VSB-Technical University of Ostrava
Faculty of Electrical Engineering and Computer Science
Department of Computer Science

27 Workshop

DATESO ’02

Databases, Texts, Specifications, and Objects

Ostrava 2002

Depertment of Computers, Czech Technical University, Prague
Department of Software Engineering, Charles University, Prague
Department of Computer Science, VSB-Technical University of Ostrava
CSKI, OS Computer Science and Society

Czech Republic

Proceedings of the Workshop

DATESO ’02

Databases, Texts, Specifications, and Objects

April 17-19, 2002
Desné — Cerné Ricka
Czech Republic

editor Michal Kratky

VSB-Technical University of Ostrava, (©2002

DATESO ’02 (Proceedings of the Workshop Databases, Texts, Specifications, and Ob-
jects), April 17-19, 2002 Desnd — Cern Ricka, 1% edition — Ostrava — VSB-Technical
University of Ostrava, Ostrava-Poruba, tf. 17. listopadu 15, 708 33, (Print: Repronis,
Ostrava, Nadrazni 53), page count 114.

ISBN 80-248-0080-2

Preface

DATESQO’2002, the workshop on current trends on Databases, Information Retrieval,
Algebraic Specification and Object Oriented Programming, was held on April 17 -
19, 2002 in Desnd - Cerna Ricka. This was the second annual workshop organized
by FEL CVUT Praha, Department of Computer Science and Engineering, MFF UK
Praha, Department of Software Engineering and VSB-Technical University Ostrava,
Department of Computer Science. The DATESO aims for strengthening the connec-
tion between this various areas of informatics. The proceedings of DATESO’2002 are
also available at Web site http://www.cs.vsb.cz/dateso.

We are also thankful to the Organization Committee.

March 2002 Viéclav Snésel

Program Committee

Jaroslav Pokorny, chair
Karel Richta

Vaclav Sklenar

Viéclav Snasel

Organization Committee

Yveta Geleticova
Michal Kratky
Tomaés Skopal

Charles University, Prague

Czech Technical University, Prague
Palacky University, Olomouc

VSB - Technical University of Ostrava

VSB - Technical University of Ostrava
VSB - Technical University of Ostrava
VSB - Technical University of Ostrava

Table of Contents

Move to front coding based on splay trees 9
Jurt Dvorsky, Vdclav Sndsel

Multi-Agent Reactive Scheduling in SDL 17
Petr Olmer

Application of Java Proxy Object to Handle Context Information 27
Roman Szturc

ACB Compression Method and Query Preprocessing in Text Retrieval
N 72517 4 1= 36
Tomdas Skopal

Methods of employing metadata for managing large systems .. 44
Jan Vrana
Organizational Structures Modeling and Analyze 57

Tvo Vondrdk, Viclav Sndsel, David JeZek

Using XSLT for IS Simulationcciiiiiiiiiiiiniieennns 66
Karel Richta, Pham Kim Long

Navigation through Query Result Using Concept Lattice 79
Viaclav Sndsel, Daniela Durdkovd, Michal Kratky

Design Patterns in Functional Programming 86
Jan Hric
Series data preparation in KDD processcciiieiennnnns 94

Michal Samek

DTD Representation in Lego Proof Assistant 102
Michal Valenta

Move to front coding based on splay trees

Jiti Dvorsky, Vaclav Snasel

Department of Computer Science, Technical University of Ostrava,
17. listopadu 15, Ostrava - Poruba, Czech Republic

e-mail: jiri.dvorsky|vaclav.snasel@vsb.cz

Abstract. In 1994 Burrows and Wheeler presented a new algorithm for loss
less data compression. The compression ratio that can be achieved using their
algorithm is comparable with the best-known algorithms, whilst its complexity
is relatively small. In this paper we shortly explain the principles of this al-
gorithm and its word- based version. Word-based version is useful for fulltext
systems for storing of textual databases. Main goal of this paper is fast Splay
Tree Move to Front coding which appears as the second step of compression
algorithm. Experimental results are also presented.

1 Introduction

In 1994 Burrows and Wheeler [Bur94] presented a data compression algorithm based
on the Burrows-Wheeler Transform (BWT). Its compression ratios were comparable
with the ones obtained using the best statistical methods.

In the first part of this paper we define the compression algorithm and the BWT,
which is a base for it. We further shortly discuss the word-based version of this
algorithm. The second step of the compression algorithm is Move To Front coding.
For small alphabets it is easy to implement this type of coding. But for word-based
alphabet or other large alphabet it is problem. Straightforward implementation has
O(n?) time complexity. We propose to adopt Splay Trees [Sle83] to achieve O(logn)
complexity. In the end we present experimental results.

2 Burrows-Wheeler Compression Algorithm

2.1 Definitions

In this section we introduce some definitions and notations, which are necessary to
precisely describe the Burrows-Wheeler Transform (BWT).

Let us assume that x = z125...2, is a sequence. The sequence length denoted
by n is a number of elements in z, and z; denotes the i-th element of x. We define
the reverse sequence, ! as 7! = x,2,_1...7;. The element x; belongs to a finite

Move to front coding based on splay trees

ordered set A = {ag, ay,...,a,_1} that is called alphabet. The number of elements in
A is the size of the alphabet and is denoted by k. The elements of the alphabet are
called symbols or characters.

2.2 Compression Algorithm

In this section we provide an insight description of the steps performed by the
Burrows-Wheeler compression algorithms [Bur94]. Let the input data of the com-
pression algorithms be a sequence of = of length n. First we have to compute the
BWT. To achieve this we create n sequences by rotating z by one symbol. The n
sequences created in this way are put into n x n matrix M (z):

T To ... Tp-1 Tn
T xr3 ... Tn I
M(z) =
Tpn-1 Tn --- Tp-3 Tp-2
i In 1T ... Tp—2 Tp-1]

—~——

Then matrix M(z) is transformed into M (x) by sorting its rows in lexicographic
order. Let R(z) denote the row of sequence z in M(z). The results of the BWT are:
R(z) and the last column of matrix M (z) that we denote by z"“t.

Once the BWT is completed, 2”*? is encoded using Move To Front (MTF)[Bent86]

transform. The coding proceeds as follows. First the list L = (ag,a1,-..,05_1)
consisting of the symbols of the alphabet A is created. Then to each symbol of z?*?,
i=1,2,...,n, a number p; is assigned such that z?“! is equal to the p;-th element

of L, and the p;-th element is moved to the beginning of list L. As the result we
obtain a sequence ™/ over the alphabet A, consisting of integer number from
range [0,k — 1].

In last step, sequnce 2™/ is compressed using a universal entropy coder, which
could be the Huffman or arithmetic coder. The number R(z) is also coded as binary
number of [log, n]| bits.

2.3 Decompression algorithm

The reverse Burrows-Wheeler Transform is based on the observation that sequence

2% is a permutation of sequence x and its sorting gives the first column of matrix
bwt

M (x) that is the first character of a context by which the sequence z”** is sorted.
Therefore given a symbol z2*?, a symbol s located in the first column and 4-th row of
matrix]\/,[\(_:1/:) can be found. Knowing that this is the j-th occurrence of s in the first
column of matrix]\?(E) we find its j-th occurrence in the last column. Moreover the

symbol s precedes z7”* in sequence x. Thus if we know R(x) we also know the last

character of the sequence z, i.e. x%‘éi). Starting from this character we can iterate in

similar manner to restore the original sequence z in time O(n).

10

DATESO 02 — Workshop

N R(N) F(N)
1 1 11
2 10 011
3 100 0011
4 101 1011
5 1000 00011
6 1001 10011
7 1010 01011
8 10000 000011
16 100100 | 0010011
32 | 1010100 | 00101011

Table 1: Example of Fibonacci codes

3 Fibonacci Codes

Fibonacci codes are based on Fibonacci numbers. These numbers are defined recur-
sively as
F() =
F, =

F_1 == 1
F, i+ F, oforn>1.

Theorem 1. A ny positive integer number N can be expressed as

k
R(N) = sz’Fi
i=0
where b; € {0,1} i.e. binary digit, k¥ < N, and F; for 0 < ¢ < k are Fibonacci
numbers.

This representation has interesting property that the string byb; .. .b; does not
contain any adjacent 1’s. Fibonacci code for integer N is defined as

In other words Fibonacci code is reversed binary representation R(N) and one
additional 1 at the end of binary string. Resulting binary words forms prefix code.
Examples of some small codes are given in table 1.

4 WBW method

Origin of compression method, which is called WBW (Word based Burrows-Wheeler),
was inspired by Huffword [Wit94] and WLZW [Dvo099], which apply traditional com-
pression algorithms on words. The WBW method arises from concept that words
occurs in text in some manner, which is not random, but it follows certain rules. The
rules are given by used language and also by contents of text itself.

11

Move to front coding based on splay trees

4.1 Definition of words and nonwords

The alphabet of the WBW consists of words and nonwords. We called them tokens
together. A word is defined as maximal string of alphanumeric characters (letters and
digits) and nonword is defined as maximal string of other characters (punctuations
and spaces).

4.2 Basic Principle

The algorithm we have implemented uses two passes because of the archival nature
of textual databases. The text of a document is stored only once and is then read
multiple times. This makes it possible to choose a better compression ratio, even
at the price of two passes and lengthier compression. Another consideration is that
computers used for constructing collections of documents are usually more powerful
than client computers accessing the finished collections.

The compression consists of four phases:

1. lexical analysis — input text is divided into words and nonwords. Alphabet for
BW algorithm is now created,

2. storing of the alphabet
3. BW transformation,
4. Move To Front coding,

5. storing of the MTF results by appropriate method.

Decompression is inverse process to compression.

5 Move to Front coding

The last phase of the compression (see section 2.2) is Move To Front coding. It turned
out that classical MTF is unusable (very slow) for large sized alphabet. Therefore
the new method should be developed.

6 Splay Tree

A Splay tree ([Sle83, Sle86]) is a Binary Search Tree on which splaying operations are
performed. A splaying operation is one that causes a node in the tree to move up the
tree and become the root of the tree. Splaying of a node is done by rotating the nodes
a more detailed description of the rotations will be given bellow. Whenever a node
is accessed via standard tree operations (Find, Insert, Remove, etc.), it is splayed, it
is splayed thus making it the root.

12

DATESO 02 — Workshop

Because of moving the accessed node to the root via rotation, the height of the
tree may be shortened or lengthened. However, while splaying the accessed node
to the root the height of all other nodes on the access path are just about halved.
Even though the total height may be infact lengthened the height of the nodes off the
access path will be increased by no less then two. Splay trees guarantee amortized
complexity O(mlogn).

Searching (operation Find) in splay tree is important for our purposes. Splaying is
done every time a Find operation is done. First a regular binary search tree algorithm
is executed. If the node is found tree is splayed. If no node is found, then the inorder
successor on the search path is splayed in accord with the splay rules described above.
The node splayed is dependent on the structure of the tree, as trees that have the
same values may have a different inorder structure.

We propose using of Splay tree to perform Move To Front coding of BWT results.
Initially the whole alphabet is inserted into the tree. MTF coding is a sequence of
searching on the tree. Therefore all codes from BW'T can be founded in the tree. The
first step of Find operation in the splay tree is standard binary search tree algorithm.
A path from the root of the tree to the searched node is considered as code (binary
string), that identifies the node. Unfortunately this code isn’t prefix code or block
code, so it cannot be unambiguously decoded. For example 0 is code for the first left
child of the root but 00 is code for the leftmost child of the root in the second level.
And node in the root of the tree has code equal to empty string. Due this reasons
one 1 is added to beginning of all codes (e.g. 10 - the first left child of the root, 100
the leftmost ”grandson” of the root). This numbers are encoded as Fibonacci codes.

The splay tree moves frequently used node near to root of the tree and therefore
path from root to particular node is relative short. By this way compression is
achieved. But sometimes less frequent node must be searched in the tree. The
binary string produced by encoding algorithm will be very long. It is usually longer
than log,n, where n is size of alphabet, bits that are necessary to encode token
number of encoded token. It doesn’t represent any compression. The binary string
should be transformed into Fibonacci code in the second step. The transformation
of such binary number can be done with large-scale integer arithmetic. Performance
of this type of arithmetic is low when it is compared with speed of hardware integer
arithmetic in processor. If we think matter over, it isn’t necessary to encode the large
number by Fibonacci code and cope with problem of large-scale arithmetic. Problem
can be solved by escape code mechanism. If length of binary string produce by splay
tree is greater than given threshold then escape code is written into output at first
and then token number at second. Node is splayed to the root of the tree of course.
In other case binary string is transformed into Fibonacci code and then it is written
into output. The threshold could be set up to the size of processor word (e.g. 16, 32
or 64 bits). Then length of binary string doesn’t cross size of hardware arithmetic and
could be easily transformed in both directions. He escape code must be different from
all possible codes produced by splay tree. Splay tree produces binary codes (strings)
from 1 to 1¥ € {0,1}*,k € N. The smallest code for the threshold is number with
binary representation 10, i.e. the largest code plus one.

Example 1. W e usually have 32-bit processor, then the largest code has binary
string that contains 31 ones i.e. 23! — 1. Therefore threshold is equal to 23!.

13

Move to front coding based on splay trees

bible
Size of files [bytes] 4047392
Number of tokens 1535711
Number of unique tokens 13509
Number of words 767855
Number of unique words 13456
Number of nonwords 767856
Number of unique nonwords 53

Table 2: Characterization of experimental file

7 Experimental Results

7.1 Data for experiments

We perform our test on file bible. The file is part of Canterbury Compression Corpus
(see [Arn97]) intended for testing compression algorithms.

7.2 Experiments

In our test we observe impact of threshold in Splay tree Move to front coding scheme
on size of compressed text. A number of escape codes and average length of code (it
was measured in bits per token) was displayed too. For experimental see table 3 and
charts 1, 2 and 3. We also test how much depends results of compression on initial
structure of the splay tree. It means which permutation should be inserted into the
splay tree. We experiment with identical permutation, anti permutation and with
random permutation. You can see that results for particular permutations are too
close, so the size of compressed text — our main object of interest - doesn’t depend
on initial permutation.

1290
1280

1270 \\
1260
1250

1240 \
1230

1220 \

1210 \”\ <
1200 \

4 16 18 20 22 24 26 28 30 32
Maximal code length

" dentical ‘permulalioﬁ —
Anti permutation ---x---
Random permutation ---*---

Size of compressed text [1000 bytes]

1190
1

Fig. 1: Size of compressed text with respect to threshold

14

DATESO 02 — Workshop

Maximal Size of compressed text Escape codes Bits per token
Code Type of permutation Type of permutation Type of permutation
Length | identical anti random | identical anti random | identical anti random
14 | 1284226 1284287 1284406 89955 89977 90029 6.690 6.690 6.691
15 | 1274818 1274829 1275061 72757 72749 72865 6.641 6.641 6.642
16 | 1257328 1257321 1257671 58063 58045 58214 6.550 6.550 6.552
17 | 1248584 1248666 1249133 45660 45693 45913 6.504 6.505 6.507
18 | 1235293 1235326 1235825 35186 35191 35410 6.435 6.435 6.438
19 | 1227782 1227886 1228464 26609 26649 26883 6.396 6.396 6.399
20 | 1218521 1218620 1219235 19692 19727 19953 6.348 6.348 6.351
21 | 1211285 1211432 1212080 14315 14372 14589 6.310 6.311 6.314
22 | 1207331 1207437 1208062 10243 10271 10463 6.289 6.290 6.293
23 | 1202948 1203127 1203701 7111 7178 7316 6.267 6.267 6.270
24 | 1200543 1200670 1201235 4873 4903 5026 6.254 6.255 6.258
25 | 1198213 1198331 1198872 3253 3275 3376 6.242 6.242 6.245
26 | 1197033 1197152 1197626 2197 2217 2284 6.236 6.236 6.239
27 | 1196026 1196152 1196634 1492 1514 1556 6.230 6.231 6.234
28 | 1195392 1195505 1195971 968 980 1002 6.227 6.228 6.230
29 | 1194850 1194997 1195415 604 634 621 6.224 6.225 6.227
30 | 1194529 1194686 1195045 385 418 390 6.223 6.223 6.225
31 | 1194362 1194501 1194886 243 262 238 6.222 6.223 6.225

8 Conclusion

Table 3: Experimental results

Adaptation of Burrows-Wheeler compression algorithm for word-based compression
was presented. More detailed experimental results are presented in paper [Dvo01].
Another application of splay trees to data compression can be found in [Jon88]. Com-
pression ratio is about 30 percent, it may be considered as good.

Rereferences

[Arn97] R. Arnold and T. Bell. A corpus for evaluation of lossless compres-
sion algorithms. In Proceedings Data Compression Conference 1997, 1997.
http://corpus.canterbury.ac.nz.

[Bent86] J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A locally adaptive
data compression scheme. Communications of the ACM, 29(4):320-330, 1986.

[Bur94] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, Digital Systems Research Center Research Report
124, 1994.

[DvoO1] J. Dvorsky and V. Snéasel. Modifications in burrows-wheeler compression
algorithm. In Proceedings of ISM 2001, 2001.

[Dvo99] J. Dvorsky, V. Snéasel, and J. Pokorny. Word-based compression methods

15

Move to front coding based on splay trees

100000 T T T
Identical permutation —+—
Anti permutation ---x---

90000 Random permutation ---*--- |

80000

70000 \K
60000
50000

40000 \\

30000

Number of escape codes

20000

10000

e,

14 16 18 20 22 24 26 28 30 32
Maximal code length

0

Fig. 2: Number of escape codes with respect to threshold
6.65 \

6.5 \
6.45

6.4

T T T
Identical permutation —+—
Anti permutation ---x---

Random permutation ---*--- |

Bits per token

6.35

" \\'ﬁ\a
6.25 e 8

14 16 18 20 22 24 26 28 30 32
Maximal code length

6.2

Fig. 3: Bits per token with respect to threshold

and indexing for text retrieval systems. In Lecture Notes on Computer Science
1691. Springer-Verlag Berlin, 1999.

[Jon88] D. W. Jones. Application of splay trees to data compression. Communication
of the ACM, 31(8):996-1007, 1988.

[Sle83] D. D. Sleator and R. E. Tarjan. Self-adjusting binary tree. Proceedings of the
ACM SIGACT, pages 235-245, 1983.

[Sle86] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search tree. Journal of
the ACM, 32(3):652-686, 1985.

[Wit94] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Van Nostrand Reinhold, 1994.

16

Multi-Agent Reactive Scheduling in SDL!

Petr Olmer

Department of Theoretical Computer Science and Mathematical Logic
Charles University, Prague

e-mail: petr.olmer@mff.cuni.cz

Abstract. Reactive algorithms expect their input data to be added and/or
changed. Computational systems working on this base are known as reactive
agents. SDL is the programming language that can specify and describe a
reactive multi-agent system, where relations between agents, their behaviour
and communication ways are well defined. We describe how to get the benefit
of SDL in area of scheduling. We present three SDL scheduling systems that
show a development from the traditional (static) scheduling to a distributive
reactive system without any central unit.

Key words: Multi-agent systems, reactive agents, reactive scheduling, SDL.

1 Introduction

This paper presents an application of SDL (Specification and Description Language)
in area of multi-agent systems for scheduling. Our research is aimed at using SDL
for modelling and specifying multi-agent system in general. We are not concerned
in the high-level development of scheduling algorithms, nor in the research in static
scheduling. The work is in progress; we present a partial solution and ideas in the
paper. The work is a part of author’s PhD. research on multi-agent systems.

We define a scheduling problem as follows: A system consists of machines pro-
cessing jobs. Each job is defined by its name, a machine that can process this job, a
time that the machine spend on this job, and by a set of before-jobs, i.e. jobs that
must be done before the given job can be processed. Each machine can process only
one job at time. We say that a job is scheduled, if the time when the job starts is
known. We search for a scheduling of all given jobs. There is often a request of being
optimal in defined criteria. This paper is not the case. We only demand scheduling
of all jobs, if possible (i.e. no dead-locks).

We talk about a static algorithm, if all input data are known before the algorithm
starts. An on-line algorithm allows a part of input data to be known even during
running of the algorithm. At any time, an on-line algorithm assumes that the given

1 This work was done while the author worked in Agit AB.

Multi-Agent Reactive Scheduling in SDL

input data are complete. A reactive algorithm describes how reactive agent behaves:
it expects the world round (i.e. input data) to be changed, and it reacts in sense of
changing its mind with respect to these changes.

Agent is an over-used term. In the context of this paper, we understand agents as
long-lived computational systems, which have goals and decide autonomously which
actions to take in the current situation to maximize progress toward its goals. As
we have done above, we can talk about agents mind, about the world around, about
agents feelings and intentions. Multi-agent system (MAS) is an environment where
agents live, communicate and collaborate.

The programming language SDL is an object-oriented, formal, and graphical lan-
guage for specification and description of complex event-driven (reactive) systems
[Olm1]. Since 1976, SDL is an ITU-T standard; the last revision is called SDL-2000
[2.100]. The language has broad possibilities of use [Olm2], from traditional ones
like communication protocols (GSM, GPRS, UMTS, Bluetooth) or telecommunica-
tion software (Nokias firmware) even to workflow modelling [OV]. To our knowledge,
SDL has not been used to develop reactive scheduling algorithms.

In section 2, a part of SDL standard is presented. In section 3, we describe
three SDL multi-agent scheduling systems. The first one is a naive implementation of
greedy algorithm with a master agent in static scheduling. The second one is a reactive
version of the previous system. It shows that reactive systems can be easily described
in SDL. The last one presented system specifies a multi-agent reactive scheduling
system without a master agent. Machine agents communicate among themselves in
the system. Section 4 concludes and gives ideas for further research.

2 SDL

SDL system consists of agents, i.e. processes running in parallel. Behaviour of each
process is specified by an extended state machine. The syntax entities related to the
paper are described in the figure 1. Agents communicate among themselves and with
system environment via concept of signals. Agents are objects. An object-oriented
approach can be used.

In SDL, there is no global data. This approach requires that information between
processes, or between processes and the environment, must be sent with signals and
optional signal parameters. Signals are sent asynchronously, that is, the sending
process continues executing without waiting for an acknowledgment from the receiving
process.

Processes in SDL can be created at system start, or can be created and termi-
nated dynamically at runtime. More than one instance of a process can exist. Each
instance has a unique process identifier (PId). This makes it possible to send signals
to individual instances of a process.

In the following SDL systems, we use a built-in data type called powerset. The
only literal for a powerset sort is empty, which represents a powerset containing no
elements. The following operators are available for a powerset data type: in (tests

18

DATESO 02 — Workshop

process syntax 1(1)
Fom-e——-- By Fommommmmomoomooooo
N ISTAR
TTTTTTT T T Here the process starts.

,,,,,,,,,,, i LI

{CONNECTOR

1 11n- or Out— can be used
{instead of lines between symbols.

) {STATE
idle -----------An agent stays in state until
1a recognisable signal comes.

,,,,,,,,,,,,,,,,,,,,,,,,

RECEIVE OF SIGNAL

s(p) &----mmme-med If signal S comes, it is consumed.
optional: parameters (values coming
with the signal is saved to variable P)

{ PRIORITY INPUT
s(p) &--mmmmmee--- 4 The incoming signal S is consumed,
teven it is not first in the signal front.

1SIGNAL SAVE
s ----------1If signal S comes, it is saved
1in the signal front till the next state.

{ENABLING CONDITION

< k>0 >””"""’hransition is started if the condition is true
ll(no signal is needed)

s(p) to sender SEND SIGNAL

via channelt 2~ """ Signal S is sent.
optional: (P) parameters,

TO: specification of receiver,
VIA: specification of route

o TAsK

‘reset values’

1DECISION
--=-------4condition is valued and one
ibranch is chosen (can be informal)

‘
update [----mmmom- 4MACRO CALL
:

,,,,,,,,,,,,,,

Fig. 1: SDL syntax entities.

if a certain value is member of the powerset or not), incl (includes a value in the
powerset), del (deletes a member in a powerset), length (the number of elements in
the powerset), take (returns one of the elements in the powerset, it can be specified
which one they are implicitly numbered).

3 SDL scheduling systems

In this section we describe three SDL scheduling systems. In all three systems, each
machine has its machine agent. The agent schedules the given jobs. During processing
a job, no other actions are taken by the agent. The algorithm of scheduling is the
simplest one in the real time: the first possible job is chosen. We can call the algorithm
greedy.

There is no negotiating between machine agents. The time horizon is zero; it
means that jobs are not scheduled into the future.

In the first two systems, we make use of a concept of master agent. The master
agent does not schedule any jobs. It serves as a public blackboard for machine agents.
There is no direct communication channel between machine agents; all communication
channels are between a machine agent and the master agent.

19

Multi-Agent Reactive Scheduling in SDL

3.1 Static scheduling with the master agent

The system is on figures 2 and 3.

A machine agent starts in the state warm_up. It waits for all input data, i.e. all
jobs to be processed (jobs). When the signal input_jobs comes, the machine agent
start scheduling. For each given job, it asks the master agent, whether its before-jobs
are done (signal ask). The response can be yes or no for each before-job. If all answers
were yes, the job is processed. To process a job means to delete the job from jobs,
to set a timer, and, after the timer expiration, to announce to the master agent that
the job is finished (signal done).

If any of the answers was no, the next job is tested. If all jobs were processed, the
machine agent ends. If any jobs cannot be processed (because of its before-jobs), the
machine agent waits for one time unit, and then tests all the jobs again.

The master agent starts in the state idle. It waits for signals ask and done. Signal
ask requests a query to the set of finished jobs (donejobs). If the given job is finished,
the signal yes is sent to the sender, otherwise the signal no is sent to the sender.
Signal done updates donejobs.

We see the disadvantages of this system in two areas. First, the system is ineffi-
cient, because it traverses a set of jobs to be done again and again. If a job can start
at time n, its machine agent will ask the master agent at least n times, whether the
job can start. Second, behaviour of machine agents is not clear, because it supplies
work of the master agent when asking before-jobs one by one. Both disadvantages
are solved in the next system. In addition, the second system is even reactive.

3.2 Reactive scheduling with the master agent

The system is on figures 4 and 5.

A machine agent starts in the state idle. It waits for signals new_job, and job_done.
Signal new_job (from the environment) announces a new job nj to be processed.
Names of its before-jobs (b)) are sent to the master agent. The response is all_done
or wait. The signal all_done means that all given before-jobs have already been done,
and the job can be processed. The signal wait means that some before-jobs (new_by)
were not processed yet. The machine agent will be announced via job_done when
any of these jobs is done. The set of before-jobs is updated (jobs already done are
deleted), and the job is saved to jobs (the set of jobs to be done).

Signal job_done from the master agent announces that another machine has fin-
ished a job dj. The signal is sent to all machine agents known by the master agent.
All jobs from the set jobs are tested in the same way: if the finished job was the last
member of before-jobs of any job ¢j, then the job c¢j is processed. To process a job
means to delete the job from jobs, to set a timer, and, after the timer expiration, to
announce to the master agent that the job is finished (signal job_done).

The master agents starts in the state idle. It waits for signals test_done, and
job_done, both from machine agents. Signal test_done requests a test of set of jobs js,
whether they are already done or not. First, the PId of sender (a machine agent) is

20

DATESO 02 — Workshop

process master 1(1)
I Static scheduling™
with the master agent

,,,,,,,,,,,,

MASTER AGENT

donejobs := (. false .)

donejobs(p)
false

no to sender donejobs(p):=true

yes to sende)

| T

Fig. 2: Static scheduling with the master agent: MACHINE.

saved to known (set of known machine agents). Second, all finished jobs fj are deleted
from the given set of jobs. If the set js remains empty, the signal all_done is sent
to the sender, otherwise the signal wait with the set of remained jobs is sent to the
sender.

Signal job_done from a machine agent announces that this machine has finished a
job j. The job j is added to the set of finished jobs fj. Then, the signal job_done is
resent to all known machine agents.

3.3 Reactive scheduling without a master agent

The system is on figure 6.

The master agent in the previous scheduling system maintains a “database” of
finished jobs and a “database” of machine agents in the system. When a job was
finished, an announcement was sent to all machine agents. In the system without
a master agent, each machine agent maintains its own databases of jobs and known
machine agents (powerset known). Jobs already finished by any agent are saved in
its powerset fjobs. Jobs to be done by the agent are saved in w_jobs. Before-jobs to
be done by another known agent are saved in r_jobs. Before-jobs to be done by an
unknown agent are saved in u_jobs.

21

Multi-Agent Reactive Scheduling in SDL

process machine 1(1)
Static scheduling
with the master agent

MACHINE AGENT

,,,,,,,,,,,,

input_jobs(jobs)

j>length(jobs(i)!Prevjobs)

set(NOW + jobs(i)!Dur,
dojob)

working

Fig. 3: Static scheduling with the master agent: MASTER.

An agent in this system can say about a given job one of these three statements:
the job is mine and it is done (it is in its fjobs), the job is mine and it is not done
yet (it is in its w_jobs), and the job is not mine.

When an agent starts, it sends signal hello to a random agent. For the first agent
in the system, the timer init_timer expires. If the signal reaches another agent, it
replies with the signal welcome and saves its PId. The new agent also saves the PId
of the replier (macro update_kn updates known). By this, the new agent is classed to
the communicating system. Now it can ask other known agents about their meaning
of given jobs. Each machine agent has only partial information about the world
(agents, jobs) round (at the very start, it knows only one other agent).

The main agent’s state is called idle. In the state, these signals are expected:
hello, new_job, ask, done, and wait. The signal hello comes from a new agent; the
welcome message is sent back.

The signal new_job comes from the environment. Macro save_job saves a given job
nj to w_jobs and classifies its before-jobs to f jobs, r_jobs, and u_jobs. If all before-jobs
are finished, the given job can be done too.

The signal ask comes from another agent with three parameters: job (job’s name),
who (PId of agent requesting the job), and not_to (set of PIds where this signal already
was). If an agent receiving ask has the job in f jobs, it replies with the signal done (no

22

DATESO 02 — Workshop

process master R, . 1(1)
Reactive scheduling

pommes Y with the master agent
i ta
! ! - MASTER AGENT

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

known: |nc| nderknown

true

false

sender =
take(known,i)

js:=del(take(fj,i),js);
ii=i+1;

wait(js)

Q%

job_done(j)
to take(known.,i)

Fig. 4: Reactive scheduling with the master agent: MACHINE.

matter who has finished the job). If the job is in w_jobs, the agent replies with the
signal wait that means that it will let the agent who know when the job is finished.
In both cases, the reply is sent to the agent who, not to the sender that can be only
distributing the signal ask among its known agents. Additionally, the agent who is
added to the set known.

The job can be also in r_jobs. It means that the agent is also waiting for this
job to be finished. In the case, the signal ask is immediately resend to the agent w
responsible for the job. The last case is that the agent does not know anything about
the job; the macro distrib_ask is called. The agent added its PId to the set not_to and
resent the signal ask to agents that are in known but not in not_to.

The signal done announces that a job from ° _jobs is finished. In macro try_to_work
the agent tries to find a job in w_jobs with all its before-jobs finished and schedule
the job (see the signal job_done in reactive scheduling with the master agent). The
sets f_jobs, r_jobs and w_jobs are updated.

If the signal wait comes, a job from u_jobs has found its agent. The sets r_jobs
and u_jobs are updated.

The last transition from the state idle is by an enabling condition: If u_jobs is not
empty, the agent tries to locate jobs in this set by sending the signal ask (who is equal

23

Multi-Agent Reactive Scheduling in SDL

process machine S S 1(1)
Reactive scheduling

pommes Y with the master agent
i ta
1 i - MACHINE AGENT

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

new_job(nj)

job_done(dj)

true

bj:=njlbj

test_done(bj)

I I 1

]

false

cj:=take(i,jobs);
del(dj.cj'bj);

wait(new_bj)

[[

njlbj:=new_bj; set(NOW-cj'dur,
jobs:=incl(nj,jobs); finished)

1 N

=) &
1
/ R / finished
l

=)/

all_done

——
—

empty(cjlbj)

jobs:=del(cj,jobs)

set(NOW-cjldur, finished)

update(jobs)

finished

Fig. 5: Reactive scheduling with the master agent: MASTER.

to its PId) to its known agents. Possible responses are done, wait, or no response, if
the relevant agent was not found.

4 Conclusion

We have presented a way in which SDL can be used in area of scheduling. The
language SDL is suitable for specification of reactive scheduling system. There were
three systems proposed in the paper: the first one was static (non-reactive) scheduling
system, where all the input data were known before scheduling. The advantages of
SDL were demonstrated in next two reactive systems. Requests of new jobs are
received during a scheduling process in these systems. The second system includes
the master agent that collects and distributes public information. The reactive multi-
agent system can also work without any master agent; we have shown it in our third
system. There are only machine agents in this system, and they collaborate among
themselves and extend their local knowledge about jobs and other agents.

Further research should be aimed at negotiating between machine agents with
respect to optimise their local knowledge. Adding of a time horizon in scheduling
is also a relevant feature of these reactive systems [Smi]. The proposed multi-agent

24

DATESO 02 — Workshop

process machine 1(1)

T N IReactive scheduling
1 i without a master agent
IR

I

1 MACHINE AGENT

ask(job,

hello who,not_to)

;

update_kn
(sender)

hello

i welcome
save_job
set(NOW+10, to sender
init_timer)

false

update_kn
(who)

false

distrib_ask

update_kn
done(job) (who
to who

_ wi=get
wait(job) (job,r_jobs)
to who

ask(job, who,
not_to) to w

T

try_to_work locate_jobs r_jobs:=incl

(. rj,sender .),r_jobs);
u_jobs:=del
(rj,u_jobs);

update_kn
(sender)

T

)

Fig. 6: Reactive scheduling without a master agent.

systems can be simulated and tested. Following-up their reactions in different worlds
(the number of agents, their load) should be also an interesting issue.

Rereferences

m mer r., - g rogramouvani rizene uaa OSth, n rroceedings o -
Olm1] Olmer P., SDL-2000: P i 7 dalostmi, In Proceedings of Ob
jekty 2001, ISBN 80-213-0829-X.

[Z.100] Z.100 Specification and Description Language (SDL), ITU-T, 2000.

[Olm2] Olmer P., SDL: Chybejici clanek retezce?, In Valenta (ed.), Proceedings of
Workshop on Databases, Texts, Specifications, and Objects, DATESO ’01, CVUT
Praha, 2001, ISBN 80-01-02376-X.

[OV] Olmer P., Vrana C. Workflow Application Development Using SDL and UML,
In G. Harindranath et al (eds.), New Perspectives on Information Systems Develop-
ment: Theory, Methods and Practice, Proceedings of the 10th International Confer-

ence On Information Systems Development, ISD 2001, Kluwer Academic/Plenum
Publishers 2002.

25

Multi-Agent Reactive Scheduling in SDL

[FW] Fiat A., Woeginger G. J. (eds.), Online algorithms, The State of the Art, Lec-
ture Notes in Computer Science, Vol. 1442, SPringer 1998, ISBN 3-540-64917-4.

[Smi] Smith S. F., Reactive Scheduling Systems, In D. Brown and W. Scherer (eds.),
Intelligent Scheduling Systems, Kluwer Publishing 1994.

26

Application of Java Proxy Object to Handle
Context Information

Roman Szturc

Dept. of Computer Science, VSB-Technical University of Ostrava
tf. 17. listopadu, 708 33 Ostrava-Poruba, Czech Republic

e-mail: roman.szturc@vsb.cz

Abstract. Proxy objects are well-known from area of remote method invoca-
tion. Their application in “local computing” was inhibited mainly by lack of
a good support for proxies in standard libraries. This paper presents application
of Java proxy object in area of handling of context information.

Key words: Object-Oriented Programming, Proxy Object, Java

1 Introduction

Development of principles described in this paper was inspired by the following prob-
lem:

There is a lot of systems which elements and connections form vertices and
edges form an ordered graph. Systems traverse the graph and manipulates
data held by vertices. A way how the data are manipulated may depend
on many factors forming context. The context must be carefully handled
by the system, often in thread-safe way.

1.1 Motivation

Experience have shown that although handling of context is usually groovy job, it is
source of frequent and hard to detect errors. After several sleepless nights spent on
searching errors emerging from incorrect context state, the author decided to rapidly
change method how context is handled by programmers. Main goal was to find out
a method how to handle context information in a thread-safe, programmer-friendly
and efficient way.

Application of Java Proxy Object to Handle Context Information

1.2 Organization

This paper exemplifies handling of context information on well-understandable con-
text factor—path the system went through to reach certain vertex. Since the system
forms ordered graph, not a tree, there may be several paths leading to the same
vertex. Then, a result of the same operation performed upon the vertex may dif-
fer according to actual path. In addition the vertex can be manipulated by several
threads of execution simultaneously.

2 Actual State

Problem of handling of context information is not new. Two approaches are used in
most cases:

e passing context information as a method argument,

e storing context information in a data pool of thread of execution.

2.1 Passing Context as an Argument of a Methods

The most strightforward way, how to handle context in a thread-safe way is to pass
context in form of method argument. This approach is easy to implement but has
big disadvantage. Nearly each method has to have an argument representing context,
which makes source code dusty and makes programmer to handle context even if he
or she is not interested with its content. Listing 1 outlines simple example of passing
context as an argument.

Listing 1: Method doSomething with context argument.

public void doSomething(Context context) {
// Select a node to operate upon it.
int index = ...
Node node = getSuccessor(index);
// Adjust context, i.e., set correct path leading to node.
String path = context.getPath();
context.setPath(path + "/" + node.getName());
node.doSomethingElse (context) ;
context.setPath(path) ;

2.2 Passing Context in Thread’s Data Pool
In order to avoid passing context as an argument of method it is possible to take

advantage of storing information into data pool of thread of execution. This approach
does not require context argument, because context is carried by actual thread of

28

DATESO 02 — Workshop

execution and can be accessed at any time. It enables programmer to take care about
context only in places, where context information is really necessary.

Application of this approach presupposes existence of a thread capable to carry
context information. Since there is Thread class representing thread of execution in
Java, such a class can be easily defined.

Listing 2: Definition of class ContextThread.

public class ContextThread extends Thread {
private Context context;

public Context getContext() {
return context;

}

Supposing that current thread of execution is kind of ContextThread, then method
doSomething from listing 1 can be rewritten into the one presented in listing 3.

Listing 3: Method doSomething without context argument.

public void doSomething() {
// Select a node to operate upon it.
int index o
Node node = getSuccessor(index) ;
// Obtain context from current thread of execution.
ContextThread thread = (ContextThread)Thread.currentThread();
Context context = thread.getContext();
// Adjust context, i.e., set correct path leading to node.
String path = context.getPath();
context.setPath(path + "/" + node.getName());
// Perform doSomethingElse operation upon node adjusted context.
node.doSomethingElse() ;
context.setPath(path) ;

2.3 Robustness

Implementations listed in listings 1 and 3 are not robust enough, because in case of an
unpredictable situation, for instance in case of occurence of an exception in method
doSomethingElse, context is inconsistent and may cause whole system to become
unstable. In order to ensure robustness, context must be restored to correct state
regardless of process of invocation of method doSomethingElse.

The Java try-finally statement can be used to do that. Unfortunately, this
solution makes source code even more hard to read, as exemplified in listing 4.

Listing 4: Ensuring context restoration.

29

Application of Java Proxy Object to Handle Context Information

public void doSomething() {
// Select a node to operate upon it.
int index = ...
Node node = getSuccessor(index);
// Obtain context from current thread of execution.
ContextThread thread = (ContextThread)Thread.currentThread();
Context context = thread.getContext();
// Adjust context, i.e., set correct path leading to node.
String path = context.getPath();
try {
context.setPath(path + "/" + node.getName());
// Perform doSomethingElse operation upon node adjusted
// context.
node.doSomethingElse () ;

}
finally {
context.setPath(path) ;
}
} [

This approach is fully functional and robust, however, has some disadvantages. Pro-
grammer has to ensure:

e modification of current context,
e invocation of a method in modified context and

e restoration of original context (after the method invocation).

The first item is often source of errors. Programmers usually forget to modify current
context before invocation of a method. The method then may behave incorrectly,
because it is executed in incorrect context. Similar problem concerns the third item.
Programmers either restore context incorrectly or forget to restore the context at all.

2.4 Desired Solution

The goal is to ensure automatic context adjustment and relieve programmer of groovy
context handling. Desired solution should allow programmer concentrate only on
problem area and manipulate with context only when it is really necessary. Reduced
code from listing 4 should look like the one given by listing 5.

Listing 5: Desired method content.

public void doSomething() {
// Select a node to operate upon it.
int index = ...
Node node = getSuccessor(index);
node.doSomethingElse() ;

30

DATESO 02 — Workshop

Subject
request ()
RealSubject . Proxy
subject
request () request ()

Fig. 1: Proxy design pattern.

3 Proxy

An elegant way how to solve problems described in section 2 is application of proxy
object.

3.1 Proxy Pattern

Behavior of proxy object can be described by well-known prozy design pattern [1]. It
consists of two classes Proxy and RealSubject having common interface! Subject,
see figure 1. The common interface enables sender of request message communi-
cate with instances of Proxy and RealSubject classes in the same way. So, passing
reference to Proxy instance, instead of reference to Subject instance, enables imple-
mentator of the Proxy to monitor and possibly modify messages issued by a sender.

3.2 Java Dynamic Proxy

Java implement proxy design pattern in its standard libraries since version JDK1.3 [2].
Java uses slight modification of traditional proxy design pattern, see figure 2. The
key items of Java solution are class java.lang.reflect.Proxy (simply Proxy) and
interface java.lang.reflect.InvocationHandler (simply InvocationHandler).

3.2.1 Dynamic Proxy Class

A dynamic prozy class is a class that extends class Proxy and implements a list of
interfaces specified at runtime when the class is created. Invocation through one of
the interfaces on an instance of DynamicProxy class is encoded and dispatched to
another object through a uniform interface given by InvocationHandler.

It means that each instance of DynamicProxy is associated with an invocation
handler—an instance implementing interface InvocationHandler. Invocations on an

!Note, that Subject do not have to be necessarily implemented in form of an interface in sense
of programming language.

31

Application of Java Proxy Object to Handle Context Information

Proxy

newProxyInstance()

|
|
Node :
getName O i InvocationHandler
doSomething() l invoke ()
doSomethingElse () i
|
|

DynamicProxy

|

|

|

: getName ()

! doSomething()

| doSomethingElse ()
|

|

|

7

NodeWithProxy
. handler | yodeInvocationHandler
getName () subject
doSomething() invoke ()
doSomethingElse ()

Fig. 2: Java Dynamic proxy implementation.

instance of dynamic proxy class are dispatched to invoke method of the invocation
handler. In order to enable dispatching of invocation of arbitrary method to the single
method, the invoke method is declared as follows:

public Object invoke(Object proxy, Method method, Object[] args);

When invoke method of an invocation handler is invoked, the handler can detect
what method of what proxy has been invoked. Parameters passed to the proxy’s
method are represented in form of array of objects args.

3.3 Handling Context via Proxy

The fact that each invocation on an instance of dynamic proxy class is dispatched
to invoke method of corresponding invocation handler is used to handle content
of context. Because the same code ensuring context manipulation appears in each
method, it can be moved from the methods and centralized in invoke method.

For instance invocation handler NodeInvocationHandler of a Node can be defined
as depicted in listing 6. The invoke method ensures correct context handling.

32

DATESO 02 — Workshop

When a method declared in interface Node is invoked on DynamicProxy instance,
the call is dispatched to invoke method of corresponding NodeInvocationHandler
instance. Behavior of the invoke method can be described by the following steps:

1. retrieve context from current thread of execution;

2. if method should be invoked on different than actual node, initialize path to
actual path stored in context;

3. if path has non-null value, set context’s path to actual path appended with
separator and name of node;

4. invoke the method on given node;

5. finally restore context’s path to original value.

Listing 6: Definition of class NodeInvocationHandler.

public class NodeInvocationHandler implements InvocationHandler {
Node node;
public NodeInvocationHandler (Node node) {
this.node = node;
}
public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable {
ContextThread thread = (ContextThread)Thread.currentThread();
Context context = thread.getContext();
String path = (context.getNode() != node) ?
context.getPath() : null;
try {
if (path != null)
context.setPath(path + "/" + node.getName());
return method.invoke(node, args);

}
finally {
if (path != null)
context.setPath(path) ;
}

Instances of dynamic proxies and corresponding invocation handlers are created dur-
ing execution of method getSuccessor() of class NodeWithProxy, see listing 7.
First, NodeInvocationHandler instance is created and initialized with a node which
proxy will be created. Next, proxy object itself is instantiated. It is done by
newProxyInstance method of class Proxy. The method works as a factory produc-
ing instances of a class? implementing set of interfaces given by the second argument.
The newly created instance is associated with handler.

2Dynamically generated classes are typically named $Proxy0, $Proxy1, ...

33

Application of Java Proxy Object to Handle Context Information

Listing 7: The getSuccessor method of class NodeWithProxy.

public Node getSuccessor(int index) {
Node node = successors.get(index) ;
InvocationHandler handler = new NodeInvocationHandler (node);
ClassLoader loader = Node.class.getClassLoader();
Node proxy = (Node)Proxy.newProxyInstance (loader,
new Class[] {Node.class}, handler);

return proxy,

Using proxy object and appropriately designed invocation handler programmer do
not need to worry about handling of context. The context is handled correctly on
“background”.

4 Performance Issues

Comfort bearing on automated handling of context information is not freebee and is
compensated by:

e supplementary time which is required to invoke a method on proxy object and
distribute the invocation to context handler,

e bigger consumption of memory caused by allocation of proxy objects and invo-
cation handlers.

According to performed experiments, handling of context information via proxy object
takes 2.6 times more time in comparison with traditional approaches discussed in
sections 2.1 and 2.2. The growth of time is given mainly by transformation of call of
a proxy method into form of a Method object, which is acceptable by invoke method
of invocation handler, see section 3.2.

Another factor bearing on performance is memory consumption. It is evident
that application of proxies enlarges consumed memory. Fortunately, size of instances
of proxies and invocation handlers are typically several decades smaller than size of
referred objects. In addition, life time of proxies and invocation handlers is rather
very short and does not affect memory requirement significantly. According to exper-
imental measures, one can estimate amount of of allocated memory per invocation of
proxy method in range 100 — 120 bytes. This amount is really an estimation, because
real amount of memory is hard to measure due work of garbage collector.

5 Conclusion

Dynamic proxy class associated with invocation handler gives programmer opportuni-
ties to implement new functionality without modification of existing API. Invocation

34

DATESO 02 — Workshop

handler enables to monitor invocation of all methods invoked on corresponding proxy.
Of course, there are some overheads connected with this approach, but it is program-
mer’s (or developer’s) responsibility to decide if the overheads are acceptable.

Rereferences

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, 1994, Addison-
Wesley, ISBN 0-201-63361-2

[2] Sun Microsystems, Inc., Dynamic Prozy Classes, 1999,
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html

35

ACB Compression Method and Query
Preprocessing in Text Retrieval Systems

Tomas Skopal

VSB-Technical University of Ostrava, Computer Science Dept.

e-mail: Tomas .Skopal@vsb.cz

Abstract. This article presents ACB — high efficient text compression method,
its word-based modification and finally discuss relating benefits by creating
auxiliary query subsystem for usage in text retrieval systems.

Key words: ACB, compression, context item, index, query preprocessing

1 Compression and Indexing in TRS

Data compression is widely used in text (or full-text) databases to save storage space
and network bandwidth. In typical full-text database, various auxiliary structures
are provided in addition to the main compressed text. They include at least a text
index, a lexicon, and disk mappings [BELL93].

Many compression methods can be used to reduce size of all these data. Relatively
more advanced methods are based on coding words as basic unit. We could cite word-
based adaptive Huffman coding and HuffWord [HC92, WIT94], another experiments
have been done with word-based LZW by Horspool and Cormack [HC92, SAL98|.

However, word-based compression methods may serve moreover for other pur-
poses, in addition to data compression itself. One of these purposes have been pre-
sented by Dvorsky, Pokorny and Snéasel in [ADBIS99]. Their modification of LZW
(WLZW) simultaneously provides an indexing of source text (documents). In addi-
tion to the compressed data stream, a token index file is produced. This file maintains
for every token an inverted entry, which contains a list of all documents where the
token occurs.

Thus, index file is particular example of interconnection between data compression
and TRS. Another approach of such interconnection is introduced in the following
section.

2 Query preprocessing

In TR environment we often don’t know how to query for intended data. User knows
only few (and/or very general) terms, which can be found in very many documents.

DATESO 02 — Workshop

On the other side, user may express the conceptual content of the required information
with query terms which do not match the terms appearing in the relevant documents.

This vocabulary problem, discussed, for example, by Furnas et al. [FURS7], is
more severe when the user queries are short or when the database to be searched is
large, as in the case of Web-based retrieval.

A survey of this topic is thoroughly presented in [ACMO1] where several query-
advancing techniques are discussed, leading to relevant documents response.

Back to the data compression. The word-based modification of ACB compression
method is suitable for production (besides compressed stream and text index) of
structure (i.e. context index) which can be used as a standalone TR tool for query
advancing. This structure allows us to query upon data we don’t exactly know, using
a simple term-matching query. As a response of that query, we will obtain a set of
word-based substrings contained within indexed/compressed documents, in which the
original query term appears. These substrings we call data contexts. Furthermore,
in the data context we can browse for any other terms lexicographically /semantically
connected with the original term. Such sequences of iterative querying-obtaining will
produce more terms, even term strings, which can be issued to the standard full-text
searching systems (through vector/boolean queries).

Thus, idea of data contexts can be utilized for advanced query construction. Fol-
lowing section will introduce the fundamental structures of ACB method, respectively
structures for building context-based TR subsystem. Detailed description of plain
ACB method can be found in [SAL9S].

3 Basic structures

In following definitions we will use general strings — sequences of terms (characters or
tokens) — and the common string operations. Representation of terms can vary from
bits through ASCII characters to general tokens.

3.1 Context, content, context item

Every term (character/token) ¢; in the given text can be represented as a position in
the text. Let any substring « in the left vicinity from this position is called context
and any substring £ in the right vicinity (including t;) 8 = t;.8es is called content of
term t;. Let the pair ; = (a, 5) be context item of term ¢;. Let 7; be the substring
(term string) of the text, § = 7;.Beqt, then pair J; = (o, §) is context item of string
7;- 1f context or content of context item is limited by a number of terms, then the
context item is bound.

Ezample 1.
a) Terms are ASCII characters

text: swiss miss;is missing
4-bound context item for the 4% ’s’ is ’s miss i’

37

ACB Compression Method and Query Preprocessing in Text Retrieval Systems

b) Terms are bit characters
text: 10011101011
unbound context item for the 3" 0 is 10011101011’

c¢) Terms are words (identifiers)
text: ’swiss’’miss’’is’’missing’
2-bound context item for the ’is’ is ’swiss’’miss’’is’’missing’’

Any subset of all possible k-bound context items of the text form k-bound context
item collection.

3.2 Context dictionary

Structure of context dictionary adds a complete order to the context item collec-
tion. The order can be described by following:

1. Context item [is smaller then context item J if o is smaller using reverse
comparison then «;. Reverse comparison means right-to-left. Comparison of
individual terms is interpretation-dependent.

Formally holds: oy < ay = I < J

2. If both contexts are equal, contents are examined using regular comparison
(left-to-right).
Formally holds: (ar = a;)&(Br < By) = 1< J

3. If both contexts and both contents are equal then context items are equal.

Duplicate items are not allowed.

1 ...swiss,lm.....
2 ..., swil|ss m

3 ... s|wiss m
4 swis|s m

5 swiss|ym

6 swliss m

Fig. 1: Context dictionary, terms are ASCII chars (vertical separates context and
content)

38

DATESO 02 — Workshop

4 Compression method ACB

This compression method! uses idem structures for highly efficient text compression.
Compression algorithm passes the text term-by-term obtaining context items by usual
fashion. At the beginning of encoding/decoding, the runtime? context dictionary is
empty.

4.1 Encoding algorithm

1. Current context item C' (made up from text already encoded (context) and
the rest of the text (content)) is examined against the actual state of context
dictionary. Position i of the nearest context item N (most similar to C') in the
dictionary is found using the defined order, but comparing only the contexts.
Formally holds: (ac < ayn)&VK (ax < ay = ax < ag)

2. From this position in dictionary we incrementally search (in both directions —
the search radius is naturally limited) a context item M at a position k, where
Bar best match Sc. Best match is determined by n — maximal count of equal
terms.

3. To the output goes a triplet (k — i,n,t) — where ¢ is the first non-matching term
in B¢ (from step 2)

4. The context dictionary is updated with n + 1 new context items. Each new

added context item is the previous one incremented by 1 (i.e. the context is
longer by 1 and the content is shorter by 1).

Ezample 2. (encoding step) :

Text being encoded is string from example la. Dictionary’s actual state is shown at
the figure 1. Current context item is ’swiss; m|iss_ is missing’.

1. Appropriate item in context dictionary is found. Item at position 2.

2. Then search in the dictionary from this position for item with best content
match. Item at position 6. 4 chars match (’issy,?), first non-matching char in
the current item content is >i’.

3. To the output goes triplet (4,4,71”).

4. Context dictionary is updated with 5 new items (see figure 2).

! Associative Coder of Buyanovsky by George Buyanovsky
2means in-memory; items are positions of terms and are unbound

39

ACB Compression Method and Query Preprocessing in Text Retrieval Systems

1 L..swissumissuli ‘
2 ... swiss, |miss i.....
3 ‘ swiss milssyi....... ‘
4 swi|ss miss i..
5 ‘ swiss m|iss i...... ‘
6 ... s|lwiss miss i
7 ‘ swiss mis|s i........ ‘
8 swis|s miss;i...
9 L...swissumisslui ‘
10......... swiss| miss_ i....
11............ swliss miss i.

Fig. 2: Context dictionary after update (items in frame are the new ones)

4.2 Decoding algorithm

The decoding is exactly inverse. Runtime context dictionary grows the same way as
by encoding. Text is reconstructed applying triplets on the actual state of dictionary.

Ezample 3. (decoding step) :

Initial current item and state of dictionary are the same as in previous example. Input
triplet (4,4,71i?) is processed by following:

1. Find in dictionary the appropriate item for current item. Same way as by
encoding. Item 2 was found.

2. Take the first member of triplet (here 4) and add it to the found position. Get
item on position 6. Read from the items content first n chars specified by the
second triplet member. You get ’iss’.

3. To the output goes ’iss,’ + the third member ’i’> — ’iss i’

4. Dictionary is updated with 5 new items (see figure 2)

4.3 Benefits of ACB brought into TRS

e ACB uses for each file (data stream) new dictionary, which serves as a compres-
sion tool. This data-locality allows represent context by numbers (positions to
source text).

e For purposes of TRS we can persist produced dictionary as a valuable source
of semantic relations. For a growing collection of documents there could evolve
big dictionary over time. In this phase we should speak rather about context
index than about persistent dictionary.

40

DATESO 02 — Workshop

e ACB algorithm itself can provide (as a side effect) heuristic techniques to im-
prove context index creation and analysis.

5 Building context-based TR subsystem

General context index conception must now become more clear. Because of context
index is persistent and standalone structure, context items cannot be represented as
some positions in source text. This feature considerably differs from runtime context
dictionary which can be unbound. Context index items are represented as term
identifier strings. Identifiers and terms are associated in text index which serves as a
lexicon as well.

Thus, context index must be bound and length of context items significantly
determines storage costs. Fortunately, lengths up to 10 terms seem to be sufficient.

5.1 Simple query

Ezample 4. (one item in 4-bound context index) :

steam engines | work reliably

29 kM

When querying on ’engines’, string ”’steam’ ’engines’ 'work’ 'reliably’” will return as
a response. This answer offers possibility that the word ’engines’ relates somehow to
the other words. The user have obtained more information and is able to formulate
better query.

5.2 Context item reduction
It is obvious that even 10-bound context index might produce big storage overhead.
Linguistically, only few words are possible to be semantically interconnected with

words in distance greater than 3. However, this is a question for additional testing in
real TR environment.

5.3 Alphabet of terms

Next goal in the process of context index reduction is the alphabet reduction. This
can be achieved by following restrictions:

e Word and non-word consideration as presented in [ADBIS99]. Words are se-
mantic terms (words) and non-words are blank terms (spaces, separators, tabs,

41

ACB Compression Method and Query Preprocessing in Text Retrieval Systems

etc). Words and non-words strictly alternate (word is immediately followed by
non-word).

Context index contains only words (i.e. their identifiers). This feature consid-
erably improves response relevancy.

e Reduction achieved by lemmatizers®. Lemma, is the lexical root of its various

derivates (for example ’go’ is lemma for ’goes’,’went’,’going’etc). Instead of
that derivates, the lemma will be used in context index. However, this loss of
information may worsen the response relevancy.

e Ignoring stop-words consideration. Stop-word is a word with minimal semantic
meaning. For example 'the’, ’a’, ’it’, "that’.

Reduction of alphabet causes reduction of context index as well. There will be high
probability (even higher with low-bound items), that required item addition will
produce duplicate items in the index — that is not allowed — thus the item will be
ignored.

6 Future work

e In the future we are going to examine transitive queries, i.e. complex queries
combining particular context-content match.

Ezample 5.

steam engine | is an ancestor of jet propulsion
jet propulsion | uses liquid fuel

Request on 'steam engine’ might produce ’jet propulsion’ or even ’liquid fuel’.

e Nowadays, all the presented stuff is under software development and extensive
testing.

Rereferences

[ADBIS99] J. Dvorsky, J. Pokorny, V. Snasel: Word-based Compression Methods
and Indering for Text Retrieval Systems, Proc. ADBIS’99, Springer
Verlag, 1999, pp. 75-84

[ACMO1] C. Carpineto, R. de Mori, G. Romano, B. Bigi: An Information-
Theoretic Approach to Automatic Query Fxpansion, ACM Transactions
and Information Systems, Vol. 19, No. 1, January 2001

[FURST] G.W. Furnas, T.K. Landauer, L.M. Gomez, S.T. Dumais: The vocabu-
lary problem in human-system communication. Commun. ACM 30, 11

(Nov.) 1987, 964971.

3stemming techniques

42

DATESO 02 — Workshop

[BELL93]

[HC92

[SAL9S]
[WIT94]

T.C. Bell et al: Data Compression in Full-Text Retrieval Systems,
Journal of the American Society for Information Science. 44(9), 1993,
pp-508-531

R.N. Horspool, G.V. Cormack: Construction Word-based Text Com-
pression Algorithms, Proc. 2nd IEEE Data Compression Conference,
Snowbird, 1992

D. Salomon: Data Compression, Springer Verlag, 1998

[LH. Witten, A. Moffat, T.C. Bell: Managing Gigabytes: Compressing
and Indexing Documents and Images., Van Nostrand Reinhold, 1994

43

Methods of employing metadata for managing
large systems

Jan Vrana
CVUT Faculty of Electrical Engineering, Dept. of Computer Science

e-mail: vrana@komix.cz

Abstract. Metadata is a term, which is mentioned very often. Various the-
oretical aspects of metadata utilization are discussed most frequently. In this
paper we shall focus on usage of metadata for visualizing and querying very
large and complex system of objects. We will also describe a universal query
processing system as a module of an application server. It can be used for
querying of almost arbitrary data that can be described in terms of Entity and
Relationship which gives the Universal query processing system opportunity to
be used in a wide range of application domains.

Key words: Storing Data, Metadata, Query Processing

1 Topic

Consider a system consisting of a large number of objects (say) which may be
organized into higher-order units. Every object may have a large number of attributes.
Attribute values may determine relationships of the given object to other objects.
There may be a number of types of relationships and each object may have different
number of relationships to other objects. Further consider, that values of individual
attributes may change in time and that it is important to store all historical values
and their changes.

System with considered properties can be illustrated. A distributed control system
or a complex technology network or other complex network consisting of individual
elements (each of them having its own internal structure and own large sets of con-
figuration parameters) can be a good illustration of the considered system. Values of
individual attributes of elements determine a behavior of a whole system. The goal
is to manage (to assign values of individual attributes) in such a way, that the whole
system has required behaviour. It might be a very complicated task due to a large
number of elements in the system and their high interconnectivity.

In order to be able to meet this goal (to tune-up or reconfigure such a system), the
staff needs to be able to view and change current configuration of individual elements,
their attributes and relationships and to check the overall setup consistency.

DATESO 02 — Workshop

Mentioned tasks are very difficult and time consuming issue when performed with-
out any computer supported intelligent visualisation, automation and verification. It
is difficult even to create the computer support due to the system complexity. This
paper will discus, how metadata can help with a formal description of such type of
systems and how to build a controlling application based on the formal description.
We will also show, that a large set o application domains comply to our assumptions,
which means that main concepts and principles described in this paper can be utilized
there.

2 Example application

We shall use one particular application solving one particular problem of assumed
type to illustrate solution of the general problem. We shall mention only those parts
of application that are dedicated to storing and managing the processed data. Fig-
ure 1 is a schematic chart of the application architecture which helps to identify the
application modules.

Client Application Application

Application Logic Data
Server Server \

y
D

RDBMS
\ 4

Data
Pump

Fig. 1: Example Application Architecture

We shall discuss the structure and contents of data stored in a database and an
architecture of the Application Data Server. It is based on the principles of how it
stores and controls data that it provides to overlaying application layers, taking the
role of an object data server. We will not discuss the Data Pump, although it also
manipulates and controls the data, because the Data Pump is based on the same
principles as the Application Data Server.

3 The structure of data

At the beginning, we mentioned that metadata may be used to solve this problem.
What are the symptoms and reasons that lead to metadata employment? The most
important reason in the case of the described problem was its size and complexity
and implied diversity that must be implemented in algorithms. The diversity is so
high that it is impossible to implement every single alternative by a ”fixed” algo-
rithm. Although fixed algorithms can achieve the lowest computational complexity
(= highest computation effectivity). The development and maintainance of software

45

Methods of employing metadata for managing large systems

with described characteristics is not only complicated but also expensive. With the
help and utilization of metadata it is possible to build the software in such a way, that
it will be universal and it’s behaviour will be controlled by the metadata, which will
make the software independent on the particular structure of the processed data. The
functional diversity will be achieved by diversity of metadata instead of a diversity of
(men written) algorithms.

It is common that every universality is paid for. In this case it is paid mainly by
a higher cumputational complexity (lower effectivity) of universal algorithms and by
requirements for storing a large volume of metadata. The computing and the storage
requirements may be important according to assumed system complexity and it must
be taken into account when designing the structure of metadata (the way of storing
the system description). So, let us consider also a compromise method. Let us call it
the Dynamic Relational Data Storing Method. It makes a compromise between the
Fixed Structure Data Storing Method and ”fixed” algorithms on one hand and using a
general graph data structure to store the data (here called the General Data Storing
Method) on the other hand. The main feature of the Dynamic Relational Data
Storing Method is a separate storing of metadata from controlled data, which are
managed with a maximum utilization of relational characteristics of a host relational
DBMS. A more detailed explanation of the terms Dynamic Relational Data Storing
Method and General Data Storing Method, description of their main features and
their comparison follows.

3.1 Data storing method

We do not consider that the Fixed Structure Data Storing Method is a good solution
to our problem due to mentioned system complexity, so we will not discuss it further.

One reason to use the Dynamic Relational Data Storing Method may be the fact
that a size and a structure of a maintained system model is not known (eventually, if
the system model is assumed to be further developed and extended). Let us consider
the Dynamic Relational Data Storing Method, that stores its metadata separately
in fixed-structure database tables, and then it creates a dynamic structure of tables
for storing data. To clarify this procedure, we will breefly describe the General Data
Storing Method and its main features. We will use E-R diagrams to describe a
database structure. Diagrams will be in such a form, that every single entity will
correspond to a single database table. Arrows in the middle of relationship lines
indicate a direction of foreign keys propagation.

To compare the two data storing methods mentioned abowe, let us consider one
representative example of a system model, that consists of interconnected units, which
have their attributes and the attributes may carry different values. Let us describe
how this model can be stored with a given data storing method and what features
and requirements will the stored model have. For the example, assume the system
model consisting of 100 higher-order units. Each higher-order unit consists in average
of 100 lower-order units. Every lower-order unit has a character of a relational pa-
rameter table and has 10 relationships to other lower units and it has 1000 attributes

46

DATESO 02 — Workshop

(individual cells of parameter table). Let us further assume that every attribute may
have 3 historical values.

3.1.1 General Data Storing Method

Figure 2 shows the main idea of what we call the General Data Storing Method.

Type of Type of
relation object
1 | | r
I 1
Relation Object
w, I ‘ \.

Fig. 2: The General Data Storing Method

The two related entities at the bottom of the diagram are capable to store an
arbitrary graph-type data structure. Let us look how to describe some fundamen-
tal constructions, which are needed for building of a system model when using this
method:

e A higher order unit consists of lower order units: here one object A of
type "unit” is connected by a relationship of type ”consists of” with other ob-
ject B of type "unit” (two records with different identifiers exist in the database
table Object with the value of foreign key from the table Type of objects corre-
sponding to the term ”"unit”. We shall further denote it as the ”type of object”
and, by analogy, as the ”type of relationship”. There exists a record in the table
Record, which has: identifiers of both mentioned records from the Object table
as values of respective foreign keys and the type of relationship corresponding
to the term ”consists of”).

e One unit has a (logical) relationship to other unit: one object of type
“unit” is connected by a relationship of type ”is incident” with an object of
type "relationship”, which is further connected by another relationship of type
”is incident” with other object of type ”unit”.

e A unit has attributes: an object of type ”unit” is connected by a relationship
of type ”unit attribute” with other object of type ”attribute”.

e Attribute has values: an object of type ”unit” is connected by a relationship
of type ”attribute value” with other object of type ”value”.

47

Methods of employing metadata for managing large systems

Any other aspect of the model can be described in a similar way. It is no doubt
that the advantage of this method is its universality. The universality ensures that
almost any change of the model can be covered by a change of metadata without a
necessity to change programs.

What are the costs of this method? What should we pay for the universality?
What are its disadvantages?

We will avoid all unnecessary details. All values may be derived from described
system model characteristics and from the basic constructions. The following table
shows the number of records that have to be inserted into respective tables to store
the system model when using this method:

table Object table Record
Type of Record | records | Type of Record | records
Unit 10* || Consists of 10*
Relation 9-10* || Is incident 2-10°
Attribute 107 || Unit Attribute 107
Value 3-107 || Attribute Value 3107
4.107 4.107

Most of records are required for storing description of attributes, their values and
for assigning values to attributes.

It requires a lot of system resources just to store this number of records. Querying
this data structure (processing queries) is also very difficult and complex task. Pro-
cessing of one query retrieving attributes implies either multiple joining of large tables
or gradual partial retrieving of the result data. In both cases it leads to unacceptable
response times. This was only a case of a query retrieving a value of an individual
attribute. The response times would be even much longer when processing a query
that tries to retrieve a whole parameter table consisting of thousands of attributes
or tries to find some hidden relationships between objects or in a case of massive
data-insert operations.

Another type of complication that this method implies comes from the fact that
metadata is stored in the same place with data. It has at least two unpleasant
consequences. The first consequence manifests mainly at runtime. It is the metadata
access complexity. When accessing data, many subqueries retrieving metadata must
be processed to obtain the requested data. Although metadata occupy only relatively
small part of data space and although it is a ”static” part, it must be "mined” from
very large tables. It is obvious that such mining implies a high time demands. The
application development is influenced by the second consequence of storing metadata
together with data. Namely metadata development. Metadata can be understood as
a program for a universal automat that handles the data according to ”instructions”
given by metadata. It is well known that every computer program has to undertake
some development process in which it is repeatedly tested, debugged and upgraded (an
”old version” is repeatedly replaced by a new version”). The same holds for metadata
with a difference that the real (and possibly valuable) data should be preserved during
the upgrade process. Due to a very tight cohesion of metadata and data the upgrade
process is usually very complicated.

48

DATESO 02 — Workshop

3.1.2 Dynamic Relational Data Storing Method

The Dynamic Relational Data Storing Method is based on such an assumption that
individual units of modelled system have character of relational attribute tables. Then
it can be stored very efficiently taking advantage of a native relational environment of
a host (relational) database engine. Every modelled system unit data (or all units of
the same type) can be stored in one dynamically created database table, separately
from the description metadata. Figure 3 describes the main principles:

1 1l
T T
Relation Unit
1 1
T T
‘ Attribute \

Fig. 3: The Dynamic Relational Data Storing Method

The figure clarifies separation of metadata (description of system model structure
- of units, their attributes, relationships and unit groups) on the left side and data
(attribute values in a dynamically created tables) on the right side. The construct
Unit-Relationship is similar to the construct Object-Relationship in the General Data
Storing Method. In this method, the assumed relational characteristics of stored data
are utilized so that there are special tables dedicated for some of the fundamental
modelling constructs. The same fundamental modelling constructs as in the case of
the General Data Storing Method can be expressed in the following way:

e A higher order unit consists of lower order units: units (records in the
Unit table) correspond to the term ”lower order unit” and the value of a foreign
key is an identifier of a record from the Unit Group table corresponding to the
term ”higher order unit”.

e One unit has a (logical) relatioinship to other unit: one unit is connected
by some relationship with another unit.1

e A unit has attributes: the value of a foreign key of attributes (records of
the Attribute table) is an identifier of a unit (a record in the Unit table). Only
”columns” - attributes of one row - are stored according to assumed columnal
structure of units.

e Attribute has values: values of the corresponding column in the dynamically
created table corresponding to the given unit.

49

Methods of employing metadata for managing large systems

The Dynamic Relational Data Storing Method avoids the main weaknesses of the
General Data Storing Method being still general enough with respect to structures
of assumed system models. The following table presents the costs of the Dynamic
Relational Data Storing Method to store metadata, so that it can be compared to
the ”costs” of the General Data Storing Method.

‘ Table ‘ records ‘
Structure 102
Unit 104

Relation 9.10%
Attribute 5.10*
2-.10°

Still speaking about the example, dynamically created data tables will have in
average 50 columns and will share 6 - 10° records in total. The actual number of data
tables created and their sizes depend on their logical structure. One extreme is to
create 1-10* data tables. Such a number is unacceptable but this extreme case can
be easily transformed in such a way that the number of tables considerably decreases.
This transformation will imply a growth of individual table sizes but it is not critical
since the estimated total number of rows is 6 - 10°.

The General Data Storing Method suffers from two main weaknesses: firstly from
high redundancy and large volume of stored data implying high computational com-
plexity and secondly from high metadata-data cohesion implying difficult metadata
manipulation and upgrade.

The first mentioned weakness of the General Data Storing Method is high re-
dundancy and large volume of stored data. The Dynamic Relational Data Storing
Method will produce much smaller metadata tables resulting in adequate decrease
of the metadata querying overhead. The most essential complexity reduction is in
accessing data. Dynamically created data tables (suppose 1000) will have in average
(according to previous assumptions) 50 columns and 3000 rows. Due to this data
storing architecture it is possible to retrieve data from different related units using
single SQL query that joins adequate data tables. Joining data tables of mentioned
sizes is not critical. The total processing time of an elementary or a complex query
may be much shorter than in the case of the General Data Storing Method. The same
holds for massive inserting operations during data importing.

The second mentioned weakness of the General Data Storing Method is a difficult
metadata manipulation and upgrade. This task is also much easier in case of the
Dynamic Relational Data Storing Method although it is a general weakness of all
applications that are based on using metadata.

4 Application Data Server

The Application Data Server plays a role of an object data server. It provides data
and communication to overlaying application components on a structural (logical)

a0

DATESO 02 — Workshop

level keeping these components independent on the actual data storing method. We
will briefly describe the architecture of the Application Data Server mentioning the
Query Processing System more in detail. The Query Processing System is one of the
Application Data Server modules and it has a high availability potential.

By the term of ” Application Server” we do not mean just a framework that needs
to be still filled by required functionality as it is very often supposed when speaking
about middleware ” Application Servers” like, for example, the IBM WebSphere, BEA,
iPlanet, etc. By the ” Application Server” we mean a fully featured application that
communicates with its neighbourhood through a network communication protocol or
other inter-process communication method.

In the example application, the overlaying components (the Application Logic
Server) communicate with the Application Data Server with requests like: ” Get struc-
ture of unit XY”,” Get data from unit XY satisfying condition ZZ”, ” Change the value
of attribute AA in unit XY” or ”Reread data of unit XY”, etc., The Application Logic
Server does not care about how these data are actually stored and how to retrieve
them.

The architecture of the Application Data Server is modular and multilayer, as
shown in the following picture. This architecture highlightes the Query Processing
System and also the part which is usually understood as a middleware ” Application
Server” (top and left modules) (see fig. 4).

Communication, RPC call processing

Processing parameters, Access rights

CACHE
3 L | R
= Application logic |
=] | L
= | o Query
= : | : | | Processing
= : ! : b System

Database interface

Fig. 4: The Application Data Server

This architecture is based on our experience with building large datawarehouses.
Let us just mention the lowermost layer called the Database Interface. This layer
helps the whole application to be more easily portable to various RDBMS platforms
and it should be as thin as possible. Now, let us describe the other highlighted
module, the Query Processing System.

ol

Methods of employing metadata for managing large systems

4.1 Query Processing System

Currently there is a frequent need to interactively process and query data gathered
by primary information systems. To find and process complex logical relationships
in this data. The example application, which is focused on processing configuration
parameters of a complex technology network, can serve here as an example of an
application, which is based on such a need. To bring another example, let us imagine
a bank, an insurance company or a business company and an application giving it’s
managers, salesmen, dealers, etc. an chance to interactively query and view the core
data of the company and to explore some complex relationships implied by this data.

Such needs are usually satisfied by specialized tailor-made applications, which are
completely or partially dependent on the task and application domain. These special-
ized systems are usually based on several more-or-less fixed, in advance constructed
queries with some modifiable parts, typically filters and a projection.

The application domains of individual applications are usually wery differend from
each other but there is one common aspect . All these applications process and query
data interconnected by relationships - a data from a ”world” that may be described by
objects or entities of various types and relationships of various types interconnecting
objects. If we succeed to find some general formal description of these ”worlds”
we may be able to build a more universal query processing system based on this
description and if the query processing system takes the advantage of universality of
the formal description it may be capable of processing even AD-HOC queries without
any touching implementing software.

We mentioned here two of methods for description of ER (entity-relationship)
based ”world”. Let us focus on the Dynamic Relational Data Storing Method. This
method was built in such a manner that it first creates a description of a ”data world”
= metadata and then, based on it, it created the "data world” itself = data. Due
to a separation of metadata from data, this method may be also used in the reverse
manner. It may preserve and accept the existing "data world” and just formally
describe it by separated metadata. The resulting configurations and their features
will be very similar.

Suppose that the Query Processing System processes data that is stored using the
Dynamic Relational Data Storing Method. In this case we can take advantage of a
rich metadata desctription of data and reach a large flexibility and generality. The
flexibility may come so far that the Query Processing System is capable of processing
arbitrary AD-HOC queries, graphically defined by user. Due to its philosofhy, the
Query Processing System may be also used in an application having much weaker
metadata support or no metadata support at all. Figure 5 shows an internal archi-
tecture of the Query Processing System and it’s link to a host application.

The above picture shows that the Query Processing System is composed from two
parts: 1) the general part, which is application domain independent and generally
usable and 2) from the application dependent part that is completely dependent on
the application domain and on the data storing method. The Application dependent
part of the Query Processing System has to be revised in every implementation. Two
arrows on the above picture correspond to individual steps of a two-step processing
of a query.

92

DATESO 02 — Workshop

Query Processing System

........ "

General - ::Application
part e ‘Dependent
........ t part

Query elements refining,
retrieving all existing
elementary ER joins

Elementary joins
solving

Host application

Fig. 5: The Query Processing System

A common feature of both parts of the Query Processing System is the fact,
that constructive elements of processed queries may be described in terms of entity
and of relationship, which are also constructive elements of the described system
models, according to the initial assumptions. All queries to both: the general and the
application dependent parts are in fact strings of basic elements of type E (entity)
and R (relationship). The first and the last elements of every string have to be
elements of type E. Strings, which begin or end with an R-element are unacceptable.
Furthermore, every two neighbouring E-elements in any string have to be interlaced
by an R-element and every R-element have to be surrounded by two E-elements. The
Query Strings have the following form:

Ey— R, — By — Ry...R, — E,

4.1.1 General Part

The General Part of the Query Processing System deals with a structure of processed
data. It’s task is to search for all potentially existing relationships between existing
objects (entities) in a given data structure, which are solutions of the given query.
A query to a general part has a tree structure. It describes all requested object
relationships. Every single path from the root to a leaf in such tree presents an above
mentioned string of elements. Figure 6 shows an example of an ” ER-world”:

Symbols on the above picture represent objects. Shapes of symbols correspond to
types (classes) of involved objects. For simplicity, let us denote the object types by
letters A to F. Objects of the same type are distinguished by an ”instance” number.
Relationships have similar features. There are relationships of two types on the above
picture. Relationship types are again denoted by letters, here X and Y. Relationships
of a same type are again distinguished by a number.

Suppose the following query: find all routes starting in the object of a type B,
following then a relationship of any type to an object of type C or D, coming along

93

Methods of employing metadata for managing large systems

El

O O

Fig. 6: "World” of objects

relationship of any type to an object of type E. This query to the general part of the
Query Processing System is represented by the following string (brackets represent
elements of requested type, a letter prescribes a requested type, a question mark ”?”
substitutes any type and a pipe symbol ”|” means enumeration of requested types):
[BI[7C|D][?][E].

Two routes are solutions of the given query: route [B1|[X2][C1][X3][E1] and
route [B1]|[Y1][D1]|[Y4][E2]. These two routes are the result of the general part of
the Query Processing System.

With this mechanism it is possible to build an arbitrarily complex specification
of required routes. The specification in the above example has only a trivial linear
structure. Generally, the specification may have a form of a tree or of a forest.

The General part of the Query Processing System is independent on an applica-
tion domain and on a method used to store data. It even does not define particular
representation of entities and relationships. In order to be able to manipulate partic-
ular data, it uses several precisely defined elementary services from the application
dependent part. Let us call these services the Connection Points. These connection
points are used to adapt the general part of the Query Processing System to particular
application domain. They have to be implemented by the host application. It is fully
the host application’s responsibility how it implements these connection points and
consequently how information concerning entities and their relationships is retrieved.
Whether ”comfortably” with a full metadata support as in the case of the Dynamic
Relational Data Storing Method, or less ” comfortably” with partial metadata support
or even with no metadata support at all. By redefining functionality of connection
points it is possible to redefine or optimise the process of searching existing routes,
because it can be a time and computation-complex task in some cases.

o4

DATESO 02 — Workshop

4.2 Application Dependent Part

An Application Dependent Part is a second layer of the Query Processing System.
It’s goal is to process and solve the found links of entities and relationships with
possible additional filters to individual entities and relationships. It is completely an
application dependent task. In case of the Dynamic Relational Data Storing Method,
all necessary information (like a name of particular database table, names of columns
involved in a table join, names of columns that are subject to some filter) can be
obtained from metadata and used for dynamical building of a complex SQL statement.
If such a full metadata support is not available, it is possible to solve given problem
by selecting a pre-built SQL statement fragments and combining them together to
build the resulting SQL statement or by only selecting one statement from a set of
the pre-built final SQL statements. A combination of mentioned approaches may also
be used for example to optimise critical queries if they have too high computational
complexity when dynamically built. Such critical queries may be implemented by
optimized fixed queries while others may be generated dynamically.

Described features allow the Query Processing System to be really universal and
application domain and a data storing method independent so that it can be widely
usable.

5 Conclusion

In this paper we discussed the problem of manipulating and querying a large and com-
plex system of interconnected objects. We mentioned several approaches for solving
this problem and we described two alternative methods for storing data of such a sys-
tem in a relational DBMS: 1) the General Data Storing Method and 2) the Dynamic
Relational Data Storing Method. We found the Dynamic Relational Data Storing
Method to be very appropriate and convenient for description and management of
complex relational data.

We described basic ideas of the Query Processing System that may become (es-
pecially when combined with the Relational Data Storing Method) a powerful tool
for comfortable querying of complex relational data structures and systems. The
architecture of the Query Processing System makes it an application domain and a
data storing method independent. We also described, that the Dynamic Relational
Data Storing Method is not limited to its original purpose - to describe and manage
stored data. It may also be used partially - only for describing data managed by
other system. In this case the Query Processing System may be used for comfortable
querying data that is managed by a foreign system.

The target application domain of the described method is a management of large
and complex networks of active elements. Together with computer networks, this
category also covers other telecommunication networks and for instance also various
networks transporting electrical energy, water, gas and other transporting networks.
This method may also be used in those domains where there is a need for an easy
changing of behavior of a distributed system. For instance an international trans-
portation, logistic, and market chains.

95

Methods of employing metadata for managing large systems

Although this method is targeted to managing large and complex systems, it may
also be used in much smaller scale tasks, for instance in cases where primary infor-
mation systems manage big number of interrelated events as it is in banks, insurance
companies, etc. Here this method may not only simplify the development of an appli-
cation for a secondary management of the core data but it mainly provides extended
features of the management itself and consequently, it enables to achieve expected
behaviour of the managed system.

The Query Processing System may be used for querying almost any data with a
relational character. This allows its wide utilisation.

o6

Organizational Structures Modeling and Analyze

Ivo Vondrak, Vaclav Snasel, David Jezek

Department of Computer Science, VSB-Technical University of Ostrava,
tf. 17. listopadu 15, 708 33 Ostrava-Poruba

e-mail: ivo.vondrak@vsb.cz, vaclav.snasel@vsb.cz, david.jezekQvsb.cz

Abstract. Business process re-engineering is based on changes of the structure
of business processes with the respect to obtain their higher efficiency. As a
result of this business process re-engineering new organizational structure has to
be defined to reflect changes in business processes. The organizational structure
is usually defined using the best experience and there is a minimum of formal
approach involved. This paper shows the possibilities of the theory of concept
analysis that can help to understand organizational structure based on solid
mathematical foundations.

Key words: business processes, re-engineering, organizational structure, con-
cept analysis, concept lattices.

1 Introduction

Business processes represent the core of the company behavior. There are many
possibilities how these processes can be defined. Usually all modeling tools are focused
on various kinds of business process aspects based on what abstraction is considered
as the main. From this point of view there are three basic approaches that can be
employed [Chri95] for the business process specification:

e Functional View. The functional view is focused on activities as well as on
entities that flow into and out of these activities. This view is often expressed
by Data Flow Diagrams [Mar79].

e Behavioral View. The behavioral view is focused on when and/or under what
conditions activities are performed. This aspect of the process model is often
based on various kinds of State Diagrams or Interaction Diagrams. More so-
phisticated approaches based on the theory of Petri Nets are convenient for
systems that may exhibit asynchronous and concurrent activities [Pet77]. The
behavioral view captures the control aspect of the process model. It means that
the direction of the process is defined on current state of the system and event
that occurs.

Organizational Structures Modeling and Analyze

e Structural View.The structural view is focused on the static aspect of the pro-
cess. It captures objects that are manipulated and used by a process as well as
the relationships that exist among them. These models are often based on the
Entity-Relation Diagrams or any of the Object Diagrams that are used by the
various kinds of Object Oriented Methods.

Unfortunately, none of these views captures organization structure of roles imple-
mented by human resources participating in processes being modeled. For example,
BPM (Business Process Modeling) method [VonSK99] involves roles in a process
specification but there is no option how the organizational structure implied by such
models can be analyzed and evaluated.

The next chapters will show how the theory of concepts might remove the gap
between process models and organizational structure.

2 A Motivating Example

Lets start with a toy example to demonstrate how the business process models serve
as a source of the organizational structure specification. Let’s assume that we have
a car sale company with a showroom that employs four people: manager, salesman,
technician and accountant. Let’s assume that we have only two business processes
enacted: car sale and car fleer purchase. The first one reflects the situation when a
customer wants to buy a car; the second one is performed by the showroom when a
fleet of cars has to be purchased for demonstration and for immediate sale purposes.

Car sale process starts with the activity of offering a car to a customer. Activity
of ordering the chosen car from a manufacturer follows if the car is not available in
the showroom. Employees of the showroom try to help the customer with financing
afterwards and finally the payment from the customer is checkedand the car is handed
over. Fleet purchase process is started with the selection of the appropriate fleet, and
then the selected cars are ordered, paid and taken over by the showroom.

Simple flow chars of the following structure can model these processes as Fig 1.

It is obvious that the next logical step is to assign roles responsible for the spec-
ified activities. Based on that assignment it is possible to derive so called table of
responsibilities that can be used for the purposes of the organization structure spec-
ification. Let’s assume that in the car sale process for offering activity the salesman
or technician is responsible. The showroom manager or salesman can realize the or-
dering activity while the accountant or manager takes care of the financial operations
like help with financing and checking the payment. Finally for the activity car hand
over the technician or salesman is responsible. The process of fleet purchase has to
be assigned with its roles, too. Resulting tables of responsibilities are Table 1 and
Table 2.

It is obvious that our showroom would have to implement some additional pro-
cesses with more complex structure in a real life situation but for our purposes that
are to demonstrate the potential of the theory of concepts this simplified example
should be sufficient.

o8

DATESO ’02 — Workshop

Offering

Start

A

Not av'allable Selecting
Available Ordering
%)
Ordering
Finacing
N
4 Paying
Checking Payment
N
Handing Over Taking Over
v

A
End End

Fig. 1: Processes flow chars

‘ H Offering ‘ Ordering ‘ Financing ‘ Checking P. ‘ Handing Over ‘

Manager X X X

Salesman X X X
Technician X X
Accountant X X

Table 1: Role Assignment for Car Sale Process.

3 Formal Concept Analysis(FCA)

The idea of formalization of terms of context and concept by means of theory of lat-
tices is not quite new. Formerly isolated experiments at application so-called Galois
lattices already existed, especially in the area of Information retrieval, but systemat-
ically built up theory did not arose until the work of R.Wille in about 1980 at the
TH Darmstadt, Germany and his group. FCA is a mathematical approach to data
analysis based on the lattice theory of Garret Birkhoff [Bir93].

The claim of this contribution is not a detailed description of the whole problems
but rather motivating acquaintance with the given problems.

For the formalization of term concept and context a theory of ordered sets and the
theory of lattices are applied. The terms from these classic disciplines can be found
in [GantW99).

99

Organizational Structures Modeling and Analyze

‘ H Selling ‘ Ordering ‘ Paying ‘ Taking Over ‘

Manager X X

Salesman X

Technician X X
Accountant X

Table 2: Role Assignment for Fleet Purchase Process.

Definition 1. A context is a triple (O, A, T'), where O and A are sets and T'C O
xA. The elements of O are called objects and the elements of A are attributes.

Concept analysis theory can be used for grouping of objects that have common
attributes. Concept analysis begins with a binary relation, or boolean table, T' between
a set of objects O and set of attributes A.

For any set of objects O C O , their set of common attributes is defined as
0(0)={a€ A |NVo€O:(o,a) €T} . For any set of attributes A € A, their set of
common objects is 7(A) ={o € OVa € A: (0,a) € T}.

Definition 2. A pair (O, A) is called a concept if A = ¢(0O) and in the same time
O =1(A).

Definition 3. Let (O, A,T) be a context. For couple (O, A) where O C O, A C A,
A =0(0) and O = 7(A) we say O is extent and the set A is intent of concept (O, A).
The set of all concepts is called C(O, A, T).

This property says that all objects of the concept carry all its attributes and that
there is no other object in O carrying all attributes of the concept. When looking at
the cross table this property can be seen if rectangles totally covered with crosses can
be identified.

Looking at the definition of a formal concept one can easily see that for all O C O,
the pair (7(c(0)),0(0)), is a formal concept. The dual holds for all A C A, i.e.
(1(a),0(7(A)))) is always a formal concept, too. Yet, the sets of concepts achieved
in this way are equal and contain exactly the concepts existing in the given context.

The very important property is that all concepts of a given table form a partial
order via (O1, A1) < (Oq, Ag) & 01 C Oy < Ay D A,. It was proven that such set of
concepts constitutes a complete lattice called concept lattice L(T). For two elements
(01, A1) and (O2, A,) in the concept lattice, their meet (Oy, A1) A (O2, Ag) is defined
as (O N0y, 0(01NOy)) and their join (O, A1) V (Og, As) as (17(A; N Ay), A1 N Ay).
A concept ¢ = (O, A) has extent e(c) = O and intent i(c) = A.

Theorem 1. The Fundamental Theorem on Concept Lattice. Let (O, A, T) be
a context. Then C(O, A, T) is a complete lattice and infimum and supremum are
defined as follows:

60

DATESO ’02 — Workshop

/\ O, Ay) = (ﬂ O, 0 (U At)))

teT teT teT

(1)
V(0,4 = (r(o((J 00), N 4:)
teT teT teT

More about concept analysis can be found in [GantW99], [SnelT97].

Concept lattice can be depicted by the usual as lattice diagram. It would however
be too messy to label each concept by its extent and its intent. A much simpler
reduced labeling is achieved if each object and each attribute is entered only once in
the diagram. The name of object O is attached to the lower half of the corresponding
object concept ¢ = (7(0(0)),c(0)), while the name of attribute A is located at the
upper half of the attribute concept ¢ = (7(A4), o(7(A))).

4 Organizational Structure Modeling

The tables of responsibilities specified in the previous chapter correspond with boolean
tables described in concept analysis where objects of the relation are substituted
by roles and attributes of objects are substituted by activities that the roles are
responsible for.

Before we construct the conceptual lattice describing roles and their responsibili-
ties from our showroom example we have to join two tables of responsibilities defined
for each process separately. The reason is that we want to have one organizational
structure for the showroom as a whole not for each of the defined processes. The
result table is Table 3.

| | Off. | Ord. | Fin. | Check. | Hand. | Sel. | Pay. | Tak. |

Manager X X X X

Salesman X X X

Technician X X X X
Accountant X X X

Table 3: Role Assignment for All Process

The set of concepts that can be derived from the joined table of responsibilities is
in Table 4.

Concept lattice (Fig. 2) can be constructed from the set of described concepts
using following rules defining a structure of the graph:

e Graph nodes represent concepts and arcs their ordering.

e The top-most node is a concept with the biggest number of roles in its extent
(camrsTa in our case).

61

Organizational Structures Modeling and Analyze

Cusra=({ Man., Sal., Tech., Acc. },{ 1)
Cus =({Man., Sal. | Ord. 5
Cuyr =({Man., Tech. H Sel. 3
Cua ={Man,, Acc. }{ Fin., Check. 1}
Cst =({ Sal., Tech. 1, { Off., Hand. 3
Cy =({Man. o Ord., Fin., Check., Sel. }
cs =({ sal },{ Off, Ord., Hand. D
cr =({ Tech 1,{ Off,, Hand.,Sel, Tak.})
Ca =({ Ace. }{ Fin., Check., Pay., 13
Cy =({ },{ Off., Ord., Fin., Check., Hand., Sel., Pay., Tak. })

Table 4: Set of concepts.

e Concept node is labeled with an activity if it is the largest concept with this
activity in its intent.

e Concept node is labeled with role if it is the smallest concept with this role in
its extent (reduced labeling).

Offering Financing

Handing Checking

Over Payment
Paying

Fig. 2: Concept Lattice of the Organizational Structure

Resulting graph provides alternate views on the information contained in the
above-described table. In other words, the concept lattice enables to visualize the
structure ”hidden” in the binary relation. In our example we can see that the tech-
nician is the only one who can take over delivered cars but he/she can also select a
fleet of cars as well as the manager or to offer and hand over car like the salesman.
Obviously, the more complex is the table of responsibilities the more difficult is to
understand who is responsible for what.

62

DATESO ’02 — Workshop

5 Re-engineering

Visualization of the organizational structures opens new possibilities to its re-engineering.
The concept lattice described in previous chapter Fig. 2 shows that the accountant
resp. the technician are responsible for paying resp. taking over activities and thus
cannot be substituted by anybody else. On the other hand, the technician in case
of offering a car and handing over activity can substitute the salesman as well as
the manager can substitute the salesman in the ordering activity. It means that the
salesman can be removed. The manager has five activities that he/she is responsible
for. If we remove his/her responsibility for checking payment activity then we obtain
simplified organizational structure with a new graph of the structure in Fig. 3.

Financing

Offering
Handing Over
Taking Over

Checking Payment
Paying

Accountant

Technician

Fig. 3: New Organizational Structure

It looks that such kind of organizational structure is better balanced than the
previous one because all roles have responsibility only for three activities except the
technician that has four of them.

Since the lattice and table can be reconstructed from each other we are able to
define new version of table of responsibilities for the given organizational structure.

‘ H Off. ‘ Ord. ‘ Fin. ‘ Check. ‘ Hand. ‘ Sel. ‘ Pay. ‘ Tak. ‘

Manager X X X
Technician X X X X
Accountant X X X

Table 5: New Assignment of Roles.

63

Organizational Structures Modeling and Analyze

6 Software description

We developed software to analyze small examples. This software constructs and
draws conceptual lattice from a table. The software can label concepts with roles and
activities. Each concept has a tool tip text with description. The description contains
a full list of activities and roles, which represents the concept. All concepts with the
same number of roles are drawn in the same horizontal line. This line represents
one layer. Users can edit the table or the concept lattice, and the software keeps
consistence of data in both views.

[] =lol %]
File Options

[¥¥] Show attributes o
[¥] Show roles

Fig. 4: Screenshot from our software

There is a problem: how to sort concepts in single layers to produce a nice concept
lattice. In nice concept lattice the arcs intersect in minimum places. That is why
users can drag concepts and move them on any position in their layer.

Users can select one concept and highlight concepts which contain all roles from
this concept, or concepts witch contains all activities from this concept. In Fig. 4
first concept is selected from second layer. This is concept Cg, from the example
described above. Selected arcs above concept Cs show concepts which contain all
roles contained in concept Cg. All roles from concept Cg (Salesman) are in relation
to all activities in concepts accessible by red arcs. Selected arcs under concept Cg
show concepts which contain all activities contained in concept Cg. All activities
from concept Cs (Offering, Ordering, Handing Over) are in relation to all roles in
concepts accessible by green arcs.

This software allows to work with small tables, but lattice for a big table is more
complicated and cannot be drawn this way. We must use another way to draw big
lattice, or find a way how group concept in order to minimize their quantity.

64

DATESO ’02 — Workshop

7 Conclusions

Presented method of concept analysis provides exact and formally well defined way
how the organizational structure can be analyzed and re-designed. The example used
in our paper was simplified but it demonstrated sufficiently the potential of concept
lattices and the way how they can be adopted for purposes of re-engineering. The
future research is focused on building appropriate software tools that will enable to
deal with much larger examples than the presented one and to verify the method in
real-life situations.

Rereferences

[Chri95] Christie A., Software Process Automation, Springer-Verlag 1995

[Bir93| Birkhoff G., Lattice Theory. 3rd edition, American Mathematical Society,
Providence, RI., 1993

[Mar79] DeMarco T., Structured Analysis and System Specification, Prentice-Hall,
Englewood Cliffs, New Jersey 1979

[GantW99] Ganter B., Wille R., Formal Concept Analysis, Mathematical Foundation,
Springer-Verlag 1999

[Pet77] Peterson J.L., ”Petri Nets.” ACM Computing Surveys, vol.9, no.3 (Sept):
223-251, 1977

[SnelT97] Snelting G., Tip F., ”Reengineering Class Hierarchies Using Concept Anal-
ysis” Research Report RC 21164(94592)2/APR97, IBM Research Division, USA
(Apr), 1997

[VonSK99] Vondrak I., Szturc R., Kruzel M., ”Company Driven by Process Mod-
els.” In Proceedings of FEuropean Concurrent Engineering Conference ECEC °99
(Erlangen-Nuremberg, Germany), SCS, Ghent, Belgium,. 188-193, 1999

65

Using XSLT for IS Simulation!

Karel Richta, Pham Kim Long

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University
Prague 2, Karlovo ndm. 13, 121 35

e-mail: richta@fel.cvut.cz

Abstract. This paper presents a method of using XML-XSLT to implement
term rewriting used in information systems prototyping. The description of an
information system is converted into XML-formatted documents. The syntax
for these XML documents is defined via DTD or XML-schema. Information
system services are translated from a specification into a XSLT-code. This
code simulates services behaviour via rewriting an input request into an output
document.

Key words: XML, XSLT,prototyping

1 Introduction

Algebraic specifications with its clear syntax and semantics can be used for system
specification and prototyping. An algebraic specification consists of two parts - a
signature and a set of axioms. The signature serves as a definition of the syntax.
The axioms specify the semantics. Any algebraic structure satisfying axioms is a
so-called model of a specification. The variety of all models of a specification always
contains the subclass of so called initial models. The meaning of a specification is
the isomorphic class of all initial models - it means, the class of models, whose are
exchangeable [Bergstra89].

The specification can be prototyped - the problem is to find out automatically any
member of the initial class. One possible way is to use a unique symbolic model con-
structed from Herbrand’s universe of all well-formed terms by the smallest congruence
relation generated by axioms of a specification. This symbolic model always exists,
and if we are able to construct it, the result depicts so-called decision procedure for

! This work has been partially supported by the research program no. MSM 212300014 ” Research
in the Area of Information Technologies and Communications” of the Czech Technical University in
Prague (sponsored by the Ministry of Education, Youth and Sports of the Czech Republic), and it
also has been partially supported by the grant No. CTU 300109713 ” Using metadata in information
transfer” of the Czech Technical University in Prague.

DATESO ’02 — Workshop

the equality problem in the defined class. A decision procedure is usually modeled
by term rewriting systems [DJ89].

The problem how to construct an appropriate term rewriting system for a given
algebraic specification is solved by the well-known Knuth-Bendix completing pro-
cedure [DJ89], which completes the appropriate term rewriting system for a given
specification. If the procedure succeeded, we receive a term rewriting system that
solves the equality problem for the specification and we can use it as a base for the
construction of a prototype.

This paper discusses the construction of a prototype from a term rewriting system.
The key problem in prototyping is to produce a prototype in a short time and at a
sufficient level of efficiency for testing. A very simple method is to transform the
term rewriting system to Prolog or another similar high-level logical programming
language [Bergstra89]. In such a case the process of construction is simple, but the
resulting product is directly dependent on the efficiency of a Prolog compiler.

Another possibility is to translate the term rewriting system into a functional
language [Privara88]. This process is not so straightforward as the above conversion to
Prolog, but the resulting product should be more efficient due to an essentially simpler
execution. The basic difference is that there is no need for general unification in
prototyping (for parameter passing). The sufficient concept is matching of parameters
with function definition’s equations. Unfortunately, the efficiency is still dependent
on the functional language compiler.

Another possible optimization consists of developing an abstract machine dedi-
cated for this purpose. Generally it could be Warren’s abstract machine [Warren83]
designed for Prolog and therefore it can also consequently be used for rewriting. But
such a choice is not the most efficient one because the code of Warren’s machine is

designed for unification. However, the matching machine can be made much simpler,
see [RNO1].

The paper [Richta01] initiates a method of using XML and XSL for term rewriting.
Input algebraic specifications are converted into XML-format and expressed as XML
documents. Such XML documents belong to a document class defined by a DTD
(Document Type Definition). This DTD defines the syntax for writing valid algebraic
specifications in XML-format. The semantic part of a specification is converted into
XSL-code, which serves as a rewriting system. Prototyped expressions are expressed
as XML-formatted terms, which are to be rewritten with the help of XSL into a
canonical form - their meaning.

This paper will develop further the idea in [Richta01] emphasizing on the use of
XSL transformations for prototyping. The significant achievement is we build generic
XSLT programs, which compile the specification in XML format into the XSL specific
code that will serve as the prototyping tool.

A typical algebraic specification expressed in XML/XSL consists of following
parts:

e An XML document specifying the signature as well as rewriting rules.

e An XSLT document which serves as the rewriting engine for prototyped expres-
sions.

67

Using XSLT for IS Simulation

e Prototyped expressions are expressed as XML-formatted terms, which are to be
rewritten by applying the XSLT engine to them.

The syntax for writing signatures, rewriting rules and terms are defined by a
generic DTD. It’s very interesting to note that the XSLT rewriting engine can be
generated from the specification itself with the help of a generic XSLT document.

The first part will review the syntax proposed in [Richta01] for expressing algebraic
specifications in XML format. In the second part, we briefly mention implementation
issues for transforming XML term documents. The third part will present a technique
of compiling to the signature to produce the desired XSLT document used for term
rewriting.

2 Algebraic specification in XML format

In the following we suppose that an algebraic specification S is the couple formed by
a signature 3 and a finite set of (possibly conditional) equations. The signature X of
the specification introduces all symbols permissible to denote objects in the defined
world. The signature consists of the definition of all sorts of data and declarations of
all admissible operations with their arities.

An equation is a pair of well-formed terms L, R over signature X, written as L = R.
Let ¢; and t, be well-formed terms of the same sort d over ¥. The expression t; == t,
is the atomic well-formed condition where the symbol == denotes the identity of the
sort d. Let P1 and P2 be two well-formed conditions over Y, then the following
expressions are also well-formed conditions over X:

not(P1), (P1 and P2), (P1 or P2).

The conditional equations are equations extended by a well-formed condition P over
> and written as L = R if P. All equations are supposed to be universally quantified
over each variable occurring in it. We will use the OBJ-like notation [Bergstra89] for
expressing specifications. For example, a stack abstract type can be described by the
following specification:

obj Stack is
sorts Nat, Stack
opns emptyStack: Stack
push: Nat Stack — Stack
pop: Stack — Stack
var S: Stack
var N: Nat
eqns pop(push(N,S)) =S
endo

Let us suppose that R is a term rewriting system completed via Knuth-Bendix
procedure for an algebraic specification S. R consists of a set of rewriting rules. The

68

DATESO ’02 — Workshop

rewriting rule is a pair of well-formed terms L, R over signature 3, written as L — R.
The conditional rewriting rule is a rewriting rule extended by a well-formed condition
P over ¥ and written as L — R if P. The rewriting rule can be viewed as an oriented
equation. The stack abstract type can be described by the following rewriting system:

trs Stack is
sorts Nat, Stack
opns emptyStack: Stack
push: Nat Stack — Stack
pop: Stack — Stack
var S: Stack

var N: Nat
rules pop(push(N,S)) — S
endtrs

This term rewriting system is the canonical rewriting system for Stack-terms. It
means that any constant well-formed stack-term can be rewritten into the canonical
normal form of it that serves as a meaning of it. For example:

pop(pop(push (2, push(1, emptyStack))))
— pop(push(1, emptyStack)) — emptyStack

The term rewriting system can be expressed in XML format. One possible DTD can
be:

<!ELEMENT trs (sorts, opns, rules)+>
<!ATTLIST trs
names CDATA #IMPLIED
>
<!ELEMENT ident EMPTY>
<!ATTLIST ident
name CDATA #REQUIRED
type (sort | comst | var) #REQUIRED
>
<!ELEMENT sorts (sort)+>
<IELEMENT sort (ident)>
<!ELEMENT opns (op)+>
<!ELEMENT op (ident, args, result)>
<!ELEMENT args (arg)*>
<!ELEMENT arg (sort)>
<!ELEMENT result (sort)>
<!ELEMENT const (ident)>
<!ELEMENT var (ident, sort)>
<!ELEMENT term (const | var | apply)>
<!ELEMENT apply (term)+>
<IATTLIST apply
functor CDATA #REQUIRED
>
<!ELEMENT rules (rule)+>

69

Using XSLT for IS Simulation

<!ELEMENT rule (term, term)>
<!ELEMENT termdoc (term)+>
<!--

<!ELEMENT head (const)>
<!ELEMENT tail (term)*>

The example of stack specification is expressed in XML format as follows:

<7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE trs SYSTEM "algespec.dtd">
<trs>
<sorts>
<sort><ident name="Nat" type="sort"></ident></sort>
<sort><ident name="Stack" type="sort"></ident></sort>
</sorts>

<opns>
<op>
<ident name="emptyStack" type="const"></ident>
<args/>
<result>
<sort><ident name="Stack" type="sort'"></ident></sort>
</result>
</op>
<op>
<ident name="push" type="const'"></ident>
<args>
<arg><sort><ident name="Nat" type="sort"></ident></sort></arg>
<arg><sort><ident name="Stack" type="sort'"></ident></sort></arg>
</args>
<result>
<sort><ident name="Stack" type="sort"></ident></sort>
</result>
</op>
<op>
<ident name="pop" type="sort'"></ident>
<args>
<arg><sort>
<ident name="Stack" type="sort"></ident></sort></arg>
</args>
<result>
<sort><ident name="Stack" type="sort"></ident></sort>
</result>
</op>
</opns>
<rules>
<!- rule: pop(push(X,S)) ==> S -->
<rule>

<l-—- left term -->

70

DATESO ’02 — Workshop

<term><apply functor="pop'">
<term><apply functor="push">
<term><var>
<ident name="X" type='"const"/>
<sort>
<ident name="StackElement" type="const"/>
</sort>
</var></term>
<term><var>
<ident name="S" type='"const"/>
<sort>
<ident name="Stack" type='"const"/>
</sort>
</var></term>
</apply></term>
</apply></term>

<!-- right term -->
<term><var>
<ident name="S" type="const"/>
<sort>
<ident name="Stack" type="const"/>
</sort>
</var></term>

</rule>
</rules>
</trs>

Following is the term push(2,pop(push(3,emptyStack))) expressed in XML format.

<?7xml version="1.0"7>
<!DOCTYPE termdoc SYSTEM "algespec.dtd">
<termdoc>

<term><apply functor="push">
<term><const>
<ident name="2" type="const"/>
</const></term>

<term><apply functor="pop">
<term><apply functor="push">

<term><const>
<ident name="3" type="const"/>
</const></term>

<term><const>

<ident name="emptyStack" type="const"/>
</const></term>

71

Using XSLT for IS Simulation

</apply></term>
</apply></term>
</apply></term>

</termdoc>

3 XSLT and rewriting issues

XSLT is a language using XML syntax, which allows transformation of XML docu-
ments. The structure of the result document tree can be completely different from
the structure of the source tree. XSLT programs are stored in stylesheets.

An XSL style sheet consists of a set of template rules. A template rule has two
parts: a pattern that is matched against nodes in the source tree; and a template
that will be instantiated in the context of the matching nodes to form part of the
result tree.

XSLT engine takes one XML and one style sheet as its inputs and produces a
XML document, which is the result of applying the input style sheet on the input
XML document. XSLT is widely used in web applications. One of the advantages of
XSLT is its concise but powerful primitives.

In our term-rewriting systems, once the terms are written as XML documents, it
can be easily rewritten with the help of XSLT.

3.1 General structure of XSLT stylesheets for term-rewriting

An XSL rewrite style sheet can be constructed from a rewrite system as follows:

e For each rewrite rule of the rewrite system, there’s is a corresponding rewrite
template. A rewrite template specifies a condition that term must match to
be rewritten. The body of a rewrite template specifies how a matching term
will be rewritten. More precisely, for each rewrite rule, its left hand specifies
the matching condition of the rewrite template, meanwhile its right-hand term
defines the content of the rewrite template, which will be instantiated in the
context that the left hand term is matched.

e There are some fixed default templates, which will be applied to terms that
do not match any rewrite template. These templates simply copy the term in
context to the destination and continue the transformation for sub terms (if
any) of the context term. In our rewrite stylesheet these default templates have
a priority of 0 that is lower that that of rewrite templates.

Let us first describe the default templates mentioned above. For constant and
variable terms, we just copy the terms through to the output.

72

DATESO 02 — Workshop

<xsl:template match="term[var or const]" priority="0">
<xsl:copy-of select="."/>
</xsl:template>

For function terms, which contain subterms, the default template copy the function
term (parent term) through and proceed with the subterms so that these subterms
can be rewritten.

<xsl:template match="term[apply]" priority="0">
<xsl:copy>
<!-- copy attributes -->
<xsl:for-each select="0x*">
<xsl:copy/>
</xsl:for-each>

<!-- apply transformation child terms -->
<apply>
<xsl:for-each select="apply/@x*">
<xsl:copy/>
</xsl:for-each><xsl:apply-templates select="apply/term"/>
</apply>
</xsl:copy>
</xsl:template>

In our example, the rule pop(push(N,S)) — S is translated to the following rewrite
template.

<xsl:template priority="0.5"
<!-- pattern matching -->
match="term[apply/@functor="pop’ and
apply/term[1] /apply/@functor="push’ and
apply/term[1]/apply/term[1]/* and
apply/term[1]/apply/term[2]/*]">

<!-- right-hand term -->
<xsl:apply-templates select="apply/term[1]/apply/term[2]"/>

</xsl:template>

The full rewrite style sheet can be found at the [PhamKimLong02].

4 One Experiment

Problem Statement: We need to generate certifications of students for different or-
ganisations (they require same data but in different formats).

One possible solution is to store students’ data into XML-document (described by
POS1.DTD).

73

Using XSLT for IS Simulation

Query fom Yieb bromser
(1D, facutty, wha, format) N
— o
ey i-——-*”__h il

Fig. 1: Extraction of required data

<?xml version="1.0" encoding="iso0-8859-2"7>

<!DOCTYPE Fakulty SYSTEM "posl.dtd">

<?cocoon-process type="xslt"?>

<?xml-stylesheet href="xsl/2pos2.xsl" type="text/xsl"?>

<Fakulty obdobi="2000/2001" datum="15. 4. 2001">
<Fakulta idFakulty="F4" celyNazev="informatiky a statistiky">

<Student uzivatel="xaaaalO0" typStudia="Ing">
<Jmeno>John Smith</Jmeno>
<DatumNarozeni>1.1.1980</DatumNarozeni>
<Bydliste>Praha</Bydliste>
<Semestr>3</Semestr>

</Student>

</Fakulta>
</Fakulty>

Required data of the student (given by faculty and ID) are retrieved from the database
and stored again as XML-document (with the structure defined by POS2.DTD)
Certification

o Certiication
XSLT —¥ in XHTML
datain XhiL 1’ R

(POS2DTD)| ~ L
\ (XL)— o

L ——

. 1

(XSLT) s XSLT). [Certetion
FO 2.5 X8 L:FO in XL

Certifcati ST, Certificati

in X|SL:F%nJ"_"(\f OP)—» gi“ pnpml

Fig. 2: Formatting report

74

DATESO 02 — Workshop

<?xml version="1.0" encoding="is0-8859-2"7>

<!-- 2pos2.xsl - transformace dokumentu XML ze schematu posl.dtd

-> pos2.dtd
-=>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:param name="id"/>
<xsl:param name="who"/>
<xsl:param name="faculty"/>
<xsl:param name="format"/>

<xsl:template match="Fakulta'">
<xsl:if test="QidFakulty = $faculty">
<xsl:apply-templates/>
</xsl:if>
</xsl:template>

<xsl:template match="Student">
<xsl:if test="Quzivatel = $id">
<!-- transformation —-->
</xsl:if>
</xsl:template>

</xsl:stylesheet>

Resulting intermmediate document can look like follows:

<?xml version="1.0" encoding="UTF-8"7>

<?cocoon-process type="xslt"?>

<?7xml-stylesheet href="pos2-HTML.xsl" type="text/xsl"7?>

<certificate>

<header>
<Faculty>Electrical Engineering</Faculty>
<date>15.8.2001</date>

</header>

<paragraph>
<row>

<text>The Dean of The Faculty of </text>

<Faculty>Electrical Engineering</Faculty>

<text> certifies that </text>
</row>
<row>

<text> Mr. </text>

<Name>John Smithaal0</Name>

75

Using XSLT for IS Simulation

<text>, date of the birth </text>
<BirthDate>1.1.1980</BirthDate>
</row>
<row>
<text> address: </text>
<Address>Praha</Address>
<text> is the </text>
<GradType>master</GradType>
<text> student of our faculty.</text>
</row>
</paragraph>
<paragraph>
<row>
<text>He/she is in his/her </text>
<Year>3</Year><text>-rd year of his/her study</text>
<text> in the period </text>
<Period>2000/2001</Period>
<text>.</text>
</row>
<row>
<text> This certificate is for: </text>
<Who>insurance company</Who>
<text>.</text>
</row>
</paragraph>
</certificate>

The intermmediate document can be converted into different output formats.

4.1 The Results of Experiments

In [Kudibal01] there are pressented results of this experiment done on AMD K5 300
MHz, 128 MB RAM, Windows NT 4.0 SP3, XSL-processor Xalan, XML-processor
Xerces:

#students #elements response time (s)
1000 5002 3
4000 20002 8
7000 35002 19
10000 50002 20
13000 65002 30

76

DATESO 02 — Workshop

5 Conclusions

The paper proposed a method of using XML and XSL in the information system
prototyping. Although more works need to be done to evaluate our method, the
achieved results show that using XML and XSLT in specification prototyping could
be a viable and promising method. Thanks to the power of XSLT as a query and
pattern matching language, the rewrite rule compiler written is quite concise, and
thus easy to maintain and to develop further. Although XSLT is not a procedural
language and limited in some areas, hopefully simple extensions to XSLT can be
added to solve possible problems.

Rereferences

[Bergstra89] Bergstra, J.A. - Heering, J. - Klint, P.: Algebraic Specification. ACM
Press, ISBN0-201-41635-2, Addison-Wesley 1989.

[BROO] Bisovd, V. - Richta, K.: Transformation of UML Models into XML. In: Pro-
ceedings of Challenges 2000 ADBIS-DASFAA. Praha: MATFYZPRESS UK ISBN
80-85863-56-1, pp. 33-45. Praha 2000.

[DJ89] Dershowitz, N. - Jouannaud, J.P.: Rewrite systems. Handbook of Theoretical
Computer Science, North-Holland 1989.

[DLI0] Dershowitz, N. - Lindenstrauss, N.: An Abstract Concurrent Machine for
Rewriting. Proc. of Algebraic and Logic Programming, LNCS vol. 463, (Kirchner,
H. and Wechler, W. ed., Springer Berlin 1991), pp. 318-331, October 1990.

[Kudibal01] Kudibal, 1.: Using XML Technology at University of Economics in
Prague. Diploma thesis, Dept. of I'T UE Prague, (in Czech) 2001.

[NRO0] Nesvera, S. - Richta, K.: The efficient implementation of rewriting. Proc.
SOFSEM’90, vol.2., Masaryk University of Brno (in Czech), Janské Lazné, Decem-
ber 1990.

[PhamKimLong02] Long,P.K.: Dissertation Thesis. In preparation. 2002

[Privara88] Privara, I. - Satura, F.: From An Algebraic Specification to A Func-
tional Program. Technical report VUSEI-AR-OPS-3/88, Dept. of Programming
Systems, Institute of Socio-Economic Information and Automation in Manage-
ment, Bratislava 1988.

[PRO0O] Pokorny, J. - Richta, K.: XML a semistrukturovan data. In: Proceedings of
DATASEM 2000. Brno: Masaryk University - ISBN 80-210-2428-3, pp. 47-63. Brno
2000.

[Richta80] Richta, K.: Abstract Data Types and Their Implementation. PhD thesis,
Department of Computer Science, Czech Technical University of Prague, (in Czech)
Prague 1980.

7

Using XSLT for IS Simulation

[Richta91] Richta, K.: An Algebraic Specification Prototyping. Thesis, Dept.of Com-
puter Science, Czech Technical University of Prague, Praha 1991.

[RN91] Richta, K. - Nesvera, S.: The Abstract Rewriting Machine. Proc. of the 3-
rd Logical Programming Winter School and Seminar (LOP’91), Ruprechtov, pp.
179-185. Masaryk University of Brno, January 1991.

[Richta00] Richta, K.: Formdty XML a XSL. In Proc. of Moderni Databaze 2000,
pp. 1-23. Mélnik 2000.

[Richta01] Richta, K.: Using XSL in IS Development. In: Proc.of ISD 2001, Royal
Holloway, Egham, 2001.

[Warren83] Warren, D.H.D: An Abstract Prolog Instruction Set. Technical Note 309,
Artificial Intelligence Centre, SRI International 1983.

[XML] World Wide Web Consortium Recommendation. Eztensible Markup Language
(XML) 1.0. February, 1998. http://www.w3.org/TR/REC-xm1.

[XSLT] World Wide Web Consortium recommendation. XSL Transformation (XSLT)
Version 1.0. November, 1999. http://www.w3.org/TR/xslt.

[XPath] World Wide Web Consortium recommendation. XML Path Language
(XPath) Version 1.0. November, 1999. http://www.w3.org/TR/xpath.

78

Navigation through Query Result Using Concept
Lattice

Viclav Snagel, Daniela Durdkova, Michal Kratky

Department of Computer Science, VSB-Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

e-mail: {vaclav.snasel, daniela.durakova, michal.kratky}@vsb.cz

Abstract. In this article we describe using the concept lattice for the naviga-
tion through the query result. The user often gets a very large result set. We
used the concept lattice for the ordering the query result in the hierarchical
structure. It makes possible to navigate through the query result and this way
we can choose the optimal object from result set.

Key words: concept lattice, hierarchical structure, navigation through the
query result

1 Introduction

The built up lately information systems have a gigantic amount of data stored inside.
The software market offers various methods of processing the stored data. For the
users it is not sufficient to select data complying with the given demands only, but
they expect selected information to be helpful for them in decisions of everyday work.
In situation, when selections from database of ones own data are made or public
databases are used, in many cases the answer is returned as the extensive set of
acceptable (proper) data.

In the area of geographic information systems (GIS) two kinds of access to the
above mentioned problem are apparent. In this contribution a method is proposed to
facilitate hierarchical order of results of query in GIS. For this hierarchical ordering
a theory of concept lattices is applied (chapter 2). In the example of selection a
ski centre an application of concept for hierarchical order of query results from the
geographic information systems is presented.

2 Context and concept

The idea of formalisation terms of context and concept by means of theory of lattices
is not quite new. Formerly isolated experiments at application so-called Galois lattices
had already existed, especially in the area of information retrieval, but systematically
built up theory did not arise until the work of R.Wille and his group [3].

Navigation through Query Result Using Concept Lattice

The claim of this contribution is only brief description of the application of the
formal context and conceptual lattices. The terms from classic disciplines of a theory
of ordered sets and the theory of lattices can be found in [1].

Definition 1. A context is a triple (G, M, I), where G and M aresets and I C Gx M.
The elements of G are called objects and the elements of M are attributes.

We write gIm or (g,m) € I and say ”the object g has the attribute m”. The
relation I is called incidence relation of context.

Definition 2. For A C G and B C M, define A" = {m € M| gIm Vg € A},
B' = {g € G| gIm Ym € B} where A’ is the set of attributes common to all objects
in A and B’ is the set of objects possessing the attributes in B.

Definition 3. Let (G, M,I) be a context. For a couple (A, B) where A C G,
B C M, A' =B and B' = A we say A is the extent and the set B is the intent of
concept (A, B). The set of all concepts is called K(G, M, I).

Definition 4. For concepts (A;, By) and (A4, By) in K(G, M, I) we say (A1, By)
is a subconcept of (Ag, By) if Ay C A, (it is the same as By C B;) and we write
(A1, B1) < (A, By) and that (As, By) is a superconcept of (Ay, By).

The relation < is the relation of order on the set of all concepts K(G, M, I). This
relation is even lattice order on this set, that means that there exists supremum and
infimum with regard to < for every two elements from K(G, M, I). The proof and
further details can be found in [1].

This relation on the concepts introduces a hierarchical structure, with the require-
ments for lattice order which can be described by a mathematic apparatus.

Further the fundamental theorem on concept lattice will be mentioned. The the-
orem contains two predications — concept lattice is complete and performs a model
for calculation of supremum and infimum. Supremum will be indicated by symbol \/
and infimum by symbol A.

The Fundamental Theorem on Concept Lattice. Let (G,M,I) be a
context. Then (K(G, M,I);<) is a complete lattice and infimum and supremum are
defined as follows:

A B) = (N4 (U B

teT teT teT (2)
Vi,) = ((J4a)", N B:).
teT teT teT

The proof of this theorem can be found in [1]. The using of these terms will be
presented in the following chapter.

3 The creation of a concept lattice

Let us imagine the situation in the travel agency where the staff execute the clients
demands for ski centre of various character. Often the situation comes that they do

80

DATESO ’02 — Workshop

their best to comply with the most different clients requirements which can be very
specific. Let us attempt to follow the process in our example.

Ezample 1. Consider ski centres into Austria and Italy. There are the 18 ski centres
into our database (see Figure 1 and Table 1). Attributes of the ski centre are a
distance from Prague (d), a price of ski-pass (s), an elevation (e), a length of pistes
(1) and number of tows ().

,.Salzburg' gl

[]
. @s0lk0

®Ar
o
Innsbruck Re

eFu ‘®*Ma .,

Fig. 1: Map of Austria and Italy ski centres.

| Ski Centre | Abbreviation || d | s | e | I [t |
Mayrhofen Ma 483 | 5276 | 3250 | 451 | 161
So6lden So 576 | 4866 | 3260 | 108 | 36
Gurgl Gu 591 | 4866 | 3080 | 110 | 22
Fulpmes Fu 520 | 4658 | 3150 | 62 | 37
Reith Re 455 | 3373 | 2120 | 47 | 19
Arena Kitzbiihel Ar 465 | 4741 | 2000 | 158 | 64
Flattach Fl 490 | 4411 | 3125 | 50 8
Soll Sol 460 | 3664 | 1835 | 269 | 91
Lofer Lo 422 | 2855 | 1747 | 47 | 14
Zell am See Ze 482 | 4632 | 3029 | 130 | 55
Radstadt Ra 450 | 4625 | 2130 | 345 | 136
Mauterndorf Mau 501 | 4119 | 2360 | 128 | 31
Gosau Go 390 | 3774 | 1600 | 65 | 33
Rohrmoos Ro 426 | 4565 | 2700 | 167 | 87
Cavalesa Ca 730 | 2158 | 2400 | 100 | 50
Ciapela Ci 780 | 2311 | 3340 | 59 | 32
Tonale To 800 | 1781 | 3017 | 80 | 29
Bormio Bo 720 | 2072 | 3012 | 195 | 70

Table 1: The data about the ski centres.

81

Navigation through Query Result Using Concept Lattice

Example 2. The client wants to choose ski centres whose distance from Prague is
under 810 km, the price of ski-pass is under 4000 K¢, the elevation is above 2500m,
the length of pistes is above 99 km and number of tows is above 30.

First, we evaluate a query with these conditions. The query result must be changed
to the context (Definition 1). Every numeral value is reduced to a boolean value. For
example, if we will want to know the ski centres with the elevation above 2500 m, the
centre Mayrhofen has got this property while the centre Gosau does not have got the
property (see Table 1). In this way we obtain the context table (Table 2).

Now we use an algorithm [2] applying the fundamental theorem on concept lattice
[4] and we construct the concept lattice for above mentioned requirements. The result
of the algorithm is presented in Table 3. Then we can draw the Hasse diagram of the
concept lattice (Figure 2).

top | ({Ma, So, Gu, Fu, Re, Ar, Fl, Sol, Lo, Ze,
| [d]s]ell]t] Ra, Mau, Go, Ro, Ca, Ci, To, Bo}, {d})
Ma | x XXX c11 | ({Ma, So, Gu, Ar, Sol, Ze, Ra, Mau, Ro,
So X X | X | X Ca, BO}, {d, 1})
Gu || x XX c1o | ({Ma, So, Gu, Fu, F1, Ze, Ro, Ci, To, Bo},
Fu X X X {d, e})
Re X | X cs | ({Ma, So, Fu, Ar, Sol, Ze, Ra, Mau, Go,
Ar || x x | x Ro, Ca, Ci, Bo}, {d, t})
Fl X X cs | ({Re, Sol, Lo, Go, Ca, Ci, To, Bo}, {d,
Sol X | X X | x s}H)
Lo * | X ¢z | ({Ma, So, Gu, Ze, Ro, Bo}, {d, e, 1})
Ze * XXX cs | ({Ma, So, Ar, Sol, Ze, Ra, Mau, Ro, Ca,
Ra X X | x Bo}, {d, 1, t})
Mau || x x| X ¢s | ({Ma, So, Fu, Ze, Ro, Ci, Bo}, {d, e, t})
Go x| X X cs | ({Sol, Go, Ca, Ci, Bo}, {d, s, t})
Ro | x| [x|x|x ¢s | ({C3, To, Bo}, {d, 5, e})
g? i i - x i c2 | ({Ma, So, Ze, Ro, Bo}, {d, e, 1, t})
To o o e ¢1 | ({Sol, Ca, Bo}, {d, s, 1, t})
Bo Tx Tx < 1x < co | ({Ci, Bo}, {d, s, e, t})
| bot | ({Bo}, {d, s, e, 1, t}) |

Table 2: The context table for Table 3: The concepts for the context of the ski

the ski centre example. centre example.

4 The navigation through the query result

We show the navigation principle through the created concept lattice and the pre-
sentation of this in the GIS background. We see the top of concept lattice to contain
every ski centre with desired distance. We need to know client rank of the next
requirement to help him to select of the best ski centre.

82

DATESO 02 — Workshop

Salzburg

X)
. Sol -0 3 n !ZI
HRe HA 2
Innsbruck 1z HRa

Salzburg A7\ Salzburg

g .Lo g
o e Sol o
RO oA RO

eRe *AY
Innsbruck ®Ze
eFu ‘®Ma .

Figure 4: The narrowing of the objects from the example of the navigation (see
Figure 3). The chosen objects are marked by P

Assume the elevation is the most important requirement because snow is held
above 2500 meters above sea level for a long time. We will leave the top concept
and go to the concept with attributes d and e (see Figure 3 change the node 1 to

83

Navigation through Query Result Using Concept Lattice

{d.s.e,Lt}

Fig. 3: The Hasse diagram of a concept lattice for the context of the ski centre
example with displayed intents of the concepts and an example of the navigation in
the concept lattice.

the node 2). The node 2 corresponds with a concept ¢y (see Figure 2). We know the
objects for the concept cig from Table 3. The chosen objects are marked in Figure
4b.

If we could narrow down the number of ski centres we consider next property —
a price of ski-pass. We change the node 2 to the node 3 in the diagram of Figure 3 (it
contains attributes d, s and e) but we have not got only one object yet, see Figure
4c. Only if we add next parameter ¢ — number of tows — we obtain marked node 4
of Figure 3. It is a concept ¢y with two objects and with a set of attributes d, s, e
and t.

In this example it could continue to last node with all attributes but it depends
on the client requirements.

5 Conclusion

In this article we have shown the possibility of application of the theory of concept
lattices. As the most interesting can be considered:

e The creation of hierarchical structure of the query result.

e The instruction for decomposing the structure to single parts and for reducing
the complicated hierarchical structure.

e The possibility of navigation in sets of objects with different level parameters
of query requirements.

84

DATESO 02 — Workshop

Rereferences

[1] B. Ganter, R. Wille. Formal Concept Analysis, Mathematical Foundation.
Springer Verlag 1999.

[2] G. Snelting. Reengineering of Configurations Based on Mathematical Concept
Analysis. ACM Transactions on Software Engineering and Methodology 5(2):146-
186, April 1996.

3| http://www.mathematik.tu-darmstadt.de/ags/agl/Literatur/liste/
p gs/ag
intern/en.html

[4] R. Wille. Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: T.Rival (ed.): Ordered sets. Reidel, Dordrecht-Boston, 445-470. 1982

85

Design Patterns in Functional Programming

Jan Hric

Dept. of Theoretical Computer Science
Charles University, Faculty of Mathematics and Physics
Malostranské nameésti 25
118 00 Praha 1

e-mail: jan.hric@mff.cuni.cz

Abstract. Design patterns are well-known technique used in a development of
object-oriented systems for reusing solutions of typical problems. In the paper
we analyse design patterns in the new context of functional programming. We
compare the patterns to development techniques used in functional program-
ming and we transfer some patterns to the new context.

Key words: design patterns, functional programming

1 Introduction

Design patterns [GHJ], [BMR] are used as standard solutions of typical problems of
an object-oriented design. Some problems are language independent and so they are
relevant also in a different context of functional programming. We took problems and
their corresponding patterns from literature and look for corresponding patterns in
functional programming.

Declarative programming provides support which is not available in object-oriented
languages. Polymorphic functions and data structures and functional parameters are
basic examples of such a support in both functional and logic languages. We chose
the functional language Haskell for this paper because it has some other features com-
pared to the logic language Mercury. We suppose that patterns can be transferred
also to logic programming.

The paper concentrates on transferring patterns. Knowledge of particular design
patterns and functional programming is an advantage during reading.

As noted in [Pr], the classification of patterns is of a little help for program
developers. They need solutions for their problems. Thus we describe patterns in a
new context and do not analyse their relations.

DATESO ’02 — Workshop

1.1 Level of patterns

High-level architecture of a program is independent on an implementation language.
Thus high-level architectural patterns [BMR] can be used analogically in different
languages (the patterns Blackboard, Microkernel). We are mostly interested in a
lower level of patterns.

Low-level patterns, called programming idioms, are usually language specific.
Therefore they can not be used as a source for a transfer. Moreover, some pat-
terns in one language disappear in another language due to different possibilities of
languages.

1.2 Comparison of object-oriented and functional program-
ming

An object is the core entity in OOP. An object has a state and a composed interface
and it associates data and functions. In functional programming there is no such a
universal entity. So various means are used to describe design patterns, especially
data structures, higher-order functions, type classes and modules. There is also a
difference in a granularity of objects and data structures. One data structure usually
corresponds to many interconnected objects.

The nonexistence of a state means that many patterns devoted to a processing
or synchronization of states of one or more objects are not usable. The architec-
ture of such programs is different and a problem formulated in the context of OOP
disappears or must be reformulated for other entities than objects. One basic charac-
teristic of pure functional languages is a referential transparency. Thus each function
must get all data which are needed for computing of an output value. Therefore a
(representation of a) state must be given in input data.

A direct reformulation of patterns in a functional programming sometimes gives
too specific solutions. Such solutions can be generalised for other data structures or

types.

1.3 Separation of hook and template

The idea behind many patterns is a decoupling. A hook part which should be flexible
is hidden from the rest of the system and is called only through a template part.
Possibilities of an actual implementation are described in the following subsection.
1.4 Means in functional programming

We do not have objects and their virtual methods in functional programming as an

universal way of late binding. Patterns must be implemented using other low-level
principles.

First possibility is to use parametric polymorphism. Data structures and functions

87

Design Patterns in Functional Programming

can be polymorphic and thus independent on a particular type of a parameter. Second
possibility is to use functional parameters in higher-order functions. An appropriate
code for a hook is explicitly given as a parameter. Third possibility is to use type
classes and allow to select the particular operations during a (re)compilation. The
last possibility is to use modules and abstract data types. Cooperating functions of
a pattern are grouped together in the last two cases. Also some special features as
extensible records can be suitable for a pattern description.

More OOP patterns will be reduced to the same or similar FP pattern. This is
possible, as we can look at some patterns from different points of view.

The same program can be written using different programming styles. There are
for instance continuation passing style, monadic style or compositional programming
using combinators in functional programming. Such styles can use specific low-level
patterns, which are not analysed here. Styles correspond to frameworks in some sense.
There are special features and usual ways of combining parts in both cases.

Patterns can be aimed also at special domains. Hot spot identification com-
bined with essential construction principles is suggested for a development of domain-
specific patterns [Pr]. Combinators for specific domain are such (low-lever) patterns
in functional programming.

2 Patterns

We take patterns from [GHJ] and look for corresponding ideas in a functional pro-
gramming. Patterns described there are more general and less object-oriented in com-
parison with [BMR]. Some patterns solve problems too specific for object-oriented
programming, especially questions of a state manipulation and synchronization in a
wide sense.

The first three subsections describe structural, behavioral and creational patterns
according to [GHJ]. For each pattern we describe an original central idea [HDP] in
an object-oriented programming and then we start to analyse its functional twins.

2.1 Structural patterns
2.1.1 Adapter

The adapter pattern converts an interface of a class into another interface expected
by a client.

This idea can be used for functions and for data structures. In the first case
the interface of a function is its type. Each use of the pattern means to write an
adapter function, which transforms the original adaptee function to a new one. The
functions flip, curry and uncurry are examples of the pattern. Instead of the original
incompatible function f we call the compatible function (adapter f) in the same
context.

88

DATESO 02 — Workshop

flip :(@->b->c¢c) >b->a->c¢
flip £ x y =fyx

curry i ((@a,b) > ¢c) > (a->Db -> ¢)
curry f x y = f (x,y)

uncurry it (@->b ->c) > ((a,b) -> c)

uncurry f p f (fst p) (snd p)

In the second case of data structures, the adapter is a function which converts a
data structure to another structure.

2.1.2 Composite

The composite pattern composes objects into tree structures to represent part-whole
hierarchies. The pattern corresponds to a definition of a new type constructor 7'ree.
Composite structures use a type Tree a instead of a. Trees can be binary, n-ary etc.

2.1.3 Decorator

A decorator enable to attach additional responsibilities to an object dynamically.

A possible reformulation in a functional programming is that we want to extend
the behaviour of a function for a given data structure. A simple approach is to give a
function higher-order parameter f, which describes how the data structure should be
processed. This solution has a disadvantage that the parameter describes the whole
processing but is not extensible. Using the idea of continuations, the extensible
solution is to use the parameter f with a hole — another functional parameter g. The
latter function g describes only the additional processing and is substituted to the
identity function id when nothing new is needed.

One note concerning a type of results. We suppose the same type of results for
calls with an additional functionality and without it. So the type of results must be
extensible and we must understand the semantics of results if we want to use them.
Extensible structures in this sense are data structures as lists, trees etc. The semantics
of old and new functionality can be captured in a lookup list. Each new functionality
adds one (or more) key - value pair to the result. Other means as extensible records
(TREX) in Hugs implementation [Hs| are available.

We need not understand the results when they are not processed or are processed
uniformly. The results given directly to output are an example of the former case.

2.1.4 Proxy

The proxy patterns provide a surrogate or placeholder for another object to control
access to it. There is a more specific pattern concerning data structures in functional
programming. Instead of using data directly we use the name of data. For instance
we can use the name of a vertex in a graph to hide an actual data about the vertex.
The data represented by the name may be subject of change independently from the

89

Design Patterns in Functional Programming

names. Some look-up function must be called dynamically to get an actual data for
the given name.

2.2 Behavioral patterns
2.2.1 Interpreter

If there is given a language, let’s define a representation for its grammar along with
an interpreter that uses the representation to interpret sentences in the language.

In a functional programming we usually interpret structured data, so the data
incorporate the used rules. From this point of view the process of parsing, i.e. building
structure, can be separated. The rest is an interpretation. The general function for
an interpretation of data structures of a given type is the higher-order function fold
for the type.

An interpretation of the constructors of the data type is given by functional pa-
rameters. Each constructor has one corresponding parameter.

The function fold must be implemented for each type separetely in a typed lan-
guage as Haskell. The ideas of polytypic programming [GHs] allow to write the fold
function once and automatically generate instances for various types. It means that
the pattern can be expressed as a code in such extended language.

2.2.2 Iterator

Iterator provides a way to access elements of an aggregate object sequentially without
exposing its underlaying representation. The idea can be transferred to a functional
programming in two ways. They differ in understanding of the word sequentially.
The first meaning is sequential data structure and the second one is sequentially in
time.

In the first case we transform elements of an aggregate object to a list and then
list-processing functions can be used. This is similar to the adapter pattern.

In the second case we prepare functions corresponding to an interface of an iter-
ator. There are the functions init, next, done and possibly others for a given type
a.

init :ra -> St a
next :: St a > (a, St a)
done :: St a -> Bool

The current state of iterator is captured in appropriate type St ¢ and is trans-
ferred among functions above using parameter. An implementation can use separate
functions or can define type class of types equipped with an iteration.

Note that this pattern can be generalised. In both cases we are not restricted
to the sequences but an element can have more following items. Such a generalised
iterator can for instance implement the method ”Divide et impera”.

90

DATESO 02 — Workshop

2.2.3 State

A state pattern allows an object to alter its behavior when its internal state changes.
The object will appear to change its class.

The functional counterpart to the pattern adds to functions one parameter repre-
senting a state. Depending on this parameter a function can alter its behavior. The
representation of a state can be implemented using Reader monad.

2.2.4 Strategy and Template Method

The description of the strategy pattern is following. Define a family of algorithms,
encapsulate each one, and make them interchangable. Strategy lets the algorithm
vary independently from clients that use it.

This pattern disappears in a functional programming as a possibility to use func-
tions as parameters enable directly parametrize functions with a strategy parameter.

The pattern Template Method is similar. Define the skeleton of an algorithm in
an operation, deferring some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the algorithm’s structure.

In this case we use more functional parameters. Each one refers to single step,
which was deferred.

2.2.5 Visitor

The pattern Visitor represents an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without changing the classes
of the elements on which it operates.

There are two types of visitor, the internal and the external. The first one performs
given operation on all elements of the structure. This corresponds to the map function
which gets the operation as a parameter. The second one needs to capture a state
and an implementation is similar to the Iterator.

2.2.6 Pipes and Filters

This architectural pattern [BMR] provides a structure for systems that process a
stream of data. Each processing step is encapsulated in a filter component. Data are
passed through pipes between adjacent filters.

Processing (finite) lists or (infinite) streams is a standard technique in functional
programming. The binding of adjacent processing steps is realised by a function
composition. The map function process an input in one-to-one style. The filter
function (in functional terminology) leaves out some data. Both function have a
functional parameter which describes the way of processing of an element in the first
case and which data should remain in a stream in the second case. Other higher-order
functions can support many-to-one or many-to-many processings.

91

Design Patterns in Functional Programming

2.3 Creational patterns
2.3.1 Builder

The Builder separates a construction of a complex object from its representation so
that the same construction process can create different representations.

The data structures are built in a functional programming using constructor func-
tions. We use the same style but instead real constructors we use virtual ones which
hide the real construction process. Then we get the same effect in a functional pro-
gramming.

A real implementation can use separate functions, type classes or a set of mutually
recursive constructors which pass themselves to lower levels of a structure.

The described process of a construction is incremental and the real data structure
can be repeatedly rebuild. So it may be more effective to give all data to the (abstract)
construction process in one batch. The pattern can be also coded using the functions
fold and unfold. The first one can be used in cases when we have a structure and
we want to reinterpret it. The second one enables replace constructors by given
functional parameters during recursive building process.

3 Conclusion

We have shown that design patterns for many problems can be transferred to a
functional programming and more generally to a declarative programming. Other
problems and their patterns are too specific for an object-oriented programming, so
we did not cover them in this paper. Also high-level architectural patterns and low-
level patterns — programming idioms were left out.

As in OOP it is usually possible to write a template for the core of a pattern. The
template and examples are important for usefullness of a pattern library. Patterns
are interconnected and rules of thumb were formulated [PPR].

There is no single universal entity in a functional programming as is an object in
OOP. The core idea of decoupling can be targetted to functions or to data structures
and can be realized by various means. A comparison of various approaches is left for
future work.

Some patterns correspond to well-known techniques in a functional programming.
Other approach to analysis of correspondence can be taken. We can take such tech-
niques and look for problems which they solve. A more general or more parametric
pattern can be found using abstraction. Also an analysis of a relevance of published
problems in a context of a functional (and logic) programming followed by a refor-
mulation of the problems remains to be done.

92

DATESO 02 — Workshop

Rereferences

[BMR] Buschmann F., Meunier R., Rohnert H., Sommerland P., Stal M., A System
of Patterns, John Wiley, Chichester, England, 1996

[GHJ] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns — Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading, USA, 1995

[GHs| http://www.generic-haskell.org/
[Hs] http://www.haskell.org/

[HDP] Houston Design Patterns,
http://rampages.onramp.net/ huston/dp/patterns.html

[PPR| Portland Pattern Repository,
http://www.c2.com/cgi/wiki?PortlandPatternRepository

[Pr] Pree W., Object-Oriented Design, SOFSEM’97, LNCS 1338, Springer-Verlag,
Berlin, 1997

93

Series data preparation in KDD process

Michal Samek

Department of Computer Science, VSB-Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba

e-mail: michal.samek@vsb.cz

Abstract. Data preparation phase is one of the most time and energy consum-
ing phase of KDD! process. At the same time it is one of the most important
phases of the whole process. It is obvious — if we analyze wrong data, we will
achieve wrong results. This paper deals with special type of input data, namely
series data. Reference model for series data preparation is presented.

Key words: knowledge discovery, data mining, data preparation, series data

1 Introduction

The general idea of knowledge discovery in databases is very attractive and intuitive.
According to one of the most popular definitions, KDD is considered to be non-trivial
extraction of implicit, previously unknown, and potentially useful information from
data. Typically we focus our attention on analytical algorithms and methods, which
provide prospective results (i.e. previously mentioned useful information). In fact
there are many other tasks, which have to be performed to achieve our goals. There
are for instance problem understanding, data collection, data preparation, results
evaluation and utilization, and so on. Overview of the whole KDD process is presented
in many papers, but one of the most cited is CRISP-DM [2, 3] (CRoss Industry
Standard Process model for Data Mining). This reference model presents global
view of the life cycle of a data mining project. In this paper I concentrate on the
phase of data preparation of special data type — series variables. I try to analyze in
more detail main tasks and goals in that problem area and the reference model, which
is special case of data preparation phase for series data, is proposed.

Paper is divided into following chapters. Chapter 2 describes briefly reference
model CRISP-DM. Chapter 3 includes the definition of series data type. In chapter
4 reference model for series data preparation is presented, and the last chapter 5
concludes the whole paper.

Knowledge Discovery in Databases

DATESO 02 — Workshop

2 CRISP-DM reference model

This chapter is a short outline of the CRISP-DM reference model. Figure 1 presents
the phases of that model, together with relationships between these phases.

Business
understanding

Deployment

Data understanding

Data Data preparation

Modeling

Evaluation

Fig. 1: Phases of the CRISP-DM reference model

The sequence of the phases is not rigid — it is determined by the outcome of each
phase. In every phase a wide variety of analytical and modeling tools can be used.
The outer cycle in figure 1 symbolize the iterative nature of the process itself. The
process is not over once a solution is deployed — acquired results often bring new
questions and the whole process is repeated (the subsequent iterations should benefit
from previous results).

The rest of this chapter provides a brief description of each phase.

Business understanding
Understanding of the project requirements and objectives is the main task of
this initial phase. Acquired knowledge is converted into problem definition and
a preliminary plan, how to achieve the results, is designed.

Data understanding
This phase includes initial data collection and activities in order to get familiar
with the data and their structure (date quality recognition, interesting sub-
sets detection, ...). Summary statistics are often evaluated (exploratory data
analysis) and visual techniques are very popular in this phase too.

Data preparation
The data preparation phase covers all activities to construct the final data set
(or data sets) from the raw data. The final data set will be used in subsequent

95

Series data preparation in KDD process

modeling phase. This phase is the most time and energy consuming phase of
the whole process.

Modeling
In this phase various analytical methods and modeling techniques are applied.
Usually there are several techniques for the same data mining problem type,
but they could have different requirements as for the form of the data. That is
why returning to the phase of data preparation is often necessary.

Evaluation
The main task of this stage is evaluation and interpretation of the results from
the modeling phase. Evaluation of the results is very important, because in this
point we decide, if there are some interesting issues (from customers point of
view).

Deployment
Creation of the model is generally not the end of the project. Deployment
phase covers many final tasks — from report generation to information system
construction (based on discovered knowledge).

In KDD process a few user types can be distinguished. Their role in the whole
process is not minor, so I will mention them briefly.

Customer
Customer initializes the problem solution. Usually his expectations about re-
sults are not clear - he doesn’t know exactly, what kind of results he wants. He
wants the results to make his enterprise more efficient.

Domain expert
Person deputed by customer. He is well informed about problem area — his
cooperation is necessary in all KDD phases.

Analyst
KDD expert. He is the leading person in the project.

End user
Consumer of the final product. Final product could be some text report, but
even a software system based on discovered knowledge as well.

3 Series data type definition

Data preparation phase is sometimes underestimated. At the same time this phase
absorbs significant amount of time and sources. There are many data preparation
tasks for simple attribute types (real, nominal, ordinal, date, time, text) and the
analyst role is to choose correct procedure. Even in the case of simple attribute types
it is non-trivial task, and what about complex ones like images, series data, sounds,
...7 The preparation of them is of course more difficult and that is why I decided to
look in more detail at the series data preparation phase.

96

DATESO 02 — Workshop

At first let’s remind the definition of the series variable. In [6] we can find the
definition of time-series, special case of series variables.

Definition 1. TIME-SERIES: data type where one attribute represents different
moments of time; the records are ordered by the values of this attribute. For one value
of time, other attributes store information about co-occurring properties of objects.

As we can see, in series data type we assume the implicit, independent variable (it’s
time for time series, but it could be for instance temperature, distance, pressure, ...)
and one or more dependent variables (characteristics of given object). Since we can
always construct series data type attribute with exactly one dependent variable, this
case will be default for the rest of this paper. Now we can imagine each series variable
as representation of function x = f(¢), where ¢ is independent and x dependent
variable.

Definition 2. Let T = {t1,%5,...,t,}, ti € R, t; < t; for Vi < j, where R is the
real numbers set, ¢ and j € {1,2,...,n}. Series variable is real, ordinal or nominal

values sequence {X (t;),t; € T'}. The length of the series variable is the cardinality of
T, card(T) = N.

4 Series data preparation reference model

Figure 2 presents individual phases of the proposed series data preparation reference
model. Sequence of the phases is not rigid (similarly to superior model) and the
process is iterative again.

Data preparation (series data type)

Segmentation

Filtering
Transformation

Relevant feature
selection

Feature extraction

Fig. 2: Phases of the series data preparation reference model

4.1 Segmentation

Task
In some cases the whole series is not suitable for immediately processing. If a
series is for example periodic, we can divide it into individual segments and use

97

Series data preparation in KDD process

e

Input series Output series set
MM [| SEGMENTATION C> |

Fig. 3: Series segmentation

the result set of series for further processing (next preparation step or analyz-
ing). This advance is often required in bio-signal processing (EKG, EEG, ...).
Another reason for series segmentation could be the fact, that not all parts of
series are interesting — we may want to remove some part from the entire series
variable (fig. 4).

Output
Set of entire series parts (segments), every represented by new series variable.
Not all of detected parts have to be included in the result set.

"Uninteresting"
series segment

Fig. 4: Uninteresting segment removing

4.2 Filtering, transformation

Input series DISTRACTIVE Output series
A COMPONENT 9
sy | coweowent [(TF

Fig. 5: Distractive component removing

Task
This phase includes a wide variety of series manipulation techniques. Generally
we try in this phase to produce derived series variable, that is in some manner
better than input series. What does it mean ‘better’? One of the most common
problems is distractive component removing (fig. 5). In every series data set
we have to realize (usually after domain expert consultation), what is the dis-
tractive component in our data? In series various components can be detected

98

DATESO 02 — Workshop

[11](trend, season, noise, ...) and we have to decide, which of the components
is distractive. Usually it is noise, but it can be for instance linear trend as well.

Another technique used in this phase is normalization. There are two basic types
of normalization. First of them, MIN-MAX normalization, transforms input
series variable into output one, in which every dependent variable value is in
the given range MIN-MAX. Second produces new series variables with common
mean and standard deviation (usually zero mean and standard deviation equals
to one is required).

Output
Derived series variable.

4.3 Feature extraction

' Input series FEATURE
RYAVAYA EXTRACTION EsE=ae

Fig. 6: Series feature selection

Task

Feature extraction is the process of generating features to be used in further
analysis. There are two fundamental approaches in this area: statistical and
structural. Statistical approach, sometimes denoted as quantitative, includes
for example simple descriptive statistics (mean, standard deviation, frequency
count summarizations), Fourier transformations, wavelet transformations,
Typical for this approach is the fact the quantitative features are organized
into fixed-length feature vector. It means every series is described by the same
number of features.

Quantitative approach is sometimes insufficient. There can be some morpho-
logical subpatterns in series and another approach — qualitative — is needed.
Usually we try to find some structural features, called primitives, which rep-
resents subpatterns in the series. We have to store relationships among the
primitives too. Feature vectors discovered by this approach contain variable
number of elements, i.e. every series variable can be described by different
number of features.

Both approaches may be also combined into hybrid one. It tries to suppress
drawbacks of each approach, while conserving their advantages.

Output
Series feature set.

99

Series data preparation in KDD process

Series features RELEVANT SER:Ctetd series
o C> FEATURE C>
SR SELECTION e

Fig. 7: Relevant feature selection

4.4 Relevant feature selection

Task

Main aim of this phase is to reduce the number of series features. We have
to decide, which features are relevant for our purposes. Domain expert coop-
eration could be very useful in this phase, but some automated techniques for
feature relevancy evaluation can be helpful as well. For example removing fea-
tures with the same value for all series is desired — such features are useless in
further analysis. Of course we can use more sophisticated approaches (Principal
Component Analysis, feature entropy evaluation [9]).

Output
Reduced series feature set.

5 Conclusions

Data preparation phase of KDD (and series data preparation in particular) is very
important, but the most time-consuming phase of the whole process. The best way,
how to deal with this phase, is of course to automatize it. I don’t think it is fully
possible - there are too many parameters, that can be influential. Of course if we
want to automatize (at least partially) some process, we have to construct its model.
I propose in this paper the referential model of series data preparation — this model
can guide us through the entire process.

Rereferences

[1] Vondrak,I.: Uméld inteligence a neuronové sité. FEI, VSB-TU Ostrava, 1998.

[2] Berka, P.: Dobyuvdni znalosti z databdzi. Article in magazine Softwarové noviny
nr.6/2001, p. 28-33.

[3] Pete Chapman, Julian Clinton, Thomas Khabaza, Thomas Reinartz, and Rdiger
Wirth. The CRISP-DM process model. http://www.crisp-dm.org.

[4] John W. Sammon, Jr : A Nonlinear Mapping for Data Structure Analysis. IEEE
Transactions on Computers, C-18(5):401-409, 1969.

100

DATESO 02 — Workshop

[5]

[6]

[7]

8]

[9]

[10]

[11]

A. Ultsch, H.P. Siemon. Kohonen’s Self Organizing Feature Maps for FEzx-
ploratory Data Analysis. Proceedings of International Neural Network Confer-
ence (INNC’90), p. 305-308, Dordrecht, Netherlands, 1990.

W. Klosgen, J. M. Zytkow: Knowledge Discovery in Database Terminology. Ad-
vances in Knowledge Discovery and Data Mining, p. 572-592, ISBN 0-262-56097-
6, 1996.

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth: From Data Mining to Knowledge
Discovery: An QOuverview. Advances in Knowledge Discovery and Data Mining,
p. 1-34, ISBN 0-262-56097-6, 1996.

Olszewski,R.T.: Generalized Feature Extraction for Structural Pattern Recogni-
tion in TimeSeries Data, PhD Thesis, School of Computer Science, Carnegie
Mellon, University Pittsburgh, February 2001.

Y. Y. Yao, S. K. Michael Wong, Cory J. Butz: On Information-Theoretic Mea-
sures of Attribute Importance. PAKDD 1999: 133-137

Lukasovd, A., Sarmanovd ,J.: Metody shlukové analyzy. SNTL - Nakladatel-
stvi technické literatury, Praha 1985. On Information-Theoretic Measures of At-
tribute Importance. PAKDD 1999: 133-137

Pyle, D.:Data Preparation for Data Mining. Morgan Kaufmann Publishers, Inc.,
ISBN 1-55860-529-0, 1999.

101

DTD Representation in Lego Proof Assistant!

Michal Valenta

Dept. of Computer Science, CTU FEE
Karlovo namésti 13, Praha 2, 121 35

e-mail: valenta@fel.cvut.cz

Abstract. Paper discuss representation of DTD document specifications in
Lego proof development assistant. It is useful for development of mapping
function (program) which transforms data from one DTD specification to an-
other. Developed function represents also the proof of its correctness — this is
the main advantage of our approach. Paper claims rather to sketch the tech-
nique than a comprehensive solution, hence it reduces the set of discussed DTD
constructors. An example of DTD specification and development a mapping
function is also provided here.

Key words: DTD, ECC, Lego, Type System, Document Transformation

1 Introduction

Suppose, we have two different data ontologies in the form of DTD, for example two
different address book specifications. The task is to transfer data from one ontology
to another. Transformation program is a function f of type DT D; — DT D,. The
construction of the transformation function is straightforward and clear if ontologies
are simple or very similar to each other. But our “ad-hoc” constructed function
becomes unclear and potentially wrong in the case of more complex ontologies. Al-
though the mechanism of construction of transformation function is relatively easy,
its checking of correctness is highly desired.

Generally, there are two different approaches how to support correctness of data
transformation function:

1. Develop a transformation function and then proved that it is correct (ie. of the
type DTD1 — DTD2

2. Support directly development process of itself.

Lego interactive proof development assistant is a suitable tool for the second ap-
proach.The scheme of our work is very simple:

1 This work is partialy supported by research program MSM 212300014 “Informaéni technologie
a komunikace” CTU FEE Prague and by grant CTU 300109713

DATESO 02 — Workshop

1. Construct representation of DT D, in Lego.
2. Construct representation of DT D, in Lego.

3. Start the proof development process with the goal f of type DT'D; — DT Ds.

Successfully developed term f then represents both - the transformation function and
the proof of its correctness.

We have to discuss consequently the topics of DTD representation in Lego and
then the transformation function f development to meet our goal.

2 DTD Representation in Lego

Lego proof development assistant can support several different type systems (LF, CC,
ECC, ...). There is not enough place to describe their specifics, rather we can refer to
[Luo94] and [LuPo] for details. This paper suppose using of ECC (Extended Calculus
of Constructions).

There are two different universes in ECC - Prop and Type. Prop is meant as
a universe for representation of logic (propositions) such are reflexivity, transitivity,
equality, logic operations etc. T'ype is used for (complex) data representations. Hence
the T'ype universe is our basic (principal) type for DTD representation.

2.1 Supported DTD constructs

The aim of this paper is to explain possible approach to XML data transformations
in Lego. It doesn’t claim to supply a complete solution for all DTD constructs, rather
we limit the set of supported DTD constructs here.

Suppose our DTD specifications consist only from elements without any attributes.
The simplest elements are of type PCDATA. New elements can be derived from
existing ones by sequence (Ei, Fs, ..., E,). We also allow to specify multiple occur-
rence of element (E+, E*), zero or one occurrence (E?7) and alternative occurrence
(E1 | Eb).

An example of considered DTD specifications for our discussion can be a DTD of
address book on Figure 1.
2.2 Representation of Supported DTD Constructs in Lego
ECC provides two different universes as it was mentioned above - T'ype and Prop.
Type is intended for data representation, so we can start with this universe. The

simplest type of DTD element is PCDAT A, then let peddata to be a type in universe
Type:

pcdata:Type

103

DTD Representation in Lego Proof Assistant

<IDOCTYPE ...

<! ELEMENT adrbookl(titlex*, full_name, address+, phone?, email|ICQ)>
<! ELEMENT full_name(name, nickname?, surname)>

<! ELEMENT address (street?, no, place, country, zip?>
<! ELEMENT name (#PCDATA)>

<! ELEMENT nickname (#PCDATA)>

<! ELEMENT surname (#PCDATA)>

<! ELEMENT street (#PCDATA)>

<! ELEMENT no (#PCDATA)>

<! ELEMENT place (#PCDATA)>

<! ELEMENT country (#PCDATA)>

<! ELEMENT zip (#PCDATA)>

<! ELEMENT title (#PCDATA)>

<! ELEMENT phone (#PCDATA)>

<! ELEMENT email (#PCDATA)>

<! ELEMENT ICQ (#PCDATA)>

Fig. 1: DTD specification of address book.

Lego provides a library with definitions of commonly used types and operations
like bool, set, list, vector,nat etc. Their syntax and semantics is done in a “source”
lego files, so user can eventually change their behaviors if necessary.

We can used some of these ready made types for our reasons. Representation
of DTD type construct is inspired by [Po00], but it is partially changed to meet
advantages of ECC and Lego.

2.2.1 Alternative Occurrence of Elements — F; | F,

This construction is modeled by a union type. Element E; | Es is treated as E; U E,.

Lego library provides a polymorphic union type which is instantiated by the types
of its components. Library provides also constructors inl and in2 and a recursion
rule for sum type construction. We’ll use these rules later in construction of mapping
function f from DT D, to DT Ds.

2.2.2 Zero or One Occurrence of Element — E7?

There is empty type definition in Lego library. It can be used in combination with
union type to model constructor E?. We have to define an empty element:

empty_el:empty

for further needs of reasoning over DTD definitions.

104

DATESO 02 — Workshop

2.2.3 One or More Occurrences of Element — F+

This construction is modeled as a function of type E — BOOL in [Po00]. But what
we really need is a function which accepts argument of appropriate type (ie. of type
E here). We'll define new type in Lego to represent this construct.

This new type should be a polymorphic type which is instantiated by the type
t. It can be defined as an inductive type (named reg) with only one constructor
(named do_reg) which is of type t -> reg. A general constructor for inductive
types is provided for these reasons in Lego. It has pretty simplified syntax and it also
automatically generates elimination rule and constructors for this type. Definition of
type reg is as follows:

Inductive [reg : Typel Parameters [t ? Typel
ElimQver Type Constructors [do_reg : t -> regl;
Discharge t;

See [LuPo] and [Luo94] for more details about inductive type definitions. Con-
structor do_reg will be useful for reasoning over mapping function f : DT D; —
DT Dy which is in our focus.

We also need a reduction function for this type. It is a function which takes a
type reg t and returns type t. This function is named undo_reg. For its definition
basic elimination rule for type reg is used. Elimination rule is relate to inductive
data types. We can refer the reader to [LuPo] and [Luo94] for more details. A little
bit more to this topic can also be found in section 3.1 in this paper. The definition
of function undo_reg is as follows:

[undo_reg = [t|Typel (reg_elim([_:reg tlt) ([f:t1f))];

2.2.4 Zero, One or More Occurrences of Element — F'x

Representation of this construct is done using above described techniques. Ex can
also be written as (E+)U L, written in Lego:

sum (reg E) empty

2.2.5 Sequence of Elements — (Ey, F,, ..., E,)

Here we can again used a ready made Lego constructors. Used type — Record belongs
directly to Lego, so it doesn’t need any library. This type enables to create named
record structure. It also automatically derives rules for appropriate constructor and
reductions.

Suppose we have an element F defined as sequence of elements e; and ey, which
are of type E; and E, respectively. We can write in Lego:

Record [E : Type] Fields [el : E1] [e2 : E2];

105

DTD Representation in Lego Proof Assistant

Module 1lib_dtd;

Make lib_union;

Make 1lib_empty;

Inductive [reg : Typel Parameters [t ? Typel

ElimOver Type Constructors [do_reg : t -> regl;
Discharge t;

[undo_reg = [t|Typel (reg_elim([_:reg tIt) ([f:t]1f))]1;
[pcdata : Typel;

[empty_el : Typel;

Fig. 2: Lego module lib_dtd.l for DTD specification

Lego defines new type E, its constructor (named make_E) and two reduction rules
el and e2 of types E->E1 and E->E2 respectively. Again all these rules are necessary
for reasoning over DTD definitions.

2.2.6 Review of Representation of DTD specification in Lego

Let us now shortly review our representation of DTD documents in Lego. Remember,
we are using Lego library for types sum and empty and we have defined new type reg
in previous subsections.

These considerations can be expressed in Lego module (file). This file is then
imported into Lego system before we start with definition of DTD specifications. File
is named 1lib_dtd.1 and is defined in Figure 2.

Now we can describe individual D'TD construct representation in Lego. Suppose
elements a : A and b : B, where A and B are either pcdata or types defined using
DTD data constructors (7,4, *,U or ,). Description is done on Figure 3.

Description DTD Lego

simple element a(#PCDATA) | [a : pcdatal

Zero or one occ. a? sum A empty

one or more occ. a+ reg A

Zero Or more 0cCc. ax sum (reg A) empty

alternative alb sum A B

sequence (a,b) Record [C : Typel
Fields [a : Al [b : BI]

Fig. 3: Representation of DTD Type Constructors in Lego

106

DATESO 02 — Workshop

2.3 Example of DTD Specification in Lego

Now, we are ready to apply above discussed DTD type constructors and provide an
example of DTD representation in Lego. We choose address book specification. Its
DTD is done on Figure 1 on page 104.

Make 1lib_dtd;

Record [ADDRESS_1:Typel

Fields [street_1: sum pcdata emptyl
[no_1, place_1, country_1 : pcdatal
[zip_1 : sum pcdata emptyl;

Record [FULL_NAME_1:Type]

Fields [name_1 : pcdatal
[nickname_1 : sum pcdata empty]
[surname_1 : pcdatal;

Record [ADDRBOOK_1 :Typel

Fields [title_1 : sum (reg pcdata) empty]
[full_name_1 : FULL_NAME_1]
[address_1 : reg ADDRESS_1]
[phone sum pcdata empty]
[email _ICQ_1 : sum pcdata pcdatal;

Fig. 4: Lego definition of address book

Remark 1: There is one important difference between Lego and DTD definitions. It
lies in the definition of sequence. One have to name the record type defined in Lego
if it is used later in definition as a component. But the name of the type should differ
from the name of the element of that type. We can adopt a name convention such
that the names of record types are written in capital and the names of element are
written in small letters.

Remark 2: We add a suffix _1 to every name of element and the type of above
mentioned definition. It is due to avoid name ambiguities of addressbook_1 defined
above and the other D'TD specification. We can suppose ambiguities in element names
if we are working with two similar ontologies.

It is clear now, that transformation from DTD specification to Lego definition is
straightforward. It should be done automatically employing standard algorithms

known from compiler constructions. The same assertion holds also for transformations
from Lego to DTD.

107

DTD Representation in Lego Proof Assistant

3 Working with DTD in Lego

We are able to specify DT Dy and DT D, now. Let us discuss the next topic — creation
of a transformation function f : DT D; — DT D, in this section. We have worked
in Lego definition state yet, but we have to switch into proof state now. It is done
through the specification of the goal:

Goal £ : DTD1 -> DTD2;

3.1 Lego Proof state

Let us shortly describe how Lego works in the proof state. The main idea is to
manipulate a context. Context means an ordered set of definitions and their types.
There are several rules which defines how derivations - ie. changes of context are
done. This set of rules is called type system (ECC in our case).

Usually we start with empty context and add a new definitions - DT'D; and DT D,
in our case. Remember, that usually many functions (rules) are defined with one type
definition (mainly constructors and eliminators).

By specifying the goal: Goal f : DTD1 -> DTD2; Lego generates new (existen-
tial) variable named ?0 which is of the same type as the goal. To create a proof means
to construct a term which is of the goal type. We can use definitions in context and
several Lego commands — mainly Intros and Refine.

Intros: We can change the current goal by Intros if it is in the form 70 : A->B. It
creates new hypothesis (for example term h) of type A and changes the current goal
to?1 : B.

Refine: It is the most powerful command for proof generation. It takes a term like
its argument and tries to unify the type of this term with the type of current goal.
It can succeed then the goal is proved by this term. If it doesn’t succeed and the
refinement term r is of type {x:A}B x ({x:A}B means a functional type A->B where
x is bind in term B, {x:A}B x means application of term x to term {x:A\}B), Lego
then suppose that any special instance of x can be a proof of the goal. It generates
a new goal ?n+1 : A, specializes the refinement term r to r ?n+1 which is of type
B ?n+1 and starts the new refinement with this specialized term. It may work in a
cycle so several new specializations and new partial goals can be generated by one
application of Refine command until the last generated specialization of refinement
term doesn’t unify with the specialized goal. Otherwise refinement process fails.

Let us now provide a small example. Suppose two very simple e-mail address book
specifications:
e1 (name, surname, nickname, email+)

eo(name, nicknamex, surname, email)

All internal elements (in the brackets) are of type PC'DAT A for simplicity. We want
to create a function f : e; — ey. Lego specification of e; and e, are as follows:

108

DATESO 02 — Workshop

Record [E1l:Typel
Fields [namel, surnamel, nicknamel : pcdatal
[emaill reg pcdatal;

Record [E2:Typel

Fields [name2 : pcdatal
[nickname2 : sum (reg pcdata) emptyl
[surname2 : pcdatal
[email2 : pcdatal;

Let us start with the transformation function development:

Lego> Goal f : E1 -> E2;
Goal f

70 : E1->E2
Lego> Intros h;
Intros (1) h

h : E1

71 . E2
Lego> Refine make_E2;
Refine by make_E2

7?2 : pcdata
73 : sum (reg pcdata) empty
?4 : pcdata
?5 : pcdata

We started with a goal specification, Lego accepts it and generates a goal 70. We
can apply Intros h, because the current goal is of type E1 -> E2. Lego generates
hypothesis h : E1. It is exactly what we need — h is now in context and we can used
it to satisfy goal 71.

We know, that E2 consists of a components. It is easier to work with individual
components for further work, so we are trying to decompose current goal ?1. It can
be done by refinement using E2 constructor. It was generated automatically during
definition of E2 type. Its name is make_E2. We can explore this term in Lego to see
its value and type:

Lego> make_E2;
value = make_E2
type = pcdata->(sum (reg pcdata) empty)->pcdata->pcdata->E2

The refinement by this term doesn’t succeed at the first level, but it tries to specialize
the refinement term by assumptions of its the leftmost parts. It generates four partial
goals before unification succeed. These partial goals are identical with E2 components.

Now we can follows with satisfying these particular goals. We have hypotheses
h : E1. Some reduction rules were generated during the phase of this record defini-
tion. These rules have the same names as record components. We can explore their
types and values:

109

DTD Representation in Lego Proof Assistant

Lego> namel;
value of namel =
El_elim ([_:El]lpcdata) ([namel,_,_:pcdata][_:reg pcdatalnamel)
type of namel = El->pcdata
Lego> surnamel;
value of surnamel =
El_elim ([_:Eillpcdata) ([_,surnamel,_:pcdata] [_:reg pcdatalsurnamel)
type of surnamel = El->pcdata
Lego> nicknamel;
value of nicknamel =
El_elim ([_:Eillpcdata) ([_,_,nicknamel:pcdatal [_:reg pcdatalnicknamel)
type of nicknamel = El->pcdata
Lego> emaill;
value of emaill =
El_elim ([_:El]lreg pcdata) ([_,_,_:pcdatal[emaill:reg pcdatalemaill)
type of emaill = El->reg pcdata

All are based on E1_elim which is the elimination rule for the type E1. Its type is:

type =
{C_E1:E1->TYPE}
({namel,surnamel,nicknamel:pcdata}{emaill:reg pcdatal}
C_E1 (make_E1 namel surnamel nicknamel emaill))->{z:E1}C_El1 =z

This elimination rule is also defined automatically during the definition of record E1.
It is based on general principle of inductive data types, which is embedded in Lego
system. See [Luo94], [LuPo] for details. For better understanding we can say that a
computation rules belong to every elimination rule. For our case of E1 computation
rule is only one and looks like follows:

[[C_E1:E1->TYPE]
[f_make_E1:{namel,surnamel,nicknamel:pcdata}t{emaill:reg pcdata}
C_E1 (make_El1 namel surnamel nicknamel emaill)]
[namel,surnamel,nicknamel:pcdatal [emaill:reg pcdatal
El_elim C_E1 f_make_E1 (make_E1 namel surnamel nicknamel emaill) ==>
f_make_E1 namel surnamel nicknamel emailil]

The first three lines can be understood as a local declarations and the last three lines
defines a computation. It can be understood like this - if appears the terms like it
is written on the lines four and five, they are replaced by the sixth line. Lego also
automatically generates a reduction rules using this eliminator this reduction rules
are identical with components and are showed above.

Let us now continue with our example. We decomposed current goal and we are going
to satisfy partial goals by using hypothesis h. We also have a reduction rules, which
allows to express individual components from hypotheses h.

110

DATESO 02 — Workshop

Lego> Prf;
h : E1

7?2 : pcdata

73 : sum (reg pcdata) empty

?4 : pcdata

7?5 : pcdata
Lego> Refine namel h; (* name2 x)
Refine by namel h

7?3 : sum (reg pcdata) empty

?4 : pcdata

?5 : pcdata
Lego> Refine inl (do_reg (nicknamel h)); (* nickname2 *)
Refine by inl (do_reg (nicknamel h))

7?4 : pcdata

?5 : pcdata
Lego> Refine surnamel h; (* surname?2 *)
Refine by surnamel h

7?5 : pcdata
Lego> Refine undo_reg (emaill h); (* email2 *)

Refine by wundo_reg (emaill h)
Discharge.. h
*kk QED ***% (% time= 0.190000 gc= 0.0 sys= 0.020000 *)

We started with command Prf to review hypothesis and all unsatisfied goals. Sat-
isfying the goals 72 and 74 is trivial. Components name and surname are in both
specifications (el and e2) of type pcdata so we have only to map them to each other.
It is done be applying reduction rules namel and surnamel to hypothesis h.

Let us explain the case of nickname mapping. We should consider that it is of
type pcdata in specification el and of type sum (reg pcdata)empty in specification
e2. What we have to do is to construct a term of type sum (reg pcdata)empty from
the term of type pcdata. It is just done by the term inl (do_reg (nicknamel h)).
Where in1 is a constructor of sum type. It suppose that its argument belongs to the
first set in the sum type, it takes this arguments and returns a sum type. Constructor
do_reg is used for creation of type reg pcdata from the type pcdata.

The last goal (email2) seems to be trivial because it is of type pcdata. But we
want to satisfy it using emaill which is of type reg pcdata. To achieve our goal we
can use function undo_reg which suppose argument of type reg t and returns type
t. Refining by term undo_reg (emaill h) we have got the term of type pcdata
which is unified with the last goal.

Now, all goals were satisfied, so we have finished. Lego finds this situation and
signalize it by printing *** QED **x. We can now save our proof as a term and
explore its value and type:

Lego> Save;
"f'" saved as global, unfrozen
Lego> f;

111

DTD Representation in Lego Proof Assistant

value of f =
[h:E1]
make_E2 (namel h) (inl (do_reg (nicknamel h))) (surnamel h)
(undo_reg (emaill h))
type of f = E1->E2

Function f represents both — the algorithm of one possible data mapping function
from specification el to e2 and the proof of its correctness. This function can be
saved and its value can be used later:

Lego> Goal g: E1->E2;
Goal g

70 : E1->E2
Lego> Intros h;
Intros (1) h

h : E1

71 : E2
Lego> Refine f h;
Refine by f h
Discharge.. h
*x*kx QED **x (* time= 0.0 gc= 0.0 sys= 0.0 *)

3.2 Summary of DTD Reasoning Techniques in Lego
Now, we have a notion how the mapping function £ was developed in a concrete

example. It could be useful to summarize this techniques for every situation which
can occur in £ : DTD1->DTD2 development process:

1. Specification of the goal. This step is every time the same:
Goal f : DTD1 -> DTD2;

It only differs in the name of function and the names of dtd specifications.

2. Creating a hypothesis of type DTD1. Our proof development mechanism
suppose that we want to map specification DTD1 to specification DTD2 - it is
done by command

Intros h;

3. Decomposition of DTD2 specification. This step is again standard, because
we are starting with DTD specification. Each DTD specification consist from at
least one element and hence it is implemented as record. Appropriate command
is

Refine make_DTD2;

112

DATESO 02 — Workshop

Term make_DTD2 is generated automatically with the definition of record DTD2.

4. Satisfying partial goals.

We have got a number of partial goals as a result of previous step.

Now we have to map individual components of hypothesis h:DTD1 to ap-
propriate partial goals.

Individual components can be obtain by applying hypotheses h to reduc-
tion term (of the same name as components).

Also we have to respect other DTD constructors (?,+,*,|). All these
constructors are in Lego represented by combinations of reg, sum and
empty. We should be able to derive in both directions (from sum to its
components and from components to sum for example). All possible useful
terms for refinement are summarized in table on Figure 5.

In the case that components of DTD1 or DTD2 are records, we can use con-
structor make_Component_name or Component_item_name reduction rules
and work recusively from step 4 of this algorithm.

5. Saving finished proof. This is done by command Save;

DTD construction reduction

| inl |AIB a : sum A B | case([_:A]la) ([_:Bla) ab : A
inl |A|IB b : sum A B | case([_:A]lb) ([_:Blb) ab : B

+ do_reg:A —> reg A undo_reg:reg A —> A
*, 7 the same like | and + the same like | and +
with emtpy_el:empty with emtpy_el:empty
Record R make_R:A->B->R a: R > A
Fields a:A, b:B b: R -> B

Fig. 5: Useful terms for DTD reasoning in Lego

4 Conclusions

We have presented a way how to represent DTD specifications in Lego proof devel-
opment assistant as like as the mechanism how to develop a mapping function f of
type DT'D, — DT D,. This mapping function represents both the transformation
mechanism and the proof of its correctness. This feature is probably the most valid
argument why to follow this line of research.

Although our discussion were reduced only to limited set of DTD constructors

(we didn’t discuss attributes of DTD elements), some suggested implementations
of DTD constructs are not very pretty for applying (especially sum type used for
implementation of | and). It is considered topic for future work.

113

DTD Representation in Lego Proof Assistant

The future work is also intended to extend the set of DTD constructs by attributes
of elements. Also the possibility of switch from DTD specifications to XML schemes
seems as possible.

Rereferences

[Luo94] Z. Luo.: Computation and Reasoning. A Type Theory for Computer Sci-
ence. Clarendon Press. Oxford 1994.

[LuPo] Z. Luo, R. Pollack.: LEGO Proof Development System: User’'s Manual.
Dept. of Computer Science, University of Edinburgh 1992.
* hitp: //www.dcs.ed.ac.uk/home/lego

[Po00] J. Pokorny.: XML Functionality. Proceedings of IDEAS2000, B.C.Desai,
Y. Kioki, M. Toyama (Eds.),
IEEE Comp. Society, 2000. pp. 266-274.
* hitp://195.113.17.94 /texty /pokorny.ps/ideas2000a.ps

114

Editor: Michal Kratky

Department: Department of Computer Science
Title: DATESO ’02

Place, year, edition: Ostrava, 2002, 1.

Page count: 114

Edit: VSB-Technical University Of Ostrava

Ostrava-Poruba, ti. 17. listopadu 15, 708 33

Print: Repronis
Ostrava, Nadrazni 53

Edition: 100

Unsaleable

ISBN 80-248-0080-2

ISBN 80-248-0080-2

