Quality of Service (QoS) in IP networks

Petr Grygárek

© 2005 Petr Grygarek, VSB-TU Ostrava, Routed and Switched Networks

Quality of Service (QoS)

- QoS is the ability of network to support applications without limiting it's function or performance
- ITU-T E.800: Quality of Service is an overall result of service performance, which determines level of service user satisfaction

What influences QoS?

© 2005 Petr Grygarek, VSB-TU Ostrava, Routed and Switched Networks

What influences QoS?

Every network component influences QoS:

- End stations (workstations, servers, ...)
- Routers, switches
- Links
 - Including links between routers and stub LANs

Parameters which constitute QoS

- **b**andwidth
- delay
- delay variation (jitter)
- packet loss

What contributes to delay?

Fixed part

- serialization delay
- propagation delay
- Variable part
 - buffering (queueing) in routers and switches

Reasons of delay variation

Non-uniform handling of individual packets of the same flow in individual switching devices

variable delay caused by waiting in queues

Reasons of packet loss

- (physical transmission errors receiver discards)
- Overload of switching element's CPU
 - (input drops)
- Output queue full
 - (output drops)

QoS Implementation Models

© 2005 Petr Grygarek, VSB-TU Ostrava, Routed and Switched Networks

QoS implementation models

- Best Effort
- Integrated Services Hard QoS
- Differentiated Services Soft QoS

Best Effort Service

- Original Internet service
- Makes best effort to transfer packet, but provides no guarantees
- In case of congestion, any packet may be dropped
- No priorization

Integrated Services - Hard QoS (intserv)

- Explicit reservation of network resources for individual flows before communication starts
 - Link capacity, queue memory, CPU of switching elements
- Poor scalability
 - Many flows are passing through backbone devices
- Resource Reservation Protocol (RSVP)
 - reserves resources for individual flows along it's path

IntServ: Resource Reservation Protocol (RSVP)

- Signalling between flow receiver and switching devices along (reverse) flow path
 - also among switching devices
 - goes against flow direction
- Distinct and shared reservation
- Requires support of end-stations SW
- Natural in connection-oriented networks (like ATM), problematic in packet-switched networks

Differentiated Services - Soft QoS (diffserv)

- Traffic classification and marking
- Defined Per-Hop Behavior (PHB) of switching devices (routers, switches) for every traffic class
- Limited number of classes better scalability
- Only prefers some data classes, no delivery time guarantee
 - only relative preferences

Traffic Classification

- Classification on the network (or QoS-domain) boundary
- Marking at layer 2: 802.1pq
 - 3-bit Class of Service (CoS) field
- Marking at layer 3: 8-bit TOS/DSCP field in IP header
 - Before: Type of Service (ToS), 8 IP precedence classes
 - Now: Differentiated Service Code Point (DSCP)
- Routers and L3 switches needs to map between L2 CoS and L3 ToS/DSCP
 - QoS has to be ensured end-to-end

Defined Diffserv Per-hop Behaviors

Expedited Forwarding (EF)

- "Virtual leased line"
- Little loss, small but variable delay, guaranteed bandwidth
- Assured Forwarding (AF)
 - 4 classes specified by Class Selector (1-4)
 - 3 drop preferences in every class

• (1=low, 2=medium, 3=high).

- Denoted as AFxy, x=class selector, y=drop preference
 - x,y coded in DSCP.

Best Effort

QoS Implementation Mechanisms

© 2005 Petr Grygarek, VSB-TU Ostrava, Routed and Switched Networks

Mechanisms of enforcing QoS

Applied only when network congestion arises

 If the network is not congested, QoS mechanisms only cause unnecessary overhead and commonly are not applied

• The goal is to guarantee minimal bandwidth, maximum delay and maximum jitter

Input filtering, classification and marking

© 2005 Petr Grygarek, VSB-TU Ostrava, Routed and Switched Networks

Traffic Policing

- Limits input rate according to Committed Information Rate (CIR)
 - Sometimes takes EIR into account also
- Uses Token Bucket Algorithm

Input Traffic Classification

- Classification based on L1-L7 information
 - Incoming port, MAC address, protocol, IP addresses, TCP/UDP port, URL, MIME type, ...)
- Classified by sender or by network boundary device
 - NBAR: Network-Based Application Recognition
- Backbone devices trust classification performed on the network boundary

Congestion Management

© 2005 Petr Grygarek, VSB-TU Ostrava, Routed and Switched Networks

Congestion Management Principle

Traffic classes sorted into queues

- Explicit (marking-based) assignment to queue
- Default queue
- Queues serviced by various algorithms
 - Selection of next packet to send out of output line

Basic Queueing Algorithms

• FIFO

- Priority Queuing (PQ)
 - absolute priorities
- Custom Queuing (CQ)
 - proportional queue processing
- Weighted Fair Queuing (WFQ)
 - automatic traffic classification into flows, fair handling of flows
- Class-Based Weighted Fair Queuing (CBWFQ)
 - Classification into classes, FIFO in every class, WFQ between classes
- Low-Latency Queuing (LLQ)
 - WFQ + absolute priority queue

Priority Queueing

Custom Queueing

Weighted Fair Queueing

Congestion Avoidance

- When the queue fills-up, router starts to discards packet (tail drop)
 - Many TCP flows start to lose ACKs and perform slow start at the same time
 - The result is global TCP flow synchronization, causing network load oscillation
- Random Early Discard technique is used to combat against it

(Weighted) Random Early Discard

- As queue becomes full, router will start to randomly discard packets with increasing probability
- Slow start of some TCP connection(s) happens earlier comparing with standard tail-drop
 - Avoids global TCP flow synchronization
- Weighted RED packet discard probability influenced also by packet's priority
- Note: RED can regulate only TCP flows (!)

• There is no feedback in UDP protocol itself

WRED Configuration

For every traffic class we define

- Minimum queue length to begin random discard
- Constant to calculate drop probability based on current (averaged) queue length
 - Applies only when queue length reaches minimum length for random discard
- Maximum queue length
 - When a limit is reached, all packets of the class are dropped until queue length decreases
 - Some kind of hysteresis needed

Traffic Shaping

- Protects against sending of packets to ISP faster than ISP agrees to accept them
 - ISP applies traffic policing so sending more traffic only wastes bandwidth
 - The goal is to adapt traffic rate to the committed rate
- Important when physical line rate is higher than CIR of some virtual circuit

Mention the difference between Traffic Shaping and Traffic Policing

Fragmentation and Interleaving

- Mechanism used to ensure reasonable delay and jitter of interactive applications
 - packets of interactive application have to be delivered on timely manner
 - Sending of long packet on the same line can take more time than is the maximum allowed between two interactive application's packets
- Long packets are fragmented and fragments are interleaved with packets of interactive applications
- Used on slow links with large serialization delay

Policy routing and QoS

- Policy routing based on
 - TOS value
 - Packet size

QoS-based Routing

© 2005 Petr Grygarek, VSB-TU Ostrava, Routed and Switched Networks

QoS-based Routing: Principles and Problems

- Many routing protocols can propagates current QoS parameters of individual links
 - Cisco (E)IGRP, OSPF v.3, ...
- Problem with routing oscillation
 - and thus unwanted jitter of transferred packets
- Routing protocol may calculate multiple shortest paths optimized for various metric
 - Packet can be forwarded according to routing table selected based on it's TOS field value
 - Consumes lot of resources (CPU, memory, bandwidth)

QoS support in operating systems

- Windows suspicious
 - (commonly does nothing ;-))
- Linux wide variety of QoS mechanisms for QoS-aware packet handling
- Specialized router and switch software
 - Not every vendor supports QoS today

QoS in networking technologies

QoS enforced by some media access control methods themselves

Old technologies: Token Ring, 100VG-AnyLan
WiFi: IEEE 802.11e (emerging standard)

Implementation of QoS mechanisms

1. Determine applications used in your network and their requirements

Monitor traffic for representative usage period
2. Suggest and implement QoS mechanisms
3. Verify behavior of your network
4. GOTO 1 ;-)

What to expect from QoS today

- Little strange and sometimes nonfunctional implementation
- Statistical behavior
- Works only in some domains
 - not implemented worldwide

References

- <u>http://www.cisco.com/univercd/cc/td/doc/pr</u> <u>oduct/software/ios122/122cgcr/fqos_c/fqcprt</u> <u>2/qcfconmg.htm</u>
- http://www.cisco.com/univercd/cc/td/doc/pr oduct/software/ios121/121cgcr/qos_c/qcprt3/ qcdconav.htm