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Algorithmically Solvable Problems

Let us assume we have a problem P .

If there is an algorithm solving the problem P then we say that the
problem P is algorithmically solvable.

If P is a decision problem and there is an algorithm solving the problem P

then we say that the problem P is decidable (by an algorithm).

If we want to show that a problem P is algorithmically solvable, it is
sufficient to show some algorithm solving it (and possibly show that the
algorithm really solves the problem P).
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Algorithmically Unsolvable Problems

A problem that is not algorithmically solvable is algorithmically
unsolvable.

A decision problem that is not decidable is undecidable.

Surprisingly, there are many (exactly defined) problems, for which it was
proved that they are not algorithmically solvable.
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Halting Problem

Let us consider some general programming language L.

Futhermore, let us assume that programs in language L run on some
idealized machine where a (potentially) unbounded amount of memory is
available — i.e., the allocation of memory never fails.

Example: The following problem called the Halting problem is
undecidable:

Halting problem

Input: A source code of a L program P , input data x .

Question: Does the computation of P on the input x halt after some
finite number of steps?
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Halting Problem

Let us assume that there is a program that can decide the Halting problem.

So we could construct a subroutine H, declared as

Bool H(String code, String input)

where H(P , x) returns:

true if the program P halts on the input x ,

false if the program P does not halt on the input x .

Remark: Let us say that subroutine H(P , x) returns false if P is not
a syntactically correct program.
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Halting Problem

Using the subroutine H we can construct a program D that performs the
following steps:

It reads its input into a variable x of type String.

It calls the subroutine H(x , x).

If subroutine H returns true, program D jumps into an infinite loop

loop: goto loop

In case that H returns false, program D halts.

What does the program D do if it gets its own code as an input?
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Halting Problem

If D gets its own code as an input, it either halts or not.

If D halts then H(D,D) returns true and D jumps into the infinite
loop. A contradiction!

If D does not halt then H(D,D) returns false and D halts.
A contradiction!

In both case we obtain a contradiction and there is no other possibility. So
the assumption that H solves the Halting problem must be wrong.
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Semidecidable Problems

A problem is semidecidable if there is an algorithm such that:

If it gets as an input an instance for which the answer is Yes, then it
halts after some finite number of steps and writes "YES" on the
output.

If it gets as an input an instance for which the answer is No, then it
either halts and writes "NO" on the input, or does not halt and runs
forever.

It is obvious that for example HP (Halting Problem) is semidecidable.

Some problems are not even semidecidable.
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Post’s Theorem

The complement problem for a given decision problem P is a problem
where inputs are the same as for the problem P and the question is
negation of the question from the problem P .

Post’s Theorem

If a problem P and its complement problem are semidecidable then the
problem P is decidable.
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Reduction between Problems

If we have already proved a (decision) problem to be undecidable, we can
prove undecidability of other problems by reductions.

Problem P1 can be reduced to problem P2 if there is an algorithm Alg

such that:

It can get an arbitrary instance of problem P1 as an input.

For an instance of a problem P1 obtained as an input (let us denote it
as w) it produces an instance of a problem P2 as an output.

It holds i.e., the answer for the input w of problem P1 is Yes iff the
answer for the input Alg(w) of problem P2 is Yes.
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Reductions between Problems

Inputs of problem P1 Inputs of problem P2

Yes
Yes

No

No
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Reductions between Problems

Let us say there is some reduction Alg from problem P1 to problem P2.

If problem P2 is decidable then problem P1 is also decidable.

Solution of problem P1 for an input x :

Call Alg with x as an input, it returns a value Alg(x).

Call the algorithm solving problem P2 with input Alg(x).

Write the returned value to the output as the result.

It is obvious that if P1 is undecidable then P2 cannot be decidable.
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Other Undecidable Problems

By reductions from the Halting problem we can show undecidability of
many other problems dealing with a behaviour of programs:

Is for some input the output of a given program Yes?

Does a given program halt for an arbitrary input?

Do two given programs produce the same outputs for the same
inputs?

. . .
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Halting Problem

For purposes of proofs, the following version of Halting problem is often
used:

Halting problem

Input: A description of a Turing machine M and a word w .

Question: Does the computation of the machine M on the word w

halt after some finite number of steps?
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Other Undecidable Problems

We have already seen the following example of an undecidable problem:

Problem

Input: Context-free grammars G1 and G2.

Question: Is L(G1) = L(G2)?

respectively

Problem

Input: A context-free grammar generating a language over an
alphabet Σ.

Question: Is L(G) = Σ
∗
?
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Other Undecidable Problems

An input is a set of types of cards, such as:

a

aa

abb

bbab

bab

ab

baba

aa

aba

a

The question is whether it is possible to construct from the given types of
cards a non-empty finite sequence such that the concatenations of the
words in the upper row and in the lower row are the same. Every type of a
card can be used repeatedly.

a

aa

abb

bbab

abb

bbab

baba

aa

abb

bbab

aba

a

In the upper and in the lower row we obtained the word
aabbabbbabaabbaba.
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Other Undecidable Problems

Undecidability of several other problems dealing with context-free
grammars can be proved by reductions from the previous problem:

Problem

Input: Context-free grammars G1 and G2.

Question: Is L(G1) ∩ L(G2) = ∅?

Problem

Input: A context-free grammar G.

Question: Is G ambiguous?
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Other Undecidable Problems

An input is a set of types of tiles, such as:

The question is whether it is possible to cover every finite area of an
arbitrary size using the given types of tiles in such a way that the colors of
neighboring tiles agree.

Remark: We can assume that we have an infinite number of tiles of all
types.

The tiles cannot be rotated.
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Other Undecidable Problems
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Other Undecidable Problems

Problem

Input: A closed formula of the first order predicate logic where the
only predicate symbols are = and <, the only function
symbols are + and ∗, and the only constant symbols are 0
and 1.

Question: Is the given formula true in the domain of natural numbers
(using the natural interpretation of all function and predicate
symbols)?

An example of an input:

∀x∃y∀z((x ∗ y = z) ∧ (y + 1 = x))

Remark: There is a close connection with Gödel’s incompleteness
theorem.
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Other Undecidable Problems

It is interesting that an analogous problem, where real numbers are
considered instead of natural numbers, is decidable (but the algorithm for
it and the proof of its correctness are quite nontrivial).

Also when we consider natural numbers or integers and the same formulas
as in the previous case but with the restriction that it is not allowed to use
the multiplication function symbol ∗, the problem is algorithmically
decidable.
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Other Undecidable Problems

If the function symbol ∗ can be used then even the very restricted case is
undecidable:

Hilbert’s tenth problem

Input: A polynomial f (x1, x2, . . . , xn) constructed from variables
x1, x2, . . . , xn and integer constants.

Question: Are there some natural numbers x1, x2, . . . , xn such that
f (x1, x2, . . . , xn) = 0 ?

An example of an input: 5x
2
y − 8yz + 3z

2
− 15

I.e., the question is whether

∃x∃y∃z(5 ∗ x ∗ x ∗ y + (−8) ∗ y ∗ z + 3 ∗ z ∗ z + (−15) = 0)

holds in the domain of natural numbers.
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Other Undecidable Problems

Also the following problem is algorithmically undecidable:

Problem

Input: A closed formula ϕ of the first-order predicate logic.

Question: Is ⊧ ϕ ?

Remark: Notation ⊧ ϕ denotes that formula ϕ is logically valid, i.e., it is
true in all interpretations.
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Complexity Classes
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Complexity of Problems

It seems that different (algorithmic) problems are of different
difficulty.

More difficult are those problems that require more time and space to
be solved.

We would like to analyze somehow the difficultness of problems

absolutely – how much time and space do we need for their solution,

relatively – by how much is their solution harder or simpler with respect
to other problems.

Why do we not succeed in finding efficient algorithms for some
problems?
Can there exist an efficient algorithm for a given problem?

What are practical boundaries of what can be achieved?
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Complexity of Problems

It is necessary to distinguish between a complexity of an algorithm and
a complexity of a problem.

If we for exaple study the time complexity in the worst case, informally we
could say:

complexity of an algorithm — a function expressing maximal
running time of the given algorithm on inputs of size n

complexity of a problem — what is the time complexity of the
“most efficient” algorithm for the given problem

A formal definition of a notion “complexity of a problem” in the above
sense leads to some technical difficulties. So the notion “complexity of a
problem” is not defined as such but it is bypassed by a definition of
complexity classes.
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Complexity Classes

Complexity classes are subsets of the set of all (algorithmic) problems.

A certain particular complexity class is always characterized by a property
that is shared by all the problems belonging to the class.

A typical example of such a property is a property that for the given
problem there exists some algorithm with some restrictions (e.g., on its
time or space complexity):

Only a problem for which such algorithm exists belongs to the given
class.

A problem for which such algorithm does not exist does not belong to
the class.

Remark: In the following discussion, we will concentrate almost
exclusively on classes of decision problems.
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Complexity Classes

Definition

For every function f ∶ N → N we define T (f (n)) as the class containing
exactly those decision problems for which there exists an algorithm with
time complexity O(f (n)).

Example:

T (n) – the class of all decision problems for which there exists an
algorithm with time complexity O(n)

T (n2) – the class of all decision problems for which there exists an
algorithm with time complexity O(n2)

T (n log n) – the class of all decision problems for which there exists
an algorithm with time complexity O(n log n)
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Complexity Classes

Definition

For every function f ∶ N → N we define S(f (n)) as the class containing
exactly those decision problems for which there exists an algorithm with
space complexity O(f (n)).

Example:

S(n) – the class of all decision problems for which there exists an
algorithm with space complexity O(n)

S(n2) – the class of all decision problems for which there exists an
algorithm with space complexity O(n2)

S(n log n) – the class of all decision problems for which there exists
an algorithm with space complexity O(n log n)
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Complexity Classes

Remark:

Note that for classed T (f ) and S(f ) it depends which problems belong to
the class on the used computational model (if it is a RAM, a one-tape
Turing machine, a multitape Turing machine, . . . ).
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Complexity Classes

Using classes T (f (n)) and S(f (n)) we can define classes PTIME and
PSPACE as

PTIME = ⋃
k≥0

T (n
k
) PSPACE = ⋃

k≥0

S(n
k
)

PTIME is the class of all decision problems for which there exists an
algorithm with polynomial time complexity, i.e., with time complexity
O(nk) where k is a constant.

PSPACE is the class of all decision problems for which there exists an
algorithm with polynomial space complexity, i.e., with space
complexity O(nk) where k is a constant.
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Complexity Classes

Remark: Since all (reasonable) computational models are able to simulate
each other in such a way that in this simulation the number of steps does
not increase more than polynomially, the definitions of classes PTIME and
PSPACE are not dependent on the used computational model.
For their definition we can use any computational model.

We say that these classes are robust – their definitions do not depend on
the used computational model.
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Complexity Classes

Other classes are introduced analogously:

EXPTIME – the set of all decision problems for which there exists an

algorithm with time complexity 2
O(nk)

where k is a constant

EXPSPACE – the set of all decision problems for which there exists an

algorithm with space complexity 2
O(nk)

where k is a constant

LOGSPACE – the set of all decision problems for which there exists an
algorithm with space complexity O(log n)

Remark: Instead of 2
O(nk)

we can also write O(cn
k

) where c and k are
constants.
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Complexity Classes

For definition of LOGSPACE class we specify more exacly what we
consider as a space complexity of an algorithm.

For example, let us consider a Turing machine with three tapes:

An input tape on which the input is written at the beginning.

A working tape which is empty at the start of the computation. It is
possible to read from this tape and to write on it.

An output tape which is also empty at the start of the computation.
It is only possible to write on it.

The amount of used space is then defined as the number of cells used on
the working tape.
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Complexity Classes

Other examples of complexity classes:

2-EXPTIME – the set of all problems for which there exists an algorithm

with time complexity 2
2
O(nk )

where k is a constant

2-EXPSPACE – the set of all problems for which there exists an algorithm

with space complexity 2
2
O(nk )

where k is a constant

ELEMENTARY – the set of all problems for which there exists an
algorithm with time (or space) complexity

2
2
2
⋅
⋅
⋅
2
2
O(nk )

where k is a constant and the number of exponents is
bounded by a constant.
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Relationships between Complexity Classes

If a Turing machine performs m steps then it visits at most m cells on the
tape.

This means that if there exists an algorithm for some problem with time
complexity O(f (n)), the space complexity of this algorithm is (at
most) O(f (n)).

So it is obvious that the following relationship holds.

Observation

For every function f ∶ N → N is T (f (n)) ⊆ S(f (n)).

Remark: We can analogously reason in the case of a RAM.
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Relationships between Complexity Classes

Based on the previous, we see that:

PTIME ⊆ PSPACE

EXPTIME ⊆ EXPSPACE

2-EXPTIME ⊆ 2-EXPSPACE

⋮

Since polynomial functions grow more slowly than exponential and
logarithmic more slowly than polynomial, we obviously have:

PTIME ⊆ EXPTIME ⊆ 2-EXPTIME ⊆ ⋯

LOGSPACE ⊆ PSPACE ⊆ EXPSPACE ⊆ 2-EXPSPACE ⊆ ⋯
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Relationships between Complexity Classes

For every pair of real numbers ǫ1 a ǫ2 taková, že 0 ≤ ǫ1 < ǫ2, is

S(n
ǫ1) ⊊ S(n

ǫ2)

LOGSPACE ⊊ PSPACE

PSPACE ⊊ EXPSPACE

For every pair of real numbers ǫ1 a ǫ2 taková, že 0 ≤ ǫ1 < ǫ2, is

T (n
ǫ1) ⊊ T (n

ǫ2)

PTIME ⊊ EXPTIME

EXPTIME ⊊ 2-EXPTIME
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Relationships between Complexity Classes

For analyzing relationships between complexity classes it is useful to
consider configurations.

A configuration is a global state of a machine during one step of a
computation.

For a Turing machine, a configuration is given by the state of its
control unit, the content of the tape (resp. tapes), and the position of
the head (resp. heads).

For a RAM, a configuration is given by the content of the memory, by
the content of all registers (including IP), by the content of the input
and output tapes, and by positions of their heads.
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Relationships between Complexity Classes

It should be clear that configurations (or rather their descriptions) can be
written as words over some alphabet.

Moreover, we can write configurations in such a way that the length of the
corresponding words will be approximately the same as the amount of
memory used by the algorithm (i.e., the number of cells on the tape used
by a Turing machine, the number of number of bits of memory used by
a RAM, etc.).

Remark: If we have an alphabet Σ where ∣Σ∣ = c then:

The number of words of length n is c
n
, i.e., 2

Θ(n)
.

The number of words of length at most n is

n

∑
i=0

c
n
=

c
n+1

− 1

c − 1

i.e., also 2
Θ(n)

.
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Relationships between Complexity Classes

It is clear that during a computation of an algorithm there is no
configuration repeated, since otherwise the computation would loop.

Therefore, if we know that the space complexity of an algorithm is
O(f (n)), it means that the number of different configurations that are

reachable during a computation is 2
O(f (n))

.

Since configurations do not repeat during a computation, also the time

complexity of the algorithm is at most 2
O(f (n))

.

Observation

For every function f ∶ N → N it holds that pokud je nějaký problém P

řešený algoritmem s prostorovou složitost́ı O(f (n)), pak časová složitost

tohoto algoritmu je v 2
O(f (n))

.

Pokud je tedy problém P ve ťŕıdě S(f (n)), pak je i ve ťŕıdě T (2c⋅f (n)) pro
nějaké c > 0.
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Relationships between Complexity Classes

The following results can be drawn from the previous discussion:

LOGSPACE ⊆ PTIME

PSPACE ⊆ EXPTIME

EXPSPACE ⊆ 2-EXPTIME

⋮
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Relationships between Complexity Classes

Summary:

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆

⊆ 2-EXPTIME ⊆ 2-EXPSPACE ⊆ ⋯ ⊆ ELEMENTARY

PTIME ⊊ EXPTIME ⊊ 2-EXPTIME ⊊ ⋯

LOGSPACE ⊊ PSPACE ⊊ EXPSPACE ⊊ 2-EXPSPACE,⊊ ⋯
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Upper and Lower Bounds on Complexity of Problems

An upper bound on a complexity of a problem means that the complexity
of the problem is not greater than some specified complexity.

Usually it is formulated so that the problem belongs to a particular
complexity class.

Examples of propositions dealing with upper bounds on the complexity:

The problem of reachability in a graph is in PTIME.

The problem of equivalence of two regular expressions is
in EXPSPACE.

If we want to find some upper bound on the complexity of a problem it is
sufficient to show that there is an algorithm with a given complexity.
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Upper and Lower Bounds on Complexity of Problems

A lower bound on a complexity of a problem means that the complexity
of the problem is at least as big as some specified complexity.

In general, proving of (nontrivial) lower bounds is more difficult than
proving of upper bounds.

To derive a lower bound we must prove that every algorithm solving the
given problem has the given complexity.
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Upper and Lower Bounds on Complexity of Problems

Problem “Sorting”

Input: Sequence of elements a1, a2, . . . , an.

Output: Elements a1, a2, . . . , an sorted from the smallest to the
greatest.

It can be proven that every algorithm, that solves the problem “Sorting”
and that has the property that the only operation applied on elements of a
sorted sequence is a comparison (i.e., it does not examine the content of
these elements), has the time complexity in the worst case Ω(n log n)
(i.e., for every such algorithm there exist constants c > 0 and n ≥ n0 such
that for every n ≥ n0 there is an input of size n, for which the algorithm
performs at least cn log n operations.)
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Nodeterministic Algorithms and

Complexity Classes
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Nondeterminism

Nondeterministic RAM:

Its definition is very similar to that of a deterministic RAM.

Moreover, it has an instruction

nd goto ℓ1, ℓ2

that allows it to choose the next instruction from two possibilities.

If at least one of computations of such a machine on a given input
ends with the answer Yes, then the answer is Yes.

If all computations end with the answer No then the answer is No.

Nondeterministic versions of other computational models (such as
nondeterministic Turing machines) are defined similarly.
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Nondeterminism

YESYESYES

NO

NONO

NO NONONONONO

The time required for a computation of a nondeterministic RAM (or
other nondeterministic machine) on a given input is defined as the
length of the longest computation on the input.
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Nondeterminism
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Nondeterminism

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k .

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

k = 3
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Nondeterminism

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k .

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

A nondeterministic algorithm works as follows:

1 It assignes nondeterministically to every node of G one of k colors.

2 It goes through all edges of G and for each of them verifies that its
endpoints are colored with different colors. If this is not the case, it
halts with the answer No.

3 If it has verified for all edges that their endpoints are colored with
different colors, it halts with the answer Yes.
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Nondeterminism

Problem “Graph isomorphism”

Input: Undirected graphs G1 = (V1,E1) and G2 = (V2,E2).

Question: Are graphs G1 and G2 isomorphic?

Remark: Graphs G1 and G2 are isomorphic if there exists some bijection
f ∶ V1 → V2 such that for every pair of nodes u, v ∈ V1 is (u, v) ∈ E1 iff
(f (u), f (v)) ∈ E2.

A nondeterministic algorithm works as follows:

1 It nondeterministically chooses values of the function f for every
v ∈ V1.

2 It (deterministically) verifies that f is a bijection and that the above
mentioned condition is satisfied for all pairs of nodes.

3 If some of the conditions is violated, it halts with the answer No.
Otherwise it halts with the answer Yes.
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Nondeterminism

For decidability of problems, the nondeterministic algorithms are not
more powerful than deterministic ones:
If a problem can be solved by a nondeterministic RAM or TM, it can
be also solved by a deterministic RAM or TM that successively tries
all possible computations of the nondeterministic machine on a given
input.

Nondeterminism is useful primarily in the study of a complexity of
problems.
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Nondeterminism

In the straightforward simulation of a nondeterministic algorithm by
a deterministic, described above, where the deterministic algorithm
systematically tries all possible computations, the time complexity of
the deterministic algorithm is exponentially bigger than in the
nondeterministic algorithm.

For many problems, it is clear that there exists a nondeterministic
algorithm with a polynomial time complexity solving the given
problem but it is not clear at all whether there also exists
a deterministic algorithm solving the same problem with a polynomial
time complexity.
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Nondeterminism

Nondeterminism can be viewed in two different ways:

1 When a machine should nondeterministically choose between several
possibilities, it “guesses” which of these possibilities will lead to the
answer Yes (if there is such a possibility).

2 When a machine should choose between several possibilities, it splits
itself into several copies, each corresponding to one of the
possibilities. These copies continue in the computation in parallel.

The answer is Yes iff at least one of these copies halts with the
answer Yes.

None of these possibilities is something that could be efficiently
realistically implemented.
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Nondeterminism

Other possible view of the nondeterminism:

A kind of an algorithm that does not solve the given problem but
using an additional information — called witness — can verify that
the answer for the given instance is Yes.

Let us assume that in the original problem the input is some x from
the set of instances In and the question is whether this x has some
specified property P .

For the given input x , there is a corresponding set W (x) of potential
witnesses with the property that x has the property P iff there exists
an actual witness y ∈ W (w) of the fact that x really has property P .

There is a deterministic algorithm Alg that expects as input
a pair (x , y) (where y ∈ W (x)) and that checks that y is a witness
of the fact that x has property P .
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Nondeterminism

Example: The problem “Graph Colouring with k colours”:

Input: An undirected graph G = (V ,E) and number k .

Potential witnesses: All possible colourings of nodes of graph G with
k colours, i.e., all functions c of the form c ∶ V → {1, . . . , k}.

Actual witnesses: Those colourings c where for each edge (u, v) ∈ E

holds that c(u) ≠ c(v).
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Nondeterminism

For each deterministic algorithm Alg that can verify for a given pair
(x , y) that y is a witness of the fact that x has property P , we can
easily construct a corresponding nondeterministic algorithm that
solves the original problem:

For a given x ∈ In it generates nondeterministically a potential
witness y ∈ W (x).

Then it uses the (deterministic) algorithm Alg as a subroutine to check
that y is an actual witness.
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Nondeterminism

On the contrary, for every nondeterministic algorithm, we can also
easily construct a deterministic algorithm for checking witnesses:

A potential witness will be a sequence specifying for each
nondeterministic step of the original algorithm, which possibility should
be chosen in the given step.

The deterministic algorithm then simulates one particular computation
(one branch of the tree) of the original algorithm where in those steps
where several choices are possible, it does not guess but continues
according to the sequence given as a witness.
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Nondeterminism

We will concentrate particularly to those cases where the time complexity
of the algorithm for checking a witness is polynomial with respect to the
size of input x .

This also means that a given witness y , witnessing that the answer for x
is Yes, must be of a polynomial size.

So by a nondeterministic algorithm with a polynomial time complexity we
can solve those decision problems where:

for a given input x there exists a corresponding (polynomially big)
witness iff the answer for x is Yes,

it is possible to check using a deterministic algorithm in polynomial
time that a given potential witness is really a witness.
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Nondeterminism

In many cases, the existence of such polynomially big witnesses and
deterministic algorithms checking them is obvious and it is trivial to show
that they exist — e.g., for problems like “Graph Colouring
with k Colours”, “Graph Isomorphism”, or the following problem:

Testing that a number is composite

Input: A natural number x .

Question: Is the number x composite?

Remark: Number x is composite if there exist natural numbers a and b

such that a > 1, b > 1, and x = a ⋅ b.

For example, number 15 is composite because 15 = 3 ⋅ 5.

So the number x ∈ N is composite iff x > 1 and x is not a prime.

Existence of such polynomially big witnesses of course does not
automatically mean that it is easy to find them.
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Nondeterminism

For some problems, a proof of existence of such polynomially bounded
witnesses, which can be checked deterministically in a polynomial time,
rather nontrivial result.

An example can be the following problem:

Primality Testing

Input: A natural number x .

Question: Is number x a prime?

Using some nontrivial results from number theory, there can be shown
existence of such witnesses even for this problem — those witnesses here
are rather complicated recursively defined data structures.

Remark: This result was shown by V. Pratt in 1975.

Much later it was shown that “Primality Testing” is in PTIME
(Agrawal–Kayal–Saxena, 2002).
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Nondeterministic Complexity Classes

Definition

For a function f ∶ N → N we define the time complexity class NT (f ) as
the set of all problems that are solved by nondeterministic RAMs with
a time complexity in O(f (n)).

Definition

For a function f ∶ N → N we define the space complexity class NS(f )
as the set of all problems that are solved by nondeterministic RAMs with
a space complexity in O(f (n)).

Remark: Of course, the definitions given above can also use Turing
machines or some other model of computation instead of RAMs.
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Class NPTIME

Definition

NPTIME =

∞

⋃
k=0

NT (n
k
)

NPTIME (sometimes we write just NP) is the class of all problems,
for which there exists a nondeterministic algorithm with polynomial
time complexity.

The class NPTIME contains those problems for which it is possible to
verify in polynomial time that the answer is Yes if somebody, who
wants to convince us that this is really the case, provides additional
information.
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Classes NPSPACE, NEXPTIME, NEXPSPACE, . . .

Other classes can be defined similarly:

NPSPACE – množina všech rozhodovaćıch problémů, pro které existuje
nedeterministický algoritmus s polynomiáńı prostorovou
složitost́ı

NEXPTIME – the set of all decision problems for which there exists an

algorithm with time complexity 2
O(nk)

where k is a constant

NEXPSPACE – the set of all decision problems for which there exists an

algorithm with space complexity 2
O(nk)

where k is a constant

NLOGSPACE – the set of all decision problems for which there exists an
algorithm with space complexity O(log n)
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Relationships between Complexity Classes

It is clear that deterministic algorithms can be viewed as a special case of
nondeterministic algorithms.

Therefore it obviously holds that:

LOGSPACE ⊆ NLOGSPACE

PTIME ⊆ NPTIME

PSPACE ⊆ NPSPACE

EXPTIME ⊆ NEXPTIME

EXPSPACE ⊆ NEXPSPACE

⋮
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Relationships between Complexity Classes

It is also obvious that for both deterministic and nondeterministic
algorithms, an algorithm can not use considerably bigger number of
memory cells than what is the number of steps executed by the algorithm.

A space complexity of an algorithm is therefore always at most as big as
its time complexity.

From this follows that:

PTIME ⊆ PSPACE

NPTIME ⊆ NPSPACE

EXPTIME ⊆ EXPSPACE

NEXPTIME ⊆ NEXPSPACE

⋮
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Relationships between Complexity Classes

Consider a nondeterministic algorithm with time complexity O(f (n)).

A deterministic algorithm that will simulate its behaviour by
systematically trying all its possible computations (by going through the
tree of these computations in a depth-first manner) will need only the
following memory:

a memory to store a current configuration of the simulated machine
— its size is O(f (n)) (since if this simulated machine performs at
most O(f (n)) steps then its configurations will use at most O(f (n))
memory cells)

a memory to store a stack that will be used to allow returning to
previous configurations
— to allow to go back to a previous configuration α from a following
configuration α

′
, it is sufficient to store a constant amount of

information — only those things that were changed in the transition
from α to α

′
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Relationships between Complexity Classes

Since the length of branches is O(f (n)), the amount of memory
needed for the stack is O(f (n)).

So in total, the deterministic algorithm uses in this simulation an
amount of memory, which is at most O(f (n)).

It follows from this that:

NPTIME ⊆ PSPACE

NEXPTIME ⊆ EXPSPACE

⋮
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Relationships between Complexity Classes

Consider a nondeterministic algorithm with a space complexity O(f (n)):

Let us recall that the total number of configurations of size at

most O(f (n)) is O(c f (n)), where c is a constant, so this can be

written as 2
O(f (n))

.

So the number of steps of the nondeterministic algorithm in one

branch of computation could be at most 2
O(f (n))

.

(Remark: No configuration can be repeated during a computation
since otherwise computations could be infinite.)

So the simulation done this way would have time complexity 2
2
O(f (n))

.
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Relationships between Complexity Classes

In a simulation we can proceed in a more clever way — consider a directed
graph where:

nodes — all configurations of the simulated machine whose size is at
most O(f (n))

— the number of such configurations is 2
O(f (n))

edges — there is an edge between nodes representing configurations
α and α

′
iff the simulated machine can go in one step from

configuration α to configuration α
′

— the number of edges going out from each node is bounded from

above by some constant — so the number of edges is also 2
O(f (n))

It is sufficient to be able to find out whether there is a path in this graph
from the node corresponding to the initial configuration (for the given
input x) to some node corresponding to a final configuration where the
machine gives answer Yes.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 22, 2025 70 / 77



Relationships between Complexity Classes

Existence of such a path can be tested using an arbitrary algorithm for
searching a graph — breadth-first search, depth-first search, . . . :

This algorithm needs to store and mark, which configurations have
been already visited.
It also needs a memory to store a queue or a stack, etc.

The time and space complexity of such algorithm is linear with

respect to the size of the graph, i.e., 2
O(f (n))

.
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Relationships between Complexity Classes

So we obtain the following:

The behaviour of a nondeterministic algorithm whose space complexity
is O(f (n))can be simulated by a deterministic algorithm with time

complexity 2
O(f (n))

.

It follows from this that:

NLOGSPACE ⊆ PTIME

NPSPACE ⊆ EXPTIME

NEXPSPACE ⊆ 2-EXPTIME

⋮
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Relationships between Complexity Classes

Consider once again a nondeterministic algorithm with space
complexity O(f (n)). Now we would like to have the space complexity of
the simulating deterministic algorithm as small as possible.

Theorem (Savitch, 1970)

The behaviour of a nondeterministic algorithm with space complexity
O(f (n)) can be simulated by a deterministic algorithm with space
complexity O(f (n)2).

Proof idea:

Consider once again the graph of configurations with 2
O(f (n))

nodes
(and edges).

The algorithm will try to find out whether there exists a path from
the initial configuration to some accepting configuration.
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Relationships between Complexity Classes

The most important part is a recursive function F (α, α′
, i) that for

arbitrary configurations α and α
′
and number i ∈ N finds out whether the

given graph contains a path from α to α
′
of length at most 2

i
:

For i = 0 it finds out whether there is a path from α to α
′
of length

at most 1:

it is either a path of length 0, i.e., α = α
′
,

or it is a path of length 1, i.e., it is possible to go from α to α
′
in one

step

For i > 0, it will systematically try all configurations α
′′
and check

whether:

there is a path of length at most 2
i/2 from α to α

′′

— it calls F (α, α′′
, i − 1) recursively

there is a path of length at most 2
i/2 from α

′′
to α

′

— it calls F (α′′
, α

′
, i − 1) recursively

If both returns True, it returns True, otherwise it continues with
trying the next α

′′
.
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Relationships between Complexity Classes

The analysis of the space complexity of the algorithm:

in one recursive call of the function F , the algorithm needs to store:

three configurations α, α
′
, α

′′
— all of them of size O(f (n))

the value of the number i , which is approximately O(f (n)) — so to
store this number, O(log F (n)) bits are sufficient

other auxiliary variables whose sizes are negligible compared to the
sizes of the values described above

So the amount of memory needed for one recursive call is O(f (n)).

The depth of the recursion is also O(f (n)).

So the total space complexity of the algorithm is O(f (n)2).
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Relationships between Complexity Classes

It follows from this theorem that:

NPSPACE ⊆ PSPACE

NEXPSPACE ⊆ EXPSPACE

⋮

Together with the trivial facts that PSPACE ⊆ NPSPACE,
EXPSPACE ⊆ NEXPSPACE, . . . this implies:

PSPACE = NPSPACE

EXPSPACE = NEXPSPACE

⋮

Remark: Note that it does not follow from this that
LOGSPACE = NLOGSPACE.
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Relationships between Complexity Classes

Putting all this together, we obtain the following hierarchy of complexity
classes:

LOGSPACE ⊆ NLOGSPACE ⊆

⊆ PTIME ⊆ NPTIME ⊆ PSPACE = NPSPACE ⊆

⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE = NEXPSPACE ⊆

⋮
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