
AUTOMATIC WAN TOPOLOGY INTERCONNECTION AND IT’S USAGE
IN CNAP NETWORKING LABORATORIES

5th Int. Conference on

Petr Grygárek, David Seidl
Regional Cisco Networking Academy
Faculty of Electrical Engineering and Computer Science
Technical University of Ostrava, Tř. 17. listopadu, 708 33 Ostrava, Czech Republic
Tel.: (+420) 597 323 263, Fax: (+420) 597 323 099
E-mail: petr.grygarek@vsb.cz, http://www.cs.vsb.cz/grygarek

Emerging e-learning
Technologies

and Applications

The High Tatras,
Slovakia

Abstract.
In practical education in networking laboratories it is useful to be able to interconnect various WAN
topologies quickly and efficiently. In the article we present our hardware devices and architectures
we developed for such automatic interconnection of WAN topologies - either in the scope of a single
laboratory or fully distributed. Basic experiences gained during practical usage of developed
prototypes in CNAP teaching and planned improvements are also described.

September 6-8, 2007

Keywords: Communication Technologies, Virtual Laboratory, CNAP

1. INTRODUCTION

During practical education in networking laboratory, it is
necessary that students work on various topologies of
networking devices. Unfortunately, the process of physical
connecting of network topology is both time-consuming
and error-prone and commonly prevents students to
concentrate on the configuration of particular protocol or
technology which is the main objective of the respective
lesson. Our experience revealed that although it is
inevitable to let students connect network topologies
manually at the beginning of their study to give them
concrete idea about WAN/LAN interfaces usage, it is much
more effective to concentrate on upper-layer protocols and
don't waste time with repeated physical layer
troubleshooting later.
The another issue with frequent topology changes reported
by many LCNAs is that students often do not manipulate
network interface connectors with enough care. This often
results to mechanical damage of rather expensive WAN
interface cables or router’s connectors and a need of their
replacement. This problem is most serious in cases of non-
modular routers often present in earlier CNAP bundles,
where damaged interface cannot be easily replaced. The
frangibility of new Cisco Smart Serial connector types is
also an issue.
 To avoid the above mentioned problems, we searched for
methods how to interconnect network topologies
automatically without physical human interaction. Although
the original motivation of our research was the need to
automatically change topologies in our Distributed Virtual
Networking Laboratory [7] which resulted to the Virtual
Crossconnect architecture [2], we soon realized the
potential of developed prototypes to solve problems
described above.
For Ethernet ports interconnection, we use standard LAN
switches and VLAN-based interconnection. Using VLAN
tunnelling (also called dot1QinQ sometimes), we are even

able to interconnect trunk links of various devices and have
the switching element be completely invisible for the
laboratory devices [8]. This way we can transparently pass
CDP, STP, VTP, PAgP/LACP and other L2 protocols
discussed in CNAP curriculum between connected devices.
Unfortunately, there exists no similar commercially-
available and cheap solution for WAN links. This is why
we decided to develop a series of our own devices for
WAN port automatic interconnection. The basic ideas,
architectures and experiences with these devices will be
discussed in the following article.

2. THE FIRST GENERATION CROSSCONNECTS

All WAN port crossconnect prototypes we finished and use
up to now have the similar philosophy (fig. 1). All network
devices’ WAN ports are connected to interfaces of a single
crossconnect which can be configured to interconnect
arbitrary pairs of connected ports. The configuration is
accomplished via RS-232 console port using a simple “IOS-
style” command line interface (CLI) available to instructor
or lab administrator or possibly directly to students. As in
Cisco IOS, command completion, command abbreviations
and context-based help system were implemented. The
configuration is maintained in RAM but may be also stored
into internal flash memory so that it can be loaded
automatically when the crossconnect device is powered on.
The device is controlled by Atmel 8051ED2 microprocessor
which acts as a CLI command interpreter and configures
switching array according to user’s requirements. The CLI
allows instructors or other authorized person just to
Cut&Paste one of the previously prepared topology
configurations into the crossconnect using HyperTerminal,
Minicom or similar terminal emulator program.
In some cases, it is useful to be able to control the
crossconnect not only by directly connected RS-232
terminal, but also remotely via intranet or Internet. It allows

 1

us to share access to the crossconnect’s control port by
multiple users. In this way students may modify
crossconnect configuration by themselves using connection
over laboratory LAN, which is useful especially during
unattended practicing of groups of CNAP students. Our
solution for RS-232 to TCP conversion was to use relatively
cheap commercially-available modules, in this case Charon
II [5] for mutual RS232 to Ethernet conversion and Sollae
EZL80c [4] for RS-232 to WiFi (802.11b) conversion, as
can be seen at fig. 1. Our current aim is to extend function
of Charon II module by a simple proxy authentication
capability, which will authenticate the user before giving
him/her an access to the crossconnect’s control port. The
Web-based GUI to isolate user from crossconnect’s text-
based configuration language might be also implemented
into Charon II module quite easily.

Fig. 1. Basic Crossconnect Philosophy

 As will be described in detail later, we subsequently tested
and implemented various approaches for actual signal
switching, but the substantial part of controlling software
has always been reused in the individual prototype devices.

2.1 WAN INTERFACE TYPE SELECTION

One of the main issues of crossconnect design was a
selection of physical WAN interface type our device should
support. Since we use our crossconect primarily to
interconnect WAN ports of Cisco routers which can provide
multiple physical interfaces and let the user to choose the
required one only by usage of an appropriate WAN cable,
we could choose from ITU-T X.21, ITU-T V.35, EIA/TIA
RS-232 and EIA/TIA RS-499 (all synchronous). Since we
wanted to limit a number of signals to switch and also take
the interface’s connector availability into account, we chose

to use RS-232 because it doesn’t use symmetrical signals
neither for data nor control and it’s CANNON DB-25
connector is cheap and easily available. The Cisco
DB60/SmartSerial to RS232 DTE cables are also typically
much more cheaper than other WAN cable types. Since we
use “null modem” interconnection we need only to switch
RxD and TxD signals and provide clock signals, as will be
discussed later.
Another important issue we had to solve was the problem of
clocking. In reality, routers at both sides of the leased line
provided by telco act as DTEs and are connected with
synchronous modems using „DTE cable“. Clocking signal
for both routers is provided by respective modem. Since it
is inefficient to have so many modems in the laboratory,
most people commonly connect WAN interfaces of Cisco
routers directly, using a pair of two different cables for
DCE and DTE side. The router connected with a “DCE”
cable provides clocking for both directions of the
communication if instructed to do so by an IOS command.
It means that for that type of direct interconnection we are
only able to connect a pair of interfaces if one interface is
connected with a DCE cable and another one with a DTE
cable. So we have a problem with cable type to use between
router’s WAN port and crossconnect port if we want to be
able to connect arbitrary pairs of connected WAN ports by
the crossconnect.
To allow our crossconnect to connect arbitrary pair of
WAN ports, we decided to take completely different
approach, which much more resembles the real usage of
leased WAN links. All WAN ports are connected to the
crossconnect using DTE cables and the crossconnect itself
provides clocking for all devices, exactly as would a
modem at the end of leased line do. In the newer prototype,
we are even able to set various clock rates for individual
pairs of connected ports. From the student’s perspective, the
crossconnect may be viewed as a telco cloud which
provides leased line services including clocking and he/she
does not have to take care about clocking at all a the router
side.

2.2 THE ANALOG CROSSCONNECT

The very first version of our crossconnect (called ASSSK-
1) was developed by David Seidl in his MSc. thesis [1]. The
general aim of the thesis assignment was to develop a
crossconnect based on analog switch array core suitable for
connecting of signals of various networking technologies.
Individual WAN ports are attached to the switching core via
interface modules, which adapts various electrical
interfaces’ signals to the voltage range suitable for the
switching core. The device (fig. 2) may accomodate up to
16 modules.
The switching core is composed of two Zarlink MT8816
analog switch array integrated circuits [6], which together
from a 16 x 16 matrix. The matrix allows to connect each of
16 TxD signals to any of 16 RxD signals, so that arbitrary 8
pairs of modules may be connected together. It is even
possible to loopback any interface for testing purposes.

 2

Various interface modules may be developed to switch
signals of individual interface types. The only limitation is
the frequency range of the used switching array (30MHz).

Fig. 2. ASSSK-1: The Analog Crossconnect

That range proved sufficient for 10BaseT Ethernet and
synchronous RS-232 up to 2 Mbps during our extensive
testing. We developed a double-interface modules, which
allows to connect either RS-232 WAN port or 10BaseT
Ethernet. Because of different electrical characteristics and
processing of RS-232 and Ethernet signals, it proved most
effective to use a small mechanical relay to choose which of
the two interfaces available at the module will be really
connected to the switching core. The reachable bitrate of
switched serial WAN interfaces is somewhat limited by RS-
232 to TTL convertors (the capacitor-based charge pump
used to create ±12V for RS-232 interface), but we currently
plan to provide external 12V DC supply to avoid this
problem.

The block diagram of the ASSSK-1 device is depicted at
fig. 3. The Control Processor interacts with user using CLI
and configures analog switching array accordingly. We
decided to use separate microprocessor (the Clock
Processor) to provide clocking for individual WAN lines.

Fig. 3. ASSSK-1 Block Diagram

To support potential future extensions, we decided to
provide I2C bus implemented by ATMEL microprocessor
for the usage at the interface modules. It means that various

I2C-enabled devices may be attached the similar way as
interface modules and accessed from the control
microprocessor. Currently we assess the attachment of
external Flash memory to let instructors to store multiple
pre-defined interconnection configurations and easily
choose one of them when a need to change topology arises
during laboratory work. By implementation of a simple user
interface consisting from a numeric keyboard and LCD
display, we also plan to provide a mechanism to let the
instructor change configurations very quickly and
efficiently without an external control terminal (most
probably PC).
The cost of electrical components and other material to
produce the ASSSK-1 crossconnect was about 12 thousands
CZK.

2.3 FPGA-BASED CROSSCONNECT

After a period of usage of ASSSK-1, we decided to
redesign an architecture based on the experience with the
original prototype. Switching of Ethernet ports proved
inefficient, because we need to switch faster interfaces than
10BaseT today, which is not possible because of frequency
limitation of the used analog switch array. This is why we
decided to concentrate on WAN interface switching in the
future hardware development and interconnect Ethernet
ports using standard VLAN-aware 10/100/1000 Ethernet
switches and VLAN/802.1q tunnelling approach, as
mentioned above.
The main aims of the new crossconnect version was to
make the device more replicable and compact, decrease it’s
production cost and increase flexibility. It also turned out
unnecessary to be able to switch various WAN physical
interface types, since RS-232 proved most efficient during
usage period of the ASSSK-1. This is why we abandoned
the modular architecture and decided to implement interface
circuitry on the baseboard instead of on modules. We also
used FPGA technology and VHDL to implement the device
much more efficiently. The most important change is that
the FPGA-based switching core is now fully digital. Except
the switching function, the FPGA circuit also provides
clocking for individual ports, based on the frequencies pre-
set to it’s configuration registers by control microprocessor.
This way we can easily simulate WAN links of various
speeds which is necessary in many labs and case studies of
CNAP courses, especially CCNP1 and CCNP2.

Control Procesor
ATMEL AT89C51ED2

Controlling
Device

Switching
Array

MT8816

TTL<>RS232
convertor

Laboratory
Device #1

Laboratory
Device #16

TXD, RXD signals

Clock Procesor
ATMEL AT89C51ED2

TTL<>RS232
convertor

TTL<>RS232
convertor

CLI

CLOCK signal

The prototype (fig. 4) was developed by Petr Sedlar in his
master thesis [3], produced and successfully tested. Much
higher bitrates are reachable with digital switching matrix
than with the previous analog one. Up to twenty interfaces
may be made available at the chassis. This allows us to
interconnect up to 10 2-WAN-port routers, which is more
than enough for a single CCNP bundle. In real teaching, the
experience shows that it is often better to use the
crossconnect to switch ports of multiple smaller and
independent lab pods. The FPGA-based crossconnect is
very easy to modify because of it’s capability of in-system
reprogramming of both Atmel control microprocessor and
FPGA core. The block diagram of the FPGA-based device
called ASSSK2 is depicted at fig. 5.

 3

Because of implementation of interface circuitry on the
baseboard instead on interface modules in ASSSK-2, the
number of mechanical contacts was reduced considerably

Fig. 4. ASSSK-2

Fig. 5. ASSSK-2 Block Diagram

so the new crossconnect is not only cheaper and more
compact, but also more reliable. It is important in particular
in case of lab pods accessible for CNAP students remotely
all the day without any instructor attendance. The material
expenses to construct ASSSK-2 are about 8 thousands
CZK.

In the future, we intent to integrate the whole logic (i.e. the
switching array and control processor) into the more
advanced type of FPGA integrated circuit. We expect that it
will further decrease the cost, improve reliability and extend
the flexibility of the crossconnect.

3. PASSING TRAFFIC BETWEEN MULTIPLE
CROSSCONNECTS

The limitation of first generation of our crossconnect
solutions was that there was no possibility to switch traffic
across multiple crossconnect instances. Although there is 16
or 20 ports at the available models, the scalability is
somewhat limited because even if we produce multiple
crossconnect instances, we are only able to connect WAN
ports of network devices connected to the same
crossconnect. This is why we searched for solutions how to

let traffic pass across multiple crossconects connected
together.

The first idea was just to reserve some number of standard
crossconnect ports for interconnetions between
crossconnects. Unfortunately, this solution would be rather
inefficient because 4 ports in total would have to be
consumed for a single interconnection of two WAN ports
connected to a pair of different crossconnects. It would be
even more in case of a longer chain of crossconnects linked
together. A non-trivial issue of clock synchronization
between multiple crossconnect devices would have to be
solved also. Although it is of course possible to connect
crossconnects into more efficient hierarchical structures
than a simple chain, we decided to take completely different
approach.

The solution for passing traffic between multiple
crossconnects we are working on now was influenced by a
need to pass traffic between crossconnects located at
various, physically distant sites. This requirement first
appeared during our Distributed Virtual Laboratory
development ([7]), but we also found useful to be able to
connect together laboratory equipment located in multiple
networking laboratories for some laboratory tasks, like
CNAP final exams. The general idea is not just to
interconnect physical signals, but read the content of passed
PPP/HDLC frames, encapsulate them and tunnel over
intranet or even Internet. Frames are decapsulated at the
receiving side and sent out of the particular serial port to the
WAN interface of the network device they are destined to.
This approach scales well because the interconnections
between individual crossconnects forms a logical full mesh
and in case of sufficient capacity of the underlying
LAN/WAN the number of interconnections of network
devices connected to different crossconnects is potentially
unlimited. We denote solutions adhering the approach
described above as a second-generation crossconnects.

Microprocessor
ATMEL AT89C51ED2

Controlling
Device

FPGA
A3P060

TTL<>RS232
convertor

Laboratory
Device #1

FPGA Controlling Signals

Laboratory
Device #20

TXD, RXD, CLK signals

XTAL

TTL<>RS232
convertor

TTL<>RS232
convertor

CLI

3.1. LINUX-BASED CROSSCONNECT

The simplest way to implement handling of HDLC/PPP
frames and passing them between multiple switching
devices is to use software-based approach. We decided to
utilize PC with Linux for that purpose. The architecture we
are now experimenting with is described at fig. 6. The PC is
equipped with multiport synchronous serial card, which
allows to connect WAN interfaces of network devices to be
interconnected. We investigate now how standard Linux
PPP/HDLC drivers could be used to allow a switching
software developed for that purpose to switch PPP/HDLC
frames between logical ppp/hdlc interfaces. The switching
software will also be able to tunnel frames between multiple
crossconnect PCs in UDP datagrams, so that we will be able
to create virtual WAN links over campus LAN or the
Internet. The remote configuration using Telnet is planned
in the first prototype. We denote the above mentioned
Linux-based crossconnect architecture as ASSSK-3.
The only serious limitation of this approach we encountered
up to now is that commercially available synchronous serial
cards are both costly and typically do not provide more than
two ports. For this reason, we started to work on our own

 4

FPGA-based card with a higher port density (8 ports as a
minimum).

Fig. 6 –ASSSK3: The Linux-based Crossconnect

3.2. EXTENSION OF FPGA-BASED
CROSSCONNECT

Another possible approach we are assessing now for
processing of PPP/HDLC frames and tunnelling them
across the Ethernet is to integrate frame processing
intelligence into the current FPGA-based crossconnect
(ASSSK-2). The frame separation logic capable of
recognizing frame flags and handling bit stuffing seems to
be relatively simple to integrate into FPGA. We plan to use
some commercially-available embedded module for
synchronous serial to Ethernet conversion in the prototype,
such as above-mentioned Charon II module. The frame
separation logic could be also implemented at this module if
the processing power will suffice. The general idea is to
reserve a couple of ports of FPGA-based switch array
(denoted as internal ports) and connect them internally to
the serial-port side of the serial-to-Ethernet conversion
modules. The way how the modules will handle frames
incoming from switch array and Ethernet interface will be
programmed to the modules by crossconnect’s control
processor. In fact, only destination/source MAC (or IP)
address to internal switching array port mapping will have
to be configured. The FPGA switch array will then switch
frames coming from another crossconnects through
Ethernet LAN and Ethernet-to-serial module to it’s internal
port the same way as if it came from the regular port.
Multiple serial-to-Ethernet convertors can be integrated
together to limit the size and cost of the construction or a
more-powerful convertor capable of handling multiple
serial ports could be utilized. The architecture proposal is
depicted at fig. 7. Although the number of ports that can be
tunnelled via Ethernet is limited by a number of
implemented internal ports in this approach, it requires
relatively minor changes in the current ASSSK-2
crossconnect design. Except of the integration of convertor
modules, only some changes in the control software will be
required. We also expect that the controlling RS-232
console will be converted to Ethernet so that we will be able

to control multiple crossconnects from a single control
entity, which is useful for centralized creation of distributed
virtual WAN topologies for education purposes.

Fig. 7 – Basic Idea of Extension of ASSSK-2 for Frame
Tunelling

4. FULLY DISTRIBUTED CROSSCONNECT
ARCHITECTURE

As a natural extension of the above mentioned
architectures, we proposed a fully-distributed crossconnect
architecture, which we believe to be more flexible and
cheaper in the practise, particulary for creation of virtual
topologies built from equipment scattered in multiple rooms
of the campus of even multiple LCNAs.
The architecture is based on a big number of small remotely
configurable bidirectional synchronous serial to Ethernet
convertors (fig. 8). These convertors are connected to
individual WAN ports of network devices (one convertor
may potentially handle more than one WAN port). Every
convertor may be programmed remotely to which address it
has to tunnel PPP/HDLC frames coming from the serial
port. Ethernet ports from the convertors connected to WAN
ports of network devices at the lab site will be connected
together via standard Ethernet switch. Multiple independent
lab sites may be connected together via Internet. The
architecture requires a controller entity which will create
and upload configurations into individual convertors based
on the required virtual topology. The convertor modules
may be built to provide clocking (i.e. behave as DCE) or to
accept clock from the router, so the direct serial
interconnection can be completely simulated. We can also
pass additional information between modules, such as
physical layer up/down state of the respective serial
interface.
It is expected that there will be some troubles with passing
traffic through firewalls of individual lab sites, so we plan
to include proxy capability into convertor modules so that
only a limited number of conduits will have to be
configured at firewalls.
As depicted on fig. 8, our effort is to build a serial-to-
Ethernet modules in such a way so that they can also just
pass the serial interface signals through. It will allow to
have these convertors connected to WAN ports of network
devices permanently, so that students will be able to

 5

connect network devices physically during laboratory work.
At the same time, we will be also able to connect topology
automatically if necessary. The positive side effect of that
solution is that serial ports on the routers will be protected
from mechanical damage by relatively cheap convertor
modules.
The described approach will also allow to tunnel traffic
between Ethernet ports of network devices the similar way
as for serial lines, so that we will be able to automatically
connect the complete topology with the single technology.
The only difference will be the interface type at the router’s
side of the convertor modules.
The experimental prototype of serial-to-Ethernet modules
are just being constructed using commercially-available
Charon module.

Fig. 8 – The Fully Distributed Crossconnect

4. CONCLUSION

In the article, we presented a couple of architectures and
hardware device prototypes for automation of WAN
topology interconnection. Lot of approaches presented here
proved useful to make practical education in CNAP
laboratories more efficient, to support integration of
equipment of multiple laboratories and allow remote
laboratory access for the purpose of distant learning. Some
of the technologies presented here also form a technological
basis of the Distributed Virtual Laboratory [7] developed at
our university and piloted in cooperation with Silesian
University of Opava with support of Czech Educational
Scientific Network (CESNET), who provided funds to let
LCNAs specialize on particular advanced technologies.
This way we can share equipment between LCNAs and
create high-quality CNAP virtual lab pod, particularly for
CNAP security courses.

We also believe that the proposed technologies which
promise to connect laboratory topologies both directly and
remotely at the same time will make the lab device usage
more efficient, since it will be no longer needed to maintain
separate lab pods for direct and remote access.

8. REFERENCES

[1] Seidl, D.: System for Automatic Network Configuration

Management. Master's Thesis, Faculty of Metallurgy and
Materials Engineering, VŠB-TU Ostrava, 2005. [In
Czech]

[2] Grygárek, P., Practical Experience with Implementiation
of Virtual Computer Network Laboratory and Proposed
Ways of its Further Development. Proceedings of
Technologies for E-Learning conference, FEL ČVUT
Praha, 2006, ISBN 80-01-03512-3, pp.58-68. [In Czech]

[3] Sedlář, P.: FPGA-Based Crossconnect for Serial Lines.
Master's Thesis, Faculty of Electrical Engineering and
Computer Science, VŠB-TU Ostrava, 2007. [In Czech]

[4] EZL-80 and EZL-80c: converter modules description
 http://www.hw-group.com/products/sollae/ezl80_en.html

[online, April 2007]
[5] Charon 2 Ethernut embedded Ethernet module.
 http://www.hw-

group.com/products/charon2/index_en.html
 [online, April 2007]
[6] Datasheet of analog switch array

http://www.ortodoxism.ro/datasheets/zarlinksemiconduct
or/zarlink_MT8816_MAR_97.pdf' [online, April 2007]

[7] Grygárek, P., Milata M., Vavříček J., The Fully
Distributed Architecture of Virtual Network Laboratory.
5th Int. Prepared for publishing at proceedings of
Conference on Emerging e-learning Technologies and
Applications, The High Tatras, Slovakia, September 6-8,
2007

[8] Gaura, J., Vavříček, J.: Tunnelling of VLANs and
Auxliliary Layer 2 Protocols in Provider Network.
Semestral Project of Routed and Switched Network
subject,http://www.cs.vsb.cz/grygarek/SPS/projekty0506/
QinQ.pdf [In Czech, online, May 2007]

THE AUTHORS

Petr Grygárek (Ph.D, MSc., CCNP) is
Main Contact and CCNP/CCNA/NS
instructor at RCNA VŠB-TU Ostrava. He
also coordinates development group of
Distributed Virtual Networking Laboratory
used both in CNAP and for standard
university networking courses.

David Seidl (MSc.) is a professor-assistant
and Ph.D student at VŠB-TU Ostrava. He
helps our RCNA with special hardware
development.

 6

