E) \ | \ (E-E) \ | \ (E*E) \ | \ (E/E) \end{array}$$

Example: A language where words are (possibly empty) sequences of expressions described in the previous example, where individual expressions are separated by commas (the alphabet must be extended with symbol ","):

$$S \to T \mid \varepsilon$$

 $T \to E \mid E, T$
 $D \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$
 $C \to D \mid DC$
 $E \to C \mid (-E) \mid (E+E) \mid (E-E) \mid (E*E) \mid (E/E)$

Example: Statements of some programming language (a fragment of a grammar):

```
S \rightarrow E; | T | if (E) S | if (E) S else S | while (E) S | do S while (E); | for (F; F; F) S | return F; T \rightarrow \{ U \} U \rightarrow \varepsilon \mid SU F \rightarrow \varepsilon \mid E E \rightarrow \dots
```

Remark:

- *S* statement
- T block of statements
- *U* sequence of statements
- E expression
- F optional expression that can be omitted

Formally, a context-free grammar is a tuple

$$G = (\Pi, \Sigma, S, P)$$

where:

- ■ П is a finite set of nonterminal symbols (nonterminals)
- Σ is a finite set of **terminal symbols** (**terminals**), where $\Pi \cap \Sigma = \emptyset$
- $S \in \Pi$ is an initial nonterminal
- $P \subseteq \Pi \times (\Pi \cup \Sigma)^*$ is a finite set of rewrite rules

Remarks:

- We will use uppercase letters A, B, C, ... to denote nonterminal symbols.
- We will use lowercase letters a, b, c, ... or digits 0, 1, 2, ... to denote terminal symbols.
- We will use lowercase Greek letters α , β , γ , ... do denote strings from $(\Pi \cup \Sigma)^*$.
- We will use the following notation for rules instead of (A, α)

$$A \rightarrow \alpha$$

A – left-hand side of the rule α – right-hand side of the rule

Example: Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ where

- $\Pi = \{A, B, C\}$
- \circ S = A
- P contains rules

$$A \rightarrow aBBb$$

$$A \rightarrow AaA$$

$$B \to \varepsilon$$

$$B \rightarrow bCA$$

$$C \rightarrow AB$$

$$C \rightarrow a$$

$$C \rightarrow b$$

Remark: If we have more rules with the same left-hand side, as for example

$$A \rightarrow \alpha_1$$
 $A \rightarrow \alpha_2$ $A \rightarrow \alpha_3$

$$A \rightarrow \alpha_2$$

$$A \rightarrow \alpha_3$$

we can write them in a more succinct way as

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \alpha_3$$

For example, the rules of the grammar from the previous slide can be written as

$$A \rightarrow aBBb \mid AaA$$

 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$

Grammars are used for generating words.

Example:
$$\mathcal{G}=(\Pi,\Sigma,A,P)$$
 where $\Pi=\{A,B,C\}$, $\Sigma=\{a,b\}$, and P contains rules
$$A \to aBBb \mid AaA \\ B \to \varepsilon \mid bCA \\ C \to AB \mid a \mid b$$

Grammars are used for generating words.

Example:
$$\mathcal{G}=(\Pi,\Sigma,A,P)$$
 where $\Pi=\{A,B,C\}$, $\Sigma=\{a,b\}$, and P contains rules
$$A \to aBBb \mid AaA \\ B \to \varepsilon \mid bCA \\ C \to AB \mid a \mid b$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules

$$\frac{A}{B} \rightarrow aBBb \mid AaA$$

$$B \rightarrow \varepsilon \mid bCA$$

$$C \rightarrow AB \mid a \mid b$$

For example, the word abbabb can be in grammar ${\cal G}$ generated as follows:

<u>A</u>

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules

$$\frac{A}{B} \rightarrow \frac{aBBb}{\varepsilon} \mid AaA$$

$$B \rightarrow \varepsilon \mid bCA$$

$$C \rightarrow AB \mid a \mid b$$

$$\underline{A} \Rightarrow \underline{aBBb}$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules
$$A \rightarrow aBBb \mid AaA$$
$$B \rightarrow \varepsilon \mid bCA$$
$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow aBBb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules
$$A \rightarrow aBBb \mid AaA$$
$$\underbrace{B}_{C} \rightarrow \varepsilon \mid bCA$$
$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow a\underline{B}Bb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

$$\frac{B}{C} \to \varepsilon \mid \underline{bCA}$$
$$C \to AB \mid a \mid b$$

$$A \Rightarrow a\underline{B}Bb \Rightarrow a\underline{bCA}Bb$$

Grammars are used for generating words.

Example:
$$\mathcal{G}=(\Pi,\Sigma,A,P)$$
 where $\Pi=\{A,B,C\}$, $\Sigma=\{a,b\}$, and P contains rules
$$A \to aBBb \mid AaA \\ B \to \varepsilon \mid bCA \\ C \to AB \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abCABb$$

Grammars are used for generating words.

Example: $G = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules

$$\frac{A}{B} \rightarrow aBBb \mid AaA$$

$$B \rightarrow \varepsilon \mid bCA$$

$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abC\underline{A}Bb$$

Grammars are used for generating words.

Example: $G = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules

$$\frac{A}{B} \rightarrow \frac{aBBb}{\varepsilon} \mid AaA$$

$$B \rightarrow \varepsilon \mid bCA$$

$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abC\underline{A}Bb \Rightarrow abC\underline{aBBb}Bb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules
$$A \rightarrow aBBb \mid AaA$$
$$B \rightarrow \varepsilon \mid bCA$$
$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules
$$A \rightarrow aBBb \mid AaA$$
$$B \rightarrow \varepsilon \mid bCA$$

 $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar ${\cal G}$ generated as follows:

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

$$\frac{\underline{B}}{C} \to \frac{\underline{\varepsilon}}{AB} \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaB\underline{B}bBb \Rightarrow abCaBbBb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules
$$A \rightarrow aBBb \mid AaA$$
$$B \rightarrow \varepsilon \mid bCA$$
$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules
$$A \rightarrow aBBb \mid AaA$$
$$B \rightarrow \varepsilon \mid bCA$$
$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules
$$A \rightarrow aBBb \mid AaA$$
$$B \rightarrow \varepsilon \mid bCA$$
$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbBbBb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules
$$A \rightarrow aBBb \mid AaA$$
$$B \rightarrow \varepsilon \mid bCA$$
$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

$$\frac{\underline{B}}{C} \to \varepsilon \mid bCA$$

$$C \to AB \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

$$\frac{B}{C} \to \frac{\varepsilon}{AB} \mid bCA$$

For example, the word abbabb can be in grammar ${\cal G}$ generated as follows:

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules
$$A \rightarrow aBBb \mid AaA$$
$$B \rightarrow \varepsilon \mid bCA$$
$$C \rightarrow AB \mid a \mid b$$

For example, the word abbabb can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbb \Rightarrow abbaBbb$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

$$\frac{B}{C} \to \varepsilon \mid bCA$$
$$C \to AB \mid a \mid b$$

$$A\Rightarrow aBBb\Rightarrow abCABb\Rightarrow abCaBBbBb\Rightarrow abCaBbBb\Rightarrow abbaBbBb\Rightarrow abbaBbBb$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules

$$A \rightarrow aBBb \mid AaA$$

$$\underline{B} \rightarrow \underline{\varepsilon} \mid bCA$$

$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb \Rightarrow ab$$

Grammars are used for generating words.

Example:
$$\mathcal{G} = (\Pi, \Sigma, A, P)$$
 where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules
$$A \rightarrow aBBb \mid AaA$$
$$B \rightarrow \varepsilon \mid bCA$$

 $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar ${\cal G}$ generated as follows:

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbb \Rightarrow abbaBbb \Rightarrow abbabbb$

On strings from $(\Pi \cup \Sigma)^*$ we define relation $\Rightarrow \subseteq (\Pi \cup \Sigma)^* \times (\Pi \cup \Sigma)^*$ such that

$$\alpha \Rightarrow \alpha'$$

iff $\alpha = \beta_1 A \beta_2$ and $\alpha' = \beta_1 \gamma \beta_2$ for some $\beta_1, \beta_2, \gamma \in (\Pi \cup \Sigma)^*$ and $A \in \Pi$ where $(A \to \gamma) \in P$.

Example: If $(B \rightarrow bCA) \in P$ then

Remark: Informally, $\alpha \Rightarrow \alpha'$ means that it is possible to derive α' from α by one step where an occurrence of some nonterminal A in α is replaced with the right-hand side of some rule $A \rightarrow \gamma$ with A on the left-hand side.

On strings from $(\Pi \cup \Sigma)^*$ we define relation $\Rightarrow \subseteq (\Pi \cup \Sigma)^* \times (\Pi \cup \Sigma)^*$ such that

$$\alpha \Rightarrow \alpha'$$

iff $\alpha = \beta_1 A \beta_2$ and $\alpha' = \beta_1 \gamma \beta_2$ for some $\beta_1, \beta_2, \gamma \in (\Pi \cup \Sigma)^*$ and $A \in \Pi$ where $(A \to \gamma) \in P$.

Example: If $(B \rightarrow bCA) \in P$ then

$$aCBbA \Rightarrow aCbCAbA$$

Remark: Informally, $\alpha\Rightarrow\alpha'$ means that it is possible to derive α' from α by one step where an occurrence of some nonterminal A in α is replaced with the right-hand side of some rule $A\to\gamma$ with A on the left-hand side.

A **derivation** of length n is a sequence $\beta_0, \beta_1, \beta_2, \dots, \beta_n$, where $\beta_i \in (\Pi \cup \Sigma)^*$, and where $\beta_{i-1} \Rightarrow \beta_i$ for all $1 \le i \le n$, which can be written more succinctly as

$$\beta_0 \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-1} \Rightarrow \beta_n$$

The fact that for given $\alpha, \alpha' \in (\Pi \cup \Sigma)^*$ and $n \in \mathbb{N}$ there exists some derivation $\beta_0 \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-1} \Rightarrow \beta_n$, where $\alpha = \beta_0$ and $\alpha' = \beta_n$, is denoted

$$\alpha \Rightarrow^{n} \alpha'$$

The fact that $\alpha \Rightarrow^n \alpha'$ for some $n \ge 0$, is denoted

$$\alpha \Rightarrow^* \alpha'$$

Remark: Relation \Rightarrow^* is the reflexive and transitive closure of relation \Rightarrow (i.e., the smallest reflexive and transitive relation containing relation \Rightarrow).

Sentential forms are those $\alpha \in (\Pi \cup \Sigma)^*$, for which

$$S \Rightarrow^* \alpha$$

where *S* is the initial nonterminal.

A language $\mathcal{L}(\mathcal{G})$ generated by a grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is the set of all words over alphabet Σ that can be derived by some derivation from the initial nonterminal S using rules from P, i.e.,

$$\mathcal{L}(\mathcal{G}) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

Definition

A language L is **context-free** if there exists some context-free grammar \mathcal{G} such that $L = \mathcal{L}(\mathcal{G})$.

$$A \rightarrow aBBb \mid AaA$$

 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$

A

$$A \rightarrow aBBb \mid AaA$$

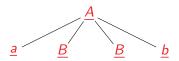
 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$

A

A

$$\underline{\underline{A}} \rightarrow aBBb \mid AaA$$

 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$

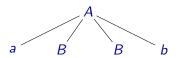


$$\underline{A} \rightarrow \underline{aBBb} \mid AaA$$

$$B \rightarrow \varepsilon \mid bCA$$

$$C \rightarrow AB \mid a \mid b$$

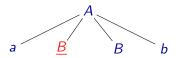
$$A \Rightarrow aBBb$$



$$A \rightarrow aBBb \mid AaA$$

 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$

$$A \Rightarrow aBBb$$



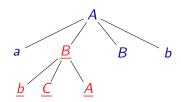
$$A \rightarrow aBBb \mid AaA$$

$$\underline{B} \rightarrow \varepsilon \mid bCA$$

$$C \rightarrow AB \mid a \mid b$$

$$A \Rightarrow aBBb$$

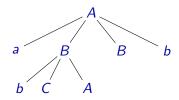
$$\begin{array}{c} A \rightarrow aBBb \mid AaA \\ \underline{B} \rightarrow \varepsilon \mid \underline{bCA} \\ C \rightarrow AB \mid a \mid b \end{array}$$



$$A \Rightarrow aBBb \Rightarrow abCABb$$

$$A \rightarrow aBBb \mid AaA$$

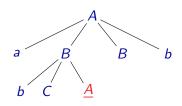
 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$



$$A \Rightarrow aBBb \Rightarrow abCABb$$

$$A \rightarrow aBBb \mid AaA$$

 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$

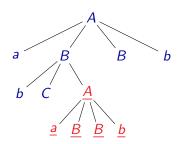


$$A \Rightarrow aBBb \Rightarrow abCABb$$

$$\underline{A} \rightarrow \underline{aBBb} \mid AaA$$

$$B \rightarrow \varepsilon \mid bCA$$

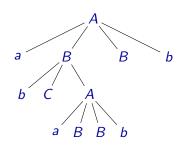
$$C \rightarrow AB \mid a \mid b$$



$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$$

$$A \rightarrow aBBb \mid AaA$$

 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$

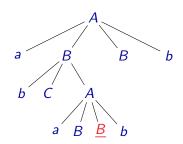


$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$$

$$A \rightarrow aBBb \mid AaA$$

$$\underline{B} \rightarrow \varepsilon \mid bCA$$

$$C \rightarrow AB \mid a \mid b$$

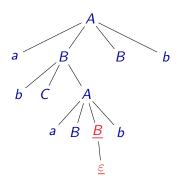


$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$$

$$A \rightarrow aBBb \mid AaA$$

$$\underline{B} \rightarrow \underline{\varepsilon} \mid bCA$$

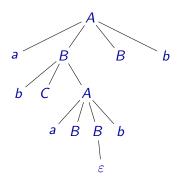
$$C \rightarrow AB \mid a \mid b$$



$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaB\underline{B}bBb \Rightarrow abCaBbBb$$

$$A \rightarrow aBBb \mid AaA$$

 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$

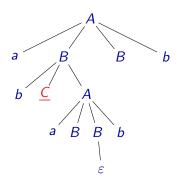


$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb$$

$$A \rightarrow aBBb \mid AaA$$

$$B \rightarrow \varepsilon \mid bCA$$

$$\underline{C} \rightarrow AB \mid a \mid b$$

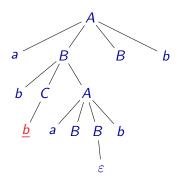


$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow ab\underline{C}aBbBb$$

$$A \rightarrow aBBb \mid AaA$$

$$B \rightarrow \varepsilon \mid bCA$$

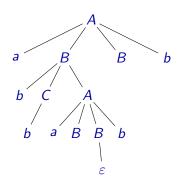
$$\underline{C} \rightarrow AB \mid a \mid \underline{b}$$



$$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb$$

$$A \rightarrow aBBb \mid AaA$$

 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$

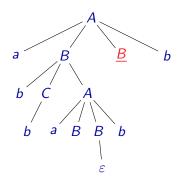


 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb$

$$A \rightarrow aBBb \mid AaA$$

$$\underline{B} \rightarrow \varepsilon \mid bCA$$

$$C \rightarrow AB \mid a \mid b$$

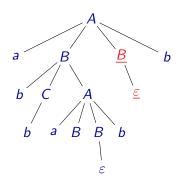


 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBb\underline{{}^{B}}b$

$$A \rightarrow aBBb \mid AaA$$

$$\underline{B} \rightarrow \underline{\varepsilon} \mid bCA$$

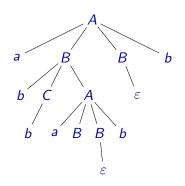
$$C \rightarrow AB \mid a \mid b$$



 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb$

$$A \rightarrow aBBb \mid AaA$$

 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$

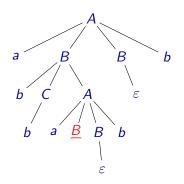


 $A\Rightarrow aBBb\Rightarrow abCABb\Rightarrow abCaBBbBb\Rightarrow abCaBbBb\Rightarrow abbaBbb$

$$A \rightarrow aBBb \mid AaA$$

$$\underline{B} \rightarrow \varepsilon \mid bCA$$

$$C \rightarrow AB \mid a \mid b$$

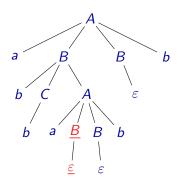


 $A\Rightarrow aBBb\Rightarrow abCABb\Rightarrow abCaBBbBb\Rightarrow abCaBbBb\Rightarrow abbaBbBb\Rightarrow abbaBbBb$

$$A \rightarrow aBBb \mid AaA$$

$$\underline{B} \rightarrow \underline{\varepsilon} \mid bCA$$

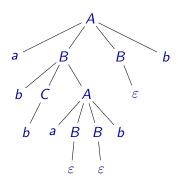
$$C \rightarrow AB \mid a \mid b$$



 $A\Rightarrow aBBb\Rightarrow abCABb\Rightarrow abCaBBbBb\Rightarrow abCaBbBb\Rightarrow abbaBbBb\Rightarrow abbaBbBb$

$$A \rightarrow aBBb \mid AaA$$

 $B \rightarrow \varepsilon \mid bCA$
 $C \rightarrow AB \mid a \mid b$



For each derivation there is some **derivation tree**:

- Nodes of the tree are labelled with terminals and nonterminals.
- The root of the tree is labelled with the initial nonterminal.
- The leafs of the tree are labelled with terminals or with symbols ε .
- The remaining nodes of the tree are labelled with nonterminals.
- If a node is labelled with some nonterminal A then its children are labelled with the symbols from the right-hand side of some rewriting rule $A \rightarrow \alpha$.

Example: A grammar generating the language

$$L = \{a^n b^n \mid n \ge 0\}$$

Example: A grammar generating the language

$$L = \{a^n b^n \mid n \ge 0\}$$

Grammar
$$\mathcal{G} = (\Pi, \Sigma, S, P)$$
 where $\Pi = \{S\}, \Sigma = \{a, b\}, \text{ and } P \text{ contains }$

$$S \rightarrow \varepsilon \mid aSb$$

Example: A grammar generating the language

$$L = \{a^n b^n \mid n \ge 0\}$$

Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ where $\Pi = \{S\}$, $\Sigma = \{a, b\}$, and P contains

$$S \rightarrow \varepsilon \mid aSb$$

```
\begin{array}{l} S \Rightarrow \varepsilon \\ S \Rightarrow aSb \Rightarrow ab \\ S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb \\ S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb \\ S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaaaSbbbb \Rightarrow aaaabbbb \end{array}
```

Example: A grammar generating the language L consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$L = \{w \in \{a, b\}^* \mid w = w^R\}$$

Remark: w^R denotes the **reverse** of a word w, i.e., the word w written backwards.

Example: A grammar generating the language L consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$L = \{w \in \{a, b\}^* \mid w = w^R\}$$

Remark: w^R denotes the **reverse** of a word w, i.e., the word w written backwards.

Solution:

$$S \rightarrow \varepsilon \mid a \mid b \mid aSa \mid bSb$$

Example: A grammar generating the language L consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$L = \{w \in \{a, b\}^* \mid w = w^R\}$$

Remark: w^R denotes the **reverse** of a word w, i.e., the word w written backwards.

Solution:

$$S \rightarrow \varepsilon \mid a \mid b \mid aSa \mid bSb$$

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaaba$$

Example: A grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $(()())(()) \in L$ but $()()) \notin L$.

Example: A grammar generating the language *L* consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $(()())(()) \in L$ but $()()) \notin L$.

Solution:

$$A \rightarrow \varepsilon \mid (A) \mid AA$$

Example: A grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $(()())(()) \in L$ but $()()) \notin L$.

Solution:

$$A \rightarrow \varepsilon \mid (A) \mid AA$$

$$A \Rightarrow AA \Rightarrow (A)A \Rightarrow (A)(A) \Rightarrow (AA)(A) \Rightarrow ((A)A)(A) \Rightarrow$$

$$((A)A)(A) \Rightarrow ((A)A)(A) \Rightarrow ((A)A)(A) \Rightarrow ((A)A)(A) \Rightarrow$$

$$((A)A)(A) \Rightarrow ((A)A)(A) \Rightarrow ((A)A)(A) \Rightarrow ((A)A)(A) \Rightarrow$$

$$((A)A)(A) \Rightarrow$$

Context-Free Grammars

Example: A grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols + and * can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Context-Free Grammars

Example: A grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols + and * can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Solution:

$$E \rightarrow a \mid E + E \mid E * E \mid (E)$$

Context-Free Grammars

Example: A grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols + and * can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Solution:

$$E \rightarrow a \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow (E) * E + E \Rightarrow (E + E) * E + E \Rightarrow$$

$$(a+E) * E + E \Rightarrow (a+a) * E + E \Rightarrow (a+a) * a + E \Rightarrow (a+a) * a + (E) \Rightarrow$$

$$(a+a) * a + (E*E) \Rightarrow (a+a) * a + (a*E) \Rightarrow (a+a) * a + (a*a)$$

Left and Right Derivation

$$E \rightarrow a \mid E + E \mid E * E \mid (E)$$

A **left derivation** is a derivation where in every step we always replace the leftmost nonterminal.

$$\underline{E} \Rightarrow \underline{E} + E \Rightarrow \underline{E} * E + E \Rightarrow a * \underline{E} + E \Rightarrow a * a + \underline{E} \Rightarrow a * a + a$$

A **right derivation** is a derivation where in every step we always replace the rightmost nonterminal.

$$\underline{E} \Rightarrow E + \underline{E} \Rightarrow \underline{E} + a \Rightarrow E * \underline{E} + a \Rightarrow \underline{E} * a + a \Rightarrow a * a + a$$

A derivation need not be left or right:

$$\underline{E} \Rightarrow \underline{E} + E \Rightarrow E * \underline{E} + E \Rightarrow E * a + \underline{E} \Rightarrow \underline{E} * a + a \Rightarrow a * a + a$$

Left and Right Derivation

- There can be several different derivations corresponding to one derivation tree.
- For every derivation tree, there is exactly one left and exactly one right derivation corresponding to the tree.

Equvalence of Grammars

Grammars \mathcal{G}_1 and \mathcal{G}_2 are **equivalent** if they generate the same language, i.e., if $\mathcal{L}(\mathcal{G}_1) = \mathcal{L}(\mathcal{G}_2)$.

Remark: The problem of equivalence of context-free grammars is algorithmically undecidable. It can be shown that it is not possible to construct an algorithm that would decide for any pair of context-free grammars if they are equivalent or not.

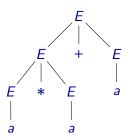
Even the problem to decide if a grammar generates the language Σ^* is algorithmically undecidable.

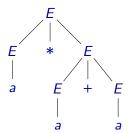
Ambiguous Grammars

A grammar \mathcal{G} is **ambiguous** if there is a word $w \in \mathcal{L}(\mathcal{G})$ that has two different derivation trees, resp. two different left or two different right derivations.

$$E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow a * E + E \Rightarrow a * a + E \Rightarrow a * a + a$$

$$E \Rightarrow E * E \Rightarrow E * E + E \Rightarrow a * E + E \Rightarrow a * a + E \Rightarrow a * a + a$$





Ambiguous Grammars

Sometimes it is possible to replace an ambiguous grammar with a grammar generating the same language but which is not ambiguous.

Example: A grammar

$$E \rightarrow a \mid E + E \mid E * E \mid (E)$$

can be replaced with the equivalent grammar

$$E \to T \mid T + E$$

$$T \to F \mid F * T$$

$$F \to a \mid (E)$$

Remark: If there is no unambiguous grammar equivalent to a given ambiguous grammar, we say it is **inherently ambiguous**.

Context-Free Languages

The class of context-free languages is closed with respect to:

- concatenation
- union
- iteration

The class of context-free languages is not closed with respect to:

- complement
- intersection

Context-Free Languages

We have two grammars $\mathcal{G}_1 = (\Pi_1, \Sigma, S_1, P_1)$ and $\mathcal{G}_2 = (\Pi_2, \Sigma, S_2, P_2)$, and can assume that $\Pi_1 \cap \Pi_2 = \emptyset$ and $S \notin \Pi_1 \cup \Pi_2$.

• Grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cdot \mathcal{L}(\mathcal{G}_2)$:

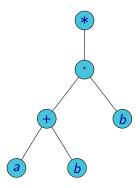
$$\mathcal{G} = \left(\Pi_1 \cup \Pi_2 \cup \{S\}, \, \Sigma, \, S, \, P_1 \cup P_2 \cup \{S \,\rightarrow\, S_1 S_2\} \right)$$

• Grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$:

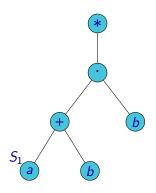
$$\mathcal{G} = (\Pi_1 \cup \Pi_2 \cup \{S\}, \, \Sigma, \, S, \, P_1 \cup P_2 \cup \{S \, \to \, S_1, S \, \to \, S_2\})$$

• Grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1)^*$:

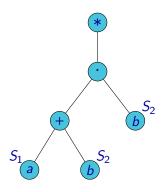
$$\mathcal{G} = (\Pi_1 \cup \{S\}, \Sigma, S, P_1 \cup \{S \rightarrow \varepsilon, S \rightarrow S_1 S\})$$



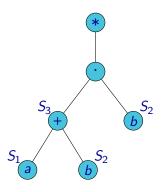
Example: The construction of a context-free grammar for regular expression $((a + b) \cdot b)^*$:



 $S_1 \rightarrow a$



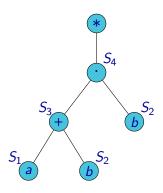
$$S_2 \rightarrow b$$
 $S_1 \rightarrow a$



$$S_3 \to S_1 \mid S_2$$

$$S_2 \to b$$

$$S_1 \to a$$

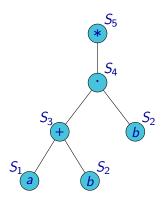


$$S_4 \rightarrow S_3 S_2$$

$$S_3 \rightarrow S_1 \mid S_2$$

$$S_2 \rightarrow b$$

$$S_1 \rightarrow a$$



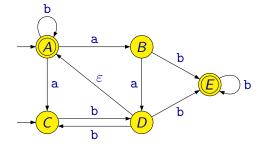
$$S_5 \rightarrow \varepsilon \mid S_4 S_5$$

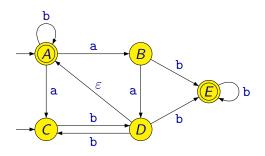
$$S_4 \rightarrow S_3 S_2$$

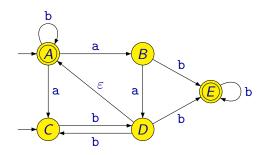
$$S_3 \rightarrow S_1 \mid S_2$$

$$S_2 \rightarrow b$$

$$S_1 \rightarrow a$$

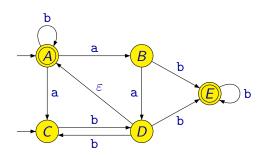






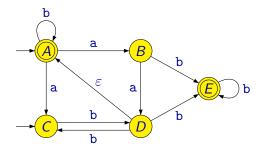
$$S \rightarrow A \mid C$$

 $A \rightarrow aB \mid aC \mid bA$
 $B \rightarrow aD \mid bE$
 $C \rightarrow bD$
 $D \rightarrow bC \mid bE \mid A$
 $E \rightarrow bE$

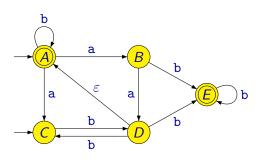


$$S \rightarrow A \mid C$$
 $A \rightarrow aB \mid aC \mid bA$
 $B \rightarrow aD \mid bE$
 $C \rightarrow bD$
 $D \rightarrow bC \mid bE \mid A$
 $E \rightarrow bE$
 $A \rightarrow \varepsilon$
 $E \rightarrow \varepsilon$

Example:

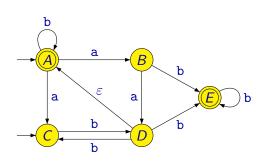


Example:



$$S \rightarrow A \mid E$$

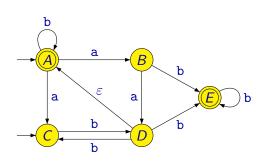
Example:



$$S \rightarrow A \mid E$$

 $A \rightarrow Ab \mid D$
 $B \rightarrow Aa$
 $C \rightarrow Aa \mid Db$
 $D \rightarrow Ba \mid Cb$
 $E \rightarrow Bb \mid Db \mid Eb$

Example:



$$S \rightarrow A \mid E$$
 $A \rightarrow Ab \mid D$
 $B \rightarrow Aa$
 $C \rightarrow Aa \mid Db$
 $D \rightarrow Ba \mid Cb$
 $E \rightarrow Bb \mid Db \mid Eb$
 $A \rightarrow \varepsilon$
 $C \rightarrow \varepsilon$

Regular grammars

Definition

A grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is **right regular** if all rules in P are of the following forms (where $A, B \in \Pi$, $a \in \Sigma$):

- \bullet $A \rightarrow B$
- \bullet $A \rightarrow aB$
- $A \rightarrow \varepsilon$

Definition

A grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is **left regular** if all rules in P are of the following forms (kde $A, B \in \Pi, a \in \Sigma$):

- \bullet $A \rightarrow B$
- \bullet $A \rightarrow Ba$
- $\bullet A \to \varepsilon$

Regular grammars

Definition

A grammar G is **regular** if it right regular or left regular.

Remark: Sometimes a slightly more general definition of right (resp. left) regular grammars is given, allowing all rules of the following forms:

- $A \rightarrow wB$ (resp. $A \rightarrow Bw$)
- \bullet $A \rightarrow w$

where $A, B \in \Pi$, $w \in \Sigma^*$.

Such rules can be easily "decomposed" into rules of the form in the previous definition.

Example: Rule $A \rightarrow abbB$ can be replaced with rules

$$A \rightarrow aX_1$$
 $X_1 \rightarrow bX_2$ $X_2 \rightarrow bB$

where X_1 , X_2 are new nonterminals, not used anywhere else in the grammar.

Regular grammars

Proposition

For every regular language L there is a left regular grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = L$ and a right regular grammar \mathcal{G}' such that $\mathcal{L}(\mathcal{G}') = L$.

Proposition

For every regular grammar $\mathcal G$ there is a finite automaton $\mathcal A$ such that $\mathcal L(\mathcal A)=\mathcal L(\mathcal G).$