Formal Languages
Alphabet and Word

Definition

Alphabet is a nonempty finite set of symbols.

Remark: An alphabet is often denoted by the symbol Σ (upper case sigma) of the Greek alphabet.

Definition

A **word** over a given alphabet is a finite sequence of symbols from this alphabet.

Example 1:

Words over alphabet Σ: HELLO ABRACADABRA ERROR
Alphabet and Word

Example 2:

A word over alphabet $$\Sigma_2$$: HELLO\squareWORLD

Example 3:

$$\Sigma_3 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Words over alphabet $$\Sigma_3$$: 0, 31415926536, 65536

Example 4:

Words over alphabet $$\Sigma_4 = \{0, 1\}$$: 011010001, 111, 1010101010101010

Example 5:

Words over alphabet $$\Sigma_5 = \{a, b\}$$: aababb, abbabbba, aaab
Example 6:

Alphabet Σ_6 is the set of all ASCII characters.

Example of a word:

```java
class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello, world!" acompanado);
    }
}
```
Language — a set of (some) words of symbols from a given alphabet

Examples of problem types, where theory of formal languages is useful:

- Construction of compilers:
 - Lexical analysis
 - Syntactic analysis

- Searching in text:
 - Searching for a given text pattern
 - Searching for a part of text specified by a regular expression
To describe a language, there are several possibilities:

- We can enumerate all words of the language (however, this is possible only for small finite languages).

 Example: \(L = \{aab, babba, aaaaaa\} \)

- We can specify a property of the words of the language:

 Example: The language over alphabet \(\{0, 1\} \) containing all words with even number of occurrences of symbol 1.
In particular, the following two approaches are used in the theory of formal languages:

- To describe an (idealized) machine, device, algorithm, that recognizes words of the given language – approaches based on **automata**.

- To describe some mechanism that allows to generate all words of the given language – approaches based on **grammars** or **regular expressions**.
Some Basic Concepts

The **length of a word** is the number of symbols of the word. For example, the length of word \(abaab \) is 5.

The length of a word \(w \) is denoted \(|w|\). For example, if \(w = abaab \) then \(|w| = 5\).

We denote the number of occurrences of a symbol \(a \) in a word \(w \) by \(|w|_a\). For word \(w = ababb \) we have \(|w|_a = 2\) and \(|w|_b = 3\).

An **empty word** is a word of length 0, i.e., the word containing no symbols. The empty word is denoted by the letter \(\varepsilon \) (epsilon) of the Greek alphabet. (Remark: In literature, sometimes \(\lambda \) (lambda) is used to denote the empty word instead of \(\varepsilon \).)

\[|\varepsilon| = 0 \]
Concatenation of Words

One of operations we can do on words is the operation of **concatenation**: For example, the concatenation of words **OST** and **RAVA** is the word **OSTRAVA**.

The operation of concatenation is denoted by symbol \(\cdot \) (similarly to multiplication). It is possible to omit this symbol.

\[
\text{OST} \cdot \text{RAVA} = \text{OSTRAVA}
\]

Concatenation is **associative**, i.e., for every three words \(u, v, \) and \(w \) we have

\[
(u \cdot v) \cdot w = u \cdot (v \cdot w)
\]

which means that we can omit parenthesis when we write multiple concatenations. For example, we can write \(w_1 \cdot w_2 \cdot w_3 \cdot w_4 \cdot w_5 \) instead of

\[
(w_1 \cdot (w_2 \cdot w_3)) \cdot (w_4 \cdot w_5).
\]
Concatenation of Words

Concatenation is not **commutative**, i.e., the following equality does not hold in general

\[u \cdot v \neq v \cdot u \]

Example:

\[\text{OST} \cdot \text{RAVA} \neq \text{RAVA} \cdot \text{OST} \]

It is obvious that the following holds for any words \(v \) and \(w \):

\[|v \cdot w| = |v| + |w| \]

For every word \(w \) we also have:

\[\varepsilon \cdot w = w \cdot \varepsilon = w \]
Prefixes, Suffixes, and Subwords

Definition

A word x is a **prefix** of a word y, if there exists a word v such that $y = xv$.
A word x is a **suffix** of a word y, if there exists a word u such that $y = ux$.
A word x is a **subword** of a word y, if there exist words u and v such that $y = uxv$.

Example:

- Prefixes of the word $abaab$ are ε, a, ab, aba, $abaa$, $abaab$.
- Suffixes of the word $abaab$ are ε, b, ab, aab, $baab$, $abaab$.
- Subwords of the word $abaab$ are ε, a, b, ab, ba, aa, aba, baa, aab, $abaa$, $baab$, $abaab$.
Language

The set of all words over alphabet Σ is denoted Σ^*.

Definition

A (formal) language L over an alphabet Σ is a subset of Σ^*, i.e., $L \subseteq \Sigma^*$.

Example 1: The set $\{00, 01001, 1101\}$ is a language over alphabet $\{0, 1\}$.

Example 2: The set of all syntactically correct programs in the C programming language is a language over the alphabet consisting of all ASCII characters.

Example 3: The set of all texts containing the sequence `hello` is a language over alphabet consisting of all ASCII characters.
Set Operations on Languages

Since languages are sets, we can apply any set operations to them:

Union – $L_1 \cup L_2$ is the language consisting of the words belonging to language L_1 or to language L_2 (or to both of them).

Intersection – $L_1 \cap L_2$ is the language consisting of the words belonging to language L_1 and also to language L_2.

Complement – $\overline{L_1}$ is the language containing those words from Σ^* that do not belong to L_1.

Difference – $L_1 - L_2$ is the language containing those words of L_1 that do not belong to L_2.

Remark: It is assumed the languages involved in these operations use the same alphabet Σ.
Set Operations on Languages

Formally:

Union: \(L_1 \cup L_2 = \{ w \in \Sigma^* | w \in L_1 \lor w \in L_2 \} \)

Intersection: \(L_1 \cap L_2 = \{ w \in \Sigma^* | w \in L_1 \land w \in L_2 \} \)

Complement: \(\overline{L_1} = \{ w \in \Sigma^* | w \notin L_1 \} \)

Difference: \(L_1 - L_2 = \{ w \in \Sigma^* | w \in L_1 \land w \notin L_2 \} \)

Remark: We assume that \(L_1, L_2 \subseteq \Sigma^* \) for some given alphabet \(\Sigma \).
Set Operations on Languages

Example:

Consider languages over alphabet \(\{a, b\} \).

- \(L_1 \) — the set of all words containing subword \(baa \)
- \(L_2 \) — the set of all words with an even number of occurrences of symbol \(b \)

Then

- \(L_1 \cup L_2 \) — the set of all words containing subword \(baa \) or an even number of occurrences of \(b \)
- \(L_1 \cap L_2 \) — the set of all words containing subword \(baa \) and an even number of occurrences of \(b \)
- \(\overline{L_1} \) — the set of all words that do not contain subword \(baa \)
- \(L_1 - L_2 \) — the set of all words that contain subword \(baa \) but do not contain an even number of occurrences of \(b \)
Definition

Concatenation of languages L_1 and L_2, where $L_1, L_2 \subseteq \Sigma^*$, is the language $L \subseteq \Sigma^*$ such that for each $w \in \Sigma^*$ it holds that

$$w \in L \iff \exists u \in L_1 \exists v \in L_2 (w = u \cdot v)$$

The concatenation of languages L_1 and L_2 is denoted $L_1 \cdot L_2$.

Example:

$$L_1 = \{abb, ba\}$$
$$L_2 = \{a, ab, bbb\}$$

The language $L_1 \cdot L_2$ contains the following words:

$$abba \quad abbab \quad abbbbb \quad baa \quad baab \quad babb$$
Definition

The **iteration (Kleene star) of language** L, denoted L^*, is the language consisting of words created by concatenation of some arbitrary number of words from language L.

I.e. $w \in L^*$ iff

$$\exists n \in \mathbb{N} : \exists w_1, w_2, \ldots, w_n \in L : w = w_1w_2 \cdots w_n$$

Example: $L = \{aa, b\}$

$$L^* = \{\epsilon, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaaab, aabaa, aabb, \ldots\}$$

Remark: The number of concatenated words can be 0, which means that $\epsilon \in L^*$ always holds (it does not matter if $\epsilon \in L$ or not).
Iteration of a Language – Alternative Definition

At first, for a language L and a number $k \in \mathbb{N}$ we define the language L^k:

$$L^0 = \{\varepsilon\}, \quad L^k = L^{k-1} \cdot L \quad \text{for } k \geq 1$$

This means

$$
\begin{align*}
L^0 &= \{\varepsilon\} \\
L^1 &= L \\
L^2 &= L \cdot L \\
L^3 &= L \cdot L \cdot L \\
L^4 &= L \cdot L \cdot L \cdot L \\
L^5 &= L \cdot L \cdot L \cdot L \cdot L \\
\cdots
\end{align*}
$$

Example: For $L = \{aa, b\}$, the language L^3 contains the following words:

$$aaaaaa \quad aaaaab \quad aabaa \quad aabb \quad baaaa \quad baab \quad bbbaa \quad bbb$$
The iteration (Kleene star) of language L is the language

$$L^* = \bigcup_{k \geq 0} L^k$$

Remark:

$$\bigcup_{k \geq 0} L^k = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \ldots$$
Remark: Sometimes, notation L^+ is used as an abbreviation for $L \cdot L^*$, i.e.,

$$L^+ = \bigcup_{k \geq 1} L^k$$
The reverse of a word w is the word w written from backwards (in the opposite order).

The reverse of a word w is denoted w^R.

Example: $w = \text{HELLO}$ \hspace{1cm} $w^R = \text{OLLEH}$

Formally, for $w = a_1a_2\cdots a_n$ (where $a_i \in \Sigma$) is $w^R = a_na_{n-1}\cdots a_1$.
The reverse of a language L is the language consisting of reverses of all words of L.

Reverse of a language L is denoted L^R.

$$L^R = \{w^R \mid w \in L\}$$

Example:

$L = \{ab, \text{baaba}, \text{aaab}\}$

$L^R = \{ba, \text{abaab}, \text{baaa}\}$
Order on Words

Let us assume some (linear) order $<$ on the symbols of alphabet Σ, i.e., if $\Sigma = \{a_1, a_2, \ldots, a_n\}$ then

$$a_1 < a_2 < \ldots < a_n.$$

Example: $\Sigma = \{a, b, c\}$ with $a < b < c$.

The following (linear) order $<_L$ can be defined on Σ^*:

$x <_L y$ iff:

- $|x| < |y|$, or
- $|x| = |y|$ there exist words $u, v, w \in \Sigma^*$ and symbols $a, b \in \Sigma$ such that

 $$x = uav \quad y = ubw \quad a < b$$

Informally, we can say that in order $<_L$ we order words according to their length, and in case of the same length we order them lexicographically.
Order on Words

All words over alphabet Σ can be ordered by $<_L$ into a sequence

$$w_0, w_1, w_2, \ldots$$

where every word $w \in \Sigma^*$ occurs exactly once, and where for each $i, j \in \mathbb{N}$ it holds that $w_i <_L w_j$ iff $i < j$.

Example: For alphabet $\Sigma = \{a, b, c\}$ (where $a < b < c$), the initial part of the sequence looks as follows:

$$\varepsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, abc, \ldots$$

For example, when we talk about the first ten words of a language $L \subseteq \Sigma^*$, we mean ten words that belong to language L and that are smallest of all words of L according to order $<_L$.
Regular Expressions
Regular Expressions

Regular expressions describing languages over an alphabet Σ:

- \emptyset, ε, a (where $a \in \Sigma$) are regular expressions:
 - \emptyset ... denotes the empty language
 - ε ... denotes the language $\{\varepsilon\}$
 - a ... denotes the language $\{a\}$

- If α, β are regular expressions then also $(\alpha + \beta)$, $(\alpha \cdot \beta)$, (α^*) are regular expressions:
 - $(\alpha + \beta)$... denotes the union of languages denoted α and β
 - $(\alpha \cdot \beta)$... denotes the concatenation of languages denoted α and β
 - (α^*) ... denotes the iteration of a language denoted α

- There are no other regular expressions except those defined in the two points mentioned above.
Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expressions, $(0 + 1)$ is also a regular expression.
Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0 + 1)$ is also a regular expression.
- Since 0 is a regular expression, (0^*) is also a regular expression.
Regular Expressions

Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0 + 1)$ is also a regular expression.
- Since 0 is a regular expression, (0^*) is also a regular expression.
- Since $(0 + 1)$ and (0^*) are regular expressions, $((0 + 1) \cdot (0^*))$ is also a regular expression.
Example: alphabet $\Sigma = \{0, 1\}$

- According to the definition, 0 and 1 are regular expressions.
- Since 0 and 1 are regular expression, $(0 + 1)$ is also a regular expression.
- Since 0 is a regular expression, (0^*) is also a regular expression.
- Since $(0 + 1)$ and (0^*) are regular expressions, $((0 + 1) \cdot (0^*))$ is also a regular expression.

Remark: If α is a regular expression, by $[\alpha]$ we denote the language defined by the regular expression α.

$$[((0 + 1) \cdot (0^*))] = \{0, 1, 00, 10, 000, 100, 0000, 1000, 00000, \ldots\}$$
Regular Expressions

The structure of a regular expression can be represented by an abstract syntax tree:
The formal definition of semantics of regular expressions:

- $\emptyset = \emptyset$
- $\varepsilon = \{\varepsilon\}$
- $a = \{a\}$
- $\alpha^* = [\alpha]^*$
- $[\alpha \cdot \beta] = [\alpha] \cdot [\beta]$
- $[\alpha + \beta] = [\alpha] \cup [\beta]$
Regular Expressions

To make regular expressions more lucid and succinct, we use the following conventions:

- The outward pair of parentheses can be omitted.
- We can omit parentheses that are superfluous due to associativity of operations of union ($+$) and concatenation (\cdot).
- We can omit parentheses that are superfluous due to the defined priority of operators (iteration (*) has the highest priority, concatenation (\cdot) has lower priority, and union ($+$) has the lowest priority).
- A dot denoting concatenation can be omitted.

Example: Instead of

\[((((((0 \cdot 1)^*) \cdot 1) \cdot (1 \cdot 1)) + (((0 \cdot 0) + 1)^*)))\]

we usually write

\[(01)^*111 + (00 + 1)^*\]
Examples: In all examples $\Sigma = \{0, 1\}$.

$0 \ldots$ the language containing the only word 0
Examples: In all examples $\Sigma = \{0, 1\}$.

- 0 ... the language containing the only word 0
- 01 ... the language containing the only word 01
Examples: In all examples $\Sigma = \{0, 1\}$.

- $0 \ldots$ the language containing the only word 0
- $01 \ldots$ the language containing the only word 01
- $0 + 1 \ldots$ the language containing two words 0 and 1
Regular Expressions

Examples: In all examples $\Sigma = \{0, 1\}$.

- $0 \ldots$ the language containing the only word 0
- $01 \ldots$ the language containing the only word 01
- $0 + 1 \ldots$ the language containing two words 0 and 1
- $0^* \ldots$ the language containing words ε, 0, 00, 000, \ldots
Examples: In all examples $\Sigma = \{0, 1\}$.

- $0 \ldots$ the language containing the only word 0
- $01 \ldots$ the language containing the only word 01
- $0 + 1 \ldots$ the language containing two words 0 and 1
- $0^* \ldots$ the language containing words $\varepsilon, 0, 00, 000, \ldots$
- $(01)^* \ldots$ the language containing words $\varepsilon, 01, 0101, 010101, \ldots$
Examples: In all examples $\Sigma = \{0, 1\}$.

\[
\begin{align*}
0 & \ldots \text{the language containing the only word } 0 \\
01 & \ldots \text{the language containing the only word } 01 \\
0 + 1 & \ldots \text{the language containing two words } 0 \text{ and } 1 \\
0^* & \ldots \text{the language containing words } \varepsilon, 0, 00, 000, \ldots \\
(01)^* & \ldots \text{the language containing words } \varepsilon, 01, 0101, 010101, \ldots \\
(0 + 1)^* & \ldots \text{the language containing all words over the alphabet } \{0, 1\}
\end{align*}
\]
Examples: In all examples $\Sigma = \{0, 1\}$.

- 0 ... the language containing the only word 0
- 01 ... the language containing the only word 01
- $0 + 1$... the language containing two words 0 and 1
- 0^* ... the language containing words $\varepsilon, 0, 00, 000, \ldots$
- $(01)^*$... the language containing words $\varepsilon, 01, 0101, 010101, \ldots$
- $(0 + 1)^*$... the language containing all words over the alphabet $\{0, 1\}$
- $(0 + 1)^*00$... the language containing all words ending with 00
Regular Expressions

Examples: In all examples $\Sigma = \{0, 1\}$.

0 \ldots the language containing the only word 0

01 \ldots the language containing the only word 01

0 + 1 \ldots the language containing two words 0 and 1

0* \ldots the language containing words ε, 0, 00, 000, \ldots

$(01)^*$ \ldots the language containing words ε, 01, 0101, 010101, \ldots

$(0 + 1)^*$ \ldots the language containing all words over the alphabet $\{0, 1\}$

$(0 + 1)^*00$ \ldots the language containing all words ending with 00

$(01)^*111(01)^*$ \ldots the language containing all words that contain a subword 111 preceded and followed by an arbitrary number of copies of the word 01
\[(0 + 1)^*00 + (01)^*111(01)^*\] … the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01
Regular Expressions

\[(0 + 1)^*00 + (01)^*111(01)^*\] \ldots the language containing all words that either end with 00 or contain a subwords 111 preceded and followed with some arbitrary number of words 01

\[(0 + 1)^*1(0 + 1)^*\] \ldots the language of all words that contain at least one occurrence of symbol 1
$(0 + 1)^*00 + (01)^*111(01)^*$... the language containing all words that either end with 00 or contain a subword 111 preceded and followed with some arbitrary number of words 01

$(0 + 1)^*1(0 + 1)^*$... the language of all words that contain at least one occurrence of symbol 1

$0^*(10^*10^*)^*$... the language containing all words with an even number of occurrences of symbol 1