
The State Explosion Problem

Martin Kot

August 16, 2003

1 Introduction

One from main approaches to checking correctness of a concurrent system are state space methods. They
are suitable for automatic analysis and verification of the behaviour of systems. In their basic form, they
construct a structure that consist of all states that a system can reach, and all transitions that system can
make between those states. This structure is called state space. State spaces can be constructed fully
automated. Given the state space of a system, there are many practical practical algorithms for answering
some verification and analysis questions. Unlike theorem provers, user don’t have to provide invariants or
variants. It suffices to formulate an analysis or verification question and start a tool.

State space methods have many advantages and sound like almost ideal behavioural analysis and ver-
ification technique. Unfortunately they suffer from one big and fundamental problem - state explosion.
Almost any system has huge number of states. Often, the size of a state space of a system tends to grow
exponentially in the number of its processes and variables. The base of the exponentiation depends on the
number of local states a process has, the number of values a variable may store and the extent to which the
local states of components are determined by the local states of other components.

The advantages of state space methods motivated researchers. For answering certain verification and
analysis questions, many methods have been suggested that reduce number of required states. The size
of systems that can be analysed or verified increased significantly. Unfortunately, advanced state space
methods can often answer only certain kinds of analysis or verification questions. For other kinds they lose
ability to reduce the number of states.

2 Basic Concepts

State space is the tuple(S, T, ∆, SI), where

- S is a set of states.

- T is a set of structural transitions.

- ∆ ⊆ S × T × S is a set of semantic transitions or edges.

- SI is a set of initial states. It satisfiesSI ⊆ S andSI 6= ∅.

Often we include only those states that system can reach during an execution that starts in an initial state.
In the case of Petri nets, states are called markings. Execution of structural transitions causes the system
to change its state. Semantic transitions model actual changes of state by the system. They can be called
occurrences of structural transitions. A semantic transition is a triple(s, t, s′), wheres ∈ S is a start state,
t ∈ T is structural transition, ands′ ∈ S is end state. In the case of Petri nets we useM [t〉M ′ instead
of (M, t, M ′). s0 − t1 → s1, s1 − t2 → s2, . . . sn−1 − tn → sn is often abbreviated tos0 − t1 →
s1 − t2 → . . . − tn → sn. s0 − t1t2 . . . tn → sn claims that there are statess1, s2, . . . sn such that
s0− t1 → s1− t2 → . . .− tn → sn. s → s′ means that there is somet ∈ T such thats− t → s′. s →? s′

holds iff there is a sequencet1t2 . . . tn of structural transitions such thats0 − t1t2 . . . tn → s′.

1



The definition allows more than one initial state. Those are states the system may be in when its
execution starts. Petri nets have only one initial marking, typically denotedMI . A state space with more
initial states can be transformed to state space with one new initial state.

A state space is finite iffS and T are finite. The size of a finite state space we usually define as
|S|+ |T |+ |∆|. The state space is finitely branching iff each state has a finite number of output edges (for
everys ∈ S, the set(s× T × S) ∩∆ is finite.

If structural transition are not needed by state space method, then a state space is defined as the triple
(S, ∆, SI), where∆ ⊆ S × S and∅ 6= SI ⊆ S.

A structural transitiont is enabled in a states, iff there is a states′ such that(s, t, s′) ∈ ∆. In Petri
nets it is denoted byM [t〉 (in process algebrass− t →). A state is a deadlock if no structural transition is
enabled in it.

A structural transitiont is deterministic iff∀s, s1, s2 ∈ S : (s − t → s1 ∧ s − t → s2 ⇒ s1 = s2).
Nondeterministic are those transitions, which are not deterministic.

An execution of a system is a finite or infinite sequence〈s0, t1, s1, t2, . . . tn, sn〉 or 〈s0, t1, s1, t2, . . .〉
such thats0 ∈ SI ands0 − t1 → s1 − t2 → . . . − tn → sn or s0 − t1 → s1 − t2 → . . .. A finite
execution is incomplete if it ends in a state with enabled structural transitions. A deadlocking execution is
finite and ends in a deadlock state. Complete execution is infinite or deadlocking. By CEx we denote set
of all complete executions.

A states′ is reachable from a states iff s →? s′. The set of Petri net markings reachable from the
markingM is denoted by[M〉. A state or semantic transition is reachable, iff it is reachable from some
initial state.

State space models only sequential occurrences of transitions. When we wish to model simultane-
ous occurrence of transitions, we extend state space to true concurrency models as follows. To the set of
semantic transitions are added new transitions labeled by nonempty sets of simultaneously occurring struc-
tural transitions. Most of the properties, that are usually verified, are insensitive to the difference between
interleaving and truly concurrent models.

Often is useful to use higher level of abstraction and so hide some information. For the purpose of
discussing typical abstraction mechanisms, we employ two sets of “observables”,Π andΣ, together with
a special symbol “τ ”. The properties of the system may be then referred to only with these observables.

Π is a set of atomic propositions. A propositionϕ is a function fromS to the set{False, T rue} of truth
values.

Σ is a set of observable transitions labels. Sometimes they are also called observable or visible actions.
The set

∑
is called alphabet.

τ is a special unobservable or invisible action. It is used to label those transitions that the specification
should not talk about. They model implementation details and are internal to the system.τ /∈ Σ
holds

To determine the values of the observables, we define two evaluation function.

EΠ : S 7−→ 2Π assigns to eachs ∈ S the setEΠ(s) ⊆ Π of propositions that hold ins. ϕ(s) = True iff
ϕ ∈ EΠ(s).

EΣ : T 7−→ Σ ∪ {τ} gives new names to structural transitions. It need not to be unique. The structural
transitions whose occurrences are unobservable have the nameτ .

If only transitions labels are needed but structural transition are not, thenT in the definition of state space
is replaced byΣ or Σ ∪ {τ}. ThenEΣ is discarded because it becomes identical function. The functions
EΣ andEΠ can be extended to executions:

- EΠ(〈s0, t1, s1, t2, . . . , tn, sn〉) = 〈EΠ(s0),EΠ(s1), . . . ,EΠ(sn)〉,

- EΣ(〈s0, t1, s1, t2, . . . , tn, sn〉) = 〈EΣ(t1),EΣ(t2), . . . ,EΣ(tn)〉, and

- EΣ+Π(〈s0, t1, s1, t2, . . . , tn, sn〉) = 〈EΠ(s0),EΣ(t1),EΠ(s1),EΣ(t2), . . . ,EΣ(tn),EΠ(sn)〉.

2



If a semantic transition has no observable effect, we call it stuttering. Letξ = 〈s0, t1, s1, t2, . . . , tn, sn〉
be a finite or infinite execution. WhenΠ is used stuttering means thatEΠ(si+1) = EΠ(si) for somei, and
with Σ thatEΣ(ti) = τ for somei. Stuttering is infinite iffEΠ(sj) = EΠ(si) or EΣ(tj) = τ for every
j ≥ i. A property is stuttering-insensitive iff its truth value never changes when finite stuttering is added to
or removed from a system.

In formalisms called state-based one can refer to the properties of a system only with the elements of
Π. It is the case of most temporal logics. In action-based formalisms isΣ used, butΠ is not. Most process
algebras are in this category. Using bothΠ andΣ is often redundant. Action information can be encoded
into states and vice versa. So we can use state-based methods for action-based verification tasks and vice
versa.

The use ofΠ andEΠ, Σ andEΣ specifies what we can say about the properties of individual states and
transitions. Another important issue are their relations over time.

One possibility is that we look separately at each complete execution of the system. So, executionξ
satisfies a propertyϕ, denoted byξ |= ϕ, iff EΠ(ξ) |= ϕ or EΣ(ξ) |= ϕ or EΠ+Σ(ξ) |= ϕ. The system
has the propertyϕ iff ξ |= ϕ for everyξ ∈ CEx. Properties with validity defined in this way, are called
linear-time properties. An example of a linear-time property is n-boundedness of a Petri net or reachability
of deadlock. On the other way, Petri-net-liveness is not linear-time property.

The second possibility is to look at execution trees. An execution tree of the state space(S, T, ∆, SI)
with the start statesI ∈ SI is rooted edge-labelled graph(V,E, sI) such that

- V is the set of finite executions〈s0, t1, . . . , tn, sn〉 of the system wheres0 = sI

- E = {(〈sI , . . . , s〉, t, 〈sI , . . . , s, t, s
′〉)|〈sI , . . . , s〉 ∈ V ∧ (s, t, s′) ∈ ∆}

Properties with validity defined onE-abstracted execution trees are called branching-time properties. The
set of branching-time properties does not cover all properties of interest. But, if no abstraction mecha-
nism is used, then the distinction between linear-time and branching-time properties disappears in certain
theoretical sense.

In the world of concurrent systems we distinguish between safety and liveness properties. Liveness
consist of a set of requirements of the kind “these things should eventually happen”. Linear-time safety
properties are those properties ofE-abstracted executions that have finite counterexamples. A system has
a safety property iff no prefix of some execution matches any one of the counterexamples. An example of
safety property is n-boundedness of a Petri net place.

Linear-time liveness properties we define as the properties such thatE-abstractions of only complete ex-
ecutions qualify as counterexamples. If complete execution withE-abstraction〈P0, a1, P1, a2, . . . , an, Pn〉
is finite, then also its infinite completion〈P0, a1, P1, a2, . . . , an, Pn, τ, Pn, τ, Pn, . . .〉 should be a coun-
terexample. An example of liveness property is “the program will eventually terminate”.

For ensuring liveness is often needed an assumption called fairness. Weak fairness (or justice) towards
a structural transitiont promises that ift is enabled in every state from some point on, then it will eventually
occur. Strong fairness (or compassion) requires that ift is enabled infinitely many times, then it should
also occur infinitely many times.

3 Structure of the Analysis or Verification Problem

If we want know if system is working correctly we can use for example following methods.

Verification is intended to check or prove if formal system has a formally stated property. A verification
technique is one-sided if it can answer for correct systems and for incorrect systems is not terminating
or fails. A verification algorithm, given enough time and memory, always eventually terminate with
the answer “yes” or “no”.

Analysis gives answers to formal questions about the behaviour of a system. Questions need not be
“yes/no” and the answer “yes” is not given priority over “no”. An analysis algorithm, given enough
computer resources, is guaranteed to eventually terminate with a correct answer.

3



Validation checks if a system behaves as we want. It is informal because compares behaviour of the
system to the expectations of the human.

Error detection is supposed to find errors.

A typical framework for computer-aided analysis or verification has the following four components:

1. A formalism for modeling the system.

2. A formalism for stating analysis questions or properties for verification.

3. A formal meaning for the relation “the system has the properties”.

4. An algorithm for checking whether a given system satisfies a given specification.

4 Specification and Query Formalisms

State space tools often can automatically produce various statistics on the state space. These are formulated
in the terminology of modeling formalism. The user may ask various queries on the state space and so
reduce amount of information in statistics. A typical state space query language is suitable for linear-
time safety properties. For other properties are statistic and queries less proper. Also, sometimes they are
not “semantic” enough or answer a slightly wrong question. Comprehensive statistics and versatile query
languages do not go together well with techniques for alleviating state explosion.

To test software modules is often a test bed used . It sends input to modules and check their output.
In test beds are often used fact transitions. That are Petri net transitions which are never expected to be
enabled. So, if they occur, something gets wrong. Fact transitions may be used to check any linear-time
property whose counterexamples can be expressed as regular language overT or Σ ∪ {τ}. For every such
transition there is a finite automaton that accepts exactly the finite sequences of transition occurrences that
violate the property. This automaton is connected to the system. Then the arrival of a token to a place that
corresponds to an acceptance state of the automaton can be detected with a fact transition.

But, fact transitions and finite test automata can not express all linear-time safety properties. The
number of all properties is uncountable. On the other hand, specifications of an object or property in
any formalism have finite description. It is a finite string of characters, and there are countably many of
them. A larger set of properties is obtained with unbounded test automaton. However, such automata cause
serious problems to verification algorithms and tools. If an advanced verification method relies on the
assumption that the model has a certain special property, then the addition of the fact transition can destroy
this property. Using this method is then impossible.

Livelocks (an infinite executions that produces no useful result) cannot be checked with fact transitions.
Absence of livelocks can be specified as follows. We specify a set of structural transitions. Livelock
is reported iff the system has an infinite execution that contains only a finite number of occurrences of
progress transitions. Instead of progress transitions, we can use progress states.

In the action-based case it is natural to declare all transitions with a visible label as progresss transitions.
Livelock is thenEΣ-abstracted infinite execution that end up with an infinite sequence ofτ -transitions. The
error executions withoutτ -transitions form language. If that language is regular, it can be represented as
finite automaton. If we connect such automaton called livelock detection automata to the system, we can
efficiently on-the-fly detect a large set of livelock errors.

On-the-fly algorithm for detecting livelocks can be obtained by integrating the detection of non-progress
cycles with the construction of the state space.

For error detection we can use Büchi automata. We make the joint state space of state space(S, T, ∆, SI)
and the B̈uchi automaton(Q, 2Π,∆B , qI , F ) with

- {(sI , q)|sI ∈ SI ∧ (qI ,EΠ(sI), q) ∈ ∆B} as its initial states, and

- the rule(s, q) − t → (s′, q′)
def⇐⇒ (s, t, s′) ∈ ∆ ∧ (q, EΠ(s′), q′) ∈ ∆B determines the set of

transitions.

4



We usually add aτ transition from the deadlock state to itself because Büchi automaton expects an infinite
input string.

The detection of an error now corresponds to acceptance by the Büchi automaton. There is efficient
algorithm for detecting B̈uchi acceptance on the fly.

There are more kinds of acceptance states. For example, an error is declared if

- the automaton ever reaches a reject state,

- the system stops while the automaton is in a deadlock monitor state,

- the system livelocks while the automaton is in a livelock monitor state, or

- the automaton passes infinitely many times through an infinite trace monitor state.

Reject states and livelock monitor states can speed up searching of errors. So, they are useful although,
everything that can be specified in the linear temporal logic can be checked with Büchi automata.

As formalism for stating properties for verification, temporal logics are often used. There are temporal
operators (such as2, 3, U,©, etc.) designated to specify properties of complete executions.

In LTL logic, system satisfies a formula built of the temporal operators iff all its complete executions
satisfy it. A model checking algorithm inputs a state space and temporal logic formulaϕ and checks
whetherϕ is a true statement about the state space. A model checking algorithm for LTL has worst-case
time consumption linear in the size of the state space, and exponential in the length of the formula. LTL
model checking problem is PSPACE-complete. Every LTL formula can be compiled to a Büchi automaton
that accepts exactly the executions described by the formula. The validity of any LTL formulaϕ can be
checked by constructing a Büchi automaton for¬ϕ and checking system with it because Büchi automaton
is efficient for verifying that no execution has the property described by the automaton. The size of a Büchi
automaton may be exponential compared to the size of the LTL formula.

CTL and CTL? logics extends the logic with two new operators (A, E). They quantify formulas over
paths of the state space. The system satisfies a formula, iff all of its initial states satisfy it. Also CTL?

model checking is PSPACE-hard (CTL? is an extension of LTL). CTL logic has a fast model checking
algorithm and has enough expressive power for many verification tasks. Therefore it is very popular in
automatic verification.

A process algebra consist of a language for specifying systems, and theory of the behaviour of the
system specified in that language. In the context of process algebras, state spaces are called labelled
transition systems and defined as(S, Σ,∆, SI) whereτ /∈ Σ and∆ ⊆ S × (Σ ∪ {τ})× S.

The language of a process algebra practically always contains some operators for parallel composition
of processes and for hiding of actions. A parallel composition can be defined as follows. LetL1 =
(S1,Σ1,∆1, SI1) andL2 = (S2,Σ2,∆2, SI2) be LTS. Their parallel compositionL1 ‖ L2 is the LTS
(S, Σ,∆, SI) such that

- S = S1 × S2

- Σ = Σ1 ∪ Σ2

- ((s1, s2), a, (s′1, s
′
2)) ∈ ∆ iff either

– (s1, a, s′1) ∈ ∆1, a /∈ Σ2, ands′2 = s2,

– (s2, a, s′2) ∈ ∆2, a /∈ Σ1, ands′1 = s1 or

– (s1, a, s′1) ∈ ∆1, (s2, a, s′2) ∈ ∆2, anda 6= τ .

- SI = SI1 × SI2

The hiding operator converts visible actions intoτ . At can be defined ashide A in (S, Σ,∆, SI), where
A is some set of actions, and

- Σ′ = Σ−A, and

- ∆′ = {(s, a, s′)|(s, a, s′) ∈ ∆ ∧ a /∈ A} ∪ {(s, τ, s′)|∃a ∈ A : (s, a, s′) ∈ ∆}.

5



A relation∼⊆ S1 × S2 called a strong bisimulation is defined. Its basic idea is that if the LTSs are in
strongly bisimilar states and one of them makes a transition, the other can simulate it with own transition
with the same label. Two strongly bisimilar systems thus have “the same behaviour”. For finite LTSL it is
possible to define minimal LTSLmin among the LTSs that are strongly bisimilar withL. There is a very
efficient algorithm that constructsLmin from any given LTS.

In the second category of behavioural equivalences are so-called abstract process equivalences. They
abstract away most information aboutτ -transitions. Many different equivalences of such kind were devel-
oped.

The simplest widely used abstract process equivalence is trace equivalence. A trace is sequence of
visible actions obtained from a finite execution by removing all states and allτ -symbols. Two LTSs are
trace equivalent (written asL1 ' L2) iff they have the same trace semantics (the set of traces). Trace
preorderwtr is defined byL1 wtr L2 iff Tr(L1) ⊆ Tr(L2). Let Lϕ be an LTS whose finite executions
are exactly those which do not violate some stuttering-insensitive linear-time safety propertyϕ over Σ.
An LTS L has the propertyϕ (written asL |= ϕ) iff L wtr Lϕ Trace semantics preserves only stuttering-
insensitive linear-time safety properties because is defined on the basis of finite executions. But, it preserves
all of them.

Every finite LTS can be interpreted as a finite automaton if all states are declared as accepting.
The problems “doesL1 'tr L2 hold” and “doesL1 wtr L2 hold” are PSPACE-complete. Checking

“L1 wtr L2” is PSPACE-complete in the size ofL2. As well the problem of finding some equivalent LTS
with the smallest possible number of states is PSPACE-hard.

In process algebras it is common to distinguish between deadlock and livelock. A livelock corresponds
to an infinite execution with only finite number of visible transitions. We define a divergence trace as
finite sequence made from anEΣ-abstraction of the execution by removing allτ -symbols. The set of all
divergence traces of an LTSL is denoted withDivtr(L). A states of an LTS is stable, iff¬(s− τ →). s
refusesA ⊆ Σ, iff s is stable and has no outgoing transitions labelled with an element ofA. A stable failure
of an LTSL is any pair(σ,A) such thatL has a stable states that refusesA, and a finite execution that
ends at s and hasσ as the corresponding trace.Sfail(L) is the set of the stable failures ofL. Infinite trace
is an infinite sequence made from an infinite execution that contains an infinite number of occurrences of
visible transitions by removal of allτ -symbols.Inftr(L) is the set of the infinite traces ofL.

Other proper process semantics is failures-divergences model of CSP.CSPdivtr(L) = {σ ∈ Σ?|∃ρ ≤
σ ∧ ρ ∈ Divtr(L)}. CSPfail(L) = Sfail(L) ∪ (CSPdivtr(L)× 2Σ). The CSP-semantics of L is the
pair (SCPfail(L), CSPdivtr(L))

Alternative semantic model based on some kinds of failures and/or divergence traces is Chaos-Free
Failures Divergences (CFFD). It is the triple(Sfail(L), Divtr(L), Inftr(L)).

Certainly the most well known abstract branching-time semantic model in process algebras is weak
bisimilarity. It is similar to strong bisimilarity but when simulating a transition, the simulating LTS may
do any number of transitions (including zero) as long as the resulting sequence of the visible actions is the
same in both sides.

References

[LPN98] Antti Valmari, The State Explosion Problem,Lectures on Petri nets: advances in Petri nets
Springer-Verlang, Berlin-Heidelberg, 1998, 429–473

6


