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Abstract. In this article we present our implementation of an advanced task-based fully distributed 
virtual network laboratory management system which supports on-demand variable topologies built 
from laboratory devices located at multiple sites connected via Internet. Each site can act as  an 
independent virtual labortory or share its’ equipment with others. Available laboratory devices 
suitable for distributed virtual topology are searched dynamically when the task reservation is being 
requested, so that multiple topologies can be reserved in parallel. The distributed nature of the 
resulting system is completely hidden to the user. The architecture incorporates both hardware and 
software components and is completely based on open-source technologies. 
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1.  INTRODUCTION 
 

The practical work with networking devices is a necessary 
part of every networking course focused on developing real 
knowledge of computer network building and maintenance. 
For that reason, institutions providing education on 
computer networking field effort to build well-equipped 
networking laboratories and provide as much time as 
possible for students to access laboratory devices. 
Unfortunatelly, professional-level networking devices are 
often very expensive and cannot be made available to 
public access without supervision. On the other hand, the 
laboratory is most often idle during work-off hours, which 
makes investment to laboratory equipment inefficient. 
 
For these reasons, we decided to implement a system called 
Virtlab, which allows to access laboratory equipment 
remotely via Internet. The architecture and experiences with 
our system will be described in the following article. 
 
 

2.  THE BRIEF HISTORY OF VIRTLAB PROJECT 
 
Our work started three years ago. We decided to build the 
whole system using open-source technologies only, which 
promised to limit implementation cost considerably. The 
very first goal was to implement remote access to laboratory 
devices’  consoles and appropriate web-based reservation 
system [1][3][4], as shown on figure 1. On the client side, 
we use standard Web browser with Java applets support to 
provide of terminal windows which simulate physical 
terminals connected to individual networking devices’ 
consoles. Linux, PHP, MySQL, C and Java technologies 
were and still are used as a technical platform. 
 
The original reservation system was designed so that we 
were able to offer particular tasks for reservations at 

individual fixed-length timeslots. Our primary goal was not 
just to make devices’ consoles accessible remotely in 
reserved timeslot, but to provide a set of meaningful tasks 
prepared by experienced networking teachers, which will 
direct students to particular topic they can experiment with. 
The decision of establishment of task-oriented learning 
system resulted from our previous experience that without  
a such guidance, students commonly don’t have an idea 
what they could try to do with the laboratory equipment.  
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Fig. 1.  The Basic Remote Access Architecture 

 
From the beginning, we understood that it will be necessary 
to provide tasks with various topologies. Our first idea, that 
we will connect some topology manually, provide a set of 
continuous timeslots to access tasks on that topology and 
then change the topology to another, proved very unrealistic 
to manage. This is why we soon developed a concept of 
Virtual Crossconnect which allows us to connect required 
topologies automatically (fig. 2).  
 
 

 1



Laboratory devices

P1 P2 P5

C1900-2 C3560-1 C3560-2

P3 P4

C1900-1
T TT T

VLAN interconnection VLAN tunnel 
interconnection

Simulated Devices

Server to simulate devices
(UML/XEN, DynaMIPS, … )

T

VLAN 1,2,3
(connections to virtual NICs 
of simulated devices)

Console Server
(TCP<->CONSOLE,

TCP<->TCP)

Internet

Console access to 
simulated stations

(TCP)

P7 P8P6

STUDENT
(WWW Browser, applet)

ASSSK-1 (16 ports) ASSSK-2 (16 ports) ...

electrical interconnections
10BaseT
100BaseT (802.1q trunk)
Synchronous RS-232

Virtual 
Crossconnect

802.1q NIC

Multiport serial card
Console Access

 
 

Fig. 2. The Virtual Crossconnect 
 
The crossconnect is called virtual because it uses multiple 
crossconnect switching elements of various types to 
interconnect network devices’ ports, but behaves like single 
entity from the point of view of the rest of the system. Very 
simple language was developed to describe required 
topologies. Those descriptions are stored together with 
specifications of individual tasks. Based on the topology 
description and description of the (fixed) interconnection 
between laboratory devices’ interfaces and virtual 
crossconnect ports, we are able to generate configuration 
for every virtual crossconnect switching element and upload 
it to that element using either Ethernet or RS-232. The 
Virtual Crossconnect configuration upload is accomplished 
at the begginning of each reserved timeslot according to 
topology description required by the task to be scheduled at 
the ongoing timeslot (fig. 3). 
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Fig. 3. Generation of Configurations for Virtual 
Crossconnect Switching Elements 

 
We use VLAN-based approach and standard LAN switch to 
interconnect laboratory devices’ Ethernet ports and our own 
hardware device called ASSSK-1 [5][2] to intereconnect 
serial ports (fig. 4).  While developing the crossconnect for 
serial WAN ports, we focused on synchronous RS-232 
interface, because it requires least number of signals to be 
crossconnected. ASSSK-1 behaves as DCE, i.e. provides 
clocking for all serial ports. The core of ASSSK-1 is 
composed of the analog switch array and ATMEL 

microprocessor which accepts commands from RS-232 
controlling console and configures analog switch array 
accordingly. The command set to control the 
interconnections is very simple and inspired by IOS. The 
device is modular, so that other electrical interfaces may 
also be implemented if necessary. 
 

 
 

Fig. 4. Our Implementation of Hardware-based 
Crossconnect for Serial WAN Ports 

 
At the first implementation of ASSSK-1, we also tried to 
switch Ethernet ports, but it proved inefficient because of 
frequency limitation of available analog switch array 
circuits. Only 10BaseT ports can be switched by ASSSK-1. 
This is why we later decided to use VLAN-based 
interconnection using standard VLAN-aware 10/100/1000 
Ethernet switch. The usage of VLANs is also advantageous 
for connecting of real networking devices with simulated 
ones, as shown on figure 2. Currently, we use XEN [9] to 
simulate stations and DynaMips [10] to simulate Cisco 
7200-series routers. For interconnection of Ethernet trunk 
links, VLAN tunnelling technique [11] (also called QinQ 
sometimes) proved very useful. Using Cisco Catalyst 3500-
series switch, we reached almost complete invisibility of the 
crossconnect switching element to laboratory devices, so 
that we can operate most of layer 2 service protocols like 
STP, CDP or LACP/PAgP between those devices 
transparently. 
 
Because the implementation of Ethernet ports switching 
using LAN switch proved so efficient, we decided to 
simplify ASSSK-1 architecture so that it will only switch 
serial WAN ports. To make the device more replicable and 
decrease it’s cost we also abandoned the modular approach 
and used FPGA technology to implement it with much more 
efficiency. The FPGA-based switching core is now fully 
digital. The prototype (called ASSSK-2 [8]) is currently 
under testing and all tests appear to be successful. 
 
Another hardware device we are now working on is the 
FPGA-based multiport HDLC/PPP card for Linux-powered 
PC. Our aim is to experiment with WAN port switching 
using standard PC, which we expect to be both cheaper and 
more extensible. We started to work on tunnelling of serial 
links traffic over UDP, which allows us to create virtual 
WAN links over Internet, as will be explained later. The 
reason why we decided to develop our own HDLC/PPP 
card instead of buying the commercially available one is the 
low port density and high price of cards on the today’s 
market. 
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3. MAJOR CHANGES IN THE ORIGINAL 

ARCHITECTURE 
 
After the full implementation of virtual crossconnect, we 
realized the full power of it and we decided to change the 
overall philosophy of offering particular tasks at fixed-size 
timeslots with a schedule specified by Virtlab administrator. 
Our experience revealed that it was very difficult to guess 
how many timeslots should be each individual task made 
available for reservations. Very often nobody reserved 
timeslots in which an uninteresting task was offered, but on 
the other hand there was a contention for timeslots of 
another more interesting task. It led to suboptimal 
utilization of virtual laboratory.  
 
The implementation of Virtual Crossconnect allowed us to 
redesign the architecture completely so that it is no longer 
necessary to create weekly task schedules and place them 
on the electronic noticeboard, where students can reserve 
particular timeslot with required task [6]. Today, we have 
almost finished the new version of the reservation system, 
which allows student not only to specify arbitrary timeslot, 
but also any task he or she wants to work on during the 
reserved time. Before the reserved timeslot, the virtual 
crossconnect simply interconnects the topology for any task 
that the student required for the timeslot. 
 
The most important architecture change necessary to 
develop an efficient system of virtual laboratory usable by 
multiple students in parallel was the decoupling of logical 
network devices’ identities specified in topology 
description for particular task from physical identities of 
laboratory devices actually used to interconnect the 
topology for a particular reservation. It allowed us to 
reserve the same task multiple times in parallel, provided 
that there are enough laboratory devices with required 
capabilities to act as logical network devices prescribed in 
the task’s topology definition. In the previous architecture 
version, topology description were tightly bound to physical 
devices’ identities so that it was not possible to reserve 
multiple tasks whose specifications overlapped in physical 
devices used, as shown in fig. 5. 
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Fig. 5. Problem of Device Conflict in Case of Fixed 

Physical Devices Specification in the Task Description 
 

By decoupling of logical identities of network devices in 
the task’s topology description from physical ones, we only 
prescribe required features of individual network devices 
and their interconnection in the description of task’s logical 
topology and map logical devices to physical devices 
dynamically at the reservation time (fig. 6). The mapping is 
based on the knowledge which physical devices are 
available at the time interval required by user for the 
reservation and on further limiting constraints, such as OS 
version or feature set supported.  
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Fig. 6. Separation of Logical Task’s Topology Description 
and Physical Devices Actually Used for Reservation 

 
To implement the above mentioned principles, the original 
reservation system has been completely reworked. The new 
implementation of reservation and control system core was 
also created with regard to multilanguage environment, All 
menus and messages may be easily translated to any 
language utilizing UTF-8 charset and timezone. Each user 
may set it’s own preferred language. We are now assessing 
means how to provide taks’s specification in multiple 
languages and to present the specification to the user in the 
language according to his/her preferred language setting. 
 
 

4. THE NEW DISTRIBUTED ARCHITECTURE 
 
After a period of successful operation, we decided to extend 
our architecture out of scope of our institution. The primary 
goal was to develop a truly distributed virtual networking 
laboratory, which will allow sharing of laboratory 
equipment from multiple sites transparently and building of 
arbitrary topologies even between devices at different sites 
using Internet tunnels (fig. 7).   
 
In the new distributed architecture, we still maintain the 
task-oriented reservation philosophy. The only extension 
which came almost for free was the implementation of a 
feature which allows advanced students to specify their own 
topology they want to interconnect in the reservation time if 
no exiting task filfills their current needs.  
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Fig. 7. Virtual Topologies using Internet Tunnels 

 
We perceive the following main advantages of 
implementation of a distributed architecture: 
• Individual sites may specialize on particular networking 

technology which they will make available to all 
distributed Virtlab participants. It is very desirable for 
costly devices, which would not be used efficiently by 
limited number of users of a single site. 

• It is possible to build a large-extend simulated WAN 
environment and teach students how to operate it. This 
will allow students to develop competences required in 
real industrial environment operation. 

• Other sites may lend their devices as a spare if some 
device at any site should fail. 

 
The requirement of full laboratory device distribution 
brought two problems to solve. We need to be able to create 
interconnections of interfaces of network devices at 
different sites via Internet tunnels and we also need to 
generalize mechanism of console access to be able to access 
equipment at multiple sites seamlessly. All this stuff has to 
be completely hidden to user, so that the student just uses 
the devices without care in what site each device he or she 
uses is actually located. The virtual topology between 
devices of multiple sites has to behave the same way as a 
single-site topology. 
 
The interconnection of laboratory devices’ interfaces 
between different sites is implemented using extended 
version of Virtual Crossconnect. The original concept was 
generalized to the distributed crossconnect architecture, 
which we now call the Distributed Virtual Crosconnect 
(DVC). The Ethernet port interconnection is still VLAN-
based, but frames can be now passed between multiple 
“segments” of the DVC using UDP and our own 
implementation of tunnelling server. Currently, only 
Ethernet ports (including trunks) may be inteconnected 
between sites using the DVC, but we are working on 
solutions which will allow us to tunnel HDLC or PPP 
frames over Internet tunnels also. 
 
Concerning generalized concept of console access, our 
decision was to make users’ terminal applet first connect to 
console server of the user’s home site, which authenticates 
him or her using local authentication  infrastructure. Only 

after successful authentication, local console server proxies 
the console connection to console server of site where the 
laboratory device is physically located. There is a trust 
between virtual laboratory components at individual sites 
(see section 6), so that the target site console server justs 
permits the connection to pass in. IPSec tunnels are 
implemented to secure communication between sites, so 
that external intruders are not allowed to get into the system 
from the outside. 
 
Although the architecture is distributed in it’s nature, the 
virtual laboratory at each site may be utilized without 
dependency on other sites. We completely avoided any 
centralized entities which could create a single point of 
failure. It was also necessary to take into account political 
issues, so that administrator of laboratory at every site is 
able to specify which devices he/she is willing to lend to 
users of particular other site at given time.  
 
 

5. COMPONENTS OF DISTRIBUTED 
ARCHITECTURE 

 
The basic components of our distributed virtual laboratory 
architecture, which are present at every site, are shown on 
figure 8. The figure also shows basic interaction between 
components, as will be shortly discused later. 
At every site, interfaces of all laboratory devices are 
connected to the local segment of DVC, either physically or 
via trunk links (in case of simulated devices). The Tunnel 
Server extends the local VLANs used by DVC for 
laboratory devices’ interface interconnection across Internet 
tunnels to other sites and also bridges VLANs if it is 
necessary to interconnect simulated devices connected to 
DVC using fixed VLANs. The Console server accepts 
connections to device consoles from the user’s GUI 
(applet), authenticates them and forwards them either to 
consoles of local laboratory devices or to other sites, 
depending on the location of the target device. The local 
device’s console may be reached either by RS-232 physical 
connection (Console Server incorporates multiple MOXA 
multiport serial cards) or via another TCP connection in 
case of simulated devices listening for console connection 
at preconfigured TCP port. 
 
The Reservation Server serves in two ways. At first, it 
keeps tracks of local devices’ reservations, requested by 
users of it’s own and other sites so far. Second, the 
reservation server acts as a proxy for site’s Control Server 
(also called Virtlab Server for historical reasons) to 
negotiate reservations of devices with Reservation Servers 
of other sites. If an user wants to make distributed topology 
reservation, he/she first connects to the Web GUI of 
Control Server of the site he/she belongs to. After the task 
to be reserved and and time interval is choosen, the Control 
Server attempts to map task’s logical topology to the 
physical topology. The Control Server first requests the 
local Reservation Server to provide it a list of devices 
available at any site for the requested time interval. 
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Fig. 8. Components of Distributed Architecture Present at Every Site and their Interactions 
 
 
The Reservation Server queries Reservation Servers of 
other sites and those servers respond with a list of 
equipment which is free at required time and is allowed to 
be lent to the requesting site. After the Reservation Server 
returns the combined response to the Control Server, the 
Control Server starts a mapping algorithm to find suitable 
physical device for each logical device in the task’s logical 
topology description. If the mapping is successfull, local 
Reservation Server is requested to negotiate the reservation 
of previously offered devices with Reservation Servers of 
other sites. If the reservation was successful, the resulting 
mapping is stored into the local database at the requesting 
site. The logical topology description is converted to 
physical topology description, which takes into account 
physical identities of selected devices and is passed to the 
local Configuration Activator, which is a part of 
Reservation Server. The responsibility for creation of 
configurations for switching elements of DVC and 
uploading of these configurations to all affected switching 
elements is given to the Configuration Activator. At the 
beginning of each timeslot reserved by some local user, the 
Configuration Activator gets the physical topology 
description from the database, launches script that generates 
configuration of DVC switching elements and uploads these 
configurations to DVC segments of it’s own and other sites 
using their Configuration Servers. 
 
The Configuration Server of each site accepts topology 
configuration requests from other sites, combines them 
together and with the current configurations of DVC 
switching element’s at it’s site and uploads new 
configuration to those switching elements. As we use IOS-
powered Cisco Catalyst 3550 and ASSSK-1 with the similar 
configuration philosophy, our current switching elements 

combine previous and new configurations by themself, 
since the CLI IOS-style configuration is “incremental” by 
it’s nature. 
 
The last but not least component of the system is the 
Cleaning Server (not shown at fig. 8, which is somewhat 
simplified). This server is responsible for clearing of 
laboratory devices’ configurations before they are made 
accessible to students at the beginning of reserved timeslot. 
We also plan to use the server to upload preconfigurations 
of individual laboratory devices before beginning of some 
tasks in the future. 
 
The communication protocols between components were 
designed as text-based, HTTP-style request/reply 
transactions and are well documented. XML is used as data 
format whenever possible. This makes the whole system 
much more extensible and easier to debug. 
 
 
6.  THE SYSTEM SECURITY 
 
Based on the 2-year experience with extending and 
maintenance of previous (i.e. non-distributed) version of 
Virtlab, we decided to implement security by a strictly 
layered approach. It proved inefficient to implement and 
maintain our own security mechanisms and it also resulted 
to poor readability and clarity of source code of the core 
Virtlab mechanisms, which increased a risk of 
implementation errors. This is why we decided to 
implement only pure functionality in the first distributed 
architecture implementation stage and rely on external 
security technologies whenever possible. 
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The security paradigm is based on two principles. The first 
one is that users are authenticated at their “home” site, 
where sets of roles assigned to individual users are 
maintained to authorize their activities. Either passwords 
stored in the local database or other external authentication 
systems operated at the site (such as LDAP or RADIUS) 
may be used. The other general idea is that components of 
Virtlab installations at individual sites completely trust 
themselves. IPSec tunnels will be created between 
individual sites so that no external intruder can neither 
interact with any server at any site nor to forge traffic 
between laboratory devices passing through Internet tunnel. 
Only well-secured HTTPS-based WWW user interface and 
console server at each site is exposted to the public Internet.  
Concerning measures against potential local intruders, 
source IP/MAC address filters are planned to be 
implemented at all hosting systems so that only allowed 
communications between system components will be 
permitted. 
 
 

7. CONCLUSION 
 

The implementation of distributed architecture presented in 
the article is now almost completed. We are now entering 
the early testing stage. During summer 2007 we plan to 
establish a piloting environment between two sites – VSB-
Technical University of Ostrava and Karvina site of Silesian 
University in Opava. A part of laboratory equpment for 
piloting environment was provided by Czech Scientific and 
Educational Network (CESNET) as it’s portion of expenses 
on the project number 213/2006. The current running 
Virtlab environment can be accessed at 
http://virtlab.cs.vsb.cz.  
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