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Abstract.  
In practical education in networking laboratories it is useful to be able to interconnect various WAN 
topologies quickly and efficiently. In the article we present our hardware devices and architectures 
we developed for such automatic interconnection of WAN topologies - either in the scope of a single 
laboratory or fully distributed. Basic experiences gained during practical usage of developed 
prototypes in CNAP teaching and planned improvements are also described. 
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1.  INTRODUCTION 
 
During practical education in networking laboratory, it is 
necessary that students work on various topologies of 
networking devices. Unfortunately, the process of physical 
connecting of network topology is both time-consuming 
and error-prone and commonly prevents students to 
concentrate on the configuration of particular protocol or 
technology which is the main objective of the respective 
lesson. Our experience revealed that although it is 
inevitable to let students connect network topologies 
manually at the beginning of their study to give them 
concrete idea about WAN/LAN interfaces usage, it is much 
more effective to concentrate on upper-layer protocols and 
don't waste time with repeated physical layer 
troubleshooting later.  
The another issue with frequent topology changes reported 
by many LCNAs is that students often do not manipulate 
network interface connectors with enough care. This often 
results to mechanical damage of rather expensive WAN 
interface cables or router’s connectors and a need of their 
replacement. This problem is most serious in cases of non-
modular routers often present in earlier CNAP bundles, 
where damaged interface cannot be easily replaced. The 
frangibility of new Cisco Smart Serial connector types is 
also an issue. 
 To avoid the above mentioned problems, we searched for 
methods how to interconnect network topologies 
automatically without physical human interaction. Although 
the original motivation of our research was the need to 
automatically change topologies in our Distributed Virtual 
Networking Laboratory [7] which resulted to the Virtual 
Crossconnect architecture [2], we soon realized the 
potential of developed prototypes to solve problems 
described above. 
For Ethernet ports interconnection, we use standard LAN 
switches and VLAN-based interconnection. Using VLAN 
tunnelling (also called dot1QinQ sometimes), we are even 

able to interconnect trunk links of various devices and have 
the switching element be completely invisible for the 
laboratory devices [8]. This way we can transparently pass 
CDP, STP, VTP, PAgP/LACP and other L2 protocols 
discussed in CNAP curriculum between connected devices. 
Unfortunately, there exists no similar commercially-
available and cheap solution for WAN links. This is why 
we decided to develop a series of our own devices for 
WAN port automatic interconnection. The basic ideas, 
architectures and experiences with these devices will be 
discussed in the following article. 
 

 
2. THE FIRST GENERATION CROSSCONNECTS 

 
All WAN port crossconnect prototypes we finished and use 
up to now have the similar philosophy (fig. 1). All network 
devices’ WAN ports are connected to interfaces of a single 
crossconnect which can be configured to interconnect 
arbitrary pairs of connected ports. The configuration is 
accomplished via RS-232 console port using a simple “IOS-
style” command line interface (CLI) available to instructor 
or lab administrator or possibly directly to students. As in 
Cisco IOS, command completion, command abbreviations 
and context-based help system were implemented. The 
configuration is maintained in RAM but may be also stored 
into internal flash memory so that it can be loaded 
automatically when the crossconnect device is powered on.  
The device is controlled by Atmel 8051ED2 microprocessor 
which acts as a CLI  command interpreter and configures 
switching array according to user’s requirements. The CLI 
allows instructors or other authorized person just to 
Cut&Paste one of the previously prepared topology 
configurations into the crossconnect using HyperTerminal, 
Minicom or similar terminal emulator program. 
In some cases, it is useful to be able to control the 
crossconnect not only by directly connected RS-232 
terminal, but also remotely via intranet or Internet. It allows 
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us to share access to the crossconnect’s control port by 
multiple users. In this way students may modify 
crossconnect configuration by themselves using connection 
over laboratory LAN, which is useful especially during 
unattended practicing of groups of CNAP students. Our 
solution for RS-232 to TCP conversion was to use relatively 
cheap commercially-available modules, in this case Charon 
II [5] for mutual RS232 to Ethernet conversion and Sollae 
EZL80c [4] for RS-232 to WiFi (802.11b) conversion, as 
can be seen at fig. 1. Our current aim is to extend function 
of Charon II module by a simple proxy authentication 
capability, which will authenticate the user before giving 
him/her an access to the crossconnect’s control port. The 
Web-based GUI to isolate user from crossconnect’s text-
based configuration language might be also implemented 
into Charon II module quite easily. 
 

 
 

Fig. 1. Basic Crossconnect Philosophy 
 
 As will be described in detail later, we subsequently tested 
and implemented various approaches for actual signal 
switching, but the substantial part of controlling software 
has always been reused in the individual prototype devices. 
 
 

2.1  WAN INTERFACE TYPE SELECTION 
 

One of the main issues of crossconnect design was a 
selection of physical WAN interface type our device should 
support. Since we use our crossconect primarily to 
interconnect WAN ports of Cisco routers which can provide 
multiple physical interfaces and let the user to choose the 
required one only by usage of an appropriate WAN cable, 
we could choose from ITU-T X.21, ITU-T V.35, EIA/TIA 
RS-232 and EIA/TIA RS-499 (all synchronous). Since we 
wanted to limit a number of signals to switch and also take 
the interface’s connector availability into account, we chose 

to use RS-232 because it doesn’t use symmetrical signals 
neither for data nor control and it’s CANNON DB-25 
connector is cheap and easily available. The Cisco 
DB60/SmartSerial to RS232 DTE cables are also typically 
much more cheaper than other WAN cable types. Since we 
use “null modem” interconnection we need only to switch 
RxD and TxD signals and provide clock signals, as will be 
discussed later. 
Another important issue we had to solve was the problem of 
clocking. In reality, routers at both sides of the leased line 
provided by telco act as DTEs and are connected with 
synchronous modems using „DTE cable“. Clocking signal 
for both routers is provided by respective modem. Since it 
is inefficient to have so many modems in the laboratory,  
most people commonly connect WAN interfaces of Cisco 
routers directly, using a pair of two different cables for 
DCE and DTE side. The router connected with a “DCE” 
cable provides clocking for both directions of the 
communication if instructed to do so by an IOS command. 
It means that for that type of direct interconnection we are 
only able to connect a pair of interfaces if one interface is 
connected with a DCE cable and another one with a DTE 
cable. So we have a problem with cable type to use between 
router’s WAN port and crossconnect port if we want to be 
able to connect arbitrary pairs of connected WAN ports by 
the crossconnect. 
To allow our crossconnect to connect arbitrary pair of 
WAN ports, we decided to take completely different 
approach, which much more resembles the real usage of 
leased WAN links. All WAN ports are connected to the 
crossconnect using DTE cables and the crossconnect itself 
provides clocking for all devices, exactly as would a 
modem at the end of leased line do. In the newer prototype, 
we are even able to set various clock rates for individual 
pairs of connected ports. From the student’s perspective, the 
crossconnect may be viewed as a telco cloud which 
provides leased line services including clocking and he/she 
does not have to take care about clocking at all a the router 
side. 
 
 

2.2 THE ANALOG CROSSCONNECT 
 
The very first version of our crossconnect (called ASSSK-
1) was developed by David Seidl in his MSc. thesis [1]. The 
general aim of the thesis assignment was to develop a 
crossconnect based on analog switch array core suitable for 
connecting of signals of various networking technologies.  
Individual WAN ports are attached to the switching core via 
interface modules, which adapts various electrical 
interfaces’ signals to the voltage range suitable for the 
switching core.  The device (fig. 2) may accomodate up to 
16 modules. 
The switching core is composed of two Zarlink MT8816 
analog switch array integrated circuits [6], which together 
from a 16 x 16 matrix. The matrix allows to connect each of 
16 TxD signals to any of 16 RxD signals, so that arbitrary 8 
pairs of modules may be connected together. It is even 
possible to loopback any interface for testing purposes. 
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Various interface modules may be developed to switch 
signals of individual interface types. The only limitation is 
the frequency range of the used switching array (30MHz). 
 

 
 

Fig. 2. ASSSK-1: The Analog Crossconnect 
 
That range proved sufficient for 10BaseT Ethernet and 
synchronous RS-232 up to 2 Mbps during our extensive 
testing. We developed a double-interface modules, which 
allows to connect either RS-232 WAN port or 10BaseT 
Ethernet. Because of different electrical characteristics and 
processing of RS-232 and Ethernet signals, it proved most 
effective to use a small mechanical relay to choose which of 
the two interfaces available at the module will be really 
connected to the switching core. The reachable bitrate of 
switched serial WAN interfaces is somewhat limited by RS-
232 to TTL convertors (the capacitor-based charge pump 
used to create ±12V for RS-232 interface), but we currently 
plan to provide external 12V DC supply to avoid this 
problem. 

The block diagram of the ASSSK-1 device is depicted at 
fig. 3. The Control Processor interacts with user using CLI 
and configures analog switching array accordingly. We 
decided to use separate microprocessor (the Clock  
Processor) to provide clocking for individual WAN lines. 

 

 
 

Fig. 3. ASSSK-1 Block Diagram 
 
To support potential future extensions, we decided to 
provide I2C bus implemented by ATMEL microprocessor 
for the usage at the interface modules. It means that various 

I2C-enabled devices may be attached the similar way as 
interface modules and accessed from the control 
microprocessor. Currently we assess the attachment of 
external Flash memory to let instructors to store multiple 
pre-defined interconnection configurations and easily 
choose one of them when a need to change topology arises 
during laboratory work. By implementation of a simple user 
interface consisting from a numeric keyboard and LCD 
display, we also plan to provide a mechanism to let the 
instructor change configurations very quickly and 
efficiently without an external control terminal (most 
probably PC). 
The cost of electrical components and other material to 
produce the ASSSK-1 crossconnect was about 12 thousands 
CZK. 

 
2.3  FPGA-BASED CROSSCONNECT 

 
After a period of usage of ASSSK-1, we decided to 
redesign an architecture based on the experience with the 
original prototype. Switching of Ethernet ports proved 
inefficient, because we need to switch faster interfaces than 
10BaseT today, which is not possible because of frequency 
limitation of the used analog switch array. This is why we 
decided to concentrate on WAN interface switching in the 
future hardware development and interconnect Ethernet 
ports using standard VLAN-aware 10/100/1000 Ethernet 
switches and VLAN/802.1q tunnelling approach, as 
mentioned above. 
The main aims of the new crossconnect version was to 
make the device more replicable and compact, decrease it’s 
production cost and increase flexibility.  It also turned out 
unnecessary to be able to switch various WAN physical 
interface types, since RS-232 proved most efficient during 
usage period of the ASSSK-1. This is why we abandoned 
the modular architecture and decided to implement interface 
circuitry on the baseboard instead of on modules. We also 
used FPGA technology and VHDL to implement the device 
much more efficiently. The most important change is that 
the FPGA-based switching core is now fully digital.  Except 
the switching function, the FPGA circuit also provides 
clocking for individual ports, based on the frequencies pre-
set to it’s configuration registers by control microprocessor. 
This way we can easily simulate WAN links of various 
speeds which is necessary in many labs and case studies of 
CNAP courses, especially CCNP1 and CCNP2. 

Control Procesor 
ATMEL AT89C51ED2 

Controlling 
Device 

Switching 
Array 

MT8816 

TTL<>RS232 
convertor 

Laboratory 
Device #1 

Laboratory 
Device #16

TXD, RXD signals 

Clock Procesor 
ATMEL AT89C51ED2 

TTL<>RS232 
convertor 

TTL<>RS232 
convertor 

CLI 

CLOCK signal 

 

The prototype (fig. 4) was developed by Petr Sedlar in his 
master thesis [3], produced and successfully tested. Much 
higher bitrates are reachable with digital switching matrix 
than with the previous analog one. Up to twenty interfaces 
may be made available at the chassis. This allows us to 
interconnect up to 10 2-WAN-port routers, which is more 
than enough for a single CCNP bundle. In real teaching, the 
experience shows that it is often better to use the 
crossconnect to switch ports of multiple smaller and 
independent lab pods. The FPGA-based crossconnect is 
very easy to modify because of it’s capability of in-system 
reprogramming of both Atmel control microprocessor and 
FPGA core.  The block diagram of the FPGA-based device 
called ASSSK2 is depicted at fig. 5. 
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Because of implementation of interface circuitry on the 
baseboard instead on interface modules in ASSSK-2, the 
number of mechanical contacts was reduced considerably 
 

 
 

Fig. 4. ASSSK-2 
 
 

 
 

Fig. 5. ASSSK-2 Block Diagram 
 
so the new crossconnect is not only cheaper and more 
compact, but also more reliable. It is important in particular 
in case of lab pods accessible for CNAP students remotely 
all the day without any instructor attendance. The material 
expenses to construct ASSSK-2 are about 8 thousands 
CZK. 
 

In the future, we intent to integrate the whole logic (i.e. the 
switching array and control processor) into the more 
advanced type of FPGA integrated circuit. We expect that it 
will further decrease the cost, improve reliability and extend 
the flexibility of the crossconnect. 
 
 

3. PASSING TRAFFIC BETWEEN MULTIPLE 
CROSSCONNECTS 

 
The limitation of first generation of our crossconnect 
solutions was that there was no possibility to switch traffic 
across multiple crossconnect instances. Although there is 16 
or 20 ports at the available models, the scalability is 
somewhat limited because even if we produce multiple 
crossconnect instances, we are only able to connect WAN 
ports of network devices connected to the same 
crossconnect. This is why we searched for solutions how  to 

let traffic pass across multiple crossconects connected 
together.  

The first idea was just to reserve some number of standard 
crossconnect ports for interconnetions between 
crossconnects. Unfortunately, this solution would be rather 
inefficient because 4 ports in total would have to be 
consumed for a single interconnection of two WAN ports 
connected to a pair of different crossconnects. It would be 
even more in case of a longer chain of crossconnects linked 
together. A non-trivial issue of clock synchronization 
between multiple crossconnect devices would have to be 
solved also. Although it is of course possible to connect 
crossconnects into more efficient hierarchical structures 
than a simple chain, we decided to take completely different 
approach. 

The solution for passing traffic between multiple 
crossconnects we are working on now was influenced by a 
need to pass traffic between crossconnects located at 
various, physically distant sites. This requirement first 
appeared during our Distributed Virtual Laboratory 
development ([7]), but we also found useful to be able to 
connect together laboratory equipment located in multiple 
networking laboratories for some laboratory tasks, like 
CNAP final exams. The general idea is not just to 
interconnect physical signals, but read the content of passed 
PPP/HDLC frames, encapsulate them and tunnel over 
intranet or even Internet. Frames are decapsulated at the 
receiving side and sent out of the particular serial port to the 
WAN interface of the network device they are destined to. 
This approach scales well because the interconnections 
between individual crossconnects forms a logical full mesh 
and in case of sufficient capacity of the underlying 
LAN/WAN the number of interconnections of network 
devices connected to different crossconnects is potentially 
unlimited. We denote solutions adhering the approach 
described above as a second-generation crossconnects. 

Microprocessor 
ATMEL AT89C51ED2 

Controlling 
Device 
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TTL<>RS232 
convertor 
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3.1. LINUX-BASED CROSSCONNECT 
 
The simplest way to implement handling of HDLC/PPP 
frames and passing them between multiple switching 
devices is to use software-based approach. We decided to 
utilize PC with Linux for that purpose. The architecture we 
are now experimenting with is described at fig. 6. The PC is 
equipped with multiport synchronous serial card, which 
allows to connect WAN interfaces of network devices to be 
interconnected. We investigate now how standard Linux 
PPP/HDLC drivers could be used to allow a switching 
software developed for that purpose to switch PPP/HDLC 
frames between logical ppp/hdlc interfaces. The switching 
software will also be able to tunnel frames between multiple 
crossconnect PCs in UDP datagrams, so that we will be able 
to create virtual WAN links over campus LAN or the 
Internet. The remote configuration using Telnet is planned 
in the first prototype. We denote the above mentioned 
Linux-based crossconnect architecture as ASSSK-3. 
The only serious limitation of this approach we encountered 
up to now is that commercially available synchronous serial 
cards are both costly and typically do not provide more than 
two ports. For this reason, we started to work on our own 
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FPGA-based card with a higher port density (8 ports as a 
minimum).  
 

 
 

Fig. 6 –ASSSK3: The Linux-based Crossconnect 
 
 

3.2. EXTENSION OF FPGA-BASED 
CROSSCONNECT 

 
Another possible approach we are assessing now for 
processing of PPP/HDLC frames and tunnelling them 
across the Ethernet is to integrate frame processing 
intelligence into the current FPGA-based crossconnect 
(ASSSK-2). The frame separation logic capable of 
recognizing frame flags and handling bit stuffing seems to 
be relatively simple to integrate into FPGA. We plan to use 
some commercially-available embedded module for 
synchronous serial to Ethernet conversion in the prototype, 
such as above-mentioned Charon II module. The frame 
separation logic could be also implemented at this module if 
the processing power will suffice. The general idea is to 
reserve a couple of ports of FPGA-based switch array 
(denoted as internal ports) and connect them internally to 
the serial-port side of the serial-to-Ethernet conversion 
modules. The way how the modules will handle frames 
incoming from switch array and Ethernet interface will be 
programmed to the modules by crossconnect’s control 
processor. In fact, only destination/source MAC (or IP) 
address to internal switching array port mapping will have 
to be configured. The FPGA switch array will then switch 
frames coming from another crossconnects through 
Ethernet LAN and Ethernet-to-serial module to it’s internal 
port the same way as if it came from the regular port. 
Multiple serial-to-Ethernet convertors can be integrated 
together to limit the size and cost of the construction or a 
more-powerful convertor capable of handling multiple 
serial ports could be utilized. The architecture proposal is 
depicted at fig. 7. Although the number of ports that can be 
tunnelled via Ethernet is limited by a number of 
implemented internal ports in this approach, it requires 
relatively minor changes in the current ASSSK-2 
crossconnect design. Except of the integration of convertor 
modules, only some changes in the control software will be 
required. We also expect that the controlling RS-232 
console will be converted to Ethernet so that we will be able 

to control multiple crossconnects from a single control 
entity, which is useful for centralized creation of distributed 
virtual WAN topologies for education purposes. 
 

 
 

Fig. 7 – Basic Idea of Extension of ASSSK-2 for Frame 
Tunelling 

 
 

4. FULLY DISTRIBUTED CROSSCONNECT 
ARCHITECTURE 

 
As a natural extension of the above mentioned 
architectures, we proposed a fully-distributed crossconnect 
architecture, which we believe to be more flexible and 
cheaper in the practise, particulary for creation of virtual 
topologies built from equipment scattered in multiple rooms 
of the campus of even multiple LCNAs. 
The architecture is based on a big number of small remotely 
configurable bidirectional synchronous serial  to Ethernet 
convertors (fig. 8). These convertors are connected to 
individual WAN ports of network devices (one convertor 
may potentially handle more than one WAN port). Every 
convertor may be programmed remotely to which address it 
has to tunnel PPP/HDLC frames coming from the serial 
port.  Ethernet ports from the convertors connected to WAN 
ports of network devices at the lab site will be connected 
together via standard Ethernet switch. Multiple independent 
lab sites may be connected together via Internet. The 
architecture requires a controller entity which will create 
and upload configurations into individual convertors based 
on the required virtual topology. The convertor modules 
may be built to provide clocking (i.e. behave as DCE) or to 
accept clock from the router, so the direct serial 
interconnection can be completely simulated. We can also 
pass additional information between modules, such as 
physical layer up/down state of the respective serial 
interface. 
It is expected that there will be some troubles with passing 
traffic through firewalls of individual lab sites, so we plan 
to include proxy capability into convertor modules so that 
only a limited number of conduits will have to be 
configured at firewalls.  
As depicted on fig. 8, our effort is to build a serial-to-
Ethernet modules in such a way so that they can also just 
pass the serial interface signals through. It will allow to 
have these convertors connected to WAN ports of network 
devices permanently, so that students will be able to 
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connect network devices physically during laboratory work. 
At the same time, we will be also able to connect topology 
automatically if necessary. The positive side effect of that 
solution is that serial ports on the routers will be protected 
from mechanical damage by relatively cheap convertor 
modules. 
The described approach will also allow to tunnel traffic 
between Ethernet ports of network devices the similar way 
as for serial lines, so that we will be able to automatically 
connect the complete topology with the single technology. 
The only difference will be the interface type at the router’s 
side of the convertor modules. 
The experimental prototype of serial-to-Ethernet modules 
are just being constructed using commercially-available 
Charon module. 
 

 
 

Fig. 8 – The Fully Distributed Crossconnect 
 
 

4. CONCLUSION 
 

In the article, we presented a couple of architectures and 
hardware device prototypes for automation of WAN 
topology interconnection.  Lot of approaches presented here 
proved useful to make practical education in CNAP 
laboratories more efficient, to support integration of 
equipment of multiple laboratories and allow remote 
laboratory access for the purpose of distant learning. Some 
of the technologies presented here also form a technological 
basis of the Distributed Virtual Laboratory [7] developed at 
our university and piloted in cooperation with Silesian 
University of Opava with support of Czech Educational 
Scientific Network (CESNET), who provided funds to let 
LCNAs specialize on particular advanced technologies. 
This way we can share equipment between LCNAs and 
create high-quality CNAP virtual lab pod, particularly for 
CNAP security courses. 

We also believe that the proposed technologies which 
promise to connect laboratory topologies both directly and 
remotely at the same time will make the lab device usage 
more efficient, since it will be no longer needed to maintain 
separate lab pods for direct and remote access. 
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