Switched Networks

Petr Grygárek

Layer 2 switching

- eliminates collisions (microsegmentation)
- full duplex improves performance
- hardware-based bridging (high port density)
 - wire-speed switching, low latency

Requirements to today's switched networks

- Fast convergence
- Deterministic paths
- Redundancy
- Scalability
- Performance of centralized applications, multiprotocol support, multicasting, ...

Redundancy in switched networks

Problems with redundancy

- Bridging/switching requires topology without loops
 - avoids frame cycling and introducing multiple copies
- Alternative links necessary to implement redundancy
- Need for protocol calculating tree topology
 - Runs between bridges/switches
 - Some ports blocked, other forwarding

Redundancy implementation options

- L2: Spanning Tree
 - Some links unused all the time (blocked ports)
- L3: Routing protocols
 - Better metric
 - Support for load balancing

Spanning Tree (802.1d)

- spanning tree is a tree which spans over all switches
- continually monitors network topology and dynamically chooses spanning tree
 - topology is automatically recalculated if some link fails

Spanning Tree Principle

- **1.** Root bridge election
 - according to preconfigured bridge priorities
 - preemptive
- 2. Calculation of shortest path tree
 - Shortest paths from elected root bridge to every other bridges
 - preference of individual links may be influenced by configuring link costs
 - by default, cost is inverse proportional to bandwidth
 - if multiple equal-cost path exist, port priority used as tiebreaker
 - Ports on spanning tree are forwarding, other blocking

Both of these phases take place continuously

Spanning Tree Operation

- 1. Root bridge election
- 2. Selection of root port of every bridge
 - forward traffic to root bridge
- 3. Selection of designated ports for LAN segments
 - necessary when LAN segment attached via multiple bridges
 - path via bridge with lower root path cost is preferred
- Only root and designated ports forward traffic, other ports are blocked
- Ports in blocking state listen for BPDUs
 - transit into Listening state when multiple BPDUs lost

Mechanics of SPT (1)

- Root bridge generates Bridge Protocol Data Unit (BPDU) every 2 seconds
 - Other switches forward it along spanning tree, accumulating total root path cost inside BPDU
 - Root bridge defines values of various timers
- Every bridge checks for periodic arrivals of BPDUs on it's root port
 - Root port is the port nearest to the root
 - Bridge maintains "best" BPDU heart on every port
 - Link cost added to root path cost when BPDU arrives on port
 - MaxAge timer (20s) used to time-out BPDU

Mechanics of SPT (2)

- When bridge detects link failure, it reports topology change to the root port (TCN)
 - Every other bridge forwards TCN to the root port
 - When root hears Topology Change Notification, it reports Topology Change in it's BPDUs for some time
 - After bridge hears Topology Change indication, it shortens it's MaxAge timer to MAC address table entries
- To avoid loops during transition to another tree, SPT defines transient states
 - Listening bridge listens for BPDUs
 - selection of root bridge, root port and designated ports
 - Learning bridge only learns bridging table
 - still does not forward traffic
 - used to limit flooding
 - Port spends 15 seconds in both Listening and Learning states
 - After link failure, it may take up to 50 secs to build alternative spanning tree
 - After BPDUs lost on some port: 20 secs to MaxAge timer expiration, 15s in Listening state, 15s in Learning state

BPDU types/flags

Topology Change

reported upstream (until ACKed)

Topology Change Ack

acknowledges TC to downstream bridge

Topology Change Notification

generated by root when topology change detected

Spanning Tree Enhancements

Additional features to shorten STP convergence

- 50 seconds of 802.1d is not enough for today's high availability requirements
- PortFast
 - access ports transits directly to Forwarding state
- UplinkFast
 - fast switch to alternate uplink port when uplink fails (detected by HW)
 - Bypasses Listening and Learning states
 - Mechanism to update bridging table accordingly
- BackboneFast
 - eliminates 20s MaxAge delay when non-directly attached link on root path fails
 - utilizes special BPDU types

Spanning Tree Security

BPDU Filter / BPDU Guard

Root Guard

Rapid Spanning Tree (802.1w)

- Subsecond convergence (?)
- Backward-compatible with 802.1d (per-port, not recommended)
- Event-based
 - 802.1d Spanning Tree is timer-based
- Proposal/agreement mechanism to make transfer to forwarding state faster
- Implements many 802.1d enhancements
 - PortFast (edge ports)
 - UplinkFast, BackboneFast
- Shared and P2P link types
 - differentiated according to full/half duplex
 - ports on P2P links always forwarding
- Topology change notification flooded directly from bridge which detected it
 - need not to travel to root bridge and back downstream the tree
- Every bridge sends BPDUs independently according to Hello timer
 - does not forward Root bridge's BPDUs as 802.1d
 - BPDUs used as keepalives (3 misses treated as link failure)

Multilayer switching

Layer 3 switching

- hardware-based routing
 - speed of switching and the scalability of routing
- Iayer 3 switch acts on a packet in the same way that a traditional router does
 - not only forwards it but modifies some header fields also (TTL, checksum)

Routing vs. layer 3 switching

General-purpose routers

- microprocessor-based engines
- software-based packet switching
- various WAN interfaces
- Layer 3 switch
 - hardware-based packet switching
 - similar procedures as switch applies to frames are applied to packets
 - handle high-performance LAN traffic
 - many ports of homogenous technology (Ethernet)
 - routed or switched port modes
 - VLAN-based, contains virtual router with interfaces to every VLAN
 - If some features are applied, packets must be process-switched, i.e. handled by CPU
 - special kinds of ACLs, per-packet load balancing, ...

Multilayer switching

- Notion of flow (L2, L3, L4)
 - Unidirectional stream defined by IP addresses (and L4 information)
 - May aggregate more TCP/UDP flows between two stations
 - Defined by flow mask
 - Destination IP address
 - Source+Destionation IP address
 - Source+Destionation IP address, L4 protocol, source+destination port
 - Although Destination IP address is sufficient for normal destinationbased switching, more specific masks must be used if standard/extended ACLs defined in the network to filter-out unwanted traffic
- First packet routed, following packets of the same flow switched
 - Cache of flow entries maintained
 - Cache entry created when first packet is processed
 - Contains both L3 and L2 information (including input/output VLAN IDs)
 - Used for fast frame/packet header rewrite

Cisco MLS - multilayer switching implementation

MLS Components

- Switching Engine (SE)
 - switch with additional intelligence (MLS-enabled)
- Route Processor (RP)
 - router capable to report information to SE

SE and RP communicate via MLSP protocol

- Multicasts info about all MAC addresses of RP interfaces (together with LAN IDs)
 - needed by SE to recognize packets sent to the router
- RP sends flow masks of active flows to SEs
- Asks SE to invalidate caches when route path changes
 - and when ACLs applied to RP interfaces change

MLS Operation (1)

Candidate Packet

- = Packet sent to MAC address of RP interface (out from local VLAN)
- Creates entry in SE's switching cache
- Flow mask associated with switching cache entry defines packet header fields sufficient to identify flow
 - Necessary because of possible ACLs on RP interfaces
 - Flow mask sent to SE by RP via MLSP
- Enable Packet
 - = Packet sent from MAC address of RP interface (to another VLAN)
 - Completes corresponding cache entry

To recognize Candidate/Enable packets, SE must know MAC addresses of all RP interfaces – propagated by MLS

MLS Operation (2)

- If SE detects packet sent from client to RP interface, it looks for matching cache entry
 - If it is found, packet L3 and L2 header is rewritten, bypassing RP completely
 - SRC MAC=MAC of RP interface, DST MAC, IP TTL--, recalculate IP header checksum
 - Forwards to VLAN according to information in cache entry
 - Based on VLAN membership of outgoing RP interface
- If routing tables or ACLs change on the RP, cache in SE has to be completely invalidated
 - RP reports that to SEs via MLSP
 - in some situations may introduce significant inefficiency

Cisco Express Forwarding

Cisco Express Forwarding

- Used to limit searches in the routing table, recursive routing table lookup and ARP-cache entry access needed for frame header rewrite
- Except routing table, router also maintains
 - Forwarding Information Base (FIB)
 - Adjacency Table

CEF Forwarding Information Base and Adjacency Table

- Forwarding Information Base (FIB)
 - routing table transformed to 4-level 256-way tree for faster searching
 - leaf used to forward particular packet selected on longest-match
 - created in advance (by software process)
 - takes into account all destinations in routing table, not only active flows
 - recursive lookups resolved
- Adjacency table
 - Maintain L2/L3 neighbor information
 - Used to make ARP table search process faster
 - Allows fast packet rewrite
- Nodes of FIB (256-way tree) point into Adjacency table
 - "mtrie" data structure leafs contain pointers to Adjacency table
 - Not needed to search in additional ARP table
 - Support for load balancing (multiple pointers to Adjacency table used in round-robin way)
 - If L2 neighbor information change, FIB structure need not to be completely invalidated

CEF Advantages

Suitable even for many short-term flows (Internet backbone)

- All packets (including first one) routed by hardware
 - HW accesses FIB and Adjacency table
- If topology chances, only part of FIB can be selectively modified
 - doesn't clear complete cache as MLS does

Earlier and today's LAN traffic characteristics

- "Clasical" 80/20 rule:
 - 80% of traffic remains local (VLAN boundary)
 - Users don't cross backbone to access most of required resources (workgroup servers)
 - Users grouped logically
- 80/20 rule no longer valid for global services
 - 20/80 rule
 - Responds to trend of resource centralization
 - (server farms, Web services, ...)
 - Requires high-performance L3 switching

VLAN models

- 1 VLAN = 1 IP subnet
- VLAN models
 - campus-wide LANs (older)
 - "end-to-end VLANs"
 - VLANs group devices according to functionality (common resources)
 - regardless to physical location
 - Common security policy for all VLAN members
 - User§s mobility limited to VLAN
 - 80/20 rule
 - local VLANs (modern approach)
 - Uses L3 switches
 - Uses cluster as design unit
 - cluster contains multiple access switches +L3 switch
 - VLANs terminated on L3 switch
 - fast routing (L3 switching) between interconnected L3 switches
 - 20/80 rule

VLAN membership

- Static (port-based)
 - (non-trunk) ports with no explicit VLAN assignment fall into default VLAN
- Dynamic (based on L2/L3 information, most often source MAC address)
 - VMPS server (Cisco proprietary)
 - Maintains database of MAC-to-VLAN assignments
 - Devices not listed may fall to "default" VLAN
 - VLAN assignment defined by first frame received
 - Cisco: all devices on the port must be in the same VLAN
 - If following frames should belong to another VLANs, they are not permitted
 - Port-to-VLAN assignment deleted if port is disconnected
 - (linkbeat pulses fail to arrive)
 - Port limitations for users may be defined
 - Specific device may be denied to assign VLAN if connected to wrong port
 - VMPS server: high-end switch (or Linux :-))
 - VMPS client: has IP address of VMPS server and ports allowing dynamic membership configured
 - UDP-based VLAN Query Protocol (VQP) between VMPS client(s) and VMPS server

VLAN - Trunking

- 802.1q header (802.1p/q)
 - "internal tagging" imposition of tag modifies original frame
 - EtherType=0x8100
 - 2B header: 12b VLAN ID, 3b priority (QoS)
 - Maximum frame length extended from 1518 to 1522 B
 - including CRC
- 802.1q trunks also allows untagged frames
 - "Native VLAN"
 - Must be mapped to the same VLAN at both trunk link sides ends to avoid unwanted pass between VLANs

Trunk configuration may limit VLANs allowed to transit

- Limits unnecessary broadcasts/flooding to switches where no members of particular VLAN reside
- May be limited dynamically by (proprietary) pruning protocol (Cisco: VTP) reporting active VLAN members on individual switches
 - VLAN carrying service protocols (STP, VTP, ...) never pruned

VLAN Tunneling

- dot1QinQ
- Encapsulates 802.1q frame in provider network with another 802.1q frame
- Enables overlapping VLANs of multiple separated customers to be transported via VLAN-based provider's core network

Spanning tree and VLANs

- 802.1q: Common Spanning Tree (CST)
 802.1d in VLAN 1, common tree for all VLANs
- Per-VLAN Spanning Tree (Cisco)
 - Separate tree for every VLAN
 - Infrastructure may be used efficiently
 - Requires lot of CPU processing if many VLAN are active
- Multiple Spanning Tree (802.1s)
 - Based on Rapid Spanning Tree (802.1w)
 - Multiple SPT instances, each instance computes SPT for group of VLANs

Routing between VLANs

Routing between VLANs

Connection of one VLAN to one router port inefficient for tens of VLANs, there exists better solutions:

- Route-switch module of legacy (L2) switch
- VLAN virtual interfaces on L3 switch
- Router-on-the stick
 - Trunk link between switch cluster and single router
 - Limited scalability
 - For 80/20 traffic pattern, router should be STP root for all VLANs

• Ensures shortest paths from every switch to the router

Other issues of switched networks

Channel Bundling

- Group of ports configured to act as single link and share load
 - Group forms single link from STP perspective
 - Only lines functional at each instant are uses
 - Can group both trunk and access links (all of the same type)
 - Ports of a group have to have identical parameters
 - Speed, duplex, trunking mode, ...
 - Various load balancing methods
 - per-source, per-destination, combination of both
 - each side may use different method
 - important to set properly to reach equal utilization of bundle lines
 - One switch may define multiple port groups
 - Groups differentiated by group ID

Link Aggregation Control Protocol (LACP) – 802.1ad

Negotiates port bundles

Monitoring of Switched Network

Switched Port Analyser (SPAN)

- frames received/transmitted by specified port(s) are copied to port designated as SPAN port
- VSPAN = SPAN using VLANs as monitored source
 - copies all frames of particular VLAN to SPAN port
- RSPAN = remote monitoring using SPAN port
 - SPAN port of switch different from the one with monitored ports may be used
 - (switches connected together with trunk link)
 - reserves one VLAN on the trunk link to carry monitored traffic

Due to SPAN port speed limitation, the mechanism is not sufficient for wire-speed traffic monitoring.

Switched network security

ACLs supported by hardware

- Port ACLs
 - In/out
 - Filters according to MAC, but sometimes also IP/Layer4 address
- VLAN ACLs
 - directionless, define traffic allowed to pass through particular VLAN
- L3 switch: virtual router interface's ACLs

Port security

- Limits (source) MAC addresses allowed on port
- Limits number of MAC addresses dynamically learned on particular port
- Protected ports
 - disallows to forward traffic to other protected ports
 - restrict peer-to-peer communication

Building blocks of switched networks

- Switch block
- Collapsed Core
- Dual Core
- Pros and cons of L2 and L3 backbones

LABs

Observing STP behavior

Configuring EtherChannel

Inter-VLAN routing with external router
Inter-VLAN routing with L3 switch

+ another routed ports

[Dynamic VLANs (VMPS)]