Formal Languages
Alphabet and Word

Definition

Alphabet is a nonempty finite set of **symbols**.

Remark: An alphabet is often denoted by the symbol Σ (upper case sigma) of the Greek alphabet.

Definition

A **word** over a given alphabet is a finite sequence of symbols from this alphabet.

Example 1:

Words over alphabet Σ: \textit{HELLO} \hspace{1cm} \textit{XYZZY} \hspace{1cm} \textit{COMPUTER}
Alphabet and Word

Example 2:

A word over alphabet \(\Sigma_2\): \(HELLO\)\(\square\)WORLD

Example 3:

\[\Sigma_3 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\]

Words over alphabet \(\Sigma_3\): \(0, 31415926536, 65536\)

Example 4:

Words over alphabet \(\Sigma_4 = \{0, 1\}\): \(011010001, 111, 1010101010101010\)

Example 5:

Words over alphabet \(\Sigma_5 = \{a, b\}\): \(aababb, abbabbba, aaab\)
Example 6:

Alphabet Σ_6 is the set of all ASCII characters.

Example of a word:

```java
class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, world!");
    }
}
```
Language — a set of (some) words of symbols from a given alphabet

Examples of problem types, where theory of formal languages is useful:

- **Construction of compilers:**
 - Lexical analysis
 - Syntactic analysis

- **Searching in text:**
 - Searching for a given text pattern
 - Searching for a part of text specified by a regular expression
To describe a language, there are several possibilities:

- We can enumerate all words of the language (however, this is possible only for small finite languages).

 Example: \(L = \{aab, babba, aaaaaa\} \)

- We can specify a property of the words of the language:

 Example: The language over alphabet \(\{0, 1\} \) containing all words with even number of occurrences of symbol 1.
In particular, the following two approaches are used in the theory of formal languages:

- To describe an (idealized) machine, device, algorithm, that recognizes words of the given language – approaches based on automata.

- To describe some mechanism that allows to generate all words of the given language – approaches based on grammars or regular expressions.
Some Basic Concepts

The **length of a word** is the number of symbols of the word. For example, the length of word *abaab* is 5.

The length of a word *w* is denoted $|w|$. For example, if $w = abaab$ then $|w| = 5$.

We denote the number of occurrences of a symbol *a* in a word *w* by $|w|_a$. For word $w = ababb$ we have $|w|_a = 2$ and $|w|_b = 3$.

An **empty word** is a word of length 0, i.e., the word containing no symbols. The empty word is denoted by the letter ε (epsilon) of the Greek alphabet.

$$|\varepsilon| = 0$$
One of operations we can do on words is the operation of **concatenation**: For example, the concatenation of words $cabc$ and bba is the word $cabcbba$.

The operation of concatenation is denoted by symbol \cdot (it is similar to multiplication). This symbol can be omitted.

So, for $u, v \in \Sigma^*$, the concatenation of words u and v is written as $u \cdot v$ or just uv.

Example: If $u = cabc$ and $v = bba$, then

$$uv = cabcbba$$

Remark: Formally, the concatenation of words over alphabet Σ is a function of type $\Sigma^* \times \Sigma^* \rightarrow \Sigma^*$.
Concatenation of Words

Concatenation is **associative**, i.e., for every three words u, v, and w we have

$$(u \cdot v) \cdot w = u \cdot (v \cdot w)$$

which means that we can omit parenthesis when we write multiple concatenations. For example, we can write $w_1 \cdot w_2 \cdot w_3 \cdot w_4 \cdot w_5$ instead of $(w_1 \cdot (w_2 \cdot w_3)) \cdot (w_4 \cdot w_5)$.

Word ε is a neutral element for the operation of concatenation, so for every word w we also have:

$$\varepsilon \cdot w = w \cdot \varepsilon = w$$

Remark: It is obvious that if the given alphabet contains at least two different symbols, the operation of concatenation is not associative, e.g.,

$$a \cdot b \neq b \cdot a$$
Definition

A word \(x \) is a **prefix** of a word \(y \), if there exists a word \(v \) such that \(y = xv \).

A word \(x \) is a **suffix** of a word \(y \), if there exists a word \(u \) such that \(y = ux \).

A word \(x \) is a **subword** of a word \(y \), if there exist words \(u \) and \(v \) such that \(y = uxv \).

Example:

- Prefixes of the word \(\text{abaab} \) are \(\varepsilon, a, ab, aba, abaa, \text{abaab} \).
- Suffixes of the word \(\text{abaab} \) are \(\varepsilon, b, ab, aab, baab, \text{abaab} \).
- Subwords of the word \(\text{abaab} \) are \(\varepsilon, a, b, ab, ba, aa, aba, baa, aab, abaa, baab, \text{abaab} \).
The set of all words over alphabet Σ is denoted Σ^*.

Definition

A (formal) language L over an alphabet Σ is a subset of Σ^*, i.e., $L \subseteq \Sigma^*$.

Example 1: The set $\{00, 01001, 1101\}$ is a language over alphabet $\{0, 1\}$.

Example 2: The set of all syntactically correct programs in the C programming language is a language over the alphabet consisting of all ASCII characters.

Example 3: The set of all texts containing the sequence `hello` is a language over alphabet consisting of all ASCII characters.
Set Operations on Languages

Since languages are sets, we can apply any set operations to them:

Union – \(L_1 \cup L_2 \) is the language consisting of the words belonging to language \(L_1 \) or to language \(L_2 \) (or to both of them).

Intersection – \(L_1 \cap L_2 \) is the language consisting of the words belonging to language \(L_1 \) and also to language \(L_2 \).

Complement – \(\overline{L_1} \) is the language containing those words from \(\Sigma^* \) that do not belong to \(L_1 \).

Difference – \(L_1 - L_2 \) is the language containing those words of \(L_1 \) that do not belong to \(L_2 \).

Remark: It is assumed the languages involved in these operations use the same alphabet \(\Sigma \).
Set Operations on Languages

Formally:

Union: \(L_1 \cup L_2 = \{ w \in \Sigma^* \mid w \in L_1 \lor w \in L_2 \} \)

Intersection: \(L_1 \cap L_2 = \{ w \in \Sigma^* \mid w \in L_1 \land w \in L_2 \} \)

Complement: \(\overline{L_1} = \{ w \in \Sigma^* \mid w \notin L_1 \} \)

Difference: \(L_1 - L_2 = \{ w \in \Sigma^* \mid w \in L_1 \land w \notin L_2 \} \)

Remark: We assume that \(L_1, L_2 \subseteq \Sigma^* \) for some given alphabet \(\Sigma \).
Set Operations on Languages

Example:

Consider languages over alphabet \{a, b\}.

- \(L_1\) — the set of all words containing subword \textbf{baa}
- \(L_2\) — the set of all words with an even number of occurrences of symbol \(b\)

Then

- \(L_1 \cup L_2\) — the set of all words containing subword \textbf{baa} or an even number of occurrences of \(b\)
- \(L_1 \cap L_2\) — the set of all words containing subword \textbf{baa} and an even number of occurrences of \(b\)
- \(\overline{L_1}\) — the set of all words that do not contain subword \textbf{baa}
- \(L_1 - L_2\) — the set of all words that contain subword \textbf{baa} but do not contain an even number of occurrences of \(b\)
Concatenation of Languages

Definition

Concatenation of languages L_1 and L_2, where $L_1, L_2 \subseteq \Sigma^*$, is the language $L \subseteq \Sigma^*$ such that for each $w \in \Sigma^*$ it holds that

$$w \in L \iff (\exists u \in L_1)(\exists v \in L_2)(w = u \cdot v)$$

The concatenation of languages L_1 and L_2 is denoted $L_1 \cdot L_2$.

Example:

$$L_1 = \{abb, ba\}$$
$$L_2 = \{a, ab, bbb\}$$

The language $L_1 \cdot L_2$ contains the following words:

$$abba \quad abbab \quad abbbbb \quad baa \quad baab \quad babbb$$
Definition

The **iteration (Kleene star) of language** L, denoted L^*, is the language consisting of words created by concatenation of some arbitrary number of words from language L.

I.e. $w \in L^*$ iff

$$\exists n \in \mathbb{N}: \exists w_1, w_2, \ldots, w_n \in L: w = w_1 w_2 \cdots w_n$$

Example: $L = \{aa, b\}$

$$L^* = \{\varepsilon, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaaab, aabaa, aabb, \ldots\}$$

Remark: The number of concatenated words can be 0, which means that $\varepsilon \in L^*$ always holds (it does not matter if $\varepsilon \in L$ or not).
At first, for a language L and a number $k \in \mathbb{N}$ we define the language L^k:

$$L^0 = \{\varepsilon\}, \quad L^k = L^{k-1} \cdot L \quad \text{for } k \geq 1$$

This means

$$L^0 = \{\varepsilon\}, \quad L^1 = L, \quad L^2 = L \cdot L, \quad L^3 = L \cdot L \cdot L, \quad L^4 = L \cdot L \cdot L \cdot L, \quad L^5 = L \cdot L \cdot L \cdot L \cdot L, \ldots$$

Example: For $L = \{aa, b\}$, the language L^3 contains the following words:

$$aaaaaa \quad aaaaab \quad aabaa \quad aabb \quad baaaa \quad baab \quad bbab \quad bbbaa \quad bbb$$
Alternative definition

The **iteration (Kleene star) of language** L is the language

$$L^* = \bigcup_{k \geq 0} L^k$$

Remark:

$$\bigcup_{k \geq 0} L^k = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \ldots$$
Remark: Sometimes, notation \(L^+ \) is used as an abbreviation for \(L \cdot L^* \), i.e.,

\[
L^+ = \bigcup_{k \geq 1} L^k
\]
The **reverse** of a word w is the word w written from backwards (in the opposite order).

The reverse of a word w is denoted w^R.

Example: $w = \text{HELLO}$, $w^R = \text{OLLEH}$

Formally, for $w = a_1a_2 \cdots a_n$ (where $a_i \in \Sigma$) is $w^R = a_na_{n-1} \cdots a_1$.
The **reverse** of a language \(L \) is the language consisting of reverses of all words of \(L \).
Reverse of a language \(L \) is denoted \(L^R \).

\[
L^R = \{w^R \mid w \in L\}
\]

Example: \(L = \{ab, baaba, aaab\} \)
\(L^R = \{ba, abaab, baaa\} \)
Order on Words

Let us assume some (linear) order $<$ on the symbols of alphabet Σ, i.e., if $\Sigma = \{a_1, a_2, \ldots, a_n\}$ then

$$a_1 < a_2 < \ldots < a_n.$$

Example: $\Sigma = \{a, b, c\}$ with $a < b < c$.

The following (linear) order $<_L$ can be defined on Σ^*:

$x <_L y$ iff:

- $|x| < |y|$, or
- $|x| = |y|$ there exist words $u, v, w \in \Sigma^*$ and symbols $a, b \in \Sigma$ such that

$$x = uav \quad y = ubw \quad a < b$$

Informally, we can say that in order $<_L$ we order words according to their length, and in case of the same length we order them lexicographically.
Order on Words

All words over alphabet Σ can be ordered by $<_L$ into a sequence

$$w_0, w_1, w_2, \ldots$$

where every word $w \in \Sigma^*$ occurs exactly once, and where for each $i, j \in \mathbb{N}$ it holds that $w_i <_L w_j$ iff $i < j$.

Example: For alphabet $\Sigma = \{a, b, c\}$ (where $a < b < c$), the initial part of the sequence looks as follows:

$$\varepsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, abc, \ldots$$

For example, when we talk about the first ten words of a language $L \subseteq \Sigma^*$, we mean ten words that belong to language L and that are smallest of all words of L according to order $<_L$.
Regular Expressions
Regular Expressions

Regular expressions describing languages over an alphabet Σ:

- \emptyset, ε, a (where $a \in \Sigma$) are regular expressions:
 - \emptyset . . . denotes the empty language
 - ε . . . denotes the language $\{\varepsilon\}$
 - a . . . denotes the language $\{a\}$

- If α, β are regular expressions then also $(\alpha + \beta)$, $(\alpha \cdot \beta)$, (α^*) are regular expressions:
 - $(\alpha + \beta)$. . . denotes the union of languages denoted α and β
 - $(\alpha \cdot \beta)$. . . denotes the concatenation of languages denoted α and β
 - (α^*) . . . denotes the iteration of a language denoted α

- There are no other regular expressions except those defined in the two points mentioned above.
Example: alphabet \(\Sigma = \{0, 1\} \)

- According to the definition, 0 and 1 are regular expressions.
Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0 + 1)$ is also a regular expression.
Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0 + 1)$ is also a regular expression.
- Since 0 is a regular expression, (0^*) is also a regular expression.
Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0 + 1)$ is also a regular expression.
- Since 0 is a regular expression, (0^*) is also a regular expression.
- Since $(0 + 1)$ and (0^*) are regular expressions, $((0 + 1) \cdot (0^*))$ is also a regular expression.
Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0 + 1)$ is also a regular expression.
- Since 0 is a regular expression, (0^*) is also a regular expression.
- Since $(0 + 1)$ and (0^*) are regular expressions, $((0 + 1) \cdot (0^*))$ is also a regular expression.

Remark: If α is a regular expression, by $L(\alpha)$ we denote the language defined by the regular expression α.

$$L((0 + 1) \cdot (0^*)) = \{0, 1, 00, 10, 000, 100, 0000, 1000, 00000, \ldots\}$$
The structure of a regular expression can be represented by an abstract syntax tree:

\[
(((((0 \cdot 1)^*) \cdot 1) \cdot (1 \cdot 1)) + (((0 \cdot 0) + 1)^*)))
\]
The formal definition of semantics of regular expressions:

- $\mathcal{L}(\emptyset) = \emptyset$
- $\mathcal{L}(\varepsilon) = \{\varepsilon\}$
- $\mathcal{L}(a) = \{a\}$
- $\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$
- $\mathcal{L}(\alpha \cdot \beta) = \mathcal{L}(\alpha) \cdot \mathcal{L}(\beta)$
- $\mathcal{L}(\alpha + \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$
Regular Expressions

To make regular expressions more lucid and succinct, we use the following conventions:

- The outward pair of parentheses can be omitted.
- We can omit parentheses that are superflous due to associativity of operations of union ($+$) and concatenation (\cdot).
- We can omit parentheses that are superflous due to the defined priority of operators (iteration (*) has the highest priority, concatenation (\cdot) has lower priority, and union ($+$) has the lowest priority).
- A dot denoting concatenation can be omitted.

Example: Instead of

$$(((0 \cdot 1)^* \cdot 1) \cdot (1 \cdot 1)) + (((0 \cdot 0) + 1)^*))$$

we usually write

$$(01)^*111 + (00 + 1)^*$$
Examples: In all examples $\Sigma = \{0, 1\}$.

$0 \ldots$ the language containing the only word 0
Examples: In all examples $\Sigma = \{0, 1\}$.

- $0 \ldots$ the language containing the only word 0
- $01 \ldots$ the language containing the only word 01
Examples: In all examples $\Sigma = \{0, 1\}$.

- $0 \ldots$ the language containing the only word 0
- $01 \ldots$ the language containing the only word 01
- $0 + 1 \ldots$ the language containing two words 0 and 1
Examples: In all examples $\Sigma = \{0, 1\}$.

- $0 \ldots$ the language containing the only word 0
- $01 \ldots$ the language containing the only word 01
- $0 + 1 \ldots$ the language containing two words 0 and 1
- $0^* \ldots$ the language containing words $\varepsilon, 0, 00, 000, \ldots$
Examples: In all examples \(\Sigma = \{0, 1\} \).

- \(0 \ldots \) the language containing the only word 0
- \(01 \ldots \) the language containing the only word 01
- \(0 + 1 \ldots \) the language containing two words 0 and 1
- \(0^{*} \ldots \) the language containing words \(\varepsilon, 0, 00, 000, \ldots\)
- \((01)^{*} \ldots \) the language containing words \(\varepsilon, 01, 0101, 010101, \ldots\)
Regular Expressions

Examples: In all examples $\Sigma = \{0, 1\}$.

- 0 . . . the language containing the only word 0
- 01 . . . the language containing the only word 01
- $0 + 1$. . . the language containing two words 0 and 1
- 0^* . . . the language containing words ε, 0, 00, 000, . . .
- $(01)^*$. . . the language containing words ε, 01, 0101, 010101, . . .
- $(0 + 1)^*$. . . the language containing all words over the alphabet $\{0, 1\}$
Regular Expressions

Examples: In all examples $\Sigma = \{0, 1\}$.

- $0 \ldots$ the language containing the only word 0
- $01 \ldots$ the language containing the only word 01
- $0 + 1 \ldots$ the language containing two words 0 and 1
- $0^* \ldots$ the language containing words $\epsilon, 0, 00, 000, \ldots$
- $(01)^* \ldots$ the language containing words $\epsilon, 01, 0101, 010101, \ldots$
- $(0 + 1)^* \ldots$ the language containing all words over the alphabet $\{0, 1\}$
- $(0 + 1)^*00 \ldots$ the language containing all words ending with 00
Examples: In all examples $\Sigma = \{0, 1\}$.

- 0 . . . the language containing the only word 0
- 01 . . . the language containing the only word 01
- $0 + 1$. . . the language containing two words 0 and 1
- 0^* . . . the language containing words $\varepsilon, 0, 00, 000, \ldots$
- $(01)^*$. . . the language containing words $\varepsilon, 01, 0101, 010101, \ldots$
- $(0 + 1)^*$. . . the language containing all words over the alphabet $\{0, 1\}$
- $(0 + 1)^*00$. . . the language containing all words ending with 00
- $(01)^*111(01)^*$. . . the language containing all words that contain a subword 111 preceded and followed by an arbitrary number of copies of the word 01
\((0 + 1)^* 00 + (01)^* 111(01)^* \) … the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01
\[(0 + 1)^*00 + (01)^*111(01)^*\] \ldots the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01

\[(0 + 1)^*1(0 + 1)^*\] \ldots the language of all words that contain at least one occurrence of symbol 1
\[(0 + 1)^*00 + (01)^*111(01)^*\] ... the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01

\[(0 + 1)^*1(0 + 1)^*\] ... the language of all words that contain at least one occurrence of symbol 1

\[0^*(10^*10^*)^*\] ... the language containing all words with an even number of occurrences of symbol 1