
VIRTLAB Project

Virtual Networking Laboratory

VSB-Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science

Department of Computer Science
Regional Cisco Networking Academy

Project Leader: Petr Grygárek

Pedagogical Goals
Give students more opportunity to exercise and
make their own experiments with networking
laboratory equipment

laboratory is occupied in working hours

Allow distant-learning students to do practice
laboratory exercises
Utilize costly laboratory devices more efficiently

allow remote access during non-working hours

Share special and/or expensive devices between
universities

Why Not to Use Commercial Solutions for
Infrastructure Technology ?

Remote access solutions using hardware-based terminal servers
were implemented by many universities

expensive
provides little flexibility - low potential for advanced feature
implementation (e.g. tutor support)
often lacks access management system at all

Software like Netlab requires costly periodic license renewal and
can not by extended to implement features user-specific required
We wanted to develop task-based, multiple-site variable-topology
solution
We aimed to avoid Adtran-like devices

expensive, non-extensible, closed architecture, sometimes
behaves poorly

We wish to keep academic nature of the project
gain knowledge from developing and researching our own
architecture

The Original Single-Site
Architecture

The Original Idea and Architecture

Basic Goals
Make consoles of lab devices accessible
remotely
Create access management system to
securely share devices among students
Provide a set of tutor-defined tasks

students commonly don’t know what exactly they
could to experiment with

Be able to handle various network topologies
fixed topology common for all tasks proved
limiting

Implementation Platform

Open-source technologies
Apache+PHP, ANSI C/C++, MySQL, XML, Java
applets

Server side runs on Linux
Transfer to other platforms possible, but not
expected

On the client side, only standard WWW
browser is required

Java applet support is needed (Java 1.4)

Access Management System

Original Access Management
System Philosophy

Task-oriented device access
Task defined by objectives, devices the student may
access and network device interconnection topology
Particular tasks are offered to students in timeslots
chosen by administrator using electronic notice-board

Division of time into timeslots advantageous if task topologies
are different and have to be connected manually

Students may reserve timeslots to solve particular tasks
up to student’s weekly quota

Tasks
Student may choose from extensible set of task
created by tutors
Special case of task: student may define his/her
own topology
Task completely described using XML/HTML

objectives may include not only text and topology
picture but also additional multimedia elements

Multiple students may cooperate on task solution
Task solutions (correct configuration files) may
be made available to students

Roles of Access Management
System Users

Task Creator (commonly instructor)
Task Scheduler
Student
System Administrator

administers user, devices, adjusts system parameters

Tutor

An user may have multiple roles simultaneously.

Task Creator Role
Creates, edits and deletes tasks

1. using Web form
2. offline creation and insertion of archive with

prescribed contents
HTML pages + XML-based description

tasks may be organized using user-definable
category system

Task Creation - Screenshot

Task Scheduler Role
Defines which task is accessible in particular
timeslot
Task schedule is available to students on
electronic notice-board

Students may reserve particular timeslots
Time divided to fixed-size timeslots (45 mins)

Task Scheduling - Screenshot

Student Role

Reserves timeslots offered using electronic
notice-board for himself/herself

may also lists colleagues who he/she wants to
solve the task with him/her

Can access devices’ consoles of reserved
task in his/her timeslot using Java applet
running in his/her WWW browser

Remote Device Access - Screenshot

Java Applet Access Client
Launched by access management system in
student’s browser for each remotely-accessed
device in separate window
Provides access to laboratory device’s console and
additional functions

Allow student alternately connect and disconnect to the
console to let multiple students share single device

Single student holds the console at each instant
student is informed who holds the device at current instant

Disconnection warnings before timeslot ending
Protects from entering prohibited commands

(defined by system administrator)
Allows input/output capture to local file system
Allows cut&paste insertion of commands into console
Informs that tutor started/stopped to access the same
device and optionally displays tutor’s activity

Tutor Role

Tutor can access console of any laboratory
device anytime

Demonstration mode – student can see what tutor
does
Hidden mode – student only knows that tutor took
over his/her console

used for student examination purposes

Future plan: tutor can passively watch
student’s activities at any laboratory device

Automatic Topology
Interconnection System

Device Topology Interconnection

Before task is made accessible to student(s),
required topology has to be interconnected
We use our own “Virtual Crossconnect”

integrates various switching elements
Topology may be also physically connected
by dedicated person informed to do so via
email generated by access management
system

but it is proved unacceptable for real operation
and will be abandoned in the future

Position of Virtual Crossconnect
in the System Architecture

Why “Virtual” Crossconnect ?
Implemented using various and multiple
physical switching elements

ASSSK1, Cisco Catalyst 3500, Catalyst 1900, …
Treated like single entity (“virtual
crossconnect”) by other parts of system
All LAN/WAN ports of laboratory devices
connected to Virtual Crossconnect ports
Required topology description is
completely independent of types of
actually used switching elements

Virtual Crossconnect
Switching technologies

Serial Ports – our own microprocessor-
controlled analog crossbar implementation

Current model called ASSSK-1
New FPGA-based model under development

Ethernet Ports
VLAN-based interconnection between L3 devices
VLAN-tunneling (802.1 QinQ) between switches

allows interconnection of trunk links
transparent to Spanning Tree and other L2 control
protocols

Currently Used Virtual
Crossconnect Switching Elements

ASSSK-1 (developed by us)

Cisco Catalyst 3550
(supports VLAN tunneling

and L2 protocol transparency)

Cisco Catalyst 1900
(cheap solution)

… possibly other switching elements
in the future

ASSK-1 Switching Element

Modular design
16 Serial/Ethernet ports
Serial ports behave like DCE
Controlled using IOS-style CLI

Virtual Crossconnect Components
in Action

Reserved Tasks

time

Generation of Configurations
for Virtual Crossconnect Switching
Elements

Description of static interconnection of LAN/WAN
lab device ports to virtual crossconnect ports

Task 1

Topology 1
Description

Task N

Virtual
Crossconnect
Configuration

generator

T1 T2T0

…

Configuration
files Element 1

Element M

…

Topology N
Description

Virtual Crossconnect - Future plans
ASSSK-1

Various clockrates on serial lines
WAN links flapping simulation to let students get experience with
real-word WAN troubleshooting

ASSSK-2 (under construction now)
Redesign of ASSSK1 using FPGA

smaller, cheaper
Only for serial ports inteconnection

for Ethernet ports, VLAN-tunneling using standard switches proved more
efficient

ASSSK-3 (under investigation)
serial-port crossconnect implementation based on multiport serial
card for PC, Linux HDLC/PPP drivers and bridging software

Enhancement of element configuration generator scripts
implement semantic checks of topology definition provided by
student who requests his/her own topology

Incorporation of Simulated
Network Devices

considered

What Simulated Devices
do we Use ?

Stations running Linux
full user control using text console as with console-
controlled network devices
fast, efficient, deterministic and reliable networking
configuration

Simulated Cisco 7200-series routers
Implemented using open-source
DynaMIPS/DynaGEN project
Flexible platform to test advanced routing features

Reasons to Incorporate User
Stations into Lab Topologies

User stations often necessary to test
functionality of task solution
Stations may serve to run various network
services and/or practice configuration of these
services

DHCP, DNS, Syslog, RADIUS, TACACS, …

Servers needed to run applications to tests
access lists configuration

WWW, FTP, Telnet, SSH, …

Advantages of Simulated
Devices

It is ineffective to use multiple physical PCs
Physical space requirements, energy consumption,
complicated installation/administration
No processor or memory intensive application are expected
to be ran

Some virtualization mechanism proved to be useful
User-Mode Linux (UML) used currently, usage of XEN
considered

Simulated Ethernet interfaces connected to virtual
crossconnect using VLANs

Virtual crossconnect architecture was generalized to be able to
interconnect devices residing on fixed VLANs with real or other
simulated devices

Integration of Simulated Devices
with Virtual Crossconnect

Today’s Functional Single-Site
Implementation

How We Started:
The Very First Virtlab Implementation

Today’s Virtlab
Two 45U racks incorporating

Access Management System Server
(Virtlab Server)

Virtual Crossconnect
UML server
DynaMIPS server
C2500/2600/4000 routers
C1900 switches
C2500 switches
C5500 switch with RSM

Today’s Virtlab Internal Architecture

System Security
Web interface – uses HTTPS

users authenticated using passwords stored in database or
through LDAP

Console access
One-time password authentication
Digitally-signed applet

Access via firewalls taken into account
single fixed TCP used for console access

Extensive logging of user’s activity
Access reservation system logins
Console access

Architecture Extension

Dynamic Mapping of Network
Devices used for Particular

Reserved Tasks

(Current Work)

The General Idea (1)
Fixed-length and fixed-beginnings timeslots
proved inefficient

Students are not interested in some scheduled tasks
but there is a contention for timeslots with other more
interesting tasks

Since we are able to interconnect topologies
automatically, it is better to let students choose
ANY task at ANY timeslot

fixed timeslots abandoned, student may reserve any
time interval up to his/her weekly quota

Task scheduler role no longer needed
notice-board used only to remember what task was
reserved for what time interval

The General Idea (2)
To utilize virtual laboratory equipment efficiently,
it is useful to let multiple tasks be reserved in
parallel if there is enough network devices
To let multiple tasks be reserved in parallel
without unnecessary limitations and device
conflicts, it is needed to decouple task definitions
from physical device identities
Physical devices used for task are chosen
dynamically with respect to other devices used
at the same time

Problem of Task Definition
Coupled with Physical Device
Identities

Dynamic Mapping of Task to Physical
Devices During Task Reservation
Procedure

Function of Dynamic Device
Mapping

Mapping takes place when student reserves
task for particular time interval for
himself/herself
Network device types, numbers of interfaces
and other features have to be taken into
account
Multiple tasks may be mapped in parallel

feasibility determined during mapping process at
reservation time

Distributed Multiple-Site
Architecture

(Current Work)

Multiple-Site Architecture
Basic Paradigm

Multiple cooperating sites may share laboratory devices
transparently

Constraints to offer site’s lab devices for other sites may be
specified
Local mappings are preferred to limit inter-site traffic

Fully-decentralized architecture allows independent
operation of individual sites if other sites become
unavailable
Distributed nature is hidden to student

he/she accesses device consoles the same way regardless of
physical target device placement
virtual topology between devices of multiple sites behaves the
same way as single-site topology

Distributed virtual topologies

Technologies Used to Create
Distributed Topologies

Distributed virtual topologies may be constructed
using Internet tunnels

Tunneling of Ethernet links is implemented now
We are also working on HW/SW solution to tunnel
serial (WAN) links

Layer 2 frames tunneling allows transparent
operation of multiple layer 3 protocols

Extensions Proposed to
Implement Distributed Topologies

Virtual Crossconnect concept was
generalized to support multiple-site
topologies
Tunnel Servers allow to extend VLAN-based
crossconnections over Internet tunnels
between sites (802.1q in UDP)
Virtual Crossconnect is now treated as set of
Virtual Crossconnect Segments in individual
sites which form single Distributed Virtual
Crossconnect

Multiple-Site Architecture Basic
Components

Function of Control
Components

Virtlab Server
Provides access management system GUI, console access
GUI and device mapping algorithm

Reservation Server
Keeps track of site devices’ reservations

Configuration Server
accepts distributed virtual crossconnect configuration
requests

Console Server
allows access to consoles of sites’ devices

Tunnel Server
Tunnels traffic between devices in different sites

Interaction of System Components

Advantages of Multiple-Site
Architecture

Multiple cooperating teaching/research
institutions are able to
implement large WAN topologies using
devices of multiple participant sites

behavior of real-word topologies may be studied
specialize to buy expensive special devices
and share them with others

Development Team
Virtlab system is developed by MSc. and Ph.D.

students at Department of Computer Science under
supervision of Petr Grygarek, teacher of networking:

Pavel Nemec
Roman Kubin
David Seidl
Martin Milata
Jan Vavricek
Tomas Hrabalek
Tomas Kucera
Petr Sedlar
… and others

Current Status and Planned
Development

See http://www.cs.vsb.cz/vl-wiki

	VIRTLAB Project ��Virtual Networking Laboratory�
	Pedagogical Goals
	Why Not to Use Commercial Solutions for Infrastructure Technology ?
	The Original Single-Site Architecture
	The Original Idea and Architecture
	Basic Goals
	Implementation Platform
	Access Management System
	Original Access Management System Philosophy
	Tasks
	Roles of Access Management System Users
	Task Creator Role
	Task Creation - Screenshot
	Task Scheduler Role
	Task Scheduling - Screenshot
	Student Role
	Remote Device Access - Screenshot
	Java Applet Access Client
	Tutor Role
	Automatic Topology Interconnection System
	Device Topology Interconnection
	Position of Virtual Crossconnect in the System Architecture
	Why “Virtual” Crossconnect ?
	Virtual Crossconnect Switching technologies
	Currently Used Virtual Crossconnect Switching Elements
	ASSK-1 Switching Element
	Virtual Crossconnect Components�in Action
	Generation of Configurations �for Virtual Crossconnect Switching Elements
	Virtual Crossconnect - Future plans
	Incorporation of Simulated Network Devices
	What Simulated Devices �do we Use ?
	Reasons to Incorporate User Stations into Lab Topologies
	Advantages of Simulated Devices
	Integration of Simulated Devices with Virtual Crossconnect
	Today’s Functional Single-Site Implementation
	How We Started:�The Very First Virtlab Implementation
	Today’s Virtlab
	Today’s Virtlab Internal Architecture
	System Security
	Architecture Extension��Dynamic Mapping of Network Devices used for Particular Reserved Tasks��(Current Work)
	The General Idea (1)
	The General Idea (2)
	Problem of Task Definition Coupled with Physical Device Identities
	Dynamic Mapping of Task to Physical Devices During Task Reservation Procedure
	Function of Dynamic Device Mapping
	Distributed Multiple-Site Architecture�� (Current Work)
	Multiple-Site Architecture Basic Paradigm
	Distributed virtual topologies
	Technologies Used to Create Distributed Topologies
	Extensions Proposed to Implement Distributed Topologies
	Multiple-Site Architecture Basic Components
	Function of Control Components
	Interaction of System Components
	Advantages of Multiple-Site Architecture
	Development Team
	Current Status and Planned Development

