
THE FULLY DISTRIBUTED ARCHITECTURE OF VIRTUAL NETWORK
LABORATORY

5th Int. Conference on

Emerging e-learning
Technologies

and Applications

The High Tatras,
Slovakia

September 6-8, 2007

Petr Grygárek, Martin Milata, Jan Vavříček
Department of Computer Science, Faculty of Electrical Engineering and Computer Science
Technical University of Ostrava, Tř. 17. listopadu, 708 33 Ostrava, Czech Republic
Tel.: (+420) 597 323 263, Fax: (+420) 597 323 099
E-mail: petr.grygarek@vsb.cz, http://www.cs.vsb.cz/grygarek

Abstract. In this article we present our implementation of an advanced task-based fully distributed
virtual network laboratory management system which supports on-demand variable topologies built
from laboratory devices located at multiple sites connected via Internet. Each site can act as an
independent virtual labortory or share its’ equipment with others. Available laboratory devices
suitable for distributed virtual topology are searched dynamically when the task reservation is being
requested, so that multiple topologies can be reserved in parallel. The distributed nature of the
resulting system is completely hidden to the user. The architecture incorporates both hardware and
software components and is completely based on open-source technologies.

Keywords: Virtual laboratory, Communication Technologies, Distance education.

1. INTRODUCTION

The practical work with networking devices is a necessary
part of every networking course focused on developing real
knowledge of computer network building and maintenance.
For that reason, institutions providing education on
computer networking field effort to build well-equipped
networking laboratories and provide as much time as
possible for students to access laboratory devices.
Unfortunatelly, professional-level networking devices are
often very expensive and cannot be made available to
public access without supervision. On the other hand, the
laboratory is most often idle during work-off hours, which
makes investment to laboratory equipment inefficient.

For these reasons, we decided to implement a system called
Virtlab, which allows to access laboratory equipment
remotely via Internet. The architecture and experiences with
our system will be described in the following article.

2. THE BRIEF HISTORY OF VIRTLAB PROJECT

Our work started three years ago. We decided to build the
whole system using open-source technologies only, which
promised to limit implementation cost considerably. The
very first goal was to implement remote access to laboratory
devices’ consoles and appropriate web-based reservation
system [1][3][4], as shown on figure 1. On the client side,
we use standard Web browser with Java applets support to
provide of terminal windows which simulate physical
terminals connected to individual networking devices’
consoles. Linux, PHP, MySQL, C and Java technologies
were and still are used as a technical platform.

The original reservation system was designed so that we
were able to offer particular tasks for reservations at

individual fixed-length timeslots. Our primary goal was not
just to make devices’ consoles accessible remotely in
reserved timeslot, but to provide a set of meaningful tasks
prepared by experienced networking teachers, which will
direct students to particular topic they can experiment with.
The decision of establishment of task-oriented learning
system resulted from our previous experience that without
a such guidance, students commonly don’t have an idea
what they could try to do with the laboratory equipment.

In terneteth0

R BRA

R C

SW 1
C O N

CO N C O N C O N CO M 1

W W W B row ser

C onsole W indow
(applet)

R eservations,
C onsole AccessLinux server

PHP
A pache
W W W
server

M ySQ L
DB

Console
server

H TTP
(reservations)

Laboratory
devices

M ultiport seria l card

console
(TC P)

INSTRUC TO R ,
ADM INISTRATO R
(W W W Brow ser)

STUD ENT
(W W W Brow ser)

Fig. 1. The Basic Remote Access Architecture

From the beginning, we understood that it will be necessary
to provide tasks with various topologies. Our first idea, that
we will connect some topology manually, provide a set of
continuous timeslots to access tasks on that topology and
then change the topology to another, proved very unrealistic
to manage. This is why we soon developed a concept of
Virtual Crossconnect which allows us to connect required
topologies automatically (fig. 2).

 1

Laboratory devices

P1 P2 P5

C1900-2 C3560-1 C3560-2

P3 P4

C1900-1
T TT T

VLAN interconnection VLAN tunnel
interconnection

Simulated Devices

Server to simulate devices
(UML/XEN, DynaMIPS, …)

T

VLAN 1,2,3
(connections to virtual NICs
of simulated devices)

Console Server
(TCP<->CONSOLE,

TCP<->TCP)

Internet

Console access to
simulated stations

(TCP)

P7 P8P6

STUDENT
(WWW Browser, applet)

ASSSK-1 (16 ports) ASSSK-2 (16 ports) ...

electrical interconnections
10BaseT
100BaseT (802.1q trunk)
Synchronous RS-232

Virtual
Crossconnect

802.1q NIC

Multiport serial card
Console Access

Fig. 2. The Virtual Crossconnect

The crossconnect is called virtual because it uses multiple
crossconnect switching elements of various types to
interconnect network devices’ ports, but behaves like single
entity from the point of view of the rest of the system. Very
simple language was developed to describe required
topologies. Those descriptions are stored together with
specifications of individual tasks. Based on the topology
description and description of the (fixed) interconnection
between laboratory devices’ interfaces and virtual
crossconnect ports, we are able to generate configuration
for every virtual crossconnect switching element and upload
it to that element using either Ethernet or RS-232. The
Virtual Crossconnect configuration upload is accomplished
at the begginning of each reserved timeslot according to
topology description required by the task to be scheduled at
the ongoing timeslot (fig. 3).

Reserved Tasks

time

Description of static interconnection of LAN/WAN
lab device ports to virtual crossconnect ports

Task 1

Topology 1
Description

Task N

Virtual
Crossconnect
Configuration

generator

T1 T2T0

…

Configuration
files Element 1

Element M

…

Topology N
Description

Fig. 3. Generation of Configurations for Virtual
Crossconnect Switching Elements

We use VLAN-based approach and standard LAN switch to
interconnect laboratory devices’ Ethernet ports and our own
hardware device called ASSSK-1 [5][2] to intereconnect
serial ports (fig. 4). While developing the crossconnect for
serial WAN ports, we focused on synchronous RS-232
interface, because it requires least number of signals to be
crossconnected. ASSSK-1 behaves as DCE, i.e. provides
clocking for all serial ports. The core of ASSSK-1 is
composed of the analog switch array and ATMEL

microprocessor which accepts commands from RS-232
controlling console and configures analog switch array
accordingly. The command set to control the
interconnections is very simple and inspired by IOS. The
device is modular, so that other electrical interfaces may
also be implemented if necessary.

Fig. 4. Our Implementation of Hardware-based
Crossconnect for Serial WAN Ports

At the first implementation of ASSSK-1, we also tried to
switch Ethernet ports, but it proved inefficient because of
frequency limitation of available analog switch array
circuits. Only 10BaseT ports can be switched by ASSSK-1.
This is why we later decided to use VLAN-based
interconnection using standard VLAN-aware 10/100/1000
Ethernet switch. The usage of VLANs is also advantageous
for connecting of real networking devices with simulated
ones, as shown on figure 2. Currently, we use XEN [9] to
simulate stations and DynaMips [10] to simulate Cisco
7200-series routers. For interconnection of Ethernet trunk
links, VLAN tunnelling technique [11] (also called QinQ
sometimes) proved very useful. Using Cisco Catalyst 3500-
series switch, we reached almost complete invisibility of the
crossconnect switching element to laboratory devices, so
that we can operate most of layer 2 service protocols like
STP, CDP or LACP/PAgP between those devices
transparently.

Because the implementation of Ethernet ports switching
using LAN switch proved so efficient, we decided to
simplify ASSSK-1 architecture so that it will only switch
serial WAN ports. To make the device more replicable and
decrease it’s cost we also abandoned the modular approach
and used FPGA technology to implement it with much more
efficiency. The FPGA-based switching core is now fully
digital. The prototype (called ASSSK-2 [8]) is currently
under testing and all tests appear to be successful.

Another hardware device we are now working on is the
FPGA-based multiport HDLC/PPP card for Linux-powered
PC. Our aim is to experiment with WAN port switching
using standard PC, which we expect to be both cheaper and
more extensible. We started to work on tunnelling of serial
links traffic over UDP, which allows us to create virtual
WAN links over Internet, as will be explained later. The
reason why we decided to develop our own HDLC/PPP
card instead of buying the commercially available one is the
low port density and high price of cards on the today’s
market.

 2

3. MAJOR CHANGES IN THE ORIGINAL

ARCHITECTURE

After the full implementation of virtual crossconnect, we
realized the full power of it and we decided to change the
overall philosophy of offering particular tasks at fixed-size
timeslots with a schedule specified by Virtlab administrator.
Our experience revealed that it was very difficult to guess
how many timeslots should be each individual task made
available for reservations. Very often nobody reserved
timeslots in which an uninteresting task was offered, but on
the other hand there was a contention for timeslots of
another more interesting task. It led to suboptimal
utilization of virtual laboratory.

The implementation of Virtual Crossconnect allowed us to
redesign the architecture completely so that it is no longer
necessary to create weekly task schedules and place them
on the electronic noticeboard, where students can reserve
particular timeslot with required task [6]. Today, we have
almost finished the new version of the reservation system,
which allows student not only to specify arbitrary timeslot,
but also any task he or she wants to work on during the
reserved time. Before the reserved timeslot, the virtual
crossconnect simply interconnects the topology for any task
that the student required for the timeslot.

The most important architecture change necessary to
develop an efficient system of virtual laboratory usable by
multiple students in parallel was the decoupling of logical
network devices’ identities specified in topology
description for particular task from physical identities of
laboratory devices actually used to interconnect the
topology for a particular reservation. It allowed us to
reserve the same task multiple times in parallel, provided
that there are enough laboratory devices with required
capabilities to act as logical network devices prescribed in
the task’s topology definition. In the previous architecture
version, topology description were tightly bound to physical
devices’ identities so that it was not possible to reserve
multiple tasks whose specifications overlapped in physical
devices used, as shown in fig. 5.

RA

RE

RB

RC

RD

SW 1

SW 2

SW 3

Physical laboratory devices

RD

RC

SW 3SW 2

RBRA

RC

SW 1

Task 2
Topology definition

device
conflict

Task 1
Topology definition

Fig. 5. Problem of Device Conflict in Case of Fixed

Physical Devices Specification in the Task Description

By decoupling of logical identities of network devices in
the task’s topology description from physical ones, we only
prescribe required features of individual network devices
and their interconnection in the description of task’s logical
topology and map logical devices to physical devices
dynamically at the reservation time (fig. 6). The mapping is
based on the knowledge which physical devices are
available at the time interval required by user for the
reservation and on further limiting constraints, such as OS
version or feature set supported.

Mapping

RA

RE

RB

RC

RD

SW1

SW2

SW3

Laboratory devices
(with type descriptions)

3-2500

4-4000

2-19001-1900

2-25001-2500

3-2500

4-1900

Task 2
Topology definition

C2500

C2500

C2500

C2500

C1900

C1900

C1900

C4000

Virtual Crossconnect
Configuration

Task 1
Topology definition

Fig. 6. Separation of Logical Task’s Topology Description
and Physical Devices Actually Used for Reservation

To implement the above mentioned principles, the original
reservation system has been completely reworked. The new
implementation of reservation and control system core was
also created with regard to multilanguage environment, All
menus and messages may be easily translated to any
language utilizing UTF-8 charset and timezone. Each user
may set it’s own preferred language. We are now assessing
means how to provide taks’s specification in multiple
languages and to present the specification to the user in the
language according to his/her preferred language setting.

4. THE NEW DISTRIBUTED ARCHITECTURE

After a period of successful operation, we decided to extend
our architecture out of scope of our institution. The primary
goal was to develop a truly distributed virtual networking
laboratory, which will allow sharing of laboratory
equipment from multiple sites transparently and building of
arbitrary topologies even between devices at different sites
using Internet tunnels (fig. 7).

In the new distributed architecture, we still maintain the
task-oriented reservation philosophy. The only extension
which came almost for free was the implementation of a
feature which allows advanced students to specify their own
topology they want to interconnect in the reservation time if
no exiting task filfills their current needs.

 3

Internet

Site CSite C laboratory devices

Site C virtual crossconnect segment

Site B

Site A

VPN tunnel

VPN tunnel

Site B laboratory devices

Site B virtual crossconnect segment

Site A laboratory devices

Site A virtual crossconnect segment

Fig. 7. Virtual Topologies using Internet Tunnels

We perceive the following main advantages of
implementation of a distributed architecture:
• Individual sites may specialize on particular networking

technology which they will make available to all
distributed Virtlab participants. It is very desirable for
costly devices, which would not be used efficiently by
limited number of users of a single site.

• It is possible to build a large-extend simulated WAN
environment and teach students how to operate it. This
will allow students to develop competences required in
real industrial environment operation.

• Other sites may lend their devices as a spare if some
device at any site should fail.

The requirement of full laboratory device distribution
brought two problems to solve. We need to be able to create
interconnections of interfaces of network devices at
different sites via Internet tunnels and we also need to
generalize mechanism of console access to be able to access
equipment at multiple sites seamlessly. All this stuff has to
be completely hidden to user, so that the student just uses
the devices without care in what site each device he or she
uses is actually located. The virtual topology between
devices of multiple sites has to behave the same way as a
single-site topology.

The interconnection of laboratory devices’ interfaces
between different sites is implemented using extended
version of Virtual Crossconnect. The original concept was
generalized to the distributed crossconnect architecture,
which we now call the Distributed Virtual Crosconnect
(DVC). The Ethernet port interconnection is still VLAN-
based, but frames can be now passed between multiple
“segments” of the DVC using UDP and our own
implementation of tunnelling server. Currently, only
Ethernet ports (including trunks) may be inteconnected
between sites using the DVC, but we are working on
solutions which will allow us to tunnel HDLC or PPP
frames over Internet tunnels also.

Concerning generalized concept of console access, our
decision was to make users’ terminal applet first connect to
console server of the user’s home site, which authenticates
him or her using local authentication infrastructure. Only

after successful authentication, local console server proxies
the console connection to console server of site where the
laboratory device is physically located. There is a trust
between virtual laboratory components at individual sites
(see section 6), so that the target site console server justs
permits the connection to pass in. IPSec tunnels are
implemented to secure communication between sites, so
that external intruders are not allowed to get into the system
from the outside.

Although the architecture is distributed in it’s nature, the
virtual laboratory at each site may be utilized without
dependency on other sites. We completely avoided any
centralized entities which could create a single point of
failure. It was also necessary to take into account political
issues, so that administrator of laboratory at every site is
able to specify which devices he/she is willing to lend to
users of particular other site at given time.

5. COMPONENTS OF DISTRIBUTED
ARCHITECTURE

The basic components of our distributed virtual laboratory
architecture, which are present at every site, are shown on
figure 8. The figure also shows basic interaction between
components, as will be shortly discused later.
At every site, interfaces of all laboratory devices are
connected to the local segment of DVC, either physically or
via trunk links (in case of simulated devices). The Tunnel
Server extends the local VLANs used by DVC for
laboratory devices’ interface interconnection across Internet
tunnels to other sites and also bridges VLANs if it is
necessary to interconnect simulated devices connected to
DVC using fixed VLANs. The Console server accepts
connections to device consoles from the user’s GUI
(applet), authenticates them and forwards them either to
consoles of local laboratory devices or to other sites,
depending on the location of the target device. The local
device’s console may be reached either by RS-232 physical
connection (Console Server incorporates multiple MOXA
multiport serial cards) or via another TCP connection in
case of simulated devices listening for console connection
at preconfigured TCP port.

The Reservation Server serves in two ways. At first, it
keeps tracks of local devices’ reservations, requested by
users of it’s own and other sites so far. Second, the
reservation server acts as a proxy for site’s Control Server
(also called Virtlab Server for historical reasons) to
negotiate reservations of devices with Reservation Servers
of other sites. If an user wants to make distributed topology
reservation, he/she first connects to the Web GUI of
Control Server of the site he/she belongs to. After the task
to be reserved and and time interval is choosen, the Control
Server attempts to map task’s logical topology to the
physical topology. The Control Server first requests the
local Reservation Server to provide it a list of devices
available at any site for the requested time interval.

 4

802.1q

S ite X laboratory devices

S ite X V irtua l C rossconnect
S egm ent

Virtual C rossconnect
(C 3550, A S SS K 1]

Tunne l S erver

C onsole access

C onfiguration upload to virtual
crossconnect dev ices

S ite X
U ser W W W
interface access

V irtua l topology
tunnels
(802.1q in U D P)

C onsole
Server

S ite C ontro l Server

D evice
R eservation

Server

C onfigura tion Server

M O XA

S ite D atabase

Topology configuration
requests from other s ites

D evice query and
reservation requests in

U ser authentication & authorization ,
device clearing com m ands lists ,
prohib ited com m ands lists

R eservation s torage

S im uleted
netw ork
dev ices

802.1q

D istributed device reservation requests

C onsole proxy access
to other s ites for local
user

Topology configuration
up load to o ther s ites

D evice reservation
requests out

T im ing of d is tributed topology
configuration up loads

7 56

1211
10

8 4

2
1

9 3

W W W G U I, m apping alg .

C onfiguration m ix ing

Laboratory devices
configuration c learing

C learing and
preconfiguration of
devices in o ther s itesD istributed

topology
configuration

generator

 R S232
C onsoles

TC P C onsoles

Fig. 8. Components of Distributed Architecture Present at Every Site and their Interactions

The Reservation Server queries Reservation Servers of
other sites and those servers respond with a list of
equipment which is free at required time and is allowed to
be lent to the requesting site. After the Reservation Server
returns the combined response to the Control Server, the
Control Server starts a mapping algorithm to find suitable
physical device for each logical device in the task’s logical
topology description. If the mapping is successfull, local
Reservation Server is requested to negotiate the reservation
of previously offered devices with Reservation Servers of
other sites. If the reservation was successful, the resulting
mapping is stored into the local database at the requesting
site. The logical topology description is converted to
physical topology description, which takes into account
physical identities of selected devices and is passed to the
local Configuration Activator, which is a part of
Reservation Server. The responsibility for creation of
configurations for switching elements of DVC and
uploading of these configurations to all affected switching
elements is given to the Configuration Activator. At the
beginning of each timeslot reserved by some local user, the
Configuration Activator gets the physical topology
description from the database, launches script that generates
configuration of DVC switching elements and uploads these
configurations to DVC segments of it’s own and other sites
using their Configuration Servers.

The Configuration Server of each site accepts topology
configuration requests from other sites, combines them
together and with the current configurations of DVC
switching element’s at it’s site and uploads new
configuration to those switching elements. As we use IOS-
powered Cisco Catalyst 3550 and ASSSK-1 with the similar
configuration philosophy, our current switching elements

combine previous and new configurations by themself,
since the CLI IOS-style configuration is “incremental” by
it’s nature.

The last but not least component of the system is the
Cleaning Server (not shown at fig. 8, which is somewhat
simplified). This server is responsible for clearing of
laboratory devices’ configurations before they are made
accessible to students at the beginning of reserved timeslot.
We also plan to use the server to upload preconfigurations
of individual laboratory devices before beginning of some
tasks in the future.

The communication protocols between components were
designed as text-based, HTTP-style request/reply
transactions and are well documented. XML is used as data
format whenever possible. This makes the whole system
much more extensible and easier to debug.

6. THE SYSTEM SECURITY

Based on the 2-year experience with extending and
maintenance of previous (i.e. non-distributed) version of
Virtlab, we decided to implement security by a strictly
layered approach. It proved inefficient to implement and
maintain our own security mechanisms and it also resulted
to poor readability and clarity of source code of the core
Virtlab mechanisms, which increased a risk of
implementation errors. This is why we decided to
implement only pure functionality in the first distributed
architecture implementation stage and rely on external
security technologies whenever possible.

 5

The security paradigm is based on two principles. The first
one is that users are authenticated at their “home” site,
where sets of roles assigned to individual users are
maintained to authorize their activities. Either passwords
stored in the local database or other external authentication
systems operated at the site (such as LDAP or RADIUS)
may be used. The other general idea is that components of
Virtlab installations at individual sites completely trust
themselves. IPSec tunnels will be created between
individual sites so that no external intruder can neither
interact with any server at any site nor to forge traffic
between laboratory devices passing through Internet tunnel.
Only well-secured HTTPS-based WWW user interface and
console server at each site is exposted to the public Internet.
Concerning measures against potential local intruders,
source IP/MAC address filters are planned to be
implemented at all hosting systems so that only allowed
communications between system components will be
permitted.

7. CONCLUSION

The implementation of distributed architecture presented in
the article is now almost completed. We are now entering
the early testing stage. During summer 2007 we plan to
establish a piloting environment between two sites – VSB-
Technical University of Ostrava and Karvina site of Silesian
University in Opava. A part of laboratory equpment for
piloting environment was provided by Czech Scientific and
Educational Network (CESNET) as it’s portion of expenses
on the project number 213/2006. The current running
Virtlab environment can be accessed at
http://virtlab.cs.vsb.cz.

8. REFERENCES

[1] Grygárek, P., Seidl, D., Němec, P.: Enabling Access to

Equipment of Computer Network Laboratory for
Practical Trainging via the Internet. Proceedings of
Technologies for E-Learning conference, FEL ČVUT
Praha, 2005, ISBN 80-01-03274-4, pp. 43-52. [In Czech]

[2] Seidl, D., Grygárek, P.,: System for Automated Network
Topology Management. Seminar on Opensources
Solutions in Computer Network III. Silesian University
Karviná, 2005. Presentation available at
http://www.cs.vsb.cz/vl-wiki/images/1/1c/ASSSK-
SLU.pdf. [April 2007] [In Czech]

[3] Grygárek, P., Seidl, D., Němec P.: Virtual Network
Laboratory for CNAP. Annual Conference of Cisco
Networking Academy Program, Brno 2005. Available at
http://www.cs.vsb.cz/vl-wiki/images/a/ad/Virtlab-
prezentace-CNAP-Brno.pdf. [April 2007]. [In Czech]

[4] Němec, P.: Virtual Network Laboratory. Master's
Thesis, Faculty of Electrical Engineering and Computer
Science, VŠB-TU Ostrava, 2005 [In Czech]

[5] Seidl, D.: System for Automatic Network Configuration
Management. Master's Thesis, Faculty of Metallurgy and

Materials Engineering, VŠB-TU Ostrava, 2005. [In
Czech]

[6] Grygárek, P., Practical Experience with Implementiation
of Virtual Computer Network Laboratory and Proposed
Ways of its Further Development. Proceedings of
Technologies for E-Learning conference, FEL ČVUT
Praha, 2006, ISBN 80-01-03512-3, pp.58-68. [In Czech]

[7] Kubín, R.: Ensurance of Security and Implementation of
New Features of Virtual Laboratory System. Master's
Thesis, Faculty of Electrical Engineering and Computer
Science, VŠB-TU Ostrava, 2006. [In Czech]

[8] Sedlář, P.: FPGA-Based Crossconnect for Serial Lines.
Master's Thesis, prepared for publishing at Faculty of
Electrical Engineering and Computer Science, VŠB-TU
Ostrava, 2007. [In Czech]

[9] The Xen™ virtual machine monitor. Available at
http://www.xensource.com/ [online, April 2007]

[10] Dynamips Cisco router emulator, Dynagen. Available
at http://dynagen.org/ [online, April 2007]

[11] Cisco Systems: Configuring 802.1Q and Layer 2
Protocol Tunneling. Available at
http://www.cisco.com/univercd/cc/td/doc/product/lan/c3
550/12112cea/3550scg/swtunnel.pdf [online, April
2007]

THE AUTHOR(S)

Petr Grygárek (Ph.D, MSc.) is a
professor-assistant at Department of
Computer Science at VŠB-TU Ostrava. His
professional interest is focused on
computer networking, distributed systems
and computer hardware. He is a
coordinator and instructor of Regional

Cisco Networking Academy and coordinator of Virtlab
development group. He holds CCNP, CCNA, CCAI and
Network Security courses teacher’s certificate.

Martin Milata (MSc.) is a Ph.D. student at
Department of Computer Science. His
thesis is focused on problems of routing in
mobile ad hoc networks. He is interested in
computer networks and hardware. He
studies the 2nd semester of CCNP-level
Cisco Networking Academy Courses.

Jan Vavříček is a MSc. student at
Department of Computer Science. His
diploma thesis is focused on the distributed
virtual laboratory presented in the article.
He is an instructor of AutoCont Training
Center. He currently studies the last
semester of Cisco Networking Academy

Courses at CCNA level.

 6

