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Abstract.  
In practical education in networking laboratories it is useful to be able to interconnect various WAN 
topologies quickly and efficiently or automatize the interconnection based on demands of students 
who access the laboratory remotely. In the article we present our currently developed architectures 
for automatic interconnection of WAN topologies and hardware device prototypes we constructed 
for that purpose. The presented technologies also support tunnelling of WAN traffic between 
multiple distant sites so that they can be used to create distributed virtual WAN topologies. 
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1.  INTRODUCTION 
 
During practical education in networking laboratory, it is 
necessary to work on various topologies of networking 
devices. Unfortunately, the process of connecting network 
topology is both time-consuming and error-prone and 
commonly prevents students to concentrate on the 
configuration of particular protocol or technology, which is 
the main objective of the respective lesson. Our experience 
revealed that although it is inevitable to let students connect 
network topologies manually at the beginning of their study 
to give them concrete idea about WAN/LAN interfaces 
usage, it is much more effective to concentrate on upper-
layer protocols and don't waste time with repeated physical 
layer troubleshooting later. The another issue with frequent 
topology changes is that students often do not manipulate 
network interface connectors with enough care. This often 
results to mechanical damage of connecting cables or 
networking device module's connectors and a need of their 
replacement. This problem is most serious in cases of non-
modular routers, where damaged interface cannot be easily 
replaced and with new tiny connector types, which are very 
frangible. 
To avoid the above mentioned problems, we searched for 
methods how to interconnect network topologies 
automatically without human interaction. The result was the 
Distributed Virtual Crossconnect used in our Distributed 
Virtual Networking Laboratory [2] architecture, which may 
be configured as a single entity although it is composed of 
multiple switching elements of various types. For LAN 
(Ethernet) interconnection, we use standard LAN switches 
and VLAN-based interconnection. Using VLAN tunneling 
(also called dot1QinQ sometimes), we are even able to 
interconnect trunk links of various devices and have the 
switching element be completely invisible for the laboratory 
devices. Unfortunately, there exists no similar 
commercially-available and cheap solution for WAN links. 
This is why we decided to develop a series of our own 

devices for WAN port automatic interconnection. The basic 
ideas, architectures and experiences with these devices will 
be discussed in the following article. 
 

 
2. THE FIRST GENERATION CROSSCONNECTS 

 
Both crossconnect prototypes we developed up to now have 
the similar philosophy (fig. 1). All network devices’ WAN 
ports are connected to interfaces of a single crossconnect 
which can be configured to interconnect arbitrary pair of 
connected ports. The configuration is accomplished via RS-
232 console port using a simple “IOS-style” command line 
interface (CLI) available to instructor or lab administrator. 
As in IOS, command completion, possibility of use of 
abbreviations and context-based help system was 
implemented. The configuration is maintained in RAM but 
may be also stored into internal flash memory so that it can 
be loaded automatically when the crossconnect device is 
powered on.  The device is controlled by Atmel 8051ED2 
microprocessor which acts as a CLI  command interpreter 
and configures switching array according to user’s 
requirements.  
In some cases, it is useful to be able to control the 
crossconnect not only by directly connected RS-232 
terminal, but also remotely via intranet or Internet. Our 
solution for RS-232 to TCP conversion was to use relatively 
cheap commercially-available modules, in this case Charon 
II [5] for mutual RS232 to Ethernet conversion and Sollae 
EZL80c [4] for RS-232 to WiFi (802.11b) conversion, as 
can be seen at fig. 1. 
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Fig. 1. Basic Crossconnect Philosophy 
 
 
 As will be described in detail later, we subsequently tested 
and implemented various approaches for actual signal 
switching, but the substantial part of controlling software 
was reused in the individual prototype devices. 
 
 

2.1  WAN INTERFACE TYPE SELECTION 
 

One of the main issues of crossconnect design was a 
selection of physical WAN interface type our device should 
support. Since we use our crossconect primarily to 
interconnect WAN ports of Cisco routers which can provide 
multiple physical interface and let the user to choose the 
required one only by usage of an appropriate WAN cable, 
we could choose from ITU-T X.21, ITU-T V.35, EIA/TIA 
RS-232 and EIA/TIA RS-499 (all synchronous). Since we 
wanted to limit a number of signals to switch and also take 
the interface’s connector availability into account, we chose 
to use RS-232 because it doesn’t use symmetrical signals 
neither for data nor control and it’s CANNON DB-25 
connector is cheap and easily available. In fact, we use “null 
modem” interconnection so that we need only to switch 
RxD and TxD signals and provide clock signals, as will be 
discussed later. 

 
Another important issue we had to solve was the problem of 
clocking. In reality, routers at both sides of the leased line 
provided by telco act as DTEs and are connected with 
synchronous modems using „DTE cable“. Clocking signal 
for both routers is provided by respective modems. In 
laboratory, it is inefficient to have so many modems, so in 
case of Cisco routers most people commonly connect their 
WAN interfaces directly, using a pair of two different 
cables for DCE and DTE side. The router connected with a 

“DCE” cable provides clocking for both directions of the 
communication if instructed to do so by an IOS command. 
It means that for that type of direct interconnection we are 
only able to connect a pair of interfaces if one interface is 
connected with a DCE cable and another one with a DTE 
cable. It means that we have a problem with cable type to 
use if we want to connect all WAN ports to the single 
crossconnect and be able to connect arbitrary pairs of 
connected ports. 
 
To allow crossconnect to connect arbitrary pair of WAN 
ports, we decided to take completely different approach, 
which much more resembles the reality. All WAN ports are 
connected to the crossconnect using DTE cables and the 
crossconnect itself provides clocking for all devices, exactly 
as would a modem at the end of leased line do. In the newer 
prototype, we are even able to set various clockrates for 
individual pairs of connected ports. From the student’s 
perspective, the crossconnect may be viewed as a telco 
cloud which provides leased line services including 
clocking and he/she does not have to take care about 
clocking at all. 
 
 

2.2 THE ANALOG CROSSCONNECT 
 
The very first version of the crossconnect (called ASSSK-1) 
was developed by David Seidl in his MSc. Thesis [1]. The 
general aim of the thesis assignment was to develop a 
crossconnect based on analog switch array core suitable for 
connecting of signals of various networking technologies.  
Individual ports are attached to the switching core via 
interface modules, which adapts various electrical 
interfaces’ signals to the voltage range suitable for the 
switching core.  The device (fig. 2) may accommodate up to 
16 modules. 
 

 
 

Fig. 2. ASSSK-1: The Analog Crossconnect 
 
 
The switching core is composed of two Zarlink MT8816 
analog switch array integrated circuits [6], which together 
from a 16 x 16 matrix. The matrix allows to connect each of 
16 TxD signals to any of 16 RxD signals, so that arbitrary 8 
pairs of modules may be connected together. It is even 
possible to loopback any interface for testing purposes. 
Various interface modules may be developed to switch 
signals of individual interface types. The only limitation is 
the frequency range of the used switching array (30MHz). 
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That range proved sufficient for 10BaseT Ethernet (three 
harmonics are normally enough) and synchronous RS-232 
up to 2 Mbps. We developed a double-interface modules, 
which allow to connect either RS-232 WAN port or 
10BaseT Ethernet. Because of different electrical 
characteristics of RS-232 and Ethernet signals, it proved 
most effective to use a small mechanical relay to choose 
which of the two interfaces available at the module will be 
really connected to the switching core. The reachable bitrate 
of switched serial WAN interfaces is somewhat limited by 
RS-232 to TTL convertors (the capacitor-based charge 
pump) used to create ±12V for RS-232 interface), but we 
currently plan to provide external 12V DC supply to avoid 
this problem. 
 
The block diagram of the ASSSK-1 device is depicted at 
fig. 3. The Control Processor interacts with user using CLI 
and configures analog switching array. We decided to use 
separate microprocessor (the Clock  Processor) to provide 
clocking for individual WAN lines. 

 

 
Fig. 3. ASSSK-1 Block Diagram 

 
To support potential future extensions, we decided to 
provide I2C bus implemented by ATMEL microprocessor 
for the usage at the interface modules. It means that various 
I2C-enabled devices may be attached the similar way as 
interface modules and accessed from the control 
microprocessor. Currently we decide the attachment of 
external Flash memory to let instructors to store multiple 
pre-defined crossconection configurations and easily choose 
one of them. By implementing of a simple user interface 
consisting from a numeric keyboard and LCD display, we 
can also provide a mechanism to let the instructor change 
configurations very quickly and efficiently without a need 
of external control terminal (most probably PC). 

 
2.3  FPGA-BASED CROSSCONNECT 

 

After a period of usage of ASSSK-1, we decided to 
redesign an architecture based on the experience with the 
original prototype. Switching of Ethernet ports proved 
inefficient, because we need to switch faster interfaces than 
10BaseT, which is not possible because of frequency 

limitation of the used analog switch array. This is why we 
decided to concentrate on WAN interface switching in the 
future and interconnect Ethernet ports using standard 
VLAN-aware 10/100/1000 Ethernet switches and 
VLAN/802.1q tunneling approach, which is also cheaper. 
The main aims of the new crossconnect version was to 
make the device more replicable and compact, decrease it’s 
production cost and increase flexibility.  It also proved 
unnecessary to be able to switch various WAN physical 
interface types, since RS-232 proved most efficient during 
usage period of the ASSSK-1. This is why we abandoned 
the modular architecture and decided to implement interface 
circuitry on the baseboard instead of at modules. We also 
used FPGA technology and VHDL to implement the device 
much more efficiently. The most important change is that 
the FPGA-based switching core is now fully digital.  Except 
the switching function, the FPGA circuit also provides 
clocking for individual ports based on the frequencies pre-
set to it’s configuration registers by controlling 
microprocessor.   
The prototype (fig. 4) was developed by Petr Sedlar in his 
master thesis [3], produced and successfully tested. Much 
higher bitrates are reachable with digital switching matrix 
than with the previous analog one. Twenty interfaces are 
available at the chassis. The device is very easy to modify 
because of it’s capability of in-system reprogramming of 
Atmel control microprocessor and FPGA core.  
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Fig. 4. ASSSK-2 

 
The block diagram of the FPGA-based device called 
ASSSK2 is depicted at fig. 5. 
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Fig. 5. ASSSK-2 Block Diagram 
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Because of implementation of interface circuitry on the 
baseboard instead on interface modules in ASSSK-2, the 
number of mechanical contacts was reduced considerably 
so the new crossconnect is not only cheaper and more 
compact, but also more reliable.  
In the future, we intent to integrate the whole logic, 
including the control processor, into the more advanced 
type of FPGA integrated circuit. We expect that it will 
further decrease the cost and extend the flexibility of the 
crossconnect. 
 

3. SECOND GENERATION CROSSCONNECTS 
 
The limitation of first generation of our crossconnect 
solutions was that there was no possibility to switch traffic 
across multiple crossconnect instances. Although there is 16 
or 20 ports at the available models, the scalability is 
somewhat limited because even if we produce multiple 
crossconnect instances, we are only able to connect WAN 
ports of network devices connected to the same 
crossconnect. This is why we searched for solutions how  to 
let traffic pass across multiple crossconects connected 
together. We call crossconnects with this capability a 
second generation crossconnects. 
 
The first idea was just to reserve some number of standard 
crossconnect ports for interconnections between 
crossconnect (called trunk ports in the following text). 
Unfortunately, this solution would be rather inefficient 
because 4 ports in total would have to be consumed for a 
single interconnection of two WAN ports between a pair of 
crossconnects. It would be even more in case of a longer 
chain of a crossconnects linked in this way. A non-trivial 
issue of clock synchronization between multiple 
crossconnect devices would have to be solved also. 
Although it is of course possible to connect crossconnects 
into more efficient hierarchical structures than a simple 
chain, we decided to take completely different approach. 
 
The solution for passing traffic between multiple 
crossconnects we are working on now was influenced by a 
need to pass traffic between crossconnects located at 
various, physically distant sites [7]. The general idea is not 
just to interconnect physical signals, but read the content of 
passed PPP/HDLC frames, encapsulate them and tunnel 
over intranet or even Internet. Frames are decapsulated at 
the receiving side and sent out of the particular serial port to 
the WAN interface of the network device they are destined 
to. This approach scales well because the interconnections 
between individual crossconnects forms a logical full mesh 
and in case of sufficient capacity of the underlying 
LAN/WAN the number of interconnections of network 
devices connected to different crossconnects is potentially 
unlimited. We denote solutions adhering the approach 
described above as a second-generation crossconnects. 
 
 
 
 
 

 
3.1. LINUX-BASED CROSSCONNECT 

 
The simplest way to process HDLC/PPP frames and pass 
them between multiple switching devices is to use software-
based approach. We decided to utilize PC with Linux for 
that purpose. The architecture we are now experimenting 
with is described at fig. 6. The PC is equipped with 
multiport synchronous serial card, which allows to connect 
WAN interfaces of network devices to be interconnected. 
We investigate now how standard Linux PPP/HDLC 
drivers could be modified to allow a switching software 
developed for that purpose to switch PPP/HDLC frames 
between logical ppp/hdlc interfaces. The switching software 
will also be able to tunnel frames between multiple 
crossconnect PCs in UDP datagrams, so that we will be able 
to create virtual WAN links over local Ethernet segment or 
over the Internet. The remote configuration using Telnet is 
planned in the first prototype. 
 
Because the commercially available synchronous serial 
cards are both costly and typically do not provide more than 
two ports, we started to work on our own FPGA-based card 
with a higher port density (8 ports as a minimum). It is not 
completely clear now how quickly we will be able to switch 
frames between individual interfaces using standard PC, so 
we count with 64kbps bitrates on individual WAN ports at 
the beginning, which is completely sufficient for 
educational purposes. We denote the above mentioned 
Linux-based crossconnect architecture as ASSSK-3. 
 

 
 

Fig. 6 –ASSSK3: The Linux-based Crossconnect 
 
 

3.2. EXTENSION OF FPGA-BAASED 
CROSSCONNECT 

 
Another possible approach we are assessing now for 
processing of PPP/HDLC frames and tunelling them across 
the Ethernet is to build-in a frame processing intelligence 
into the current FPGA-based crossconnect (ASSSK-2). The 
frame separation logic capable of recognizing frame flags 
and handling bit stuffing seems to be relatively simple to 
integrate into FPGA. We plan to use some commercially-
available embedded module for synchronous serial to 
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Ethernet conversion in the prototype, such as above-
mentioned Charon II module. The frame separation logic 
could be also implemented at this module. The general idea 
is to reserve a couple of ports of FPGA-based switch array 
and connect them internally to the serial-port side of the 
serial-to-Ethernet conversion modules. The way how the 
module will handle frames incoming from switch array and 
Ethernet interface will be programmed to the module by 
crossconnect’s control processor. In fact, only 
destination/source MAC (or IP) address to internal 
switching array port mapping will have to be configured. 
The FPGA switch array will then switch frames coming 
from another crossconnects through Ethernet and serial-to-
Ethernet module to it’s internal port the same way as if it 
came from the regular port. Multiple serial-to-Ethernet 
convertors can be integrated together to limit the size and 
cost of the construction or a more-powerful convertor 
capable of handling multiple serial ports could be utilized. 
The architecture proposal is depicted at fig. 7. Although the 
number of ports that can be tunneled via Ethernet is limited 
by a number of implemented internal ports in this approach, 
it requires relatively minor changes in the current FPGA-
based crossconnect design. Except of the integration of 
convertor modules, only some changes in the control 
software will be required. We also expect that the 
controlling RS-232 console will be converted to Ethernet so 
that we will be able to control multiple crossconnects from 
a single control entity, which is useful for centralized 
creation of distributed virtual WAN topologies. 
 

 

Fig. 7 – Basic Idea of Extension of ASSSK-2 for Frame 
Tunelling 

 

3. THIRD GENERATION CROSSCONNECTS 
 
As a natural extension of the above mentioned 
architectures, we proposed a fully-distributed crossconnect 
architecture, which may prove more flexible and cheaper in 
the practise. The architecture is based on a big number of 
small remotely configurable synchronous serial  to Ethernet 
convertors (fig. 8). These convertors are connected to 
individual WAN ports of network devices (one convertor 
may potentially handle more than one WAN port). Every 
convertor may be programmed remotely to which address it 
has to tunnel PPP/HDLC frames coming from the serial 
port.  Ethernet ports from the convertors of network devices 

of the lab site will be connected together via standard 
Ethernet switch. Multiple independent lab sites may be 
connected together via Internet. The architecture requires a 
central controller which will create and upload 
configurations into individual convertors based on the 
required virtual topology. It is expected that there will be 
some troubles with passing traffic through firewalls of 
individual sites, so we plan to include proxy capability into 
convertor modules so that only a limited number of 
conduits will have to be configured at firewalls.  
The clock for the serial side of the convertor may be 
provided from router’s WAN port or the convertor may 
generate the clocking for the router 
As depicted on fig. 8, our effort is to build a serial-to-
Ethernet modules in such a way so that they can also just 
pass the serial interface signals through. It will allow to 
have these convertors connected to WAN ports of network 
devices permanently, so that students will be able to 
connect network devices physically if necessary during 
laboratory work. At the same time, we will be also able to 
connect topology automatically if necessary. 
 The described approach will also allow to tunnel traffic 
between Ethernet ports of network devices the similar way 
as for serial lines, so that we will be able to automatically 
connect the complete topology with the single technology. 
The only difference will be the interface type at the router’s 
side of the convertor modules. 
The experimental prototype of serial-to-Ethernet modules 
will be constructed using comercially-available Charon 
module. 
We also feel that the positive side-effect of the fully-
distributed architecture is that it will eliminate potential 
problems with galvanic interconnection of multiple devices 
connected to a single crossconnect by their serial WAN 
ports, which may cause problems in some situations. 
 

 
 

Fig. 8 – The Fully Distributed Crossconnect 
 

 5



 
4. CONCLUSION 

 
In the article, we presented a couple of architectures and 
hardware device prototypes for automation of WAN 
topology interconnection.  The approaches presented here 
may be utilized to make practical education in the 
networking laboratories more efficient and to support 
solution of remote laboratory access for the purpose of 
distant learning. Some of the technologies presented here 
also form a technological basis of the Distributed Virtual 
Laboratory [7] developed at our university in cooperation 
with Silesian University of Opava and with support of 
Czech Educational Scientific Network (CESNET). 
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