
New text on deep neural networks for Image Analysis I
h  ttp://mrl.cs.vsb.cz//people/sojka/cnns.pdf  

• It should give an idea what is happening in the area.
• Do do take it too much seriously, just try to get into the spirit.
• We have another course (Image Analysis II) that is fully focused into this area.
• The text is still under the development (i.e. unfinished at this moment).

Thanks for understanding and tolerance.

eduard

http://mrl.cs.vsb.cz//people/sojka/cnns.pdf
http://mrl.cs.vsb.cz//people/sojka/cnns.pdf


What can we do? “Hand-crafted“ recognition.

• Segmentation (similarity in color or brightness or texture, finding boundaries)
• Computing features (describing shape, color, brighness, texture)
• Classification

However,  neither  segmentation  nor  computing  features  are  genarally  easy.
(segmention: consider a picture from a street, shopping centre etc.; features: consider
the  situation  in  which  you  are  to  recornise  many  types  (classes)  of  objects).  If
segmentaion and the features are OK, the classification itself is not so complicated.
(„Only“ to find and separate the clusters in the space of features.)

What we can +- expect today (YOLO v8 was used in the folowing examples):





How we will continue in this course

• Efficient methods before the boom of DNNs/CNNs (and also inspiring for  
DNNs/CNNs development): Dalal and Triggs (2005): Histograms of Oriented 
Gradients for Human Detection (HoG + SVM).

• CNNs/DNNs + sliding window, from LeNet (1998) to AlexNet(2012), …, and 
to ResNet (2015).

• R-CNN (2014), Fast R-CNN (2015), Faster-CNN (2015): The sliding window 
is replaced by automated proposals of windows potentially containing the 
objects (region proposal). The number of regions that are proposed is high (e.g.
2k); the proposals are often incorrect, the correctness is verified in the next 
step, which is classification. Together with classification, the position of object 
region may be recomputed with the goal to make it more precise.

• YOLO (You Only Look Once) V1 (2015) , … , YOLO v9 (2024): One network
is responsible for everything (region proposal, classification, determining more
precise region).

• Another interesting networks  (e.g. with time): recurrent networks, LSTM, 
SelfAttention, …



I. Efficient and inspiring methods preceding the DNNs/CNNs era: Dalal
and  Triggs  (2005):  Histograms  of  Oriented  Gradients  for  Human  Detection  (sliding
window+HoG+SVM).

How  to  avoid  segmentation:  Instead  of  determining  the  pixels
creating the object, only the window in which the object is possibly
present is used. The features are computed from the whole area of
this window. Sufficiently big training set will help the classifier to
decide which features (from the whole window area) are important
for recognising the object in window. The process of segmentation is
thus replaced by using so called sliding window. Sliding window
moves  along  the  whole  area  of  image  by  small  steps.  At  each
position,  it  is  checked  whether  or  no  the  object  that  is  to  be
recognised is present at that position. 

Sliding Window principle

Say that we have a method that can recognise the human providing that the human
fits into the yellow sliding window. Sliding window moves along the whole area of
image by small steps. At each position, it is checked whether or no the object that is
to  be  recognised  is  present  at  that  position.  As  a  result,  we  may  obtain  e.g.  the
probability that the human of the size corresponding to the size of window is present
at that position.

The problem is that the people in the picture are of different size. The sliding window
usually retains its size (since the size is connected with the subsequent steps). Instead
the analysed picture is rescaled (reduced for big people, enlarged for small people).
Many image scales are usually used (i.e. we have a pyramid of rescaled images as is
depicted in the figure).



Finally, the results from all positions of sliding window and from all image scales are
evaluated. 3D probability maps are created. Maximum probability values are taken
into account, overlapping detections are removed.

HoG principle

Quite often blocks containing 8x8 pixels are used (as in the figure above). 2x2 blocks
are usually joined together. Their histogram vectors are simply concatenated, which 
gives 36 values. This final vector is finally normalised to unit length. Dalal & Triggs 
used the sliding window of size 64x128. What was the size of the final feature vector 
for this window? (This is a homework. :-))

Once we have the feature vector for the whole sliding window, it can be sent to a 
classifier. Support vector machine (SVM) was used in the original approach. It would
also be possible to use a shallow neural network.



II. Sliding window + CNNs (DNNs)

Brief repetition of what we have already done (neural cell + fully connected layers)

Activation functions: Sigmoid, Tanh, ReLU, Leaky ReLU

Gradient descent, stochastic gradient descent, (mini)batch gradient descent. 



Another useful prerequisite: Networks with competition (Kohonen Maps, 1982)

Finally,  we  must  be  familiar  with  the  convolution.  We  have  discussed  it  in  the
previous course (Digital Image Processing). I will briefly repeat it during the lecture.
It would not give a sense otherwise.

Why the convolution is used in the networks: It should extract what is 
important for recognition

The pioneering work LeNet (1998)

LeNet-5: Y. Lecun et al.: Gradient-based learning applied to document recognition
(1998). Feature extraction by convolutional layers and pooling is followed by final
classification, which is carried out in the fully connected layers. (You may notice, if
you want, the term “Gaussian connections”. The last layer can be viewed as Kohonen
map. We would probably use softmax today.)

In the past, we were interested what is exactly happening in the convolutional layers.
It is illustrated by the following figure.



A more general view on how the particular layers are put together:



Elements of NNs and the key for reading the figures that follow



LeNet a co dál? ILSVRC (ImageNet Large Scale Visual Recognition Challenge) is an
annual computer vision competition. It is done on a subset of a computer vision 
dataset called ImageNet https://www.image-net.org/challenges/LSVRC/.  

V soutěži je více kategorií, prohlédněte si také výsledky pro jednotlivé roky, např. 
https://image-et.org/challenges/LSVRC/2015/results. Další sítě jsou vítězné sítě v 
této soutěži.

https://image-net.org/challenges/LSVRC/2015/results
https://www.image-net.org/challenges/LSVRC/


AlexNet
AlexNet  (Alex  Krizhevsky,  Ilya  Sutskever,  Geoffrey  E.  Hinton:  ImageNet
Classification with Deep Convolutional Neural Networks, 2012) was the winner of
ImageNet ILSRVC 2012 (team name SuperVision). 

In the original paper:

Caffe implementation (upper figure contains more details):



ZFNet

ZFNet: Winner of ILSVRC 2013 (Image Classification). Jedná se o tuning AlexNet.
Zajímavé je,  jak se přišlo na to, co se má změnit.  Vizualizací  toho,  co se děje v
jednotlivých vrstvách. Pro bližší vysvětlení se lze podívat do Matthew D. Zeiler and
Rob  Fergus, Visualizing  and  Understanding  Convolutional  Networks,  2014,
https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf.

Níže je pro srovnání původní AlexNet

https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


VGG: Oxford Visual Geometry Group

VGG: Karen Simonyan, Andrew Zisserman: Very Deep Convolutional Networks for Large-Scale Image 
Recognition (2015)

Above: Several  types of  visualisation,  table  of  possible  configurations.  VGG is  a
famous network that has been also used as a building block in further networks.



GoogleNet CNN
C. Szegedy et al.: Going Deeper with Convolutions (2015)



NVIDIA totéž

C. Szegedy et al.: Rethinking the Inception Architecture for Computer Vision (2015).
Zlepšuje zde svůj předchozí návrh z téhož roku. Síť by měla mít méně parametrů.
Odtud rychlejší učení i inference.



ResNet CNN
Kaiming He et al.: Deep Residual Learning for Image Recognition (2015)
Kaiming He et al.: Identity Mappings in Deep Residual Networks (2016)

Jie Hu et al.: Squeeze-and-Excitation Networks (2018)

If the identity mapping is optimal, it is very easy to come up with a solution like F(x) 
=0 rather than F(x)=x using stack of non-linear CNN layers as function.

More variants are possible. Two examples follow.



More explicitly:

Another parametrised example:



Solving the problem of segmentation by CNNs

H. Noh, S. Hong and B. Han, "Learning Deconvolution Network for Semantic Segmentation," 2015 IEEE 
International Conference on Computer Vision (ICCV)

Problem:

The network:  VGG 16 is used as a convolution layer. The deconvolution network
contains  unpooling  and  transpose  convolution  layers,  which  are  organised  in  the
reverse order with respect to the input convolution network. The key idea is that the
bottleneck  (4096  numbers)  between  the  convolution  and  deconvolution  network
describes all substantial information that is contained in the  picture. The pairs like in
the figure above must be prepared for training. The right images are the required
answer of the deconvolution network.

Transpose convolution with stride 1 (left figure) and stride 2 (right figure)

Unpooling



R-CNNs, Fast R-CNNs, Faster RCNNs (2014, 2015)

Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object Detection
and Semantic Segmentation." CVPR '14 Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition. Pages 580-587. 2014

The R-CNN detector first generates region proposals using (approx 2000, selective
search is used in the original paper). The proposal regions are cropped out of the
image and resized and warped to window 227×227 pixels. The CNN features are then
computed (Cafe implementation of the AlexNet, 4096 features). Finally, the region
proposal bounding boxes are classified by a support vector machine (class-specific
linear SVM) that is trained using CNN features.

The ideas of how the region proposals can be done

Selective search is inspired by the region growing method for image segmentation. In
each iteration step two areas best fitting one to another (color, brightness, texture,
shape)  are  connected  together.  Each  new  area  may  be  an  object.,  i.e.  the
corresponding region proposal is generated (see the figure below).



Edge bounding boxes: The candidate bounding boxes are sought for using a sliding
window search over position, scale and aspect ratio. The length of contours that are
fully enclosed by the box is evaluated, these contours increase the chance that an
object  is  present  in  the  box.  On  the  contrary,  the  contours  running  across  the
boundary of the decrease this chance.  Top-ranked region proposals are used.

In this context (edge bounding boxes), new approaches for detecting edges have been
used (Structured Forests for Fast Edge Detection). Random forests were trained on
the BSDS500 segmentation and NYU Depth datasets using 16x16 window (you can
check it also in OpenCV). The difference between the results obtained by the usual
algorithm and the algorithm using random forests can be seen in the figure below.

https://docs.opencv.org/3.4/d0/da5/tutorial_ximgproc_prediction.html



Illustrative examples showing from top to bottom (first row) original image, (second
row)  Structured  Edges,  (third  row)  edge  groups,  (fourth  row)  example  correct
bounding box and edge labeling, and (fifth row) example incorrect boxes and edge
labeling. Green edges are predicted to be part of the object in the box while red edges
are not.



Fast R-CNN

Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015

As in the R-CNN detector , the Fast R-CNN detector also uses an algorithm like Edge
Boxes or Selective Search to generate region proposals. Unlike the R-CNN detector,
which crops and resizes region proposals,  the Fast  R-CNN detector  processes the
entire image. Whereas an R-CNN detector must classify each region, Fast R-CNN
pools CNN features corresponding to  each region proposal.  Fast  R-CNN is more
efficient  than R-CNN, because in the Fast  R-CNN detector,  the computations for
overlapping regions are shared.

Fast R-CNN architecture. The entire image (e.g. 1000×600) is fed into the backbone
CNN (e.g. VGG) and the features from the last convolution layer are obtained (size
60×40×512, for  example).  Each RoI is pooled into a fixed-size (e.g.  7×7) feature
map. RoI max pooling works by dividing the h × w RoI window into an H×W grid of
sub-windows of approximate size h/H×w/W and then max-pooling the values in each
sub-window into the corresponding output grid cell. Pooling is applied independently
to each feature map channel, as in standard max pooling. The final feature vector is
further processed in two fully connected layers. The network has two output vectors
per RoI: softmax probabilities and per-class bounding-box regression offsets.



Pretrained backbone is used. The architecture is then trained end-to-end with a multi-
task loss (classification and localisation error). Classification gives probabilities for
every ROI over (K+1) categories (since the “background class” is considered too).
The classification loss is given by -log(ptrue) which is the log loss for the true class.

The  regression  branch  produces  4  bounding  box  regression  offsets  (x,y,w,h),  the
localisation error is given by the sum of the smooth L1 between obtained and ground
truth coordinates for x, y, w, h.



Faster R-CNN

Ren,  Shaoqing,  Kaiming He,  Ross  Girshick,  and Jian Sun.  "Faster  R-CNN:  Towards Real-Time Object
Detection with Region Proposal Networks." Advances in Neural Information Processing Systems . Vol. 28,
2015.

The Faster R-CNN detector adds a region proposal network (RPN) to generate region
proposals directly in the network instead of using an external algorithm like Edge
Boxes or Selective Search. RPN takes an input image (of any size) and outputs a set
of  rectangular  object  proposals,  each with an objectness score.  Generating region
proposals in the network is faster than in Selective Search or Edge Boxes.

The RPN uses Anchor Boxes for object detection. 

In the backbone convolutional neural network, a big image (say 1000×600 pixels) is
transformed into the image containing features (size 60×40×512, say). 

For every point in the output feature map, the RPN has to learn whether an object is
present in the input image at its corresponding location and expected size. This is
done by placing a set of “Anchors” on the input image for each location on the output
feature map from the backbone network. The authors used 3 scales/sizes of box area
128, 256, 512, and 3 aspect ratios of 1:1, 1:2 and 2:1. For each position in the feature
map, they thus have 9 anchor boxes.



Using 3×3 sliding window can also be understood as computing convolution with the
3×3×N (N=512,  for  example).  It  can  also  be  easily  seen  that  the  anchors  are
translation invariant, as the authors note. Let  k be the number of anchor boxes, the
output  of  RPN  is  created  by  2k scores  (object/nonobject  probability)  and  4k
coordinates (x, y, w, h for each anchor box).

You can also see the positions that are considered for each pint in the feature map as 
is depicted in the image below.

The RPN is trained end-to-end by back-propagation and stochastic gradient descent
(SGD). Each mini-batch arises from a single image that contains many positive and
negative example anchors. It would be possible to optimize for the loss functions of
all  anchors,  but  this  would  bias  towards  negative  samples  as  they  are  dominate.
Instead, 256 anchors in an image are sampled randomly to compute the loss function
of a mini-batch, where the sampled positive and negative anchors have a ratio of up
to 1:1. If there are fewer than 128 positive samples in an image, the mini-batch is
padded  with  negative  ones.  The  training  loss  for  the  RPN  is  multi-task  loss
(erroneous object/nonobject classification as well as incorrect determining the box in
the case of object are penalised).

Alternating training: The RPN is trained independently first. The backbone CNN for
this  task  is  initialized  with  weights  from  a  network  trained  for  an  ImageNet
classification task, and is then fine-tuned for the region proposal task. In the second



step,  a  separate  detection network is  trained by Fast  R-CNN using the proposals
generated by RPN from the previous step. This detection network is also initialized
by the  ImageNet-pre-trained model.  At  this  point  the  two networks  do not  share
convolutional layers. In the third step, we use the detector network to initialize RPN
training,  but  we fix the shared convolutional  layers  and only fine-tune the layers
unique  to  RPN.  Now  the  two  networks  share  the  convolutional  layers.  Finally,
keeping the shared convolutional layers fixed, we fine-tune the unique layers of Fast
R-CNN.

Overall structure of faster R-CNN.

If the alternating training is used, both VGG nets are replaced by only one VGG net.



YOLO v1 (2015)
J.  Redmon,  S.  Divvala,  R.  Girshick and A.  Farhadi,  You Only  Look Once:  Unified,  Real-Time Object
Detection (2015), https://arxiv.org/pdf/1506.02640.pdf

A note: Although YOLO is now in v9 (February 2024), it seems appropriate to start
from YOLO v1 since it is more readable than the newer versions.

Other  detection  methods  like  R-CNN  and  Fast(er)  R-CNN  are  primarily  image
classifier networks which are used for object detection with the following steps.

1. Use Region Proposal method to generate potential bounding boxes in an image
2. Run the classifier on these boxes
3. After classification, perform post processing to tighten the boundaries of the 

bounding boxes, remove duplicates

These pipelines prove to be complex and bulky and hard to optimize as each 
component needs to be trained separately. Also such a pipeline is often very slow 
during inference.

YOLO is different from all these methods as it treats the problem of image detection
as a regression problem (YOLO v1) rather than a classification problem and supports
a  single  convolutional  neural  network  to  perform all  the  above  mentioned  tasks.
(Explanation: Regression predicts a continuous value, while classification predicts a
categorical value.)

YOLO network uses features from the entire image to predict each bounding box. It
predicts  all  bounding  boxes  across  all  classes  for  an  image  simultaneously.  This
means the YOLO network reasons globally about the full image and all the objects in
the image.

YOLO v1 divides the input image into an S×S grid. If the center of an object falls into
a  grid  cell,  that  grid  cell  is  responsible  for  detecting  that  object.  Each  grid  cell
predicts B bounding boxes and confidence scores for those boxes. These confidence
scores reflect how confident the model is that the box contains an object and also how
accurate  it  thinks  the  box  is  that  it  predicts.  Formally  we  define  confidence  as
Pr(Object)  IOU∗ IOU truth

pred. (Intersection Over Union). If no object exists in that cell, the
confidence scores should be zero. Otherwise we want the confidence score to equal
IOU between the predicted box and the ground truth. 
Each bounding box consists of 5 predictions:  x,  y,  w,  h, and confidence. The (x,  y)
coordinates represent the center of the box relative to the bounds of the grid cell. The
width and height are predicted relative to the whole image. Finally, the confidence
prediction represents the IOU between the predicted box and any ground truth box.
Each grid cell also predicts C conditional class probabilities, Pr(Classi|Object). These
probabilities are conditioned on the grid cell containing an object.



For evaluating YOLO on PASCAL VOC, the authors used S=7, B=2. PASCAL VOC 
had 20 labelled classes so C=20. The final prediction is a 7×7×30 tensor.

1. This term penalize bad localization of center of cells 
2. This term penalize the bounding box with inacurate height and width. The square root is 

present so that errors in small bounding boxes are more penalizing than errors in big 
bounding boxes. 

3. This term tries to make the confidence score equal to the IOU between the object and the 
prediction when there is one object 

4. This term tries to make confidence score close to 0 there is no object in the cell 
5. This is a simple classification loss (not explained in the article)



YOLO v4

Although it is the YOLO v8 (or 9) which is in the center of our interest now (2024), I
managed to get this explaining picture for YOLO v4. The basic backbone, neck, and
head  structure  remains  also  in  the  higher  YOLO  versions.  The  detailed  stucture
however differs to certain extent. (For example, also the format of the result is now
little bit different as will be shown later.)



YOLO v8

The architecture of YOLO v8 (the rough view in the top, a more detailed view to the 
left and in the bottom, the details of the particular blocks in the middle, see also the 
table containing parameters).

CIoU is an improved version of IoU loss function (1-IoU). DFL provides gradients
that can guide the learning of boundary predicted features, thus helping to reduce the
bbox loss. BCE is the binary cross-entropy loss.



If you use the pretrained YOLO model, object classification may be quite easy. The 
sample images from the beginning of this text have been prepared with this program.

A bigger example can be found here: http://mrl.cs.vsb.cz//people/sojka/zao.zip

A note on YOLO v9: Fabruary 2024, https://github.com/WongKinYiu/yolov9
https://arxiv.org/pdf/2402.13616.pdf

https://arxiv.org/pdf/2402.13616.pdf
https://github.com/WongKinYiu/yolov9
http://mrl.cs.vsb.cz//people/sojka/zao.zip


A note on measuring the results:

• True Positive: The model predicted that a bounding box exists at a certain position (positive)
and it was correct (true).

• False Positive: The model predicted that a bounding box exists at a particular position 
(positive) but it was wrong (false).

• False Negative: The model did not predict a bounding box at a certain position (negative) 
and it was wrong (false) i.e. a ground truth bounding box existed at that position.

• True Negative: The model did not predict a bounding box (negative) and it was correct 
(true). This corresponds to the background, the area without bounding boxes, and is not used
to calculate the final metrics.

Precision = TP/(TP+FP), Recall = TP/(TP+FN)

Average precision (AP) is the area under the PR curve above. (For completeness: 
Another possibility is to use ROC curve (right figure).



Another note: Ablation study means removing certain components to understand their
contribution to the whole.

Recurrent Networks

•  is the input at time step . For example,  could be a one-hot vector corresponding to the second 
word of a sentence. 

•  is the hidden state at time step . It’s the “memory” of the network.  is calculated based on the 
previous hidden state and the input at the current step: . The function  
usually is a nonlinearity such as tanh or ReLU.  , which is required to calculate the first hidden 
state, is typically initialized to all zeroes. 

•  is the output at step . For example, if we wanted to predict the next word in a sentence it would be 
a vector of probabilities across our vocabulary. . 

Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output
vectors are in blue and green vectors hold the RNN's state. From left to right: (1) Vanilla mode of processing
without RNN, from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g.
image captioning takes  an image and outputs  a  sentence of  words).  (3) Sequence input  (e.g.  sentiment
analysis where a given sentence is classified as expressing positive or negative sentiment).  (4) Sequence

https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://reference.wolfram.com/language/ref/Tanh.html


input and sequence output (e.g. Machine Translation: an RNN reads a sentence in English and then outputs a
sentence in French). (5) Synced sequence input and output (e.g. video classification where we wish to label
each frame of the video). Notice that in every case are no pre-specified constraints on the lengths sequences
because the recurrent transformation (green) is fixed and can be applied as many times as we like.

Long Short-Term Memory Recurrent Neural Network
Hochreiter, S., & Schmidhuber, J"urgen. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

The first step in our LSTM is to decide what information we’re going to throw away from the cell state. This
decision is made by a sigmoid layer called the “forget gate layer.” It looks at  ht−1 and  xt, and outputs a
number between 0 and 1 for each number in the cell state Ct−1. A 1 represents “completely keep this” while a
0 represents “completely get rid of this.”

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


The next step is to decide what new information we’re going to store in the cell state. This has two parts. First,
a sigmoid layer called the “input gate layer” decides which values we’ll update. Next, a tanh layer creates a
vector of new candidate values, C~t, that could be added to the state. In the next step, we’ll combine these
two to create an update to the state.

Updating the old cell state, Ct−1, into the new cell state Ct. We multiply the old state by ft forgetting the things
we decided to forget earlier. Then we add it∗C~t. This is the new candidate values, scaled by how much we
decided to update each state value.

Finally, we need to decide what we’re going to output. This output will be based on our cell state, but will be a
filtered version. First, we run a sigmoid layer which decides what parts of the cell state we’re going to output.
Then, we put the cell state through tanh (to push the values to be between −1 and 1) and multiply it by the
output of the sigmoid gate, so that we only output the parts we decided to.



Temporal CNs

Shaojie Bai, J. Zico Kolter, Vladlen Koltun: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for
Sequence Modeling (2018)

Vision Transformers & Self-Attention Networks

Creating the vision transformers was inspired by self-attention networks that are used
in the areas like natural language processsing (NLP) and chatbots (the self-attention
networks  are  alternatively  also  called  the  transformers).  In  NLP the  goal  is  to
generate  a  sequence  of  words,  in  vision,  in  contrast,  the  goal  is  only  to  classify
objects. In vision, therefore, we will not use the whole architecture, but only a part of
it. 

We start, however, from a brief view on the architecture for NLP as it was presented
in  Ashish  Vaswani  et  al.:  Attention  Is  All  You  Need  (2017),  https://arxiv.org/abs/1706.03762.  The
following figure is taken from the mentioned paper. We will  focus mainly on the

https://arxiv.org/abs/1706.03762


encoder part since it is also used in vision transformers.

How to understand Nx  (here Nx=3) 

Motivation:  In  NLP (e.g.  during  translation),  one  sentence  in  a  certain  language
should  be  used  for  generating  the  equivalent  sentence  in  an  another  language.
Recurrent NN and LSTM networks were commonly used for this task before. The
problem  is  that  they  process  the  input  sequence  sequentially.  It  causes  that  an
important  word  that  was  pronounced  longer  before  (e.g.  at  the  beginning  of  the
sentence, if the end of the sequence is being processed now) may be forgotten, which
makes that the content of the sentence in the goal language is not expressed properly.

Moreover,  the  sequential  character  of  recurrent  NNs,
including  LSTMs,  brings  also  computational  problems.
Long  sequentially  processed  sequences  require  long
computational times.

Let  us  first  examine  the  encoder  part,  which  is  more
important for us (from the point of view of application in
vision). The most interesting multi head attention layer will
be described later. Notes regarding the remaining structure:
Please  note  the  ResNET  like  shortcuts.  Feed  forward
contains usual fully connected layers. Add is used due to the



ResNET approach.  Norm is a batch normalisation that will be explained/illustrated
later.  The  Nx value says that this structure is repeated  Nx times. (In the paper, the
authors used Nx = 6).

An example of how the encoder input is created. Each word is firstly replaced by a
number (input ID) from a vocabulary, this representation is then mapped into a vector
(512  real  numbers  in  this  case  and  in  the  original  paper),  which  is  called  the
embedding. The numbers changes during training, which reflects a specific meaning
of the word.

Note: Svereal following pictures presented here are taken from nice Umar Jamil’s tutorial that is available
here https://www.youtube.com/watch?v=bCz4OMemCcA .

Positional encoding (which is the next step, see the figure above) reflects the position
of the word in sentence. The authors proposed the following (see the figure). These
values are simply added to the values above (in embedding), which gives the input to
the encoder. 

https://www.youtube.com/watch?v=bCz4OMemCcA


What is happening in the encoder, namely in its most interesting part? We start from
the  simple  self  attention,  which  should  illustrate  the  nice  idea  that  is  hidden  in
attention. Consider for a while that Q, K, V (query, key, value) are three projections of
the encoder input (i.e. obtained from the input by multiplying three matrices whose
values are determined during training, simple copy is possible too). The projections
may either retain the original size of embedding or may decrease the size. In this
explanation, we understand Q, K, V as matrices whose size is 6×512 (6 is because we
restrict ourselves here, for the purpose of explanation, to the sentences containing just
6 words, 512=dk is the size of embedding of each word in the sentence, this size has
been retained during projection). The attention is then defined as follows (you can
also see it as a picture below):

An important step is to understand what it exactly means. The result of softmax is
illustrated in the figure below. The high values in the resulting matrix tells that the
words of the corresponding row/column are tied together, i.e. are important one for
another in the sentence, i.e. determine the context. Due to the softmax function, the
values may be regarded as probabilities. From the way how the matrix was computed
(dot product), we could also say that the values in the matrix express the “similarity”
(or a “connection”) between the words.



Another  illustration:  Say the following sentence  is  an input  sentence  we want  to
translate: ”The animal didn't cross the street because it was too tired.” (Who was
tired?  The  street  or  animal?)  After  training,  the  encoder  reveals  the  following
dependencies.

Now, please, try to imagine what is happening if the whole formula is computed, i.e.
matrix multiplication by V is carried out. A new features for the particular word are
computed which is done as a  linear  combination defined by similarities  from the
above matrix. It can be easily understood now that the word at the beginning of the
sentence may have a big influence on the word at the end of the sequence. (Compare
this with the recurrent networks, including LSTMs).

More exactly, the multihead attention is usually used. It is realised in such a way that
the projection matrices Wi

Q, Wi
K, Wi

V are introduced whose values are determined by
learning, i stands for i-th head.



If we imagine that the weight matrices for particular heads are put to one big matrix, the multihead 
processing may be illustrated by the following figure.



In the original paper, the authors had h=8, dk=dv=512/8=64.



Training (in the context of translation if you are interested)

Or with nice and more explicit pictures (taken from https://towardsdatascience.com/transformers-
explained-visually-part-1-overview-of-functionality-95a6dd460452)

https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452
https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452


The Transformer processes the data like this:

1. The input sequence is converted into Embeddings (with Position Encoding) and fed to the 
Encoder.

2. The stack of Encoders processes this and produces an encoded representation of the input 
sequence.

3. The target sequence is prepended with a start-of-sentence token, converted into Embeddings 
(with Position Encoding), and fed to the Decoder.

4. The stack of Decoders processes this along with the Encoder stack’s encoded representation 
to produce an encoded representation of the target sequence.

5. The Output layer converts it into word probabilities and the final output sequence.
6. The Transformer’s Loss function compares this output sequence with the target sequence 

from the training data. This loss is used to generate gradients to train the Transformer during 
back-propagation.



Inference (again from https://towardsdatascience.com/transformers-explained-visually-part-1-
overview-of-functionality-95a6dd460452)

The flow of data during Inference is:

1. The input sequence is converted into Embeddings (with Position Encoding) and fed to the 
Encoder.

2. The stack of Encoders processes this and produces an encoded representation of the input 
sequence.

3. Instead of the target sequence, we use an empty sequence with only a start-of-sentence 
token. This is converted into Embeddings (with Position Encoding) and fed to the Decoder.

4. The stack of Decoders processes this along with the Encoder stack’s encoded representation 
to produce an encoded representation of the target sequence.

5. The Output layer converts it into word probabilities and produces an output sequence.
6. We take the last word of the output sequence as the predicted word. That word is now filled 

into the second position of our Decoder input sequence, which now contains a start-of-
sentence token and the first word.

7. Go back to step #3. As before, feed the new Decoder sequence into the model. Then take the 
second word of the output and append it to the Decoder sequence. Repeat this until it 
predicts an end-of-sentence token. Note that since the Encoder sequence does not change for
each iteration, we do not have to repeat steps #1 and #2 each time.

https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452
https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452


Now we can continue with the Vision Transformer (ViT) as it was introduced in:
Alexey Dosovitskiy et al.: An Image Is Worth 16x16 Words: Transformers For Image Recognition at Scale,

https://arxiv.org/abs/2010.11929. The authors uses only the encoder (left part) of the general
transformer above. The figure below is taken from their paper.

The authors  transformed the  image  recognition  problem in  such  a  way that  they
almost entirely copy the way of how the transformer is used in NLP. Image is divided
into subimages. The subimages directly (or some projections) are used as embedding,
which is  done with the hope that  in  the process of  encoding the more and more
descriptive features will  be computed in their  place.  However,  the final values of
particular tokens (features) are not interesting in this case (the classification should be
done). Also, positional encoding is used as can be seen from the picture above. It can
be  simple  in  this  case  since  the  subimages  extracted  from the  image  have  fixed
positions.

For  the  purpose  od  classification,  a  special  class  token  is  used  that  is  randomly
initialized and prepended to the beginning of the input sequence. Since it is randomly
initialized, it does not contain any useful information on its own. Token is able to
accumulate information from the other tokens in the sequence the deeper and more
layers  have  been  processed.  When  the  tansformer  finally  performs  the  final
classification of the sequence, it uses an MLP head which only looks at data from the
last layer class token and no other information. It can be perceived as a placeholder
data structure that is used to store information that is extracted from other tokens in
the sequence.

Unfortunately,  this  ViT is  a  sliding  window approach. (However,  the  approaches
using transformers aiming at detecting objects have appeared too.) The performance
of this particular ViT was a bit questionable (i.e. below some CNNs, like ResNET,
see the following picture). This was discussed in the following paper (I will comment
on the details during the lecture).

https://arxiv.org/abs/2010.11929




A note on GPT:

GPT uses  an  unmodified  Transformer  decoder,  except  that  it  lacks  the  encoder
attention part. We can see this visually in the above diagrams. The GPT, GPT2, GPT
3 is built using transformer decoder blocks. GPT-3 was trained with huge Internet text
datasets — 570GB in total. When it was released, it was the largest neural network
with 175 billion parameters (100x GPT-2). GPT-3 has 96 attention blocks that each
contain 96 attention heads
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