
Examples of an Analysis of Complexity of

Algorithms

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 1 / 28



Complexity of Algorithms

Some typical values of the size of an input n, for which an algorithm with
the given time complexity usually computes the output on
a “common PC” within a fraction of a second or at most in seconds.

(Of course, this depends on particular details. Moreover, it is assumed
here that no big constants are hidden in the asymptotic notation)

O(n) O(n log n) O(n2) O(n3)
1 000 000 – 100 000 000 100 000 – 1 000 000 1000 – 10 000 100 – 1000

2
O(n)

O(n!)
20 – 30 10 – 15

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 2 / 28



Complexity of Algorithms

When we use asymptotic estimations of the complexity of algorithms, we
should be aware of some issues:

Asymptotic estimations describe only how the running time grows
with the growing size of input instance.

They do not say anything about exact running time. Some big
constants can be hidden in the asymptotic notation.

An algorithm with better asymptotic complexity than some other
algorithm can be in reality faster only for very big inputs.

We usually analyze the time complexity in the worst case. For some
algorithms, the running time in the worst case can be much higher
than the running time on “typical” instances.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 3 / 28



Complexity of Algorithms

This can be illustrated on algorithms for sorting.

Algorithm Worst-case Average-case

Bubblesort Θ(n2) Θ(n2)
Heapsort Θ(n log n) Θ(n log n)
Quicksort Θ(n2) Θ(n log n)

Quicksort has a worse asymptotic complexity in the worst case than
Heapsort and the same asymptotic complexity in an average case but
it is usually faster in practice.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 4 / 28



Complexity of Algorithms

Polynomial — an expression of the form

akn
k
+ ak−1n

k−1
+ ⋯ + a2n

2
+ a1n + a0

where a0, a1, . . . , ak are constants.

Examples of polynomials:

4n
3
− 2n

2
+ 8n + 13 2n + 1 n

100

Function f is called polynomial if it is bounded from above by some
polynomial, i.e., if there exists a constant k such that f ∈ O(nk).
For example, the functions belonging to the following classes are
polynomial:

O(n) O(n log n) O(n2) O(n5) O(√n) O(n100)
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 5 / 28



Complexity of Algorithms

Function such as 2
n
or n! are not polynomial — for arbitrarily big

constant k we have

2
n
∈ Ω(nk) n! ∈ Ω(nk)

Polynomial algorithm — an algorithm whose time complexity is
polynomial (i.e., bounded from above by some polynomial)

Roughly we can say that:

polynomial algorithms are effiecient algorithms that can be used in
practice for inputs of considerable size

algorithms, which are not polynomial, can be used in practice only for
rather small inputs

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 6 / 28



Complexity of Algorithms

The division of algorithms on polynomial and non-polynomial is very rough
— we cannot claim that polynomial algorithms are always efficient and
non-polynomial algorithms are not:

an algorithm with the time complexity Θ(n100) is probably not very
useful in practice,

some algorithms, which are non-polynomial, can still work very
efficiently for majority of inputs, and can have a time complexity
bigger than polynomial only due to some problematic inputs, on
which the computation takes long time.

Remark: Polynomial algorithms where the constant in the exponent is
some big number (e.g., algorithms with complexity Θ(n100)) almost never
occur in practice as solutions of usual algorithmic problems.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 7 / 28



Complexity of Algorithms

For most of common algorithmic problems, one of the following three
possibilities happens:

A polynomial algorithm with time complexity O(nk) is known, where
k is some very small number (e.g., 5 or more often 3 or less).

No polynomial algorithm is known and the best known algorithms

have complexities such as 2
Θ(n)

, Θ(n!), or some even bigger.

In some cases, a proof is known that there does not exist a polynomial
algorithm for the given problem (it cannot be constructed).

No algorithm solving the given problem is known (and it is possibly
proved that there does not exist such algorithm)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 8 / 28



Complexity of Algorithms

A typical example of polynomial algorithm — matrix multiplication with
time complexity Θ(n3) and space complexity Θ(n2):
Algorithm: Matrix multiplication

Matrix-Mult (A,B ,C , n):
for i ∶= 1 to n do

for j ∶= 1 to n do

x ∶= 0
for k ∶= 1 to n do

x ∶= x + A[i][k] ∗ B[k][j]
C[i][j] ∶= x

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 9 / 28



Complexity of Algorithms

For a rough estimation of complexity, it is often sufficient to count
the number of nested loops — this number then gives the degree of
the polynomial

Example: Three nested loops in the matrix multiplication — the
time complexity of the algorithm is O(n3).

If it is not the case that all the loops go from 0 to n but the number
of iterations of inner loops are different for different iterations of an
outer loops, a more precise analysis can be more complicated.

It is often the case, that the sum of some sequence (e.g., the sum of
arithmetic or geometric progression) is then computed in the analysis.

The results of such more detailed analysis often does not differ from
the results of a rough analysis but in many cases the time complexity
resulting from a more detailed analysis can be considerably smaller
than the time complexity following from the rough analysis.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 10 / 28



Arithmetic Progression

Arithmetic progression — a sequence of numbers a0, a1, . . . , an−1, where

ai = a0 + i ⋅ d ,

where d is some constant independent on i .

So in an arithmetic progression, we have ai+1 = ai + d for each i .

Example: The arithmetic progression where a0 = 1, d = 1, and n = 100:

1, 2, 3, 4, 5, 6, . . . , 96, 97, 98, 99, 100

The sum of an arithmetic progression:

n−1

∑
i=0

ai = a0 + a1 +⋯+ an−1 =
1

2
n (a0 + an−1)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 11 / 28



Arithmetic Progression

Example:

1 + 2 +⋯+ n =
1

2
n(n + 1) =

1

2
n
2
+

1

2
n = Θ(n2)

For example, for n = 100 we have

1 + 2 +⋯+ 100 = 50 ⋅ 101 = 5050.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 12 / 28



Arithmetic Progression

Proof: Let us denote

s =

n−1

∑
i=0

ai = a0 + a1 +⋯+ an−1

2s = s + s

= (a0 + a1 +⋯+ an−1) + (a0 + a1 +⋯+ an−1)
= (a0 + a1 +⋯+ an−1) + (an−1 + an−2 +⋯+ a0)
= (a0 + an−1) + (a1 + an−2) +⋯+ (an−1 + a0)
= ((a0 + 0⋅d) + (a0 + (n − 1)⋅d)) + ((a0 + 1⋅d) + (a0 + (n − 2)⋅d))+

⋯ + ((a0 + (n − 1)⋅d) + (a0 + 0⋅d))
= n ⋅ (a0 + a0 + (n − 1)⋅d)
= n ⋅ (a0 + an−1)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 13 / 28



Aritmetická posloupnost

Example: s = 1 + 2 + 3 +⋯+ 99 + 100

2s = s + s

= (1 + 2 +⋯+ 100) + (1 + 2 +⋯+ 100)
= (1 + 2 +⋯+ 100) + (100 + 99 +⋯+ 1)
= (1 + 100) + (2 + 99) + (3 + 98) +⋯+ (99 + 2) + (100 + 1)
= 100 ⋅ (1 + 100) = 10100

So

s =
1

2
⋅ 10100 = 5050

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 14 / 28



Geometric Progression

Geometric progression — a sequence of numbers a0, a1, . . . , an, where

ai = a0 ⋅ q
i
,

where q is some constant independent on i .

So in a geometric progression we have ai+1 = ai ⋅ q for each i .

Example: The geometric progression where a0 = 1, q = 2, and n = 14:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384

The sum of a geometic progression (where q ≠ 1):

n

∑
i=0

ai = a0 + a1 +⋯+ an = a0
q
n+1

− 1

q − 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 15 / 28



Geometric Progression

Example:

1 + q + q
2
+⋯+ q

n
=

q
n+1

− 1

q − 1

In particular, for q = 2:

1 + 2
1
+ 2

2
+ 2

3
+⋯+ 2

n
=

2
n+1

− 1

2 − 1
= 2 ⋅ 2

n
− 1 = Θ(2n)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 16 / 28



Geometric Progression

Proof: Let us denote

s =

n

∑
i=0

ai = a0 + a1 +⋯+ an

s = a0 ⋅ q
0
+ a0 ⋅ q

1
+⋯+ a0 ⋅ q

n

s ⋅ q = (a0 ⋅ q0 + a0 ⋅ q
1
+⋯+ a0 ⋅ q

n) ⋅ q
= a0 ⋅ q

1
+ a0 ⋅ q

2
+⋯+ a0 ⋅ q

n+1

s ⋅ q − s = a0 ⋅ q
n+1

− a0 ⋅ q
0

s ⋅ (q − 1) = a0 ⋅ (qn+1 − 1)

s = a0 ⋅
q
n+1

− 1

q − 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 17 / 28



Complexity of Algorithms

An exponential function: a function of the form c
n
, where c is a constant

— e.g., function 2
n

Logarithm — the inverse function to an exponential function: for
a given n,

logc n

is the value x such that c
x
= n.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 18 / 28



Complexity of Algorithms

n 2
n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536
17 131072
18 262144
19 524288
20 1048576

n ⌈log2 n⌉
0 —
1 0
2 1
3 2
4 2
5 3
6 3
7 3
8 3
9 4
10 4
11 4
12 4
13 4
14 4
15 4
16 4
17 5
18 5
19 5
20 5

n log2 n
1 0
2 1
4 2
8 3
16 4
32 5
64 6
128 7
256 8
512 9
1024 10
2048 11
4096 12
8192 13
16384 14
32768 15
65536 16
131072 17
262144 18
524288 19
1048576 20

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 19 / 28



Complexity of Algorithms

Examples where exponential functions and logarithms can appear in an
analysis of algorithms:

Some value is repeatedly decreased to one half or is repeatedly
doubled.

For example, in the binary search, the size of an interval halves in
every iteration of the loop.

Let us assume that an array has size n.

What is the minimal size of an array n, for which the algorithm
performs at least k iterations?

The answer: 2
k

So we have k = log2(n). The time complexity of the algorithm is
then Θ(log n).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 20 / 28



Complexity of Algorithms

Using n bits we can represent numbers from 0 to 2
n
− 1.

The minimal numbers of bits, which are sufficient for representing
a natural number x in binary is

⌈log2(x + 1)⌉.
A perfectly balanced tree of height h has 2

h+1
− 1 nodes, and 2

h
of

these nodes are leaves.

The height of a perfectly balanced binary tree with n nodes is log2 n.

An illustrating example: If we would draw a balanced tree
with n = 1 000 000 nodes in such a way that the distance between
neighbouring nodes would be 1 cm and the height of each layer of
nodes would be also 1 cm, the width of the tree would be 10 km and
its height would be approximately 20 cm.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 21 / 28



Complexity of Algorithms

A perfectly balanced binary tree of height h:

h

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 22 / 28



Complexity of Algorithms

A perfectly balanced binary tree of height h:

h

2
0

2
1

2
2

2
3

2
4

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 22 / 28



Complexity of Algorithms

An efficient way to store a complete binary tree in an array:

64

2

5 7

3

1

9 108 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 23 / 28



Complexity of Algorithms

An efficient way to store a complete binary tree in an array:

64

2

5 7

3

1

9 108 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Children of a node with index i have indexes 2i and 2i + 1.
The parent of a node with index i has index ⌊i/2⌋.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 23 / 28



Complexity of Algorithms

Heap — a complete binary tree stored in an array A in way described on
the previous slide, where moreover the following invariant holds for each
i = 1, 2, . . . , n:

if 2i ≤ n then A[i] ≤ A[2i]
if 2i + 1 ≤ n then A[i] ≤ A[2i + 1]

Examples of a usage of a heap:

sorting algorithm HeapSort

an efficient implementation of a priority queue — this allows to
perform most operations on this queue with time complexity
in O(log n) where n is the number of elements currently in the queue

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 24 / 28



Complexity of Algorithms

Algorithm: Construction of a heap from an unsorted array

Create-Heap (A, n):
i ∶= ⌊n/2⌋
while i ≥ 1 do

j ∶= i

x ∶= A[j]
while 2 ∗ j ≤ n do

k ∶= 2 ∗ j

if k + 1 ≤ n and A[k + 1] < A[k] then

k ∶= k + 1

if x ≤ A[k] then break

A[j] ∶= A[k]
j ∶= k

A[j] ∶= x

i ∶= i − 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 25 / 28



Complexity of Algorithms

Time complexity of Create-Heap:

By a quick and rough analysis, we can easily determine that this
complexity is in O(n log n) and in Ω(n):

The outer cycle is executed always ⌊n/2⌋ times — so the number of its
iterations is in Θ(n).
The number of iterations of the inner cycle (in one iteration of the
outer cycle) is obviously in O(log n).

It is much less obvious that the total number of iterations of the inner
cycle (i.e., over all iterations of the outer cycle) is in fact in O(n).

So together we obtain:

The time complexity of Create-Heap is in Θ(n).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 26 / 28



Complexity of Algorithms

Justification that the total number of iterations of the inner cycle is
in O(n):
Let us assume for simplicity that all branches of the tree are of the same
length and that their length is h — so we have n = 2

h+1
− 1.

Let Ci , where 0 ≤ i < h, be the total number of iterations of the inner
cycle where at the beginning of the cycle the node with index j is in i-th
layer of the tree (the layers are numbered top to bottom as 0, 1, 2, . . .).

It is obvious that the total number of iterations s is

s = Ch−1 + Ch−2 +⋯+ C0 =

h−1

∑
i=0

Ci

The value of Ci can be computed as the total number of nodes in the
layers 0, 1, . . . , i :

Ci = 2
0
+ 2

1
+⋯+ 2

i
=

i

∑
k=0

2
k

=
2
i+1

− 1

2 − 1
= 2

i+1
− 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 27 / 28



Complexity of Algorithms

The total sum then can be computed as follows:

s =

h−1

∑
i=0

Ci =

h−1

∑
i=0

(2i+1 − 1) = 2 ⋅ (
h−1

∑
i=0

2
i) − (

h−1

∑
i=0

1)

= 2 ⋅
2
h
− 1

2 − 1
− h = 2

h+1
− 2 − h = n − 1 − h = O(n)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 13, 2025 28 / 28


	Examples of an Analysis of Complexity of Algorithms

