
ARCHITECTURES FOR AUTOMATIC WAN TOPOLOGY
INTERCONNECTION

Petr Grygárek, David Seidl
Department of Computer Science, Faculty of Electrical Engineering and Computer Science
Technical University of Ostrava, Tř. 17. listopadu, 708 33 Ostrava, Czech Republic
Tel.: (+420) 597 323 263, Fax: (+420) 597 323 099
E-mail: petr.grygarek@vsb.cz, http://www.cs.vsb.cz/grygarek

Abstract.
In practical education in networking laboratories it is useful to be able to interconnect various WAN
topologies quickly and efficiently or automatize the interconnection based on demands of students
who access the laboratory remotely. In the article we present our currently developed architectures
for automatic interconnection of WAN topologies and hardware device prototypes we constructed
for that purpose. The presented technologies also support tunnelling of WAN traffic between
multiple distant sites so that they can be used to create distributed virtual WAN topologies.

Keywords: Communication Technologies, Virtual Laboratory

1. INTRODUCTION

During practical education in networking laboratory, it is
necessary to work on various topologies of networking
devices. Unfortunately, the process of connecting network
topology is both time-consuming and error-prone and
commonly prevents students to concentrate on the
configuration of particular protocol or technology, which is
the main objective of the respective lesson. Our experience
revealed that although it is inevitable to let students connect
network topologies manually at the beginning of their study
to give them concrete idea about WAN/LAN interfaces
usage, it is much more effective to concentrate on upper-
layer protocols and don't waste time with repeated physical
layer troubleshooting later. The another issue with frequent
topology changes is that students often do not manipulate
network interface connectors with enough care. This often
results to mechanical damage of connecting cables or
networking device module's connectors and a need of their
replacement. This problem is most serious in cases of non-
modular routers, where damaged interface cannot be easily
replaced and with new tiny connector types, which are very
frangible.
To avoid the above mentioned problems, we searched for
methods how to interconnect network topologies
automatically without human interaction. The result was the
Distributed Virtual Crossconnect used in our Distributed
Virtual Networking Laboratory [2] architecture, which may
be configured as a single entity although it is composed of
multiple switching elements of various types. For LAN
(Ethernet) interconnection, we use standard LAN switches
and VLAN-based interconnection. Using VLAN tunneling
(also called dot1QinQ sometimes), we are even able to
interconnect trunk links of various devices and have the
switching element be completely invisible for the laboratory
devices. Unfortunately, there exists no similar
commercially-available and cheap solution for WAN links.
This is why we decided to develop a series of our own

devices for WAN port automatic interconnection. The basic
ideas, architectures and experiences with these devices will
be discussed in the following article.

2. THE FIRST GENERATION CROSSCONNECTS

Both crossconnect prototypes we developed up to now have
the similar philosophy (fig. 1). All network devices’ WAN
ports are connected to interfaces of a single crossconnect
which can be configured to interconnect arbitrary pair of
connected ports. The configuration is accomplished via RS-
232 console port using a simple “IOS-style” command line
interface (CLI) available to instructor or lab administrator.
As in IOS, command completion, possibility of use of
abbreviations and context-based help system was
implemented. The configuration is maintained in RAM but
may be also stored into internal flash memory so that it can
be loaded automatically when the crossconnect device is
powered on. The device is controlled by Atmel 8051ED2
microprocessor which acts as a CLI command interpreter
and configures switching array according to user’s
requirements.
In some cases, it is useful to be able to control the
crossconnect not only by directly connected RS-232
terminal, but also remotely via intranet or Internet. Our
solution for RS-232 to TCP conversion was to use relatively
cheap commercially-available modules, in this case Charon
II [5] for mutual RS232 to Ethernet conversion and Sollae
EZL80c [4] for RS-232 to WiFi (802.11b) conversion, as
can be seen at fig. 1.

 1

Fig. 1. Basic Crossconnect Philosophy

 As will be described in detail later, we subsequently tested
and implemented various approaches for actual signal
switching, but the substantial part of controlling software
was reused in the individual prototype devices.

2.1 WAN INTERFACE TYPE SELECTION

One of the main issues of crossconnect design was a
selection of physical WAN interface type our device should
support. Since we use our crossconect primarily to
interconnect WAN ports of Cisco routers which can provide
multiple physical interface and let the user to choose the
required one only by usage of an appropriate WAN cable,
we could choose from ITU-T X.21, ITU-T V.35, EIA/TIA
RS-232 and EIA/TIA RS-499 (all synchronous). Since we
wanted to limit a number of signals to switch and also take
the interface’s connector availability into account, we chose
to use RS-232 because it doesn’t use symmetrical signals
neither for data nor control and it’s CANNON DB-25
connector is cheap and easily available. In fact, we use “null
modem” interconnection so that we need only to switch
RxD and TxD signals and provide clock signals, as will be
discussed later.

Another important issue we had to solve was the problem of
clocking. In reality, routers at both sides of the leased line
provided by telco act as DTEs and are connected with
synchronous modems using „DTE cable“. Clocking signal
for both routers is provided by respective modems. In
laboratory, it is inefficient to have so many modems, so in
case of Cisco routers most people commonly connect their
WAN interfaces directly, using a pair of two different
cables for DCE and DTE side. The router connected with a

“DCE” cable provides clocking for both directions of the
communication if instructed to do so by an IOS command.
It means that for that type of direct interconnection we are
only able to connect a pair of interfaces if one interface is
connected with a DCE cable and another one with a DTE
cable. It means that we have a problem with cable type to
use if we want to connect all WAN ports to the single
crossconnect and be able to connect arbitrary pairs of
connected ports.

To allow crossconnect to connect arbitrary pair of WAN
ports, we decided to take completely different approach,
which much more resembles the reality. All WAN ports are
connected to the crossconnect using DTE cables and the
crossconnect itself provides clocking for all devices, exactly
as would a modem at the end of leased line do. In the newer
prototype, we are even able to set various clockrates for
individual pairs of connected ports. From the student’s
perspective, the crossconnect may be viewed as a telco
cloud which provides leased line services including
clocking and he/she does not have to take care about
clocking at all.

2.2 THE ANALOG CROSSCONNECT

The very first version of the crossconnect (called ASSSK-1)
was developed by David Seidl in his MSc. Thesis [1]. The
general aim of the thesis assignment was to develop a
crossconnect based on analog switch array core suitable for
connecting of signals of various networking technologies.
Individual ports are attached to the switching core via
interface modules, which adapts various electrical
interfaces’ signals to the voltage range suitable for the
switching core. The device (fig. 2) may accommodate up to
16 modules.

Fig. 2. ASSSK-1: The Analog Crossconnect

The switching core is composed of two Zarlink MT8816
analog switch array integrated circuits [6], which together
from a 16 x 16 matrix. The matrix allows to connect each of
16 TxD signals to any of 16 RxD signals, so that arbitrary 8
pairs of modules may be connected together. It is even
possible to loopback any interface for testing purposes.
Various interface modules may be developed to switch
signals of individual interface types. The only limitation is
the frequency range of the used switching array (30MHz).

 2

That range proved sufficient for 10BaseT Ethernet (three
harmonics are normally enough) and synchronous RS-232
up to 2 Mbps. We developed a double-interface modules,
which allow to connect either RS-232 WAN port or
10BaseT Ethernet. Because of different electrical
characteristics of RS-232 and Ethernet signals, it proved
most effective to use a small mechanical relay to choose
which of the two interfaces available at the module will be
really connected to the switching core. The reachable bitrate
of switched serial WAN interfaces is somewhat limited by
RS-232 to TTL convertors (the capacitor-based charge
pump) used to create ±12V for RS-232 interface), but we
currently plan to provide external 12V DC supply to avoid
this problem.

The block diagram of the ASSSK-1 device is depicted at
fig. 3. The Control Processor interacts with user using CLI
and configures analog switching array. We decided to use
separate microprocessor (the Clock Processor) to provide
clocking for individual WAN lines.

Fig. 3. ASSSK-1 Block Diagram

To support potential future extensions, we decided to
provide I2C bus implemented by ATMEL microprocessor
for the usage at the interface modules. It means that various
I2C-enabled devices may be attached the similar way as
interface modules and accessed from the control
microprocessor. Currently we decide the attachment of
external Flash memory to let instructors to store multiple
pre-defined crossconection configurations and easily choose
one of them. By implementing of a simple user interface
consisting from a numeric keyboard and LCD display, we
can also provide a mechanism to let the instructor change
configurations very quickly and efficiently without a need
of external control terminal (most probably PC).

2.3 FPGA-BASED CROSSCONNECT

After a period of usage of ASSSK-1, we decided to
redesign an architecture based on the experience with the
original prototype. Switching of Ethernet ports proved
inefficient, because we need to switch faster interfaces than
10BaseT, which is not possible because of frequency

limitation of the used analog switch array. This is why we
decided to concentrate on WAN interface switching in the
future and interconnect Ethernet ports using standard
VLAN-aware 10/100/1000 Ethernet switches and
VLAN/802.1q tunneling approach, which is also cheaper.
The main aims of the new crossconnect version was to
make the device more replicable and compact, decrease it’s
production cost and increase flexibility. It also proved
unnecessary to be able to switch various WAN physical
interface types, since RS-232 proved most efficient during
usage period of the ASSSK-1. This is why we abandoned
the modular architecture and decided to implement interface
circuitry on the baseboard instead of at modules. We also
used FPGA technology and VHDL to implement the device
much more efficiently. The most important change is that
the FPGA-based switching core is now fully digital. Except
the switching function, the FPGA circuit also provides
clocking for individual ports based on the frequencies pre-
set to it’s configuration registers by controlling
microprocessor.
The prototype (fig. 4) was developed by Petr Sedlar in his
master thesis [3], produced and successfully tested. Much
higher bitrates are reachable with digital switching matrix
than with the previous analog one. Twenty interfaces are
available at the chassis. The device is very easy to modify
because of it’s capability of in-system reprogramming of
Atmel control microprocessor and FPGA core.

Control Procesor
ATMEL AT89C51ED2

Controlling
Device

Switching
Array

MT8816

TTL<>RS232
convertor

Laboratory
Device #1

Laboratory
Device #16

TXD, RXD signals

Clock Procesor
ATMEL AT89C51ED2

TTL<>RS232
convertor

TTL<>RS232
convertor

CLI

CLOCK signal

Fig. 4. ASSSK-2

The block diagram of the FPGA-based device called
ASSSK2 is depicted at fig. 5.

Microprocessor
ATMEL AT89C51ED2

Controlling
Device

FPGA
A3P060

TTL<>RS232
convertor

Laboratory
Device #1

FPGA Controlling Signals

Laboratory
Device #20

TXD, RXD, CLK signals

XTAL

TTL<>RS232
convertor

TTL<>RS232
convertor

CLI

Fig. 5. ASSSK-2 Block Diagram

 3

Because of implementation of interface circuitry on the
baseboard instead on interface modules in ASSSK-2, the
number of mechanical contacts was reduced considerably
so the new crossconnect is not only cheaper and more
compact, but also more reliable.
In the future, we intent to integrate the whole logic,
including the control processor, into the more advanced
type of FPGA integrated circuit. We expect that it will
further decrease the cost and extend the flexibility of the
crossconnect.

3. SECOND GENERATION CROSSCONNECTS

The limitation of first generation of our crossconnect
solutions was that there was no possibility to switch traffic
across multiple crossconnect instances. Although there is 16
or 20 ports at the available models, the scalability is
somewhat limited because even if we produce multiple
crossconnect instances, we are only able to connect WAN
ports of network devices connected to the same
crossconnect. This is why we searched for solutions how to
let traffic pass across multiple crossconects connected
together. We call crossconnects with this capability a
second generation crossconnects.

The first idea was just to reserve some number of standard
crossconnect ports for interconnections between
crossconnect (called trunk ports in the following text).
Unfortunately, this solution would be rather inefficient
because 4 ports in total would have to be consumed for a
single interconnection of two WAN ports between a pair of
crossconnects. It would be even more in case of a longer
chain of a crossconnects linked in this way. A non-trivial
issue of clock synchronization between multiple
crossconnect devices would have to be solved also.
Although it is of course possible to connect crossconnects
into more efficient hierarchical structures than a simple
chain, we decided to take completely different approach.

The solution for passing traffic between multiple
crossconnects we are working on now was influenced by a
need to pass traffic between crossconnects located at
various, physically distant sites [7]. The general idea is not
just to interconnect physical signals, but read the content of
passed PPP/HDLC frames, encapsulate them and tunnel
over intranet or even Internet. Frames are decapsulated at
the receiving side and sent out of the particular serial port to
the WAN interface of the network device they are destined
to. This approach scales well because the interconnections
between individual crossconnects forms a logical full mesh
and in case of sufficient capacity of the underlying
LAN/WAN the number of interconnections of network
devices connected to different crossconnects is potentially
unlimited. We denote solutions adhering the approach
described above as a second-generation crossconnects.

3.1. LINUX-BASED CROSSCONNECT

The simplest way to process HDLC/PPP frames and pass
them between multiple switching devices is to use software-
based approach. We decided to utilize PC with Linux for
that purpose. The architecture we are now experimenting
with is described at fig. 6. The PC is equipped with
multiport synchronous serial card, which allows to connect
WAN interfaces of network devices to be interconnected.
We investigate now how standard Linux PPP/HDLC
drivers could be modified to allow a switching software
developed for that purpose to switch PPP/HDLC frames
between logical ppp/hdlc interfaces. The switching software
will also be able to tunnel frames between multiple
crossconnect PCs in UDP datagrams, so that we will be able
to create virtual WAN links over local Ethernet segment or
over the Internet. The remote configuration using Telnet is
planned in the first prototype.

Because the commercially available synchronous serial
cards are both costly and typically do not provide more than
two ports, we started to work on our own FPGA-based card
with a higher port density (8 ports as a minimum). It is not
completely clear now how quickly we will be able to switch
frames between individual interfaces using standard PC, so
we count with 64kbps bitrates on individual WAN ports at
the beginning, which is completely sufficient for
educational purposes. We denote the above mentioned
Linux-based crossconnect architecture as ASSSK-3.

Fig. 6 –ASSSK3: The Linux-based Crossconnect

3.2. EXTENSION OF FPGA-BAASED
CROSSCONNECT

Another possible approach we are assessing now for
processing of PPP/HDLC frames and tunelling them across
the Ethernet is to build-in a frame processing intelligence
into the current FPGA-based crossconnect (ASSSK-2). The
frame separation logic capable of recognizing frame flags
and handling bit stuffing seems to be relatively simple to
integrate into FPGA. We plan to use some commercially-
available embedded module for synchronous serial to

 4

Ethernet conversion in the prototype, such as above-
mentioned Charon II module. The frame separation logic
could be also implemented at this module. The general idea
is to reserve a couple of ports of FPGA-based switch array
and connect them internally to the serial-port side of the
serial-to-Ethernet conversion modules. The way how the
module will handle frames incoming from switch array and
Ethernet interface will be programmed to the module by
crossconnect’s control processor. In fact, only
destination/source MAC (or IP) address to internal
switching array port mapping will have to be configured.
The FPGA switch array will then switch frames coming
from another crossconnects through Ethernet and serial-to-
Ethernet module to it’s internal port the same way as if it
came from the regular port. Multiple serial-to-Ethernet
convertors can be integrated together to limit the size and
cost of the construction or a more-powerful convertor
capable of handling multiple serial ports could be utilized.
The architecture proposal is depicted at fig. 7. Although the
number of ports that can be tunneled via Ethernet is limited
by a number of implemented internal ports in this approach,
it requires relatively minor changes in the current FPGA-
based crossconnect design. Except of the integration of
convertor modules, only some changes in the control
software will be required. We also expect that the
controlling RS-232 console will be converted to Ethernet so
that we will be able to control multiple crossconnects from
a single control entity, which is useful for centralized
creation of distributed virtual WAN topologies.

Fig. 7 – Basic Idea of Extension of ASSSK-2 for Frame
Tunelling

3. THIRD GENERATION CROSSCONNECTS

As a natural extension of the above mentioned
architectures, we proposed a fully-distributed crossconnect
architecture, which may prove more flexible and cheaper in
the practise. The architecture is based on a big number of
small remotely configurable synchronous serial to Ethernet
convertors (fig. 8). These convertors are connected to
individual WAN ports of network devices (one convertor
may potentially handle more than one WAN port). Every
convertor may be programmed remotely to which address it
has to tunnel PPP/HDLC frames coming from the serial
port. Ethernet ports from the convertors of network devices

of the lab site will be connected together via standard
Ethernet switch. Multiple independent lab sites may be
connected together via Internet. The architecture requires a
central controller which will create and upload
configurations into individual convertors based on the
required virtual topology. It is expected that there will be
some troubles with passing traffic through firewalls of
individual sites, so we plan to include proxy capability into
convertor modules so that only a limited number of
conduits will have to be configured at firewalls.
The clock for the serial side of the convertor may be
provided from router’s WAN port or the convertor may
generate the clocking for the router
As depicted on fig. 8, our effort is to build a serial-to-
Ethernet modules in such a way so that they can also just
pass the serial interface signals through. It will allow to
have these convertors connected to WAN ports of network
devices permanently, so that students will be able to
connect network devices physically if necessary during
laboratory work. At the same time, we will be also able to
connect topology automatically if necessary.
 The described approach will also allow to tunnel traffic
between Ethernet ports of network devices the similar way
as for serial lines, so that we will be able to automatically
connect the complete topology with the single technology.
The only difference will be the interface type at the router’s
side of the convertor modules.
The experimental prototype of serial-to-Ethernet modules
will be constructed using comercially-available Charon
module.
We also feel that the positive side-effect of the fully-
distributed architecture is that it will eliminate potential
problems with galvanic interconnection of multiple devices
connected to a single crossconnect by their serial WAN
ports, which may cause problems in some situations.

Fig. 8 – The Fully Distributed Crossconnect

 5

4. CONCLUSION

In the article, we presented a couple of architectures and
hardware device prototypes for automation of WAN
topology interconnection. The approaches presented here
may be utilized to make practical education in the
networking laboratories more efficient and to support
solution of remote laboratory access for the purpose of
distant learning. Some of the technologies presented here
also form a technological basis of the Distributed Virtual
Laboratory [7] developed at our university in cooperation
with Silesian University of Opava and with support of
Czech Educational Scientific Network (CESNET).

8. REFERENCES

[1] Seidl, D.: System for Automatic Network Configuration

Management. Master's Thesis, Faculty of Metallurgy and
Materials Engineering, VŠB-TU Ostrava, 2005. [In
Czech]

[2] Grygárek, P., Practical Experience with Implementiation
of Virtual Computer Network Laboratory and Proposed
Ways of its Further Development. Proceedings of
Technologies for E-Learning conference, FEL ČVUT
Praha, 2006, ISBN 80-01-03512-3, pp.58-68. [In Czech]

[3] Sedlář, P.: FPGA-Based Crossconnect for Serial Lines.
Master's Thesis, Faculty of Electrical Engineering and
Computer Science, VŠB-TU Ostrava, 2007. [In Czech]

[4] EZL-80 and EZL-80c: converter modules description
 http://www.hw-group.com/products/sollae/ezl80_en.html

[online, April 2007]
[5] Charon 2 Ethernut embedded Ethernet module.
 http://www.hw-

group.com/products/charon2/index_en.html
 [online, April 2007]
[6] Datasheet of analog switch array

http://www.ortodoxism.ro/datasheets/zarlinksemiconduct
or/zarlink_MT8816_MAR_97.pdf' [online, April 2007]

[7] Grygárek, P., Milata M., Vavříček J., The Fully
Distributed Architecture of Virtual Network Laboratory.
5th Int. Prepared for publishing at proceedings of
Conference on Emerging e-learning Technologies and
Applications, The High Tatras, Slovakia, September 6-8,
2007

THE AUTHOR(S)

Petr Grygárek (Ph.D, MSc.) is a
professor-assistant at Department of
Computer Science at VŠB-TU Ostrava.
His professional interest is focused on
computer networking, distributed systems
and computer hardware. He is a
coordinator and instructor of Regional

Cisco Networking Academy and coordinator of distributed
virtual laboratory development group. He holds CCNP,
CCNA, CCAI and Network Security courses teacher’s
certificate.

David Seidl (MSc.) is a professor-assistant
at Department of Computer Science at
VŠB-TU Ostrava. His professional interest
is focused on hardware development, low
level programming and operating systems.
He is a Ph.D. student at Department of
Metalurgy and Material Engeneering.

 6

