Route Optimization (intra-AS)

Petr Grygárek

© 2005 Petr Grygarek, VSB-TU Ostrava, Routed and Switched Networks

Goal of route optimization

Static routing:

- More predictable and safer
- Dynamic routing:
 - Automatically reacts on topology changes
 - Lower administration
 - Higher CPU and memory utilization
 - Consumes bandwidth

Using route optimization, we influence the process of best routes selection

 either selection from multiple routes configured statically or routes learned from routing protocol

Route optimization: How to influence routing decision ?

- Selection of proper routing protocol
 - Metric
 - Load balancing support`
- Configuration of routing protocol and link parameters
 - setting of link costs
 - creating router areas, summarization
 - default route propagation, route filtering
 - •
- Local definition of packet forwarding rules for particular router

Metric

- Metric of link/path determines the preference of that link/path
 - Lower metric is preferred
- Various metrics reflect current link properties
 - Scalar metric
 - Composite metric
 - We need to compare metric values
 - Transformed to scalar metric (coefficients)
 - The same transformation method should be used at every router
- Static and dynamic metric
 - Dynamic metric incorporate instant link parameters (may change rapidly)
 - Commonly, only static metric is used
 - Risk of route flapping when dynamic metric of a link changes too often
 - Dynamic measurements of link characteristics (load, error rate) needs to be averaged over time

Load balancing

- How many routes to the same network are maintained in routing table ?
 - Equal-cost load balancing limited by maximum paths allowed
 - Unequal-cost limited by variance (and max. paths)
- Load balancing method
 - Per-packet round-robin, slower implementation (SW)
 - Per-source/Per-destination/Combination of both
 - faster (easier HW implementation when using route cache)
 - Ioad balancing efficiency depends on traffic pattern

Default routes

- Default route limits number of records in routing tables
- Denoted as 0.0.0/0
 - Matches every packet
- Static default
 - Possibly more floating static defaults
- Dynamic default (propagated by/learned from IGP protocols)
 - Propagated as 0.0.0/0 or as specially-tagged records
 - Receiving router chooses from candidate defaults based on normal metric
 - Origination of default route:
 - Redistribution of static default
 - Router itself is the source of default
 - (router itself doesn't have to have default in it's routing table, but a set of specific routes instead)

Multiprotocol Routing

© 2005 Petr Grygarek, VSB-TU Ostrava, Routed and Switched Networks

Multiprotocol Routing - Principle

- Route tables filled-in with routes by more routing processes (protocols)
- Routes learned from multiple routing protocols are uncomparable
 - various routing protocols use noncompatible metrics
- If multiple (potentially different) paths to some network are learned from multiple routing protocols, router must decide which one to place into routing table

Reasons for multiprotocol routing

- History of particular network
- Limited routing protocol support in routers and/or host operating systems
- Different routing protocols feasible in various parts of internetwork
 - fast LANs

•

- slow WAN links
- dial-on demand circuits

Multiprotocol routing Administrative distance

- Administrative distance (AD) specifies preference of particular routing protocol
 - AD is Cisco term, but the concept is general
 - Route with lower AD is always better
 - Regardless of metric values
 - Only route metrics with the same ADs can be compared
 - AD has only local scope (not propagated between routers)
- If a path is learned by multiple routing protocols, path from more preferred routing protocol is placed into routing table
 - Only if multiple paths are learned from the same routing protocol, protocol metric is used to choose between them

Administrative Distance settings

Common AD settings: Connected < Static < OSPF < RIP</p> • (lower is more preferred) Cisco AD default values: • Connected: 0 (cannot be changed) Static 1 • IGRP (Cisco) 100 OSPF 110 IS-IS 115

• RIP 120

Tricks with AD setting

- Set AD for routes to specific networks only
- Set AD for routes received from some neighbor
- Set AD=255: do not use that route

• • •

Floating Static Routes

- Floating static route = static route with worse administrative metric than normally used route
- Becomes active ("floats up") when the route normally used is lost
 - routing protocol removes route
 - Next hop specified in primary static route becomes unreachable
- Often used with dial-on-demand links
 - floating static route forwards packet via dial-on-demand circuit

Routing Processes

- Router can run multiple separate routing processes (of various or the same routing protocols)
 - Every process works with subset of router's interfaces
 - multiple routing protocols on the same interface may be useful sometimes also
 - Cisco IOS: can support up to 30 routing processes (instances)
- More instances of the same routing protocol possible
 - Cisco: RIP is an exception, but RIP "contexts" may serve as workaround
- Routing table filled by all routing processes
 - But even DV routing processes have to maintain separate data structures (routing tables of only that protocol)
- Routing processes don't interchange information if not explicitly instructed to do so
- Information interchange can be configured using redistribution

Redistribution

- Redistribution = interchange of information between routing processes (and appropriate protocols)
 - Redistribution of static routes or connected networks into routing protocol is a special case
- Possibility to filter routes during redistribution
- One-way and Two-way redistribution

Problems with Redistribution (1)

- Redistribution from classless to classful protocol
 - Distributing subnets (subnetted major networks) from classless into classful protocol cause problems
 - See <u>http://www.cisco.com/warp/public/105/52.html</u>
 - Cisco: When redistributing from classful routing protocol into OSPF, only classful routes are redistributed by default. Use : "subnets" keyword in redistribute command to override this behavior.
- Uncompatible metric
 - Route are redistributed with "default" metric
 - ("default" metric value may be specified)

Problems with Redistribution (2)

Circular redistribution

- when redistribution takes place on more routers
- redistributed routes have to be filtered to prevent loops
- Bad AD setting may cause problems
 - See http://www.cisco.com/warp/public/105/redist.html#ad
- Intra-AS traffic goes through other AS's routers
 - may be resolved by artifical increse of redistributed routes metric

Redistribution – advanced issues

Possible to specify protocol-dependent parameters

- metric-type (OSFP: E1,E2)
- tag
- • •
- If protocol tags external routes, it will not export them again out of AS
- Recommended usege of redistribution if configured on more than one router:
 - oneway redistribution + default route distributed in opposite direction

Redistribution examples

- RIP and IGRP on single router
- RIP and OSPF on single router (external routes)
- Multiple independent routing processes of the same protocol on single router
- Circular redistribution with route filtering
- Typical scenerio:
 - Static routes into stub networks redistributed into backbone routing protocol
 - Dynamic routing protocol in backbone.
 - Stub networks reach other networks using default.

Route tagging

- Some routing protocols allow to append tag to routes they advertise
- Usage:
 - Candidate default route
 - External route
 - Internal routes always preferred over external (internal traffic shouldn't leave AS)
 - External routes should not be advertised back out of AS
 - User-specified route tagging + filtering or redistribution control based on route tags

Route Filtering

- Distance Vector Protocols: filtering of routes in routing updates
 - Rows of advertised/received updates filtered
 - Based on destination network or neighbor (update source)
- Link State Protocols:
 - calculation of SPF always based on entire topology database (no filtering of LSAs!)
 - filtering possible when placing routes into routing table
- Filtering during redistribution
- Cisco: redistribution achieved by Distribute lists (refer to ACL)
 - per routing protocol/per interface

Metric manipulation in DV protocols

- Metric may be manipulated in advertised or received routing updates
- May help to
 - give preference to particular route
 - defend against inter-AS traffic leaking AS
 - defend against circular redistribution

Passive Interface

Route updates not sent out of passive interface

- Received updates accepted
- Hellos not sent adjacencies not established
- Applied on Ethernet stub network, dial-up lines, routing domain (AS) boundaries
- Network connected to passive interface normally advertised into routing protocol

Route Summarization

- Advantages
 - Fewer records in routing tables
 - Less bandwidth taken by routing updates
- Rules
 - Summarization on major network boundary or router choosen by administrator
 - Some routing protocols allows for summarization only at specific routers (OSPF: ABR, ASBR)
 - Summarization into classful network or general supernet
 - Only router which "owns" the whole address range may summarize that range
 - Need for hierarchical IP addressing plan
- Behavior of routing protocols:
 - Some routing protocols summarize by default
 - In some of them, it is possible to turn it off (RIPv2, BGP), in others not (RIP)

Policy routing

- Extended form of static routing
- Route decision based on SOURCE (instead of destination) address or incoming interface of routed packet
 - may also depend on destination address
- Defined statically by "route maps" on particular router(s)
 - Entry format: packet matching criteria => outgoing interface | next hop
 - General format of route map entry: "match X set Y"
- Route maps have higher priority than routing tables
 - But apply only when outgoing interface is up
- Examples:
 - Two parallel links, traffic sourced from one subnet not allowed to pass the faster link (because of political reasons)
 - Two links to different ISPs; some internal subnets communicate with Internet via ISP1, others via ISP2

Labs

Load balancing: RIP, IGRP, OSPF (few notes about ISIS) Floating static routes

RIP-OSPF redistribution (two-way at single router)AD of routing protocolsRIP-RIP circular redistribution, RIP-OSPF circular redistribution (harmless)

OSPF-OSPF redistribution Policy routing: debug ip policy, sh route map